1
|
Maharwal N, Shrivastava R, Majumder SK. Insight into Optogenetics for Diabetes Management. ACS Synth Biol 2025; 14:1324-1335. [PMID: 40279455 DOI: 10.1021/acssynbio.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Optogenetics is an interdisciplinary field wherein optical and genetic engineering methods are employed together to impart photounresponsive cells (usually of higher animals) the ability to respond to light through expression of light-sensitive proteins sourced generally from algae or bacteria. It enables precise spatiotemporal control of various cellular activities through light stimulation. Recently, emerging as a synthetic biology-based approach for diabetes management, optogenetics can provide user-control of hormonal secretion by photoactivation of a suitably modified cell. For around a decade, studies have been performed on the applicability of various light-sensitive proteins and their incorporation into pancreatic and nonpancreatic cells for photoinduced insulin secretion. Further, in vivo studies demonstrated amelioration of diabetes in mouse models through photoactivation of the implanted engineered cells. Here, we attempt to highlight the various optogenetic approaches explored in terms of influencing the insulin secretion pathway at different points in light of the natural insulin secretion pathway in pancreatic β cells. We also discuss how transgenic cells of both pancreatic as well as nonpancreatic origin are exploited for photoinduced secretion of insulin. Recent advances on integration of "smart" technologies for remote control of light irradiation and thereby insulin secretion from implanted engineered cells in preclinical models are also described. Additionally, the need for further comprehensive studies on irradiation parameters, red-shifted opsins, and host-cell interaction is stressed to realize the full potential of optogenetics as a clinically applicable modality providing user-controlled "on demand" hormonal secretion for better management of diabetes.
Collapse
Affiliation(s)
- Nidhi Maharwal
- Laser Biomedical Applications Division, Laser R&D Block-A1, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
- Homi Bhabha National Institute, 2nd floor, BARC Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| | - Rashmi Shrivastava
- Laser Biomedical Applications Division, Laser R&D Block-A1, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
- Homi Bhabha National Institute, 2nd floor, BARC Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| | - Shovan Kumar Majumder
- Laser Biomedical Applications Division, Laser R&D Block-A1, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
- Homi Bhabha National Institute, 2nd floor, BARC Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| |
Collapse
|
2
|
Ovechkina VS, Andrianova SK, Shimanskaia IO, Suvorova PS, Ryabinina AY, Blagonravov ML, Belousov VV, Mozhaev AA. Advances in Optogenetics and Thermogenetics for Control of Non-Neuronal Cells and Tissues in Biomedical Research. ACS Chem Biol 2025; 20:553-572. [PMID: 40056098 DOI: 10.1021/acschembio.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Optogenetics and chemogenetics are relatively new biomedical technologies that emerged 20 years ago and have been evolving rapidly since then. This has been made possible by the combined use of genetic engineering, optics, and electrophysiology. With the development of optogenetics and thermogenetics, the molecular tools for cellular control are continuously being optimized, studied, and modified, expanding both their applications and their biomedical uses. The most notable changes have occurred in the basic life sciences, especially in neurobiology and the activation of neurons to control behavior. Currently, these methods of activation have gone far beyond neurobiology and are being used in cardiovascular research, for potential cancer therapy, to control metabolism, etc. In this review, we provide brief information on the types of molecular tools for optogenetic and thermogenetic methods─microbial rhodopsins and proteins of the TRP superfamily─and also consider their applications in the field of activation of non-neuronal tissues and mammalian cells. We also consider the potential of these technologies and the prospects for the use of optogenetics and thermogenetics in biomedical research.
Collapse
Affiliation(s)
- Vera S Ovechkina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Sofya K Andrianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- National Research University Higher School of Economics, Moscow, 101000, Russia
| | - Iana O Shimanskaia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- National Research University Higher School of Economics, Moscow, 101000, Russia
| | - Polina S Suvorova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- National Research University Higher School of Economics, Moscow, 101000, Russia
| | - Anna Y Ryabinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- V.A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Mikhail L Blagonravov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- V.A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Vsevolod V Belousov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117513, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, 121205, Russia
| | - Andrey A Mozhaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- National Research University Higher School of Economics, Moscow, 101000, Russia
| |
Collapse
|
3
|
Qiao L, Niu L, Wang M, Wang Z, Kong D, Yu G, Ye H. A sensitive red/far-red photoswitch for controllable gene therapy in mouse models of metabolic diseases. Nat Commun 2024; 15:10310. [PMID: 39604418 PMCID: PMC11603164 DOI: 10.1038/s41467-024-54781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Red light optogenetic systems are in high demand for the precise control of gene expression for gene- and cell-based therapies. Here, we report a red/far-red light-inducible photoswitch (REDLIP) system based on the chimeric photosensory protein FnBphP (Fn-REDLIP) or PnBphP (Pn-REDLIP) and their interaction partner LDB3, which enables efficient dynamic regulation of gene expression with a timescale of seconds without exogenous administration of a chromophore in mammals. We use the REDLIP system to establish the REDLIP-mediated CRISPR-dCas9 (REDLIPcas) system, enabling optogenetic activation of endogenous target genes in mammalian cells and mice. The REDLIP system is small enough to support packaging into adeno-associated viruses (AAVs), facilitating its therapeutic application. Demonstrating its capacity to treat metabolic diseases, we show that an AAV-delivered Fn-REDLIP system achieved optogenetic control of insulin expression to effectively lower blood glucose levels in type 1 diabetes model mice and control an anti-obesity therapeutic protein (thymic stromal lymphopoietin, TSLP) to reduce body weight in obesity model mice. REDLIP is a compact and sensitive optogenetic tool for reversible and non-invasive control that can facilitate basic biological and biomedical research.
Collapse
Affiliation(s)
- Longliang Qiao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Xincun Road 389, Shanghai, 200065, China
| | - Lingxue Niu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Meiyan Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhihao Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Deqiang Kong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Guiling Yu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Haifeng Ye
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
| |
Collapse
|
4
|
Gangemi CG, Janovjak H. Optogenetics in Pancreatic Islets: Actuators and Effects. Diabetes 2024; 73:1566-1582. [PMID: 38976779 PMCID: PMC11417442 DOI: 10.2337/db23-1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
The islets of Langerhans reside within the endocrine pancreas as highly vascularized microorgans that are responsible for the secretion of key hormones, such as insulin and glucagon. Islet function relies on a range of dynamic molecular processes that include Ca2+ waves, hormone pulses, and complex interactions between islet cell types. Dysfunction of these processes results in poor maintenance of blood glucose homeostasis and is a hallmark of diabetes. Recently, the development of optogenetic methods that rely on light-sensitive molecular actuators has allowed perturbation of islet function with near physiological spatiotemporal acuity. These actuators harness natural photoreceptor proteins and their engineered variants to manipulate mouse and human cells that are not normally light-responsive. Until recently, optogenetics in islet biology has primarily focused on controlling hormone production and secretion; however, studies on further aspects of islet function, including paracrine regulation between islet cell types and dynamics within intracellular signaling pathways, are emerging. Here, we discuss the applicability of optogenetics to islets cells and comprehensively review seminal as well as recent work on optogenetic actuators and their effects in islet function and diabetes mellitus. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Christina G. Gangemi
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Australian Regenerative Medicine Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- European Molecular Biology Laboratory Australia, Monash University, Clayton, Victoria, Australia
| | - Harald Janovjak
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
5
|
Chen Z, Stoukides DM, Tzanakakis ES. Light-Mediated Enhancement of Glucose-Stimulated Insulin Release of Optogenetically Engineered Human Pancreatic Beta-Cells. ACS Synth Biol 2024; 13:825-836. [PMID: 38377949 PMCID: PMC10949932 DOI: 10.1021/acssynbio.3c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
Enhancement of glucose-stimulated insulin secretion (GSIS) in exogenously delivered pancreatic β-cells is desirable, for example, to overcome the insulin resistance manifested in type 2 diabetes or to reduce the number of β-cells for supporting homeostasis of blood sugar in type 1 diabetes. Optogenetically engineered cells can potentiate their function with exposure to light. Given that cyclic adenosine monophosphate (cAMP) mediates GSIS, we surmised that optoamplification of GSIS is feasible in human β-cells carrying a photoactivatable adenylyl cyclase (PAC). To this end, human EndoC-βH3 cells were engineered to express a blue-light-activated PAC, and a workflow was established combining the scalable manufacturing of pseudoislets (PIs) with efficient adenoviral transduction, resulting in over 80% of cells carrying PAC. Changes in intracellular cAMP and GSIS were determined with the photoactivation of PAC in vitro as well as after encapsulation and implantation in mice with streptozotocin-induced diabetes. cAMP rapidly rose in β-cells expressing PAC with illumination and quickly declined upon its termination. Light-induced amplification in cAMP was concomitant with a greater than 2-fold GSIS vs β-cells without PAC in elevated glucose. The enhanced GSIS retained its biphasic pattern, and the rate of oxygen consumption remained unchanged. Diabetic mice receiving the engineered β-cell PIs exhibited improved glucose tolerance upon illumination compared to those kept in the dark or not receiving cells. The findings support the use of optogenetics for molecular customization of the β-cells toward better treatments for diabetes without the adverse effects of pharmacological approaches.
Collapse
Affiliation(s)
- Zijing Chen
- Department
of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Demetrios M. Stoukides
- Department
of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Emmanuel S. Tzanakakis
- Department
of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Department
of Developmental, Molecular and Cell Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
- Graduate
Program in Pharmacology and Experimental Therapeutics and Pharmacology
and Drug Development, Tufts University School
of Medicine, Boston, Massachusetts 02111, United States
- Clinical
and Translational Science Institute, Tufts
Medical Center, Boston, Massachusetts 02111, United States
| |
Collapse
|
6
|
Duffet L, Williams ET, Gresch A, Chen S, Bhat MA, Benke D, Hartrampf N, Patriarchi T. Optical tools for visualizing and controlling human GLP-1 receptor activation with high spatiotemporal resolution. eLife 2023; 12:86628. [PMID: 37265064 DOI: 10.7554/elife.86628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
The glucagon-like peptide-1 receptor (GLP1R) is a broadly expressed target of peptide hormones with essential roles in energy and glucose homeostasis, as well as of the blockbuster weight-loss drugs semaglutide and liraglutide. Despite its large clinical relevance, tools to investigate the precise activation dynamics of this receptor with high spatiotemporal resolution are limited. Here, we introduce a novel genetically encoded sensor based on the engineering of a circularly permuted green fluorescent protein into the human GLP1R, named GLPLight1. We demonstrate that fluorescence signal from GLPLight1 accurately reports the expected receptor conformational activation in response to pharmacological ligands with high sensitivity (max ΔF/F0=528%) and temporal resolution (τON = 4.7 s). We further demonstrated that GLPLight1 shows comparable responses to glucagon-like peptide-1 (GLP-1) derivatives as observed for the native receptor. Using GLPLight1, we established an all-optical assay to characterize a novel photocaged GLP-1 derivative (photo-GLP1) and to demonstrate optical control of GLP1R activation. Thus, the new all-optical toolkit introduced here enhances our ability to study GLP1R activation with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Loïc Duffet
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Elyse T Williams
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Andrea Gresch
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Simin Chen
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Musadiq A Bhat
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Nina Hartrampf
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| |
Collapse
|