1
|
Chen J, Li F, Luo WS, Zhu MF, Zhao NJ, Zhang ZH, Chen YF, Feng DX, Yang SY, Sun WJ. Therapeutic potential of Da Cheng Qi Decoction and its ingredients in regulating ferroptosis via the NOX2-GPX4 signaling pathway to alleviate and predict severe acute pancreatitis. Cell Signal 2025; 131:111733. [PMID: 40081545 DOI: 10.1016/j.cellsig.2025.111733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/27/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE This study aimed to elucidate the protective effects of Da Cheng Qi Decoction (DCQD) on severe acute pancreatitis (SAP) by targeting ferroptosis in pancreatic acinar cells and to establish a predictive signature and nomogram for acute pancreatitis (AP) risk assessment. METHODS We utilized microarray analysis to delineate gene expression patterns among 32 healthy controls and 87 AP patients stratified by severity. Employing SAP models and NOX2-deficient cells, we investigated the molecular underpinnings of ferroptosis. The impact of DCQD and the ferroptosis inhibitor Fer-1 on gene expression, oxidative stress, and inflammation was assessed. Machine learning algorithms identified differentially expressed genes (DEGs) sensitive to DCQD, SAP, and ferroptosis (DSNFGs), which were validated across multiple datasets. A predictive nomogram integrating DSNFGs was developed, and single-cell analysis provided a comprehensive view of the cellular dynamics. RESULTS The microarray analysis revealed upregulation of NOX2 and downregulation of GPX4 in AP, with expression patterns correlating with disease severity. DCQD ameliorated SAP-induced pancreatic acinar cell damage and ferroptosis by reducing inflammatory markers and enhancing GPX4 expression. NOX2 knockout mitigated ferroptosis in SAP models, suggesting a key role in the disease process. DCQD and Fer-1 differentially regulated the expression of ferroptosis-related genes, reduced reactive oxygen species (ROS) and high-mobility group box 1 (HMGB1) levels, and suppressed the inflammatory response in a SAP mouse model. The HPLC analysis of DCQD constituents indicated eight components (aloe-emodin, rhein, emodin, chrysophanol, naringin, hesperidin, magnolol, and honokiol) with the capacity to modulate ferroptosis. Venn analysis identified 48 DSNFGs, with a subset of five genes demonstrating significant predictive value. The developed nomogram, based on LASSO regression, showed high accuracy in validation cohorts. Single-cell RNA sequencing (scRNA-seq) and CellChat analysis uncovered heterogeneity and cell-cell communication networks in the pancreas during recovery from pancreatitis, implicating several signaling pathways. CONCLUSION DCQD and its eight ingredients exert its protective effect in SAP by inhibiting ferroptosis through the NOX2/GPX4 pathway. The DCQD-SAP-ferroptosis-related signature and nomogram offer a novel tool for AP risk assessment, prognosis prediction, and personalized therapeutic strategies in SAP management.
Collapse
Affiliation(s)
- Jian Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Department of Public Health, International College, Krirk University, Bangkok, Thailand
| | - Fu Li
- Department of Hepatopancreatobiliary Surgery, Shuguang Hospital affliated to Shanghai University of Traditional Chinese Medincine, Shanghai 201203, China
| | - Wang-Sheng Luo
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang 421200, China
| | - Mei-Fang Zhu
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Neng-Jiang Zhao
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Zhi-Hai Zhang
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Ya-Feng Chen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Dian-Xu Feng
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Shu-Yu Yang
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China.
| | - Wen-Jie Sun
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China; Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
2
|
Zhang J, Zhou X, Wang B, Yin Y, Wei D, Li K. METTL3/YTHDF3 m 6A axis promotes ferroptosis in diabetic kidney disease by stabilizing TfR1. J Diabetes Investig 2025. [PMID: 40492436 DOI: 10.1111/jdi.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/13/2025] [Accepted: 05/22/2025] [Indexed: 06/12/2025] Open
Abstract
OBJECTIVE Diabetic kidney disease (DKD) is a common complication of diabetes. N6-Methyladenosine (m6A) modification is a widely studied epigenetic mechanism. Methyltransferase-like (METTL) 3 is a well-studied methyltransferase. This study aimed to investigate the role of METTL3 in DKD and the underlying mechanism. METHODS Thirty-five DKD patients and 28 control volunteers were recruited. Animal and cell DKD models were established. QRT-PCR and Western blot were performed to analyze the expression of METTL3 and fibrosis-related indicators. Cell viability and proliferation were assessed via a cell counting kit-8 and colony formation assays. Ferrous iron (Fe2+), malonaldehyde (MDA), and glutathione (GSH) contents were measured by commercial kits. The interaction between METTL3/YTH N6-methyladenosine RNA binding protein (YTHDF)3 and transferrin receptor-1 (TfR1) was examined through RNA immunoprecipitation and dual-luciferase reporter assays. RESULTS Results showed that METTL3-mediated m6A modification was elevated in kidney tissues of DKD patients and in high glucose (HG)-treated human renal mesangial cells (HRMCs). Besides, HG-treated HRMCs showed increased ferroptosis. In addition, METTL3 inhibition increased cell proliferation and inhibited ferroptosis in HRMCs. Mechanically, the METTL3/YTHDF3 m6A axis enhanced the stability of TfR1 mRNA. Moreover, YTHDF3 inhibition increased cell proliferation and inhibited ferroptosis in HRMCs. Finally, in vivo study results indicated that METTL3 deficiency inhibited ferroptosis and improved pathological damages. CONCLUSIONS In summary, METTL3/YTHDF3 m6A axis promoted ferroptosis in DKD by stabilizing TfR1, which could provide a reference for DKD treatment.
Collapse
Affiliation(s)
- Jinmei Zhang
- Department of Endocrine, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Xiaoping Zhou
- Department of Endocrine, Changyi Traditional Chinese Medicine Hospital, Weifang, Shandong, China
| | - Bin Wang
- Department of Endocrine, Weifang High Tech Rehabilitation Hospital, Weifang, Shandong, China
| | - Yan Yin
- Department of Endocrine, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Daihao Wei
- Department of Endocrine, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Kun Li
- Department of Nephrology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Lin Y, Yang S, Guo J. Antioxidant proteins can be potential targets in ameliorating ferroptosis in diabetic cardiomyopathy: a literature review. Diabetol Metab Syndr 2025; 17:199. [PMID: 40481517 PMCID: PMC12144738 DOI: 10.1186/s13098-025-01773-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/31/2025] [Indexed: 06/11/2025] Open
Abstract
Diabetic cardiomyopathy (DCM) is one of the cardiovascular complications of diabetes mellitus, which is different from myocardial damage caused by coronary ischemia, hypertension, and valvular disease. DCM lacks distinct clinical manifestations in its early stages, and current therapeutic approaches primarily focus on symptomatic management. Emerging evidence indicates that even with optimized glycemic regulation, the pathophysiological progression of DCM remains unmitigated. Exploring the pathogenic mechanism of DCM is the focus and hotspot of current research. Ferroptosis, an iron-dependent form of regulatory cell death, is crucial in DCM myocardial damage. Dysfunctional antioxidant defense system, increased oxidative stress, and elevated reactive oxygen species are the key mechanisms of ferroptosis in DCM. Thus, this review innovatively takes antioxidant proteins as the entry point, and for the first time systematically summarizes the molecular mechanism of antioxidant proteins to improve DCM by regulating the ferroptosis pathway, and summarizes the therapeutic strategy of medications to enhance ferroptosis in DCM by targeting the expression of antioxidant proteins, to explore the potential targets to improve ferroptosis in DCM, to provide a new perspective for the study of delaying the progression of DCM.
Collapse
Affiliation(s)
- Yuting Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fujian, Fuzhou, China
| | - Shu Yang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Jinjian Guo
- Department of Cardiology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fujian, Fuzhou, China.
| |
Collapse
|
4
|
Liu N, Yan WT, Xiong K. Plantamajoside: A potentially novel botanical agent for diabetes mellitus management. World J Diabetes 2025; 16:104311. [DOI: 10.4239/wjd.v16.i5.104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 04/25/2025] Open
Abstract
Diabetes mellitus (DM) and its associated complications are metabolic disorders characterized by hyperglycemia, leading to high morbidity and reduced quality of life worldwide. This global healthcare problem imposes substantial personal and social burdens that warrant comprehensive and in-depth investigation. Plantamajoside (PMS), a naturally bioactive ingredient derived from the traditional Chinese medicinal herb Plantaginis Herba, exhibits a range of pharmacological properties, including anti-inflammatory, antioxidative, and antitumor effects, and has been traditionally utilized in clinical applications such as removing phlegm and clearing heat. However, the potential biological impact of PMS on DM remains largely unexplored. Recent research by Wang et al reported the therapeutic potential of PMS in type 2 DM (T2DM) and elucidated the underlying molecular mechanisms. Specifically, PMS mitigates endoplasmic reticulum stress and apoptosis of pancreatic β-cells by upregulating DnaJ heat shock protein family (Hsp40) member C1, thereby alleviating pancreatic β-cell damage and ameliorating T2DM progression. Given the novel and protective effect of PMS on pancreatic β-cells, this natural ingredient emerges as an innovative and promising therapeutic strategy for improving DM outcomes. PMS has been shown to modulate key signaling pathways involved in multiple types of regulated cell death (RCD), such as apoptosis and autophagy. Various forms of RCD, including apoptosis, ferroptosis, pyroptosis, autophagy, and PANoptosis, contribute to the pathogenesis of DM and its associated complications. There is significant potential for PMS to exert protective effects on β-cells against these forms of RCD and to provide a multitarget approach to DM therapy. Therefore, further exploration into whether PMS shields pancreatic β-cells from these types of RCD, coupled with elucidating the underlying molecular mechanisms, will facilitate the development of more effective therapeutic strategies for DM. Additionally, further investigation on PMS in conjunction with other therapeutic approaches is warranted to enhance therapeutic efficacy for DM.
Collapse
Affiliation(s)
- Na Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Wei-Tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
5
|
Qian Z, Zhang X, Huang J, Hou Y, Hu C, Cao Y, Wu N, Zhu T, Wu G. Glucose deprivation-restoration induces labile iron overload and ferroptosis in renal tubules through V-ATPase-mTOR axis-mediated ferritinophagy and iron release by TPC2. Free Radic Biol Med 2025; 236:204-219. [PMID: 40379157 DOI: 10.1016/j.freeradbiomed.2025.05.390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/28/2025] [Accepted: 05/10/2025] [Indexed: 05/19/2025]
Abstract
Renal ischemia-reperfusion injury (IRI), a common complication following kidney transplantation and partial nephrectomy, is the leading cause of renal dysfunction with limited treatment. Excessive cellular iron accumulation drives lipid peroxidation and activates pathways associated with ferroptosis, which has been implicated in renal IRI. However, the regulatory mechanisms of cellular iron metabolism and its relationship with ferroptosis during ischemia-reperfusion (IR) remain unclear. In this study, in vitro OGSD-R (oxygen, glucose, and serum deprivation-restoration) models and in vivo IR models were employed to investigate alterations in iron metabolism, ferroptosis, and the underlying molecular mechanisms using immunofluorescence, immunoblotting and biochemical testing. We identified glucose deprivation-restoration (GD-R) as a key trigger of cellular iron overload under renal IR condition. Mechanistically, GD-R-induced iron overload is driven by the dysfunction of vacuolar ATPase (V-ATPase)-mammalian target of rapamycin (mTOR) pathway. Inactivation of mTOR results in lysosomal iron releases via two-pore channel 2 (TPC2) and ferritin degradation through ferritinophagy. This process elevates intracellular iron levels, thereby promoting ferroptosis in renal IRI. Targeting cellular iron metabolism effectively alleviates renal IRI. These findings highlight the critical role of glucose metabolism and V-ATPase-mTOR pathway in the regulation of iron homeostasis and ferroptosis during renal IRI, and establish a mechanistic link among glucose metabolism, iron overload and ferroptosis, providing potential therapeutic targets for renal IRI.
Collapse
Affiliation(s)
- Zhiyu Qian
- Department of Kidney Transplantation, Zhongshan Hospital Fudan University, 170 Fenglin Road, Shanghai, 200030, China; Shanghai Key Laboratory of Organ Transplantation, 170 Fenglin Road, Shanghai, 200030, China; Department of Urology, Huadong Hospital Fudan University, 221 West Yan'an Road, Shanghai, 200040, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
| | - Jiahua Huang
- Department of Neurology, Zhongshan Hospital Fudan University, 170 Fenglin Road, Shanghai, 200030, China
| | - Yumin Hou
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Chunlan Hu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Yirui Cao
- Department of Kidney Transplantation, Zhongshan Hospital Fudan University, 170 Fenglin Road, Shanghai, 200030, China; Shanghai Key Laboratory of Organ Transplantation, 170 Fenglin Road, Shanghai, 200030, China
| | - Nannan Wu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China
| | - Tongyu Zhu
- Department of Kidney Transplantation, Zhongshan Hospital Fudan University, 170 Fenglin Road, Shanghai, 200030, China; Shanghai Key Laboratory of Organ Transplantation, 170 Fenglin Road, Shanghai, 200030, China.
| | - Guoyi Wu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201508, China.
| |
Collapse
|
6
|
Liu B, Jin Q, Sun YK, Yang ZM, Meng P, Zhang X, Chen Q, Gan P, Zhao T, He JJ, He GP, Xue Q. From bench to bedside: targeting ferroptosis and mitochondrial damage in the treatment of diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2025; 16:1563362. [PMID: 40352456 PMCID: PMC12061709 DOI: 10.3389/fendo.2025.1563362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common and fatal cardiac complication caused by diabetes, with its pathogenesis involving various forms of cell death and mitochondrial dysfunction, particularly ferroptosis and mitochondrial injury. Recent studies have indicated that ferroptosis and mitochondrial damage play crucial roles in the onset and progression of DCM, though their precise regulatory mechanisms remain unclear. Of particular interest is the interaction between ferroptosis and mitochondrial damage, as well as their synergistic effects, which are not fully understood. This review summarizes the roles of ferroptosis and mitochondrial injury in the progression of DCM and explores the molecular mechanisms involved, with an emphasis on the interplay between these two processes. Additionally, the article offers an overview of targeted drugs shown to be effective in cellular experiments, animal models, and clinical trials, analyzing their mechanisms of action and potential side effects. The goal is to provide insights for future drug development and clinical applications. Moreover, the review explores the challenges and prospects of multi-target combination therapies and personalized medicine interventions in clinical practice to offer strategic guidance for the comprehensive prevention and management of DCM.
Collapse
Affiliation(s)
- Bin Liu
- Department of Cardiology, The Fifth Affiliated Hospital of Kunming Medical University, Gejiu People’s Hospital, Gejiu, Yunnan, China
| | - Qing Jin
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Yi Kang Sun
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Zhi Ming Yang
- Department of Cardiology, The Fifth Affiliated Hospital of Kunming Medical University, Gejiu People’s Hospital, Gejiu, Yunnan, China
| | - Ping Meng
- Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Xi Zhang
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Qiu Chen
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
- Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Pin Gan
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Tao Zhao
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Jia Ji He
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Gui Ping He
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| | - Qiang Xue
- Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kun Min, Yunnan, China
| |
Collapse
|
7
|
Wang X, Peng H. 9-Hexadecenoic acid inhibits the aggressiveness of gastric cancer via targeting PTPN1/FTH1 signaling. Anticancer Drugs 2025:00001813-990000000-00384. [PMID: 40279138 DOI: 10.1097/cad.0000000000001724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
9-Hexadecenoic acid (9-HA) possesses anti-tumor properties. However, the effects of 9-HA on gastric cancer are scarcely reported. The present study aimed to investigate the effects of 9-HA on gastric cancer. mRNA levels were detected by reverse transcription quantitative PCR. Protein expression was detected by western blot. Cell behaviors were analyzed using Cell Counting Kit-8, colony formation, transwell, and propidium iodide staining assays. Co-localization of PTPN1 and FTH1 was determined using fluorescence in situ hybridization assay. In vivo assay was conducted to further verify the effects of 9-HA on gastric cancer. 9-HA suppressed the malignant behavior of gastric cancer. Moreover, 9-HA promoted iron-overload-dependent ferroptosis of gastric cancer in vivo and in vitro. Traditional Chinese medicine systems pharmacology predicted that 9-HA could target PTPN1, which was upregulated in gastric cancer cells. PTPN1-mediated phosphorylation of FTH1 contributed to the latter degradation. Overexpressed PTPN1 alleviated the effects of 9-HA, promoting the aggressiveness of gastric cancer and suppressing tumor cell ferroptosis. Interestingly, overexpressed PTPN1 antagonized the effects of 9-HA, promoted tumor growth, and inhibited the ferroptosis of gastric cancer. In summary, 9-HA-mediated downregulation of PTPN1 drives ferroptosis and inhibit the aggressiveness of gastric cancer. Thence, 9-HA may be an alternative strategy for gastric cancer.
Collapse
Affiliation(s)
- Xin Wang
- Department of Traditional Chinese Medicine, The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | | |
Collapse
|
8
|
Li P, Xu TY, Yu AX, Liang JL, Zhou YS, Sun HZ, Dai YL, Liu J, Yu P. The Role of Ferroptosis in Osteoporosis and Advances in Chinese Herbal Interventions. BIOLOGY 2025; 14:367. [PMID: 40282232 PMCID: PMC12025301 DOI: 10.3390/biology14040367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
OP, a systemic bone disorder marked by reduced bone mass and heightened fracture risk, poses a significant global health burden, particularly among aging populations. Current treatments, including bisphosphonates and calcium supplementation, are limited by adverse effects and incomplete efficacy. Emerging research highlights ferroptosis-an iron-dependent cell death driven by lipid peroxidation-as a critical contributor to OP pathogenesis, characterized by dysregulated iron metabolism, oxidative stress, and lipid peroxide accumulation, which disrupt bone remodeling by impairing osteoblast function and enhancing osteoclast activity. This review elucidates the mechanistic interplay between ferroptosis and OP subtypes (diabetic osteoporosis (DOP), glucocorticoid-induced (GIOP), and postmenopausal osteoporosis (PMOP)) and evaluates the efficacy of Chinese herbal interventions in mitigating ferroptosis-driven bone loss. Key findings reveal that excess iron exacerbates lipid peroxidation via the Fenton reaction, while glutathione peroxidase 4 (GPX4) inactivation and system Xc- inhibition amplify oxidative damage. In DIOP, hyperglycemia-induced ROS and advanced glycation end products suppress osteogenesis, countered by melatonin and naringenin via nuclear factor -related factor 2 (Nrf2)/GPX4 activation. GIOP involves dexamethasone-mediated GPX4 downregulation, mitigated by exosomes and melatonin through phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling. PMOP driven by estrogen deficiency-induced iron overload is alleviated by aconitine and icariin (ICA) via nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways. Chinese herbs, including active compounds (quercetin, gastrodin, ICA, etc.) and formulations (Bugu Shengsui Capsule, Erxian Decoction (EXD), etc.), regulate iron metabolism, enhance antioxidant defenses (Nrf2/heme oxygenase 1(HO-1)), and inhibit lipid peroxidation, effectively restoring bone homeostasis. These findings underscore ferroptosis as a pivotal mechanism in OP progression and highlight the therapeutic promise of Chinese herbs in bridging traditional medicine with modern mechanistic insights. Future research should prioritize elucidating precise molecular targets, optimizing formulations, and validating clinical efficacy to address current therapeutic gaps.
Collapse
Affiliation(s)
- Pan Li
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Tian-Yang Xu
- Innovation Practice Center, Changchun University of Chinese Medicine, Jilin 130117, China;
| | - Ao-Xue Yu
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Jing-Ling Liang
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Ya-Shuang Zhou
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Huai-Zhu Sun
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Yu-Lin Dai
- Ginseng Scientific Research Institute, Jilin 130117, China;
| | - Jia Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin 130117, China; (P.L.); (A.-X.Y.); (J.-L.L.); (H.-Z.S.)
| | - Peng Yu
- Innovation and Entrepreneurship College, Changchun University of Chinese Medicine, Jilin 130117, China
| |
Collapse
|
9
|
Mu F, Luo P, Zhu Y, Nie P, Li B, Bai X. Iron Metabolism and Ferroptosis in Diabetic Kidney Disease. Cell Biochem Funct 2025; 43:e70067. [PMID: 40166850 DOI: 10.1002/cbf.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Diabetic kidney disease (DKD) is a major diabetic microvascular complication that still lacks effective therapeutic drugs. Ferroptosis is a recently identified form of programmed cell death that is triggered by iron overload. It is characterized by unrestricted lipid peroxidation and subsequent membrane damage and is found in various diseases. Accumulating evidence has highlighted the crucial roles of iron overload and ferroptosis in DKD. Here, we review iron metabolism and the biology of ferroptosis. The role of aberrant ferroptosis in inducing diverse renal intrinsic cell death, oxidative stress, and renal fibrosis in DKD is summarized, and we elaborate on critical regulatory factors related to ferroptosis in DKD. Finally, we focused on the significance of ferroptosis in the treatment of DKD and highlight recent data regarding the novel activities of some drugs as ferroptosis inhibitors in DKD, aiming to provide new research targets and treatment strategies on DKD.
Collapse
Affiliation(s)
- Fangxin Mu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Zhang J, Xin S, Mao J, Liu X, Wang T, Liu J, Song X, Song W. The role of programmed cell death in diabetes mellitus-induced erectile dysfunction: from mechanisms to targeted therapy. Reprod Biol Endocrinol 2025; 23:32. [PMID: 40033391 PMCID: PMC11874627 DOI: 10.1186/s12958-025-01368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease that often leads to vascular endothelial injury and peripheral neuropathy. Erectile dysfunction (ED), a common condition in andrology, is frequently associated with DM. The incidence of diabetes mellitus-induced ED (DMED) is second only to the cardiovascular complications of diabetes. Compared to other types of ED, DMED presents with more severe symptoms, rapid progression, and notable resistance to phosphodiesterase type 5 inhibitors (PDE5is). Various forms of programmed cell death (PCD)-including apoptosis, autophagy, pyroptosis, and ferroptosis-play pivotal roles in the pathogenesis of DMED. An exacerbation of DMED is linked to critical irritants like advanced glycation end-products (AGEs) and reactive oxygen species (ROS) in the corpus cavernosum tissue. These irritants can spark anomalous activations of diverse PCDs, which damage primary corpus cavernosum cells like cavernous nerve cells, endothelial cells, and myocytes, leading to ED. Hence, we reviewed current knowledge on the mechanisms and therapeutic potential of targeting PCDs in DMED, aiming to advance strategies for enhancing erectile function.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Xin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaquan Mao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaodong Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Wen Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Ahamad Khan MM, Ganguly A, Barman S, Das C, Ganesan SK. Unveiling ferroptosis genes and inhibitors in diabetic retinopathy through single-cell analysis and docking simulations. Biochem Biophys Rep 2025; 41:101932. [PMID: 39968183 PMCID: PMC11833632 DOI: 10.1016/j.bbrep.2025.101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Diabetic retinopathy (DR) is a common microvascular complication of diabetes and a leading cause of vision loss worldwide. Although several mechanisms have been implicated in the pathogenesis of DR, emerging evidence suggests a link between ferroptosis and DR. Unfortunately, the exact mechanism underlying this connection is not clear. Therefore, investigating the role of ferroptosis in diabetic retinopathy holds promise for advancing our understanding of this complex disease and developing innovative treatments. We have identified differentially expressed genes (DEGs) and differentially expressed marker genes (DEMGs) from open-source single-cell RNA sequencing datasets by using in depth in silico approach. Subsequently, ferroptosis-associated DEGs (FA-DEGs), ferroptosis-associated DEMGs (FA-DEMGs), and ferroptosis-associated Hub Genes (FAHGs) were identified. The FDA-approved drugs for our target proteins were also identified, and their ADMET properties were assessed. Molecular docking and simulation were utilized to explore the interaction stability of the compounds with the target proteins. Overall, we identified 63 FA-DEMGs that were significantly enriched in Peroxiredoxin activity, Ferroptosis, Mitophagy, and Autophagy. Further analysis predicted that PRDX1 and UBC are candidate target proteins. Molecular docking results showed that dexamethasone has a high binding affinity for both PRDX1 and UBC. Additionally, molecular dynamics simulations revealed that dexamethasone (which showed the best hit in the docking analysis) exhibited a 'stable effect' on both PRDX1 and UBC. To summarize, this study showed that PRDX1 and UBC could be suitable therapeutic targets for dexamethasone, which might be helpful in the advance of DR treatments in the future.
Collapse
Affiliation(s)
- Md. Maqsood Ahamad Khan
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- CSIR-Indian Institute of Chemical Biology, Translational Research Unit of Excellence (TRUE), Kolkata, 700091, India
| | - Ananya Ganguly
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- CSIR-Indian Institute of Chemical Biology, Translational Research Unit of Excellence (TRUE), Kolkata, 700091, India
| | - Shubhrajit Barman
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- CSIR-Indian Institute of Chemical Biology, Translational Research Unit of Excellence (TRUE), Kolkata, 700091, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Chirasmita Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- CSIR-Indian Institute of Chemical Biology, Translational Research Unit of Excellence (TRUE), Kolkata, 700091, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Senthil Kumar Ganesan
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- CSIR-Indian Institute of Chemical Biology, Translational Research Unit of Excellence (TRUE), Kolkata, 700091, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
12
|
Chen Z, Zheng N, Wang F, Zhou Q, Chen Z, Xie L, Sun Q, Li L, Li B. The role of ferritinophagy and ferroptosis in Alzheimer's disease. Brain Res 2025; 1850:149340. [PMID: 39586368 DOI: 10.1016/j.brainres.2024.149340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/17/2024] [Accepted: 11/16/2024] [Indexed: 11/27/2024]
Abstract
Iron is a crucial mineral element within human cells, serving as a pivotal cofactor for diverse biological enzymes. Ferritin plays a crucial role in maintaining iron homeostasis within the body through its ability to sequester and release iron. Ferritinophagy is a selective autophagic process in cells that specifically facilitates the degradation of ferritin and subsequent release of free iron, thereby regulating intracellular iron homeostasis. The nuclear receptor coactivator 4 (NCOA4) serves as a pivotal regulator in the entire process of ferritinophagy, facilitating its binding to ferritin and subsequent delivering to lysosomes for degradation, thereby enabling the release of free iron. The free iron ions within the cell undergo catalysis through the Fenton reaction, resulting in a substantial generation of reactive oxygen species (ROS). This process induces lipid peroxidation, thereby stimulating a cascade leading to cellular tissue damage and subsequent initiation of ferroptosis. Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive deterioration of emotional memory and cognitive function, accompanied by mental and behavioral aberrations. The pathology of the disease is characterized by aberrant deposition of amyloid β-protein (Aβ) and hyperphosphorylated tau protein. It has been observed that evident iron metabolism disorders and accumulation of lipid peroxides occur in AD, indicating a significant impact of ferritinophagy and ferroptosis on the pathogenesis and progression of AD. This article elucidates the process and mechanism of ferritinophagy and ferroptosis, investigating their implications in AD to identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ziwen Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Nan Zheng
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Fuwei Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiong Zhou
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Lihua Xie
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiang Sun
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Baohong Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
13
|
Wang Y, Su H, Lin X, Dai C, Cheng Q, Deng Z, Yang Y, Pu X. 1,25-(OH) 2D 3 improves SD rats high-altitude pulmonary edema by inhibiting ferroptosis and ferritinophagy in alveolar epithelial cells. J Steroid Biochem Mol Biol 2025; 247:106663. [PMID: 39681240 DOI: 10.1016/j.jsbmb.2024.106663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/21/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND This study investigates the protective effects and potential mechanisms of 1,25-(OH)2D3 against high-altitude pulmonary edema (HAPE). METHODS Hypoxia-induced rats were administered 1,25-(OH)2D3 for 24, 48, and 72 hours, and we observed lung tissue injury and pulmonary edema. Immunohistochemistry (IHC) and Western blot analyses were employed to analyze the expression of markers associated with ferroptosis and ferritinophagy in rat lungs. Metabolomics analysis was conducted to investigate changes in serum lipid metabolites. We validated the mechanism of action of 1,25-(OH)2D3 in type II alveolar epithelial cells induced by hypoxia. RESULTS Our results demonstrated that hypoxic exposure significantly altered sodium-water transport in the lungs, leading to edema formation. The degree of pulmonary edema was most pronounced at 48 hours of hypoxi. Treatment with 1,25-(OH)2D3 improved lung function and reduced the degree of pulmonary edema in hypoxic rats. Hypoxia-induced increases in 4-HNE and MDA levels in the lungs, along with iron accumulation, were observed. Hypoxia also resulted in elevated levels of NCOA4, LC3Ⅱ, and FTH1 proteins in the lungs. Furthermore, treatment with 1,25-(OH)2D3 significantly inhibited ferroptosis and ferritinophagy in the lungs after hypoxia. The levels of lipid metabolites, such as L-Aspartic acid and L-Fucose, were significantly elevated in the serum of hypoxic rats. After 1,25-(OH)2D3 treatment, these levels exhibited a significant reduction. CONCLUSION In hypoxic type II alveolar epithelial cells, 1,25-(OH)2D3 improved hypoxia-induced sodium-water transport, ferroptosis, and ferritinophagy, which were reversed by the autophagy agonist Rapamycin.By modulating ferroptosis and ferritinophagy, 1,25-(OH)2D3 mitigated the deleterious effects of hypoxia on pulmonary function.
Collapse
Affiliation(s)
- Yaxuan Wang
- Qinghai University, Xining, Qinghai Province 810016, China.
| | - Hong Su
- Qinghai University, Xining, Qinghai Province 810016, China.
| | - Xue Lin
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China.
| | - Chongyang Dai
- Qinghai University, Xining, Qinghai Province 810016, China.
| | - Qian Cheng
- Qinghai University, Xining, Qinghai Province 810016, China.
| | | | - Yangyang Yang
- Qinghai University, Xining, Qinghai Province 810016, China.
| | - Xiaoyan Pu
- Qinghai University, Xining, Qinghai Province 810016, China.
| |
Collapse
|
14
|
Xie L, He Q, Wu H, Shi W, Xiao X, Yu T. Hydrogen Sulfide Sustained Release Donor Alleviates Spinal Cord Ischemia-Reperfusion-Induced Neuron Death by Inhibiting Ferritinophagy-Mediated Ferroptosis. CNS Neurosci Ther 2025; 31:e70366. [PMID: 40168041 PMCID: PMC11960479 DOI: 10.1111/cns.70366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
AIMS Spinal cord ischemia-reperfusion injury (SCIRI) is a disastrous complication that cannot be completely prevented in thoracoabdominal aneurysm surgery, leading to sensory and motor dysfunction and even paraparesis, causing tremendous socioeconomic burden. Ferritinophagy is a form of autophagic ferroptosis, which is a contributor to SCIRI. Hydrogen sulfide (H2S) has been reported to be neuroprotective in various diseases. However, it remains unclear whether H2S alleviates SCIRI-induced neural death via regulating ferritinophagy-mediated ferroptosis. The aim of this study was to explore their relationship and interaction in SCIRI. RESULTS The results demonstrate that Nissl bodies and motor function were obviously lost in SCIRI rats. Meanwhile, SCIRI led to a significant increase in DHE-positive neurons, TUNEL-positive neurons, LC3-positive neurons, and ferritin-positive neurons, downregulation of GPx4, Slc7a11, p62, and ferritin expression, and upregulation of LC3 II/I and NCOA4 expression. Additionally, there was upregulation of the level of MDA, GSH, and Fe2+. Finally, we found that H2S could significantly relieve neuronal death and loss of motor function in SCIRI rats by inhibiting ferritinophagy and ferroptosis. CONCLUSION Ferroptosis and ferritinophagy play a crucial role in the etiopathogenesis of SCIRI, and H2S exerts neuroprotection by inhibiting ferritinophagy-mediated ferroptosis.
Collapse
Affiliation(s)
- Lei Xie
- Department of Orthopedic Surgery, Qingdao Municipal HospitalQingdao UniversityQingdaoChina
- Institute of Sports Medicine and HealthQingdao UniversityQingdaoChina
| | - Qiuping He
- Department of Orthopedic Surgery, Qingdao Municipal HospitalQingdao UniversityQingdaoChina
- Institute of Sports Medicine and HealthQingdao UniversityQingdaoChina
| | - Hang Wu
- Institute of Sports Medicine and HealthQingdao UniversityQingdaoChina
- Department of Orthopedics, the Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdaoChina
| | - Weipeng Shi
- Institute of Sports Medicine and HealthQingdao UniversityQingdaoChina
- Department of Orthopedics, the Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdaoChina
| | - Xiao Xiao
- Central Laboratories, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| |
Collapse
|
15
|
Zhou R, Zhang Z, Li X, Duan Q, Miao Y, Zhang T, Wang M, Li J, Zhang W, Wang L, Jones OD, Xu M, Liu Y, Xu X. Autophagy in High-Fat Diet and Streptozotocin-Induced Metabolic Cardiomyopathy: Mechanisms and Therapeutic Implications. Int J Mol Sci 2025; 26:1668. [PMID: 40004130 PMCID: PMC11855906 DOI: 10.3390/ijms26041668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic cardiomyopathy, encompassing diabetic and obese cardiomyopathy, is an escalating global health concern, driven by the rising prevalence of metabolic disorders such as insulin resistance, type 1 and type 2 diabetes, and obesity. These conditions induce structural and functional alterations in the heart, including left ventricular dysfunction, fibrosis, and ultimately heart failure, particularly in the presence of coronary artery disease or hypertension. Autophagy, a critical cellular process for maintaining cardiac homeostasis, is frequently disrupted in metabolic cardiomyopathy. This review explores the role of autophagy in the pathogenesis of high-fat diet (HFD) and streptozotocin (STZ)-induced metabolic cardiomyopathy, focusing on non-selective and selective autophagy pathways, including mitophagy, ER-phagy, and ferritinophagy. Key proteins and genes such as PINK1, Parkin, ULK1, AMPK, mTOR, ATG7, ATG5, Beclin-1, and miR-34a are central to the regulation of autophagy in metabolic cardiomyopathy. Dysregulated autophagic flux impairs mitochondrial function, promotes oxidative stress, and drives fibrosis in the heart. Additionally, selective autophagy processes such as lipophagy, regulated by PNPLA8, and ferritinophagy, modulated by NCOA4, play pivotal roles in lipid metabolism and iron homeostasis. Emerging therapeutic strategies targeting autophagy, including plant extracts (e.g., curcumin, dihydromyricetin), endogenous compounds (e.g., sirtuin 3, LC3), and lipid/glucose-lowering drugs, offer promising avenues for mitigating the effects of metabolic cardiomyopathy. Despite recent advances, the precise mechanisms underlying autophagy in this context remain poorly understood. A deeper understanding of autophagy's regulatory networks, particularly involving these critical genes and proteins, may lead to novel therapeutic approaches for treating metabolic cardiomyopathy.
Collapse
Affiliation(s)
- Rong Zhou
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Zutong Zhang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Xinjie Li
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Qinchun Duan
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Yuanlin Miao
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Tingting Zhang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Mofei Wang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Jiali Li
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Wei Zhang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Liyang Wang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Odell D. Jones
- University Laboratory Animal Resources (ULAR), University of Pennsylvania School of Medicine, Philadelphia, PA 19144, USA;
| | - Mengmeng Xu
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Yingli Liu
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| |
Collapse
|
16
|
Hu J, Zhang Y, Zhang Y, Shi N, Miu Y, Huang J, Miao M, Ci X. Bergenin inhibits ferritinophagy and ferroptosis in cisplatin-induced acute kidney injury by activating the p-GSK3β/Nrf2/PPARγ pathway. Int Immunopharmacol 2025; 147:114004. [PMID: 39793228 DOI: 10.1016/j.intimp.2024.114004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
Ferroptosis plays a key role in cisplatin-induced acute kidney injury (AKI). Bergenin, which is extracted from Ardisiae Japonicae Herba and has long been used in folk tea and herbal tea drinks, is known to activate Nrf2 and has anti-inflammatory and antioxidant properties, however, its protective influence on CI-AKI has not been elucidated. We used models of cisplatin-induced nephrotoxicity in vitro and CI-AKI models in vivo. In vitro, we found that ferroptosis and ferritinophagy biomarkers were strongly regulated by bergenin treatment. Mechanistic experiments demonstrated that bergenin bound to and phosphorylated GSK3β, which inhibited its activity, to promote the nuclear translocation of Nrf2 and its subsequent binding to the PPARγ promoter sequence to activate PPARγ. However, the protective effects of bergenin on ferroptosis and ferritinophagy in cisplatin-exposed HK-2 cells were diminished when Nrf2 or PPARγ was inhibited. In vivo, bergenin effectively inhibited renal damage induced by cisplatin. Furthermore, bergenin attenuated ferritinophagy-mediated ferroptosis caused by cisplatin; these effects were abolished in Nrf2 knockout mice. Our findings revealed that bergenin effectively protected against ferritinophagy and ferroptosis in CI-AKI, which was largely dependent on the activation of the p-GSK3β/Nrf2/PPARγ pathway.
Collapse
Affiliation(s)
- Jianqiang Hu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130001, China
| | - Yan Zhang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130001, China
| | - Yanmin Zhang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130001, China
| | - Ningmohan Shi
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130001, China
| | - Yufan Miu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130001, China
| | - Jing Huang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130001, China
| | - Mochi Miao
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130001, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130001, China.
| |
Collapse
|
17
|
Gil J, Kim D, Choi S, Bae ON. Cadmium-induced iron dysregulation contributes to functional impairment in brain endothelial cells via the ferroptosis pathway. Toxicol Appl Pharmacol 2025; 495:117233. [PMID: 39842614 DOI: 10.1016/j.taap.2025.117233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Cadmium (Cd2+) is a heavy metal that is a major hazardous environmental contaminant, ubiquitously present in the environment. Cd2+ exposure has been closely associated with an increased prevalence and severity of neurological and cardiovascular diseases (CVD). The blood-brain barrier (BBB) plays a crucial role in protecting the brain from external environmental factors. Mitochondria play an important role in maintaining the barrier function of brain endothelial cells by regulating energy metabolism and redox homeostasis. In this study, we aimed to assess the cytotoxic effects of Cd2+ on the integrity and function of brain endothelial cells. After 24 h of exposure, Cd2+ reduced cell survival, tight junction protein expression, and trans-endothelial electrical resistance (TEER) in bEnd.3 cells suggest a potential BBB integrity disruption by Cd2+ exposure. To clarify the underlying mechanism, we further investigated the role of mitochondria in iron overload-mediated cell death following Cd2+ exposure. Cd2+ induced a substantial reduction in mitochondrial basal respiration and ATP production in brain endothelial cells, suggesting mitochondrial dysfunction. In addition, Cd2+ exposure led to impaired autophagy, elevated iron levels, and increased lipid peroxidation, indicating the initiation of ferroptosis, a form of cell death triggered by iron. In summary, our research suggests that Cd2+ exposure can disrupt BBB function by causing mitochondrial dysfunction and disrupting iron homeostasis.
Collapse
Affiliation(s)
- Junkyung Gil
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea.
| | - Donghyun Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea.
| | - Sungbin Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea.
| | - Ok-Nam Bae
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea.
| |
Collapse
|
18
|
Peng Y, Zheng X, Zhang S, Luo Z, Song L, Chen H, Yao X. Advances in the activity of resveratrol and its derivatives in cardiovascular diseases. Arch Pharm (Weinheim) 2025; 358:e2400865. [PMID: 39956927 DOI: 10.1002/ardp.202400865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/29/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025]
Abstract
Cardiovascular diseases (CVDs), the leading cause of human death worldwide, are diseases that affect the heart and blood vessels and include arrhythmias, coronary atherosclerotic heart disease, hypertension, and so on. Resveratrol (RSV) is a natural nonflavonoid phenolic compound with antioxidant, anti-inflammatory, anticancer, and cardiovascular protection functions. RSV has shown significant protective effects against CVD. However, RSV's clinical application is limited by its tendency to be oxidized and metabolized easily. Therefore, it is necessary to optimize the RSV structure. This review will introduce the activity, synthesis, and structure-activity relationships of RSV derivatives, and the mechanism of the action of RSV in CVDs in recent years.
Collapse
Affiliation(s)
- Yaling Peng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, China
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, Hunan, China
| | - Si Zhang
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, Hunan, China
| | - Zhongqin Luo
- Shaoyang Hospital of TCM, Shaoyang, Hunan, China
| | - Li Song
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, China
| | - Hongfei Chen
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, China
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
19
|
Zhao P, Yin S, Qiu Y, Sun C, Yu H. Ferroptosis and pyroptosis are connected through autophagy: a new perspective of overcoming drug resistance. Mol Cancer 2025; 24:23. [PMID: 39825385 PMCID: PMC11740669 DOI: 10.1186/s12943-024-02217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/25/2024] [Indexed: 01/20/2025] Open
Abstract
Drug resistance is a common challenge in clinical tumor treatment. A reduction in drug sensitivity of tumor cells is often accompanied by an increase in autophagy levels, leading to autophagy-related resistance. The effectiveness of combining chemotherapy drugs with autophagy inducers/inhibitors has been widely confirmed, but the mechanisms are still unclear. Ferroptosis and pyroptosis can be affected by various types of autophagy. Therefore, ferroptosis and pyroptosis have crosstalk via autophagy, potentially leading to a switch in cell death types under certain conditions. As two forms of inflammatory programmed cell death, ferroptosis and pyroptosis have different effects on inflammation, and the cGAS-STING signaling pathway is also involved. Therefore, it also plays an important role in the progression of some chronic inflammatory diseases. This review discusses the relationship between autophagy, ferroptosis and pyroptosis, and attempts to uncover the reasons behind the evasion of tumor cell death and the nature of drug resistance.
Collapse
Affiliation(s)
- Peng Zhao
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangshuang Yin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261053, China.
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041, China.
| | - Haiyang Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
20
|
Xiong LY, Zhao W, Hu FQ, Zhou XM, Zheng YJ. Ubiquitination in diabetes and its complications: A perspective from bibliometrics. World J Diabetes 2025; 16:100099. [PMID: 39817224 PMCID: PMC11718460 DOI: 10.4239/wjd.v16.i1.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Diabetes has a substantial impact on public health, highlighting the need for novel treatments. Ubiquitination, an intracellular protein modification process, is emerging as a promising strategy for regulating pathological mechanisms. We hypothesize that ubiquitination plays a critical role in the development and progression of diabetes and its complications, and that understanding these mechanisms can lead to new therapeutic approaches. AIM To uncover the research trends and advances in diabetes ubiquitination and its complications, we conducted a bibliometric analysis. METHODS Studies on ubiquitination in diabetes mellitus and its complications were retrieved from the Web of Science Core Collection. Visual mapping analysis was conducted using the CiteSpace software. RESULTS We gathered 791 articles published over the past 23 years, focusing on ubiquitination in diabetes and its associated complications. These articles originated from 54 countries and 386 institutions, with China as the leading contributor. Shanghai Jiao Tong University has the highest number of publications in this field. The most prominent authors contributing to this research area include Wei-Hua Zhang, with Zhang Y being the most frequently cited author. Additionally, The Journal of Biological Chemistry is noted as the most cited in this field. The predominant keywords included expression, activation, oxidative stress, phosphorylation, ubiquitination, degradation, and insulin resistance. CONCLUSION The role of ubiquitination in diabetes and its complications, such as diabetic nephropathy and cardiomyopathy, is a key research focus. However, these areas require further investigations.
Collapse
Affiliation(s)
- Li-Yuan Xiong
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| | - Wei Zhao
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| | - Fa-Quan Hu
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| | - Xue-Mei Zhou
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| | - Yu-Jiao Zheng
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| |
Collapse
|
21
|
Xu W, Dong L, Dai J, Zhong L, Ouyang X, Li J, Feng G, Wang H, Liu X, Zhou L, Xia Q. The interconnective role of the UPS and autophagy in the quality control of cancer mitochondria. Cell Mol Life Sci 2025; 82:42. [PMID: 39800773 PMCID: PMC11725563 DOI: 10.1007/s00018-024-05556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Uncontrollable cancer cell growth is characterized by the maintenance of cellular homeostasis through the continuous accumulation of misfolded proteins and damaged organelles. This review delineates the roles of two complementary and synergistic degradation systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, in the degradation of misfolded proteins and damaged organelles for intracellular recycling. We emphasize the interconnected decision-making processes of degradation systems in maintaining cellular homeostasis, such as the biophysical state of substrates, receptor oligomerization potentials (e.g., p62), and compartmentalization capacities (e.g., membrane structures). Mitochondria, the cellular hubs for respiration and metabolism, are implicated in tumorigenesis. In the subsequent sections, we thoroughly examine the mechanisms of mitochondrial quality control (MQC) in preserving mitochondrial homeostasis in human cells. Notably, we explored the relationships between mitochondrial dynamics (fusion and fission) and various MQC processes-including the UPS, mitochondrial proteases, and mitophagy-in the context of mitochondrial repair and degradation pathways. Finally, we assessed the potential of targeting MQC (including UPS, mitochondrial molecular chaperones, mitochondrial proteases, mitochondrial dynamics, mitophagy and mitochondrial biogenesis) as cancer therapeutic strategies. Understanding the mechanisms underlying mitochondrial homeostasis may offer novel insights for future cancer therapies.
Collapse
Affiliation(s)
- Wanting Xu
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ji Dai
- Institute of International Technology and Economy, Development Research Center of the State Council, Beijing, 102208, China
| | - Lu Zhong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiao Ouyang
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiaqian Li
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Gaoqing Feng
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Huahua Wang
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuan Liu
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Liying Zhou
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
22
|
Wu T, Ji M, Li T, Luo L. The molecular and metabolic landscape of ferroptosis in respiratory diseases: Pharmacological aspects. J Pharm Anal 2025; 15:101050. [PMID: 40034685 PMCID: PMC11873008 DOI: 10.1016/j.jpha.2024.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 03/05/2025] Open
Abstract
Ferroptosis is a form of cell death that occurs when there is an excess of reactive oxygen species (ROS), lipid peroxidation, and iron accumulation. The precise regulation of metabolic pathways, including iron, lipid, and amino acid metabolism, is crucial for cell survival. This type of cell death, which is associated with oxidative stress, is controlled by a complex network of signaling molecules and pathways. It is also implicated in various respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), lung cancer, pulmonary fibrosis (PF), and the coronavirus disease 2019 (COVID-19). To combat drug resistance, it is important to identify appropriate biological markers and treatment targets, as well as intervene in respiratory disorders to either induce or prevent ferroptosis. The focus is on the role of ferroptosis in the development of respiratory diseases and the potential of targeting ferroptosis for prevention and treatment. The review also explores the interaction between immune cell ferroptosis and inflammatory mediators in respiratory diseases, aiming to provide more effective strategies for managing cellular ferroptosis and respiratory disorders.
Collapse
Affiliation(s)
- Tong Wu
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Miaorong Ji
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
23
|
Barlattani T, Celenza G, Cavatassi A, Minutillo F, Socci V, Pinci C, Santini R, Pacitti F. Neuropsychiatric Manifestations of COVID-19 Disease and Post COVID Syndrome: The Role of N-acetylcysteine and Acetyl-L-carnitine. Curr Neuropharmacol 2025; 23:686-704. [PMID: 39506442 PMCID: PMC12163478 DOI: 10.2174/011570159x343115241030094848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/08/2024] [Accepted: 09/21/2024] [Indexed: 11/08/2024] Open
Abstract
COVID-19 is associated with neuropsychiatric symptoms, such as anosmia, anxiety, depression, stress-related reactions, and psychoses. The illness can cause persistent cognitive impairment and "brain fog", suggesting chronic brain involvement. Clinical entities of ongoing symptomatic COVID-19 and Post COVID Syndrome (PCS) mainly present neuropsychiatric symptoms such as dysgeusia, headache, fatigue, anxiety, depression, sleep disturbances, and post-traumatic stress disorder. The pathophysiology of COVID-19-related brain damage is unclear, but it is linked to various mechanisms such as inflammation, oxidative stress, immune dysregulation, impaired glutamate homeostasis, glial and glymphatic damage, and hippocampal degeneration. Noteworthy is that the metabotropic receptor mGluR2 was discovered as a mechanism of internalisation of SARS-CoV-2 in Central Nervous System (CNS) cells. N-acetylcysteine (NAC) and acetyl-L-carnitine (ALC) are two supplements that have already been found effective in treating psychiatric conditions. Furthermore, NAC showed evidence in relieving cognitive symptomatology in PCS, and ALC was found effective in treating depressive symptomatology of PCS. The overlapping effects on the glutamatergic system of ALC and NAC could help treat COVID-19 psychiatric symptoms and PCS, acting through different mechanisms on the xc-mGluR2 network, with potentially synergistic effects on chronic pain and neuro-astrocyte protection. This paper aims to summarise the current evidence on the potential therapeutic role of NAC and ALC, providing an overview of the underlying molecular mechanisms and pathophysiology. It proposes a pathophysiological model explaining the effectiveness of NAC and ALC in treating COVID-19-related neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Tommaso Barlattani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Alessandro Cavatassi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Franco Minutillo
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Valentina Socci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Carolina Pinci
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Riccardo Santini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Pacitti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
24
|
Zhang Q, Yuan X, Luan X, Lei T, Li Y, Chu W, Yao Q, Baker PN, Qi H, Li H. GLUT1 exacerbates trophoblast ferroptosis by modulating AMPK/ACC mediated lipid metabolism and promotes gestational diabetes mellitus associated fetal growth restriction. Mol Med 2024; 30:257. [PMID: 39707215 DOI: 10.1186/s10020-024-01028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) has been associated with several fetal complications, such as macrosomia and fetal growth restriction (FGR). Infants from GDM associated FGR are at increased risk for adult-onset obesity and associated metabolic disorders. However, the underlying mechanisms of GDM associated FGR remain to be explored. METHODS We analyzed placentas from GDM patients with FGR for ferroptosis markers and GLUT1 expression. High glucose conditions were established by adding different concentrations of D-Glucose to the 1640 cell culture medium. RSL3 were used to test ferroptosis sensitivity in trophoblast cells. GLUT1 was inhibited using siRNA or its inhibitor WZB117 to assess its impact on ferroptosis inhibition in HTR8/SVneo cell line. Mechanistic studies explored the effects of GLUT1 on AMPK and ACC phosphorylation, which in turn impacted lipid metabolism and ferroptosis. In mouse models, streptozotocin (STZ)-induced GDM was treated with WZB117 and the ferroptosis inhibitor liproxstatin-1 (Lip-1). Finally, AMPK and ACC phosphorylation levels were evaluated in GDM patient samples. RESULTS In this study, placentas from GDM patients with FGR showed signs of ferroptosis and upregulation of GLUT1. In cell models, high glucose conditions sensitized trophoblast cells to ferroptosis and induced GLUT1 expression. Interestingly, GLUT1 inhibition significantly suppressed ferroptosis in trophoblast cells under high glucose conditions. Mechanistically, elevated GLUT1 inhibited AMPK phosphorylation and reduced ACC phosphorylation, thereby promoting lipid synthesis and facilitating ferroptosis. In pregnant mice, STZ-induced hyperglycemia led to FGR, and treatment with either the GLUT1 inhibitor WZB117 or the ferroptosis inhibitor Lip-1 alleviated the FGR phenotype. Moreover, in vivo elevation of GLUT1 increased ferroptosis markers, decreased AMPK/ACC phosphorylation, and resulted in altered lipid metabolism, which likely contributed to the observed phenotype. Finally, placental samples from GDM patients showed reduced AMPK and ACC phosphorylation. CONCLUSIONS Our findings suggest a potential role of ferroptosis in GDM associated FGR and indicate that the dysregulated GLUT1-AMPK-ACC axis may be involved in the pathogenesis of GDM associated FGR in clinicals.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xi Yuan
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaojin Luan
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ting Lei
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yiran Li
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Chu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Qi Yao
- Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Philip N Baker
- College of Life Sciences, University of Leicester, Leicester, LE1 7RH, UK.
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China.
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Hui Li
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China.
- Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
25
|
Chen J, Li W, Zhang C, Wen D, Jiao C. Tyrosine phosphatase SHP2 promoted the progression of CRC via modulating the PI3K/BRD4/TFEB signaling induced ferroptosis. Discov Oncol 2024; 15:793. [PMID: 39692787 DOI: 10.1007/s12672-024-01586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/13/2024] [Indexed: 12/19/2024] Open
Abstract
OBJECTIVE To elucidate the mechanism by which tyrosine phosphatase SHP2 protects CRC through modulation of TFEB-mediated ferritinophagy, thereby suppressing ROS and ferroptosis. METHODS SW480 and SW620 cells, in the logarithmic growth phase, were treated with or without the SHP2 inhibitor PHPS1, the activator Trichomide A, EGF, or MMP inhibitors, and randomly assigned to four groups. Additionally, SW480 cells in the logarithmic phase underwent treatments with EGF, the ferroptosis inducer erastin, Trichomide A, or the curcumin analog C1, forming seven groups. Cell migration assessment in these groups employed scratch and Transwell assays. Protein expression analysis of total SHP2, total PI3K, p-SHP2, p-PI3K, p-TFEB, TFEB, SQSTM1, LC3, LAMP2, NCOA4, FTH1, GPX4, NOX4, and ACSL4 in the seven SW480 groups was conducted through Western blot and immunofluorescence. Apoptosis analysis was performed on these seven groups, while gene co-expression analysis utilized bioinformatics. SW480 and CCD-841CoN cells were categorized into four groups, undergoing treatment with saline, EGFR-OE lentivirus, SHP2-KD lentivirus, or SHP2-OE lentivirus. Western blot analysis in SW480 cells detected EGFR, total SHP2, p-SHP2, GPX4, and ACSL4 proteins, and tumor volume observations were conducted in a nude mouse xenograft model. Western blot also evaluated total SHP2, p-SHP2, GPX4, and ACSL4 protein expression in CCD-841CoN cells. RESULTS Bioinformatics analysis revealed correlations between EGFR and SHP2, SHP2 and PIK3CA, SHP2 and MAPK1, BRK4 and HIF1A, HIF1A and NCOA4, as well as TFEB and FTH1. Scratch and Transwell assays showed that SHP2 diminishes the migratory capacity of SW480 and SW620 cells. Western blot and immunofluorescence demonstrated that EGFR activation of SHP2 markedly elevated p-TFEB levels while reducing TFEB protein expression. EGF stimulation enhanced the expression of FTH1, GPX4, NOX4, and ACSL4. Combined stimulation with EGF and SHP2 further amplified the expression of p-SHP2, p-TFEB, and NCOA4 while reducing TFEB, SQSTM1, LC3, and LAMP2. Erastin augmented FTH1, GPX4, NOX4, and ACSL4 expression while decreasing p-SHP2, p-TFEB, TFEB, SQSTM1, LC3, LAMP2, and NCOA4. TFEB activation suppressed p-SHP2, p-TFEB, NCOA4, FTH1, and GPX4 expression, while promoting TFEB, SQSTM1, LC3, LAMP2, NOX4, and ACSL4 expression. Apoptosis assays indicated that SHP2 activation decelerated apoptosis in SW480 cells, whereas erastin under EGF stimulation accelerated apoptosis, as did TFEB activation. Western blot results in SW480 cells displayed that overexpression of EGFR or SHP2 significantly increased total SHP2, p-SHP2, and GPX4 expression while decreasing ACSL4 levels. SHP2 knockdown decreased total SHP2, p-SHP2, and GPX4 expression, with an increase in ACSL4 expression. In CCD-841CoN cells, overexpression of EGFR or SHP2 resulted in a decrease in p-SHP2 and an increase in total SHP2, more pronounced with SHP2 overexpression, while GPX4 and ACSL4 levels remained stable. SHP2 knockdown led to reduced EGFR, total SHP2, p-SHP2, and GPX4 expression, without a significant impact on ACSL4 levels. The nude mouse xenograft model demonstrated that EGFR overexpression significantly increased tumor size, whereas SHP2 overexpression markedly decreased tumor volume. SHP2 knockdown resulted in significantly larger tumors. CONCLUSION SHP2 advances CRC progression by modulating TFEB-mediated ferritinophagy, suppressing ROS and ferroptosis. Targeting SHP2 presents a promising therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Jian Chen
- Department of General Surgery, Bethune International Peace Hospital of The People's Liberation Army, No. 398, Zhongshan XI Road, Qiaoxi District, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Wei Li
- Department of General Surgery, Bethune International Peace Hospital of The People's Liberation Army, No. 398, Zhongshan XI Road, Qiaoxi District, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Cheng Zhang
- Department of Gastroenterology, Bethune International Peace Hospital of The People's Liberation Army, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Dihao Wen
- Department of General Surgery, Bethune International Peace Hospital of The People's Liberation Army, No. 398, Zhongshan XI Road, Qiaoxi District, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Cheng Jiao
- Department of General Surgery, Bethune International Peace Hospital of The People's Liberation Army, No. 398, Zhongshan XI Road, Qiaoxi District, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
26
|
Li H, Ye Z, Zheng G, Su Z. Polysaccharides targeting autophagy to alleviate metabolic syndrome. Int J Biol Macromol 2024; 283:137393. [PMID: 39521230 DOI: 10.1016/j.ijbiomac.2024.137393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Metabolic syndrome is a prevalent non-communicable disease characterized by central obesity, insulin resistance, hypertension, hyperglycemia, and hyperlipidemia. Epidemiological statistics indicate that one-third of the world's population is affected by metabolic syndrome. Unfortunately, owing to complicated pathogenesis and limited pharmacological options, the growing prevalence of metabolic syndrome threatens human health worldwide. Autophagy is an intracellular degradation mechanism that involves the degradation of unfolded or aggregated proteins and damaged cellular organelles, thereby maintaining metabolic homeostasis. Increasing evidence indicates that dysfunctional autophagy is closely associated with the development of metabolic syndrome, making it an attractive therapeutic target. Furthermore, a growing number of plant-derived polysaccharides have been shown to regulate autophagy, thereby alleviating metabolic syndrome, such as Astragalus polysaccharides, Laminaria japonica polysaccharides, Ganoderma lucidum polysaccharides and Lycium barbarum polysaccharides. In this review, we summarize recent advances in the discovery of autophagy modulators of plant polysaccharides for the treatment of metabolic syndrome, with the aim of providing precursor compounds for the development of new therapeutic agents. Additionally, we look forward to seeing more diseases being treated with plant polysaccharides by regulating autophagy, as well as the discovery of more intricate mechanisms that govern autophagy.
Collapse
Affiliation(s)
- Hongxia Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zeting Ye
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zuqing Su
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
27
|
Malaviya P, Kumar J, Kowluru RA. Role of ferroptosis in mitochondrial damage in diabetic retinopathy. Free Radic Biol Med 2024; 225:821-832. [PMID: 39433112 PMCID: PMC11624098 DOI: 10.1016/j.freeradbiomed.2024.10.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Diabetic retinopathy is driven by oxidative stress-mitochondrial damage. Activation of ROS producing cytosolic NADPH oxidase 2 (Nox2) in diabetes precedes retinal mitochondrial damage, initiating a vicious cycle of free radicals. Elevated ROS levels peroxidize membrane lipids increasing damaging lipid peroxides (LPOs). While glutathione peroxidase 4 (GPx4) neutralizes LPOs, an imbalance in its generation-neutralization leads to ferroptosis, which is characterized by increased LPOs, free iron and decreased GPx4 activity. Mitochondria are rich in polyunsaturated fatty acids and iron and have mitochondrial isoform of GPx4. Our aim was to investigate mitochondrial ferroptosis in diabetic retinopathy, focusing on Nox2 mediated ROS production. Using human retinal endothelial cells, incubated in 5 mM or 20 mM D-glucose for 12-96 h, with or without Nox2 inhibitors (100 μM apocynin, 5 μM EHop-016 or 5 μM Gp91 ds-tat), or ferroptosis inhibitors (1 μM ferrostatin-1, 50 μM deferoxamine) or activator (0.1 μM RSL3), cytosolic and mitochondrial ROS, LPOs, iron, GPx4 activity, mitochondrial integrity (membrane permeability, oxygen consumption rate, mtDNA copy numbers) and cell death were quantified. High glucose significantly increased ROS, LPOs and iron levels and inhibited GPx4 activity in cytosol, and while Nox2 and ferroptosis inhibitors prevented glucose-induced increase in ferroptosis markers, mitochondrial damage and cell death, RSL3, further worsened them. Furthermore, high glucose also increased ferroptosis markers in the mitochondria, which followed their increase in the cytosol, suggesting a role of cytosolic ROS in mitochondrial ferroptosis. Thus, targeting Nox2-ferroptosis should help break down the self-perpetuating vicious cycle of free radicals, initiated by the damaged mitochondria, and could provide novel therapeutics to prevent/retard the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Pooja Malaviya
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | - Jay Kumar
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | - Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
28
|
Meng K, Song J, Qi F, Li J, Fang Z, Song L. MT1G promotes iron autophagy and inhibits the function of gastric cancer cell lines by intervening in GPX4/SQSTM1. Sci Rep 2024; 14:28539. [PMID: 39558129 PMCID: PMC11574125 DOI: 10.1038/s41598-024-80160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer and the third most common cause of cancer death globally, with high invasiveness, high recurrence rate, and poor prognosis. Multiple studies have shown that Metallothionein-1G (MT1G) is closely associated with oxidative stress, ferroptosis, and autophagy. However, the role and potential mechanisms of MT1G in GC have not been fully elucidated. This study aims to explore the biological functions and regulatory mechanisms of MT1G in GC. Perform bioinformatics analysis using the TCGA database to investigate the expression of MT1G in GC. RT-qPCR and Western blot were used to detect the expression of MT1G, ferroptosis related proteins, autophagy related proteins and ARNTL clock autophagy related proteins in Hgc27, MKN45 and AGS cell lines. Exploring the biological functions of MT1G overexpressing GC cell lines through wound healing and transwell experiments. Use specific fluorescence probes to examine mitochondrial membrane potential and Fe2+ fluorescence intensity. Using immunoprecipitation analysis (CO-IP) to elucidate the association between GC cell lines GPX4, SQSTM and ARNTL. Use flow cytometry to detect ROS expression. Observation of autophagy related morphological changes in cells using transmission electron microscopy. Compared with gastric mucosal cell lines, the expression of MT1G is decreased in three gastric cancer cell lines (Hgc27, MKN45 and AGS). Overexpression of MT1G inhibits the proliferation, migration, and invasion functions of GC cells, reduces SOD and GSH content, increases MDA content, cause the mitochondrial membrane potential to weaken and promote the transformation of JC-1 aggregates to JC-1 monomer, increases Fe2+, affects ROS, and reduces GPX4 and SLC7A11 protein expression, promoting ferroptosis. Overexpression of MT1G promotes the transformation of LC3B I to LC3B II, reduces SQSTM1 protein expression, and leads to the appearance of more autophagosomes and autolysosomes at low magnification. At high magnification, mitochondrial autophagy, endoplasmic reticulum autophagy, lipid droplet autophagy, and wrinkled mitochondrial cristae are observed, promoting autophagy. Overexpression of MT1G inhibits GPX4, thereby affecting SQSTM1 as a vector to promote ARNTL autophagy and EGLN2, promoting ARNTL clock autophagy through the GPX4/SQSTM1 axis. Our research findings elucidate that overexpression of MT1G promotes iron autophagy centered around ARNTL in GC cells via the GPX4/SQSTM1 axis, thereby inhibiting GC cell function and providing a new molecular mechanism and therapeutic target for the development of GC.
Collapse
Affiliation(s)
- Kaiqiang Meng
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Jian Song
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China.
| | - Fan Qi
- College of Integrated Traditional Chinese and Western Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Jiamin Li
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Zhichao Fang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Liang Song
- Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| |
Collapse
|
29
|
Tian M, Huang X, Li M, Lou P, Ma H, Jiang X, Zhou Y, Liu Y. Ferroptosis in diabetic cardiomyopathy: from its mechanisms to therapeutic strategies. Front Endocrinol (Lausanne) 2024; 15:1421838. [PMID: 39588340 PMCID: PMC11586197 DOI: 10.3389/fendo.2024.1421838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is defined as structural and functional cardiac abnormalities in diabetes, and cardiomyocyte death is the terminal event of DCM. Ferroptosis is iron-dependent oxidative cell death. Evidence has indicated that iron overload and ferroptosis play important roles in the pathogenesis of DCM. Mitochondria, an important organelle in iron homeostasis and ROS production, play a crucial role in cardiomyocyte ferroptosis in diabetes. Studies have shown some anti-diabetic medicines, plant extracts, and ferroptosis inhibitors might improve DCM by alleviating ferroptosis. In this review, we systematically reviewed the evidence of ferroptosis in DCM. Anti-ferroptosis might be a promising therapeutic strategy for the treatment of DCM.
Collapse
Affiliation(s)
- Meimei Tian
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinli Huang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Min Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pingping Lou
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Xinli Jiang
- Department of Ophthalmology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yaru Zhou
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
30
|
Wu A, Yang H, Xiao T, Gu W, Li H, Chen P. COPZ1 regulates ferroptosis through NCOA4-mediated ferritinophagy in lung adenocarcinoma. Biochim Biophys Acta Gen Subj 2024; 1868:130706. [PMID: 39181476 DOI: 10.1016/j.bbagen.2024.130706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Ferroptosis, a type of autophagy-dependent cell death, has been implicated in the pathogenesis of lung adenocarcinoma (LUAD). This study aimed to investigate the involvement of coatomer protein complex I subunit zeta 1 (COPZ1) in ferroptosis and ferritinophagy in LUAD. METHODS Publicly available human LUAD sample data were obtained from the TCGA database to analyze the association of COPZ1 expression with LUAD grade and patient survival. Clinical samples of LUAD and para-carcinoma tissues were collected. COPZ1-deficient LUAD cell model and xenograft model were established. These models were analyzed to evaluate tumor growth, lipid peroxidation levels, mitochondrial structure, autophagy activation, and iron metabolism. RESULTS High expression of COPZ1 was indicative of malignancy and poor overall survival. Clinical LUAD tissues showed increased COPZ1 expression and decreased nuclear receptor coactivator 4 (NCOA4) expression. COPZ1 knockdown inhibited xenograft tumor growth and induced apoptosis. COPZ1 knockdown elevated the levels of ROS, Fe2+ and lipid peroxidation. COPZ1 knockdown also caused mitochondrial shrinkage. Liproxstatin-1, deferoxamine, and z-VAD-FMK reversed the effects of COPZ1 knockdown on LUAD cell proliferation and ferroptosis. Furthermore, COPZ1 was directly bound to NCOA4. COPZ1 knockdown restricted FTH1 expression and promoted NCOA4 and LC3 expression. NCOA4 knockdown reversed the regulation of iron metabolism, lipid peroxidation, and mitochondrial structure induced by COPZ1 knockdown. COPZ1 knockdown induced the translocation of ferritin to lysosomes for degradation, whereas NCOA4 knockdown disrupted this process. CONCLUSION This study provides novel evidence that COPZ1 regulates NCOA4-mediated ferritinophagy and ferroptosis. These findings provide new insights into the pathogenesis and potential treatment of LUAD.
Collapse
Affiliation(s)
- Anbang Wu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hongmin Yang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Tengfei Xiao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wangnin Gu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - He Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; College of pharmacy, Changsha Medical University, Changsha 410219, China.
| | - Pan Chen
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
31
|
Chen Z, Wang F, Chen Z, Zheng N, Zhou Q, Xie L, Sun Q, Li L, Li B. Decursin ameliorates neurotoxicity induced by glutamate through restraining ferroptosis by up-regulating FTH1 in SH-SY5Y neuroblastoma cells. Neuroscience 2024; 559:139-149. [PMID: 39197742 DOI: 10.1016/j.neuroscience.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegeneration which currently has no effective treatment. Ferroptosis is a new style of programmed cell death and is widely implicated in the pathogenesis and progression of AD. Decursin has been shown widely neuroprotective effects but poorly understood about the underlying mechanisms between decursin and ferroptosis in AD. Here, the protective effect of decursin and the underlying mechanism under glutamate treatment in SH-SY5Y cells was investigated. SH-SY5Y cells were cultured with glutamate in the presence or absence of decursin. The safe concentrations of decursin on SH-SY5Y cells were measured via CCK-8. Furthermore, LDH content, antioxidant enzyme activities including GPx, CAT and SOD, MDA contents, GSH levels, ROS formation, MMP, mitochondria ultrastructure morphology change, and intracellular Fe2+ levels were measured to investigate the influence of decursin and Fer-1 on ferroptosis in glutamate-treated SH-SY5Y cells. Moreover, the expressions of ferroptosis-related proteins were determined by Western blot. As a result, glutamate-induced cell survival was markedly elevated and morphological change was improved by decursin administrated in SH-SY5Y cells. Furthermore, decursin could reversed the decreased antioxidant enzyme activities, GSH levels, GPX4n and FTH1 expression, as well as the increased iron levels, LDH, MDA, ROS formation, and MMP, which showed similar effects to Fer-1, the specific ferroptosis inhibitor. Therefore, the inhibitory effect of decursin on ferroptosis probably was partially governed by FTH1 expression to regulate the cellular iron homeostasis. Additionally, decursin facilitated the translocation of Nrf2 from the cytoplasm to the nucleus. Taken together, our data for the first time suggest that decursin could ameliorate neurotoxicity induced by glutamate by attenuating ferroptosis via alleviating cellular iron levels by up-regulating FTH1 expression which is attributing to its promotion of Nrf2 translocation into the nucleus in SH-SY5Y neuroblastoma cells. Hence, decursin might be a novel and promising therapeutic option for AD. In addition, our study also provided some new clues to potential target for the intervention and therapy of AD.
Collapse
Affiliation(s)
- Ziwen Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Fuwei Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Nan Zheng
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiu Zhou
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Lihua Xie
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiang Sun
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Baohong Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
32
|
Wan Q, Luo S, Lu Q, Guan C, Zhang H, Deng Z. Protective effects of puerarin on metabolic diseases: Emphasis on the therapeutical effects and the underlying molecular mechanisms. Biomed Pharmacother 2024; 179:117319. [PMID: 39197190 DOI: 10.1016/j.biopha.2024.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Metabolic diseases (MetD) such as diabetes mellitus, obesity, and hyperlipidemia have become global health challenges. As a naturally occurring plant component, puerarin has been verified to possess a wide range of pharmacological effects including lowering blood glucose, improving insulin resistance, and regulating lipid metabolism, which has attracted extensive attention in recent years, and its potential in the treatment of MetD has been highly acclaimed. In addition, puerarin has exhibited antioxidant, anti-inflammatory, and cardiovascular protective effects, which are of great significance in the prevention and treatment of MetD. This article comprehensively summarizes the research progress of puerarin in the treatment of MetD and explores its pharmacological mechanisms, clinical applications, and future perspectives. More importantly, this review provided a list of the involved molecular mechanims in treating MetD of puerarin. Taking into account these conclusions, it may provide a strong foundation for the optimized use of puerarin in the treatment of patients suffering from MetD.
Collapse
Affiliation(s)
- Qiang Wan
- Department of Medical Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China; Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| | - Sang Luo
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qiwen Lu
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Chengyan Guan
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Zhang
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zhiyan Deng
- Department of Gastroenterology, Jinhua TCM Hospital Affiliated to Zhejiang Chinese Medical University, Jinhua 321017, China.
| |
Collapse
|
33
|
Wang B, Jin Y, Ouyang X, Zhu R, Wang X, Li S, Jiang F. Ferroptosis contributes to diabetes-induced visual pathway neuronal damage via iron accumulation and GPX4 inactivation. Metab Brain Dis 2024; 39:1459-1468. [PMID: 39080199 PMCID: PMC11513717 DOI: 10.1007/s11011-024-01398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/20/2024] [Indexed: 10/29/2024]
Abstract
The damage of the diabetic visual pathway is one of the main causes of blindness in diabetic patients. Visual pathways include anatomic parts from the retina to the occipital lobe. This study investigated the involvement of ferroptosis, a planned cell death brought on by the buildup of free iron in cells, in the impairment of visual pathways in diabetes mellitus. Streptozotocin (STZ) was used to construct a diabetic rat model. Pathological and ultrastructural changes of the occipital lobe, retina, and optic nerve were observed by Hematoxylin-Eosin (HE) staining and transmission electron microscopy (TEM). The expressions of Neuronal nuclei (NeuN), Glial fibrillary acidic protein (GFAP), and Glutathione Peroxidase 4 (GPX4) in the occipital lobe and retina were detected by immunofluorescence, and Western Blotting was used to identify the NeuN GFAP and GPX4 expressions in the occipital lobe. Iron content in the occipital lobe and retina was detected by Iron Assay Kit. The success rate of the diabetic rat model was 93.3%. In the diabetic group, the cells of the occipital lobe and retina were arranged disorderly, and the boundaries were unclear. The membrane of the occipital lobe, retina, and optic nerve was broken, some vacuoles were observed, mitochondrial morphology was changed, swelling was observed, and the mitochondrial ridge disappeared. There was a large increase in GFAP expression and iron concentration and a significant decrease in the expression of NeuN, and GPX4 in the retina and occipital lobe. Ferroptosis plays an important role in visual pathway damage in diabetes, and GPX4 regulates this process.
Collapse
Affiliation(s)
- Bowen Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ying Jin
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuan Ouyang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ru Zhu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Aier Eye Hospital of Wuhan University, Wuhan, 430060, China
| | - Xinghua Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuang Li
- Department of Ophthalmology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| | - Fagang Jiang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
34
|
Chen Y, Meng Z, Li Y, Liu S, Hu P, Luo E. Advanced glycation end products and reactive oxygen species: uncovering the potential role of ferroptosis in diabetic complications. Mol Med 2024; 30:141. [PMID: 39251935 PMCID: PMC11385660 DOI: 10.1186/s10020-024-00905-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Advanced glycation end products (AGEs) are a diverse range of compounds that are formed when free amino groups of proteins, lipids, and nucleic acids are carbonylated by reactive carbonyl species or glycosylated by reducing sugars. Hyperglycemia in patients with diabetes can cause an overabundance of AGEs. Excess AGEs are generally acknowledged as major contributing factors to the development of diabetic complications because of their ability to break down the extracellular matrix directly and initiate intracellular signaling pathways by binding to the receptor for advanced glycation end products (RAGE). Inflammation and oxidative stress are the two most well-defined pathophysiological states induced by the AGE-RAGE interaction. In addition to oxidative stress, AGEs can also inhibit antioxidative systems and disturb iron homeostasis, all of which may induce ferroptosis. Ferroptosis is a newly identified contributor to diabetic complications. This review outlines the formation of AGEs in individuals with diabetes, explores the oxidative damage resulting from downstream reactions of the AGE-RAGE axis, and proposes a novel connection between AGEs and the ferroptosis pathway. This study introduces the concept of a vicious cycle involving AGEs, oxidative stress, and ferroptosis in the development of diabetic complications.
Collapse
Affiliation(s)
- Yanchi Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zihan Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yong Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Pei Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
35
|
Wu L, Wang XJ, Luo X, Zhang J, Zhao X, Chen Q. Diabetic peripheral neuropathy based on Schwann cell injury: mechanisms of cell death regulation and therapeutic perspectives. Front Endocrinol (Lausanne) 2024; 15:1427679. [PMID: 39193373 PMCID: PMC11348392 DOI: 10.3389/fendo.2024.1427679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a complication of diabetes mellitus that lacks specific treatment, its high prevalence and disabling neuropathic pain greatly affects patients' physical and mental health. Schwann cells (SCs) are the major glial cells of the peripheral nervous system, which play an important role in various inflammatory and metabolic neuropathies by providing nutritional support, wrapping axons and promoting repair and regeneration. Increasingly, high glucose (HG) has been found to promote the progression of DPN pathogenesis by targeting SCs death regulation, thus revealing the specific molecular process of programmed cell death (PCD) in which SCs are disrupted is an important link to gain insight into the pathogenesis of DPN. This paper is the first to review the recent progress of HG studies on apoptosis, autophagy, pyroptosis, ferroptosis and necroptosis pathways in SCs, and points out the crosstalk between various PCDs and the related therapeutic perspectives, with the aim of providing new perspectives for a deeper understanding of the mechanisms of DPN and the exploration of effective therapeutic targets.
Collapse
Affiliation(s)
- Lijiao Wu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Jin Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, China
| | - Xi Luo
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingqi Zhang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyi Zhao
- College of lntegrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
36
|
Savic N, Markelic M, Stancic A, Velickovic K, Grigorov I, Vucetic M, Martinovic V, Gudelj A, Otasevic V. Sulforaphane prevents diabetes-induced hepatic ferroptosis by activating Nrf2 signaling axis. Biofactors 2024; 50:810-827. [PMID: 38299761 DOI: 10.1002/biof.2042] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024]
Abstract
Recently, we characterized the ferroptotic phenotype in the liver of diabetic mice and revealed nuclear factor (erythroid-derived-2)-related factor 2 (Nrf2) inactivation as an integral part of hepatic injury. Here, we aim to investigate whether sulforaphane, an Nrf2 activator and antioxidant, prevents diabetes-induced hepatic ferroptosis and the mechanisms involved. Male C57BL/6 mice were divided into four groups: control (vehicle-treated), diabetic (streptozotocin-induced; 40 mg/kg, from Days 1 to 5), diabetic sulforaphane-treated (2.5 mg/kg from Days 1 to 42) and non-diabetic sulforaphane-treated group (2.5 mg/kg from Days 1 to 42). Results showed that diabetes-induced inactivation of Nrf2 and decreased expression of its downstream antiferroptotic molecules critical for antioxidative defense (catalase, superoxide dismutases, thioredoxin reductase), iron metabolism (ferritin heavy chain (FTH1), ferroportin 1), glutathione (GSH) synthesis (cystine-glutamate antiporter system, cystathionase, glutamate-cysteine ligase catalitic subunit, glutamate-cysteine ligase modifier subunit, glutathione synthetase), and GSH recycling - glutathione reductase (GR) were reversed/increased by sulforaphane treatment. In addition, we found that the ferroptotic phenotype in diabetic liver is associated with increased ferritinophagy and decreased FTH1 immunopositivity. The antiferroptotic effect of sulforaphane was further evidenced through the increased level of GSH, decreased accumulation of labile iron and lipid peroxides (4-hydroxy-2-nonenal, lipofuscin), decreased ferritinophagy and liver damage (decreased fibrosis, alanine aminotransferase, and aspartate aminotransferase). Finally, diabetes-induced increase in serum glucose and triglyceride level was significantly reduced by sulforaphane. Regardless of the fact that this study is limited by the use of one model of experimentally induced diabetes, the results obtained demonstrate for the first time that sulforaphane prevents diabetes-induced hepatic ferroptosis in vivo through the activation of Nrf2 signaling pathways. This nominates sulforaphane as a promising phytopharmaceutical for the prevention/alleviation of ferroptosis in diabetes-related pathologies.
Collapse
Affiliation(s)
- Nevena Savic
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Markelic
- Department of Cell and Tissue Biology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ana Stancic
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ksenija Velickovic
- Department of Cell and Tissue Biology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ilijana Grigorov
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Vucetic
- Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco, Monaco
| | - Vesna Martinovic
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Andjelija Gudelj
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna Otasevic
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
37
|
Zhao X, Kang Z, Han R, Wang M, Wang Y, Sun X, Wang C, Zhou J, Cao L, Lu M. JWA binding to NCOA4 alleviates degeneration in dopaminergic neurons through suppression of ferritinophagy in Parkinson's disease. Redox Biol 2024; 73:103190. [PMID: 38744191 PMCID: PMC11109895 DOI: 10.1016/j.redox.2024.103190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024] Open
Abstract
Parkinson's disease (PD) poses a significant challenge in neurodegenerative disorders, characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). The intricate mechanisms orchestrating DA neurodegeneration in PD are not fully understood, necessitating the exploration of innovative therapeutic approaches. Recent studies have implicated ferroptosis as a major contributor to the loss of DA neurons, revealing a complex interplay between iron accumulation and neurodegeneration. However, the sophisticated nature of this process challenges the conventional belief that mere iron removal could effectively prevent DA neuronal ferroptosis. Here, we report JWA, alternatively referred to as ARL6IP5, as a negative regulator of ferroptosis, capable of ameliorating DA neuronal loss in the context of PD. In this study, synchronized expression patterns of JWA and tyrosine hydroxylase (TH) in PD patients and mice were observed, underscoring the importance of JWA for DA neuronal survival. Screening of ferroptosis-related genes unraveled the engagement of iron metabolism in the JWA-dependent inhibition of DA neuronal ferroptosis. Genetic manipulation of JWA provided compelling evidence linking its neuroprotective effects to the attenuation of NCOA4-mediated ferritinophagy. Molecular docking, co-immunoprecipitation, and immunofluorescence studies confirmed that JWA mitigated DA neuronal ferroptosis by occupying the ferritin binding site of NCOA4. Moreover, the JWA-activating compound, JAC4, demonstrated promising neuroprotective effects in cellular and animal PD models by elevating JWA expression, offering a potential avenue for neuroprotection in PD. Collectively, our work establishes JWA as a novel regulator of ferritinophagy, presenting a promising therapeutic target for addressing DA neuronal ferroptosis in PD.
Collapse
Affiliation(s)
- Xinxin Zhao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Zhengwei Kang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Ruixue Han
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Min Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Yueping Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Xin Sun
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Cong Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China; Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, 213000, Changzhou, China
| | - Lei Cao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China; Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, 213000, Changzhou, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China; Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, 213000, Changzhou, China.
| |
Collapse
|
38
|
Chu J, Wang K, Lu L, Zhao H, Hu J, Xiao W, Wu Q. Advances of Iron and Ferroptosis in Diabetic Kidney Disease. Kidney Int Rep 2024; 9:1972-1985. [PMID: 39081773 PMCID: PMC11284386 DOI: 10.1016/j.ekir.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 08/02/2024] Open
Abstract
Diabetes mellitus presents a significant threat to human health because it disrupts energy metabolism and gives rise to various complications, including diabetic kidney disease (DKD). Metabolic adaptations occurring in the kidney in response to diabetes contribute to the pathogenesis of DKD. Iron metabolism and ferroptosis, a recently defined form of cell death resulting from iron-dependent excessive accumulation of lipid peroxides, have emerged as crucial players in the progression of DKD. In this comprehensive review, we highlight the profound impact of adaptive and maladaptive responses regulating iron metabolism on the progression of kidney damage in diabetes. We summarize the current understanding of iron homeostasis and ferroptosis in DKD. Finally, we propose that precise manipulation of iron metabolism and ferroptosis may serve as potential strategies for kidney management in diabetes.
Collapse
Affiliation(s)
- Jiayi Chu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Kewu Wang
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Lulu Lu
- Department of Nutrition and Toxicology, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Hui Zhao
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Jibo Hu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Wenbo Xiao
- Department of Radiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Qian Wu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
39
|
Wang H, Wang Z, Gao Y, Wang J, Yuan Y, Zhang C, Zhang X. STZ-induced diabetes exacerbates neurons ferroptosis after ischemic stroke by upregulating LCN2 in neutrophils. Exp Neurol 2024; 377:114797. [PMID: 38670252 DOI: 10.1016/j.expneurol.2024.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Diabetic is a major contributor to the unfavorable prognosis of ischemic stroke. However, intensive hypoglycemic strategies do not improve stroke outcomes, implying that diabetes may affect stroke outcomes through other ways. Ferroptosis is a novel programmed cell death pathway associated with the development of diabetes and ischemic stroke. This study aimed to investigate the effect of streptozotocin (STZ)-induced diabetes on ferroptosis after stroke from the immune cell perspective, and to provide a theoretical foundation for the clinical management of ischemic stroke in patients with diabetes. The results revealed that STZ-induced diabetes not only facilitates the infiltration of neutrophils into the brain after stroke, but also upregulates the expression of lipocalin 2 (LCN2) in neutrophils. LCN2 promotes lipid peroxide accumulation by increasing intracellular ferrous ions, which intensify ferroptosis in major brain cell populations, especially neurons. Our findings suggest that STZ-induced diabetes aggravates ischemic stroke partially by mediating ferroptosis through neutrophil-derived LCN2. These data contribute to improved understanding of post-stroke immune regulation in diabetes, and offer a potentially novel therapeutic target for the management of acute-stage ischemic stroke complicated with diabetes.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Zhao Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Yuxiao Gao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Jingjing Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Yujia Yuan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China.
| |
Collapse
|
40
|
Wang C, Zhao H, Liu Y, Qu M, Lv S, He G, Liang H, Chen K, Yang L, He Y, Ou C. Neurotoxicity of manganese via ferroptosis induced by redox imbalance and iron overload. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116404. [PMID: 38705038 DOI: 10.1016/j.ecoenv.2024.116404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
Manganese (Mn) is an essential trace element for maintaining bodily functions. Excessive exposure to Mn can pose serious health risks to humans and animals, particularly to the nervous system. While Mn has been implicated as a neurotoxin, the exact mechanism of its toxicity remains unclear. Ferroptosis is a form of programmed cell death that results from iron-dependent lipid peroxidation. It plays a role in various physiological and pathological cellular processes and may be closely related to Mn-induced neurotoxicity. However, the mechanism of ferroptosis in Mn-induced neurotoxicity has not been thoroughly investigated. Therefore, this study aims to investigate the role and mechanism of ferroptosis in Mn-induced neurotoxicity. Using bioinformatics, we identified significant changes in genes associated with ferroptosis in Mn-exposed animal and cellular models. We then evaluated the role of ferroptosis in Mn-induced neurotoxicity at both the animal and cellular levels. Our findings suggest that Mn exposure causes weight loss and nervous system damage in mice. In vitro and in vivo experiments have shown that exposure to Mn increases malondialdehyde, reactive oxygen species, and ferrous iron, while decreasing glutathione and adenosine triphosphate. These findings suggest that Mn exposure leads to a significant increase in lipid peroxidation and disrupts iron metabolism, resulting in oxidative stress injury and ferroptosis. Furthermore, we assessed the expression levels of proteins and mRNAs related to ferroptosis, confirming its significant involvement in Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Changyong Wang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Hongyan Zhao
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Yaoyang Liu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Minghai Qu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Shanyu Lv
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Guoguo He
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Hongshuo Liang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Kemiao Chen
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Lin Yang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Yonghua He
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China.
| | - Chaoyan Ou
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China.
| |
Collapse
|
41
|
Ji W, Xie X, Bai G, He Y, Li L, Zhang L, Qiang D. Metabolomic approaches to dissect dysregulated metabolism in the progression of pre-diabetes to T2DM. Mol Omics 2024; 20:333-347. [PMID: 38686662 DOI: 10.1039/d3mo00130j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Many individuals with pre-diabetes eventually develop diabetes. Therefore, profiling of prediabetic metabolic disorders may be an effective targeted preventive measure. We aimed to elucidate the metabolic mechanism of progression of pre-diabetes to type 2 diabetes mellitus (T2DM) from a metabolic perspective. Four sets of plasma samples (20 subjects per group) collected according to fasting blood glucose (FBG) concentration were subjected to metabolomic analysis. An integrative approach of metabolome and WGCNA was employed to explore candidate metabolites. Compared with the healthy group (FBG < 5.6 mmol L-1), 113 metabolites were differentially expressed in the early stage of pre-diabetes (5.6 mmol L-1 ⩽ FBG < 6.1 mmol L-1), 237 in the late stage of pre-diabetes (6.1 mmol L-1 ⩽ FBG < 7.0 mmol L-1), and 245 in the T2DM group (FBG ⩾ 7.0 mmol L-1). A total of 27 differentially expressed metabolites (DEMs) were shared in all comparisons. Among them, L-norleucine was downregulated, whereas ethionamide, oxidized glutathione, 5-methylcytosine, and alpha-D-glucopyranoside beta-D-fructofuranosyl were increased with the rising levels of FBG. Surprisingly, 15 (11 lyso-phosphatidylcholines, L-norleucine, oxidized glutathione, arachidonic acid, and 5-oxoproline) of the 27 DEMs were ferroptosis-associated metabolites. WGCNA clustered all metabolites into 8 modules and the pathway enrichment analysis of DEMs showed a significant annotation to the insulin resistance-related pathway. Integrated analysis of DEMs, ROC and WGCNA modules determined 12 potential biomarkers for pre-diabetes and T2DM, including L-norleucine, 8 of which were L-arginine or its metabolites. L-Norleucine and L-arginine could serve as biomarkers for pre-diabetes. The inventory of metabolites provided by our plasma metabolome offers insights into T2DM physiology metabolism.
Collapse
Affiliation(s)
- Wenrui Ji
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China.
| | - Xiaomin Xie
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China.
| | - Guirong Bai
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China.
| | - Yanting He
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China.
| | - Ling Li
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China.
| | - Li Zhang
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China.
| | - Dan Qiang
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China.
| |
Collapse
|
42
|
Xu W, Wu Y, Wang S, Hu S, Wang Y, Zhou W, Chen Y, Li Q, Zhu L, Yang H, Lv X. Melatonin alleviates septic ARDS by inhibiting NCOA4-mediated ferritinophagy in alveolar macrophages. Cell Death Discov 2024; 10:253. [PMID: 38789436 PMCID: PMC11126704 DOI: 10.1038/s41420-024-01991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Ferroptosis is a novel form of programmed cell death which can exacerbate lung injury in septic acute respiratory distress syndrome (ARDS). Alveolar macrophages, crucial innate immune cells, play a pivotal role in the pathogenesis of ARDS. Ferritinophagy is a process of ferritin degradation mediated by nuclear receptor coactivator 4 (NCOA4) which releases large amounts of iron ions thus promoting ferroptosis. Recent evidence revealed that inhibiting macrophage ferroptosis can effectively attenuate pulmonary inflammatory injury. Melatonin (MT), an endogenous neurohormone, has antioxidant and anti-inflammatory effects and can reduce septic ARDS. However, it is not clear whether MT's pulmonary protective effect is related to the inhibition of macrophage ferritinophagy. Our in vitro experiments demonstrated that MT decreased intracellular malondialdehyde (MDA), Fe2+, and lipid peroxidation levels, increased glutathione (GSH) levels and cell proliferation, and upregulated glutathione peroxidase 4 (GPX4) and ferritin heavy chain 1 (FTH1) protein levels in LPS-treated macrophages. Mechanistically, the antiferroptotic effect of MT on LPS-treated macrophages was significantly compromised by the overexpression of NCOA4. Our in vivo experiments revealed that MT alleviated the protein expression of NCOA4 and FTH1 in the alveolar macrophages of septic mice. Furthermore, MT improved lipid peroxidation and mitigated damage in alveolar macrophages and lung tissue, ultimately increasing the survival rates of septic mice. These findings indicate that MT can inhibit ferroptosis in an NCOA4-mediated ferritinophagy manner, thereby ameliorating septic ARDS.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China
- Anhui Medical University, Hefei, Anhui, 236000, People's Republic of China
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Yutong Wu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China
| | - Sheng Wang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China
| | - Song Hu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China
| | - Yu Wang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China
| | - Wenyu Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China
| | - Yuanli Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China
| | - Quanfu Li
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China
| | - Lina Zhu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China.
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
43
|
Chen Y, Li S, Guan B, Yan X, Huang C, Du Y, Yang F, Zhang N, Li Y, Lu J, Wang J, Zhang J, Chen Z, Chen C, Kong X. MAP4K4 exacerbates cardiac microvascular injury in diabetes by facilitating S-nitrosylation modification of Drp1. Cardiovasc Diabetol 2024; 23:164. [PMID: 38724987 PMCID: PMC11084109 DOI: 10.1186/s12933-024-02254-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Dynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive. The present study revealed that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was consistently upregulated in diabetic cardiomyopathy (DCM) and promoted SNO-Drp1 in cardiac microvascular endothelial cells (CMECs), which in turn led to mitochondrial dysfunction and cardiac microvascular disorder. Further studies confirmed that MAP4K4 promoted SNO-Drp1 at human C644 (mouse C650) by inhibiting glutathione peroxidase 4 (GPX4) expression, through which MAP4K4 stimulated endothelial ferroptosis in diabetes. In contrast, inhibition of MAP4K4 via DMX-5804 significantly reduced endothelial ferroptosis, alleviated cardiac microvascular dysfunction and improved cardiac dysfunction in db/db mice by reducing SNO-Drp1. In parallel, the C650A mutation in mice abolished SNO-Drp1 and the role of Drp1 in promoting cardiac microvascular disorder and cardiac dysfunction. In conclusion, our findings demonstrate that MAP4K4 plays an important role in endothelial dysfunction in DCM and reveal that SNO-Drp1 and ferroptosis activation may act as downstream targets, representing potential therapeutic targets for DCM.
Collapse
Affiliation(s)
- Yuqiong Chen
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China.
| | - Su Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
| | - Bo Guan
- Department of Geriatrics, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Xiaopei Yan
- Department of Respiratory Medicine, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Chao Huang
- Ministry of Science and Technology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 215002, Suzhou, Jiangsu, China
| | - Yingqiang Du
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China
| | - Fan Yang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, 210008, Nanjing, China
- Branch of National Clinical Research Center for Metabolic Diseases, 210008, Nanjing, China
| | - Nannan Zhang
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China
| | - Yafei Li
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China
| | - Jian Lu
- Department of Critical Care Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jiankang Wang
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China
| | - Jun Zhang
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China
| | - Zhangwei Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China.
| | - Chao Chen
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China.
| | - Xiangqing Kong
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China.
- Department of Cardiology, Gulou District, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China.
| |
Collapse
|
44
|
Kundu I, Pande A, Das T, Idicula-Thomas S. Ferroptosis mediators vary in metabolic syndrome, type-2 diabetes, and hypercholesterolemia: A meta-analysis report. Genes Dis 2024; 11:101055. [PMID: 38292190 PMCID: PMC10825433 DOI: 10.1016/j.gendis.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/23/2022] [Accepted: 06/27/2023] [Indexed: 02/01/2024] Open
Affiliation(s)
- Indra Kundu
- Biomedical Informatics Centre, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra 400012, India
| | - Ashlesha Pande
- Biomedical Informatics Centre, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra 400012, India
| | - Tannishtha Das
- Department of Biotechnology, St. Xavier's College, Kolkata, West Bengal 700016, India
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra 400012, India
| |
Collapse
|
45
|
Guo S, Li Z, Liu Y, Cheng Y, Jia D. Ferroptosis: a new target for hepatic ischemia-reperfusion injury? Free Radic Res 2024; 58:396-416. [PMID: 39068663 DOI: 10.1080/10715762.2024.2386075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Ischemia-reperfusion injury (IRI) can seriously affect graft survival and prognosis and is an unavoidable event during liver transplantation. Ferroptosis is a novel iron-dependent form of cell death characterized by iron accumulation and overwhelming lipid peroxidation; it differs morphologically, genetically, and biochemically from other well-known cell death types (autophagy, necrosis, and apoptosis). Accumulating evidence has shown that ferroptosis is involved in the pathogenesis of hepatic IRI, and targeting ferroptosis may be a promising therapeutic approach. Here, we review the pathways and phenomena involved in ferroptosis, explore the associations and implications of ferroptosis and hepatic IRI, and discuss possible strategies for modulating ferroptosis to alleviate the hepatic IRI.
Collapse
Affiliation(s)
- Shanshan Guo
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zexin Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Ying Cheng
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Degong Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
46
|
Zhang XY, Han PP, Zhao YN, Shen XY, Bi X. Crosstalk between autophagy and ferroptosis mediate injury in ischemic stroke by generating reactive oxygen species. Heliyon 2024; 10:e28959. [PMID: 38601542 PMCID: PMC11004216 DOI: 10.1016/j.heliyon.2024.e28959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Stroke represents a significant threat to global human health, characterized by high rates of morbidity, disability, and mortality. Predominantly, strokes are ischemic in nature. Ischemic stroke (IS) is influenced by various cell death pathways, notably autophagy and ferroptosis. Recent studies have increasingly highlighted the interplay between autophagy and ferroptosis, a process likely driven by the accumulation of reactive oxygen species (ROS). Post-IS, either the inhibition of autophagy or its excessive activation can escalate ROS levels. Concurrently, the interaction between ROS and lipids during ferroptosis further augments ROS accumulation. Elevated ROS levels can provoke endoplasmic reticulum stress-induced autophagy and, in conjunction with free iron (Fe2+), can trigger ferroptosis. Moreover, ROS contribute to protein and lipid oxidation, endothelial dysfunction, and an inflammatory response, all of which mediate secondary brain injury following IS. This review succinctly explores the mechanisms of ROS-mediated crosstalk between autophagy and ferroptosis and the detrimental impact of increased ROS on IS. It also offers novel perspectives for IS treatment strategies.
Collapse
Affiliation(s)
- Xing-Yu Zhang
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping-Ping Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yi-Ning Zhao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
47
|
Pang H, Huang G, Xie Z, Zhou Z. The role of regulated necrosis in diabetes and its complications. J Mol Med (Berl) 2024; 102:495-505. [PMID: 38393662 DOI: 10.1007/s00109-024-02421-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024]
Abstract
Morphologically, cell death can be divided into apoptosis and necrosis. Apoptosis, which is a type of regulated cell death, is well tolerated by the immune system and is responsible for hemostasis and cellular turnover under physiological conditions. In contrast, necrosis is defined as a form of passive cell death that leads to a dramatic inflammatory response (also referred to as necroinflammation) and causes organ dysfunction under pathological conditions. Recently, a novel form of cell death named regulated necrosis (such as necroptosis, pyroptosis, and ferroptosis) was discovered. Distinct from apoptosis, regulated necrosis is modulated by multiple internal or external factors, but meanwhile, it results in inflammation and immune response. Accumulating evidence has indicated that regulated necrosis is associated with multiple diseases, including diabetes. Diabetes is characterized by hyperglycemia caused by insulin deficiency and/or insulin resistance, and long-term high glucose leads to various diabetes-related complications. Here, we summarize the mechanisms of necroptosis, pyroptosis, and ferroptosis, and introduce recent advances in characterizing the associations between these three types of regulated necrosis and diabetes and its complications.
Collapse
Affiliation(s)
- Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
48
|
Xiong L, Hu F, Li Z, Zhou X, Zheng Y. The research trends of ferroptosis in diabetes: a bibliometric analysis. Front Public Health 2024; 12:1365828. [PMID: 38510357 PMCID: PMC10951384 DOI: 10.3389/fpubh.2024.1365828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Objective Exploring the mechanism of ferroptosis as a potential avenue for investigating the pathogenesis and therapeutic outlook of diabetes mellitus and its complications has emerged as a focal point within recent years. Herein, we employ a bibliometric approach to delineate the current landscape of ferroptosis research in the context of diabetes mellitus. Our objective is to furnish insights and scholarly references conducive to the advancement of comprehensive investigations and innovations in related domains. Methods We included studies on ferroptosis in diabetes, obtained from the Web of Science Core Collection. All publications were transported in plaintext full-record format and were analyzed by CiteSpace 6.2.R4 for bibliometric analysis. Results Four hundred and forty-eight records that met the criteria were included. The publications released during the initial 3 years were relatively small, while there was a sudden surge of publications published in 2022 and 2023. Representing 41 countries and 173 institutions, China and Wuhan University led the research on ferroptosis in diabetes. The author with the highest number of published papers is Zhongming Wu, while Dixon SJ is the most frequently cited author. The journal with the highest number of co-citations is Cell. The most common keywords include oxidative stress, cell death, lipid peroxidation, and metabolism. Extracted keywords predominantly focus on NLRP3 inflammatory, diabetic kidney disease, mitochondria, iron overload, and cardiomyopathy. Conclusion The escalating recognition of ferroptosis as a potential therapeutic target for deciphering the intricate mechanisms underlying diabetes and its complications is underscored by a noteworthy surge in relevant research publications. This surge has catapulted ferroptosis into the spotlight as a burgeoning and vibrant research focus within the field.
Collapse
Affiliation(s)
| | | | | | | | - Yujiao Zheng
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
49
|
Lv X, Jiang J, An Y. Investigating the Potential Mechanisms of Ferroptosis and Autophagy in the Pathogenesis of Gestational Diabetes. Cell Biochem Biophys 2024; 82:279-290. [PMID: 38214812 DOI: 10.1007/s12013-023-01196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/27/2023] [Indexed: 01/13/2024]
Abstract
Ferroptosis and autophagy are two different cellular processes that have recently been highlighted for their potential roles in the pathogenesis and progression of gestational diabetes (GD). This research sought to uncover the crucial genes tied to ferroptosis and autophagy in GD, further investigating their mechanisms. Differentially expressed genes (DEGs) linked to ferroptosis and autophagy in GD were identified using publicly available data. Pathway enrichment, protein interactions, correlation with immune cell infiltration, and diagnostic value of DEGs were analyzed. HTR-8/SVneo cells were subjected to varying glucose levels to evaluate cell viability and the expression of markers related to ferroptosis and proteins associated with autophagy. Crucial DEGs were validated in vitro. A total of 12 DEGs associated with ferroptosis and autophagy in GD were identified, enriched in the PI3K-AKT signaling pathway. These genes exhibited significant correlations with monocyte infiltration, resting CD4 memory T cells, and follicular helper T cells. They exhibited high diagnostic value for GD (AUC: 0.77-0.97). High glucose treatment inhibited cell viability, induced ferroptosis, and activated autophagy in HTR-8/SVneo cells. Validation confirmed altered expression of SNCA, MTDH, HMGB1, TLR4, SOX2, SESN2, and HMOX1 after glucose treatments. In conclusion, ferroptosis and autophagy may play a role in GD development through key genes (e.g., TLR4, SOX2, SNCA, HMOX1, HMGB1). These genes could serve as promising biomarkers for GD diagnosis.
Collapse
Affiliation(s)
- Xiaomei Lv
- Department of Obstetrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Jing Jiang
- Department of Obstetrics, The Fourth people's hospital of Jinan, Jinan, 250031, China
| | - Yujun An
- Department of Obstetrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China.
| |
Collapse
|
50
|
Chen Y, Zhang Y, Jiang M, Ma H, Cai Y. HMOX1 as a therapeutic target associated with diabetic foot ulcers based on single-cell analysis and machine learning. Int Wound J 2024; 21:e14815. [PMID: 38468410 PMCID: PMC10928352 DOI: 10.1111/iwj.14815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Diabetic foot ulcers (DFUs) are a serious chronic complication of diabetes mellitus and a leading cause of disability and death in diabetic patients. However, current treatments remain unsatisfactory. Although macrophages are associated with DFU, their exact role in this disease remains uncertain. This study sought to detect macrophage-related genes in DFU and identify possible therapeutic targets. Single-cell datasets (GSE223964) and RNA-seq datasets (GSM68183, GSE80178, GSE134431 and GSE147890) associated with DFU were retrieved from the gene expression omnibus (GEO) database for this study. Analysis of the provided single-cell data revealed the distribution of macrophage subpopulations in the DFU. Four independent RNA-seq datasets were merged into a single DFU cohort and further analysed using bioinformatics. This included differential expression (DEG) analysis, multiple machine learning algorithms to identify biomarkers and enrichment analysis. Finally, key results were validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western bolt. Finally, the findings were validated using RT-qPCR and western blot. We obtained 802 macrophage-related genes in single-cell analysis. Differential expression analysis yielded 743 DEGs. Thirty-seven macrophage-associated DEGs were identified by cross-analysis of marker genes with macrophage-associated DEGs. Thirty-seven intersections were screened and cross-analysed using four machine learning algorithms. Finally, HMOX1 was identified as a potentially valuable biomarker. HMOX1 was significantly associated with biological pathways such as the insulin signalling pathway. The results showed that HMOX1 was significantly overexpressed in DFU samples. In conclusion, the analytical results of this study identified HMOX1 as a potentially valuable biomarker associated with macrophages in DFU. The results of our analysis improve our understanding of the mechanism of macrophage action in this disease and may be useful in developing targeted therapies for DFU.
Collapse
Affiliation(s)
- Yiqi Chen
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Yixin Zhang
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
- Department of Breast SurgeryYantai City Yantai Hill hospitalYantaiChina
| | - Ming Jiang
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Hong Ma
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
- Department of BurnHanzhong Central HospitalHanZhongChina
| | - Yuhui Cai
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| |
Collapse
|