1
|
Wong A, Alejandro EU. Post translational modification regulation of transcription factors governing pancreatic β-cell identity and functional mass. Front Endocrinol (Lausanne) 2025; 16:1562646. [PMID: 40134803 PMCID: PMC11932907 DOI: 10.3389/fendo.2025.1562646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Dysfunction of the insulin-secreting β-cells is a key hallmark of Type 2 diabetes (T2D). In the natural history of the progression of T2D, factors such as genetics, early life exposures, lifestyle, and obesity dictate an individual's susceptibility risk to disease. Obesity is associated with insulin resistance and increased demand for insulin to maintain glucose homeostasis. Studies in both mouse and human islets have implicated the β-cell's ability to compensate through proliferation and survival (increasing functional β-cell mass) as a tipping point toward the development of disease. A growing body of evidence suggests the reduction of β-cell mass in T2D is driven majorly by loss of β-cell identity, rather than by apoptosis alone. The development and maintenance of pancreatic β-cell identity, function, and adaptation to stress is governed, in part, by the spatiotemporal expression of transcription factors (TFs), whose activity is regulated by signal-dependent post-translational modifications (PTM). In this review, we examine the role of these TFs in the developing pancreas and in the mature β-cell. We discuss functional implications of post-translational modifications on these transcription factors' activities and how an understanding of the pathways they regulate can inform therapies to promoteβ-cell regeneration, proliferation, and survival in diabetes.
Collapse
Affiliation(s)
- Alicia Wong
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Emilyn U. Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
2
|
Yin W, Zou S, Sha M, Sun L, Gong H, Xiong C, Huang X, Wang J, Zhang Y, Li X, Liang J, Chang X, Wang S, Su D, Guo W, Zhang Y, Wu T, Chen F. Gain of pancreatic beta cell-specific SCD1 improves glucose homeostasis by maintaining functional beta cell mass under metabolic stress. Diabetologia 2025; 68:629-645. [PMID: 39690249 DOI: 10.1007/s00125-024-06343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/31/2024] [Indexed: 12/19/2024]
Abstract
AIMS/HYPOTHESIS The key pancreatic beta cell transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene homologue A (MafA) is critical for the maintenance of mature beta cell function and phenotype. The expression levels and/or activities of MafA are reduced when beta cells are chronically exposed to diabetogenic stress, such as hyperglycaemia (i.e. glucotoxicity). Interventional targets and adjuvant therapies to abate MafA loss in beta cells may provide evidence to support the effective treatment of diabetes. In this study, we aimed to investigate the function of stearoyl-CoA desaturase 1 (SCD1) in the stabilisation of MafA expression and activity in order to maintain functional beta cell mass, with a view to suppressing the development of type 2 diabetes. METHODS SCD1 expression levels were analysed in islets obtained from humans with type 2 diabetes, hyperglycaemic db/db mice, and a high-fat diet (HFD)-induced mouse model of diabetes. Pancreatic beta cell-specific Scd1 knockin (βSCD1KI) mice were generated to study the role of SCD1 in beta cell function and identity. The protein-to-protein interactions between SCD1 and MafA were detected in MIN6 and HEK293A cells. We used experiments including chromatin immunoprecipitation, cell-based ubiquitination assay and fatty acid composition analysis to investigate the specific molecular mechanism underlying the effect of SCD1 on the restoration of MafA and beta cell function under glucotoxic conditions. RESULTS SCD1 expression was reduced in beta cells of humans with type 2 diabetes and in HFD-fed and db/db mice compared with healthy controls, which was attributed to glucotoxicity-induced Scd1 promoter histone deacetylation. Gain-of-function of SCD1 in beta cells improved insulin deficiency, glucose intolerance and beta cell dedifferentiation/transdifferentiation in the HFD-induced mouse model of diabetes. Mechanistically, SCD1 directly bound to the E3 ubiquitin ligase HMG-CoA reductase degradation 1 (HRD1) and stabilised nuclear MafA through interrupting MafA-HRD1 interactions in mouse islets and MIN6 cells, which inhibited the ubiquitination-mediated degradation of MafA. Moreover, the products of SCD enzyme reactions (mainly oleic acid) also alleviated glucotoxicity-mediated oxidative stress in MIN6 cells. CONCLUSIONS/INTERPRETATION Our findings indicate that SCD1 stabilises beta cell MafA both in desaturase-dependent and -independent manners, thus improving glucose homeostasis under metabolic stress. This provides a potential novel target for precision medicine for the treatment of diabetes.
Collapse
Affiliation(s)
- Wenyue Yin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Suyun Zou
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Sha
- Department of Central Laboratory, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Taizhou, Jiangsu, China
| | - Liangjun Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haoqiang Gong
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Can Xiong
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyue Huang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianan Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuhan Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xirui Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Liang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanhua Guo
- Department of Nuclear Medicine, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yaqin Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Tijun Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Luo Y, Li JE, Zeng H, Zhang Y, Yang S, Liu J. Semaglutide alleviates the pancreatic β cell function via the METTL14 signaling and modulating gut microbiota in type 2 diabetes mellitus mice. Life Sci 2025; 361:123328. [PMID: 39719165 DOI: 10.1016/j.lfs.2024.123328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
AIMS Semaglutide, a novel long-acting GLP-1RA, stimulates insulin and suppresses islet-secreted glucagon to reduce glucose levels. It has been unveiled that m6A mRNA modification plays a pivotal role in regulating β cell function. However, it remains unclear whether semaglutide can elicit protective effects through manipulating m6A modification and the underlying mechanism. We aimed to elucidate the role played by semaglutide in m6A modification, and to explore its specific regulatory targets. Furthermore, we also delve into its effects on gut microbiota. MAIN METHODS Five-week-old male C57BL/6 mice were assigned to two dietary groups and fed a control or high-fat diet for 4 weeks. Then T2DM was induced in high-fat diet-fed mice via streptozotocin (STZ), the main groups were resampled to include treatment with semaglutide (SEM, 40 μg/kg) for another 4 weeks, totaling three groups: Control, Model (T2DM), T2DM + SEM. Additionally, we elucidated specific regulatory targets and signaling pathways in palmitic acid (PA)-stimulated beta-TC-6 cells. Immunofluorescence, Western blot, and RT-qPCR were used in the study. KEY FINDINGS Semaglutide mitigated pancreatic damage, enhanced islet cell proliferation, and restored islet size and alpha- and beta-cell masses. It also improved the expression of METTL14, pancreatic duodenal homeobox 1 (PDX-1), and protecting mitochondria, and modulated the PDX1 expression in an m6A-dependent manner. Concurrently, semaglutide significantly decreases the abundance of Firmicutes, Actinobacteriota, and Lactobacillus, while increasing the Bacteroides and norank_f_Muribaculaceae content, and the production of short-chain fatty acids (SCFA). SIGNIFICANCE Semaglutide positively influences by regulating m6A modifications to alleviate pancreatic beta cell dysfunction and modulate the gut microbiome.
Collapse
Affiliation(s)
- Yunfei Luo
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Jin-E Li
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Haixia Zeng
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Yuying Zhang
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Shiqi Yang
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang City, Jiangxi Province, China; Branch of National Clinical Research Center for Metabolic Diseases, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
4
|
Krogulec E, Dobosz AM, Liszewska E, Majchrowicz L, Dobrzyń A. Generation of four human induced pluripotent stem cell lines derived from patients with MPAN, subtype of NBIA, carrying the c.204_214del11 mutation in the C19orf12 gene. Stem Cell Res 2024; 81:103603. [PMID: 39489009 DOI: 10.1016/j.scr.2024.103603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of rare neurodegenerative diseases characterized by iron accumulation in the brain. Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a subtype of NBIA caused by an autosomal recessive mutation in the C19orf12 gene. In this work, we generated and characterized four lines of human induced pluripotent stem cell (hiPSCs) derived from dermal fibroblasts of patients carrying homozygous mutation c.204_214del11, p.(Gly69Argfs*10) in the C19orf12 gene. The mechanism of the disease is still far from clear, therefore the hiPSC cell lines will be a suitable model for studying NBIA-MPAN neurodegeneration.
Collapse
Affiliation(s)
- Ewelina Krogulec
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology PAS, Warsaw, Poland.
| | - Aneta M Dobosz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Ewa Liszewska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Lena Majchrowicz
- Laboratory of Translational Research in Neuropsychiatric Disorders, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Agnieszka Dobrzyń
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| |
Collapse
|
5
|
Jiménez-Sánchez C, Oberhauser L, Maechler P. Role of fatty acids in the pathogenesis of ß-cell failure and Type-2 diabetes. Atherosclerosis 2024; 398:118623. [PMID: 39389828 DOI: 10.1016/j.atherosclerosis.2024.118623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Pancreatic ß-cells are glucose sensors in charge of regulated insulin delivery to the organism, achieving glucose homeostasis and overall energy storage. The latter function promotes obesity when nutrient intake chronically exceeds daily expenditure. In case of ß-cell failure, such weight gain may pave the way for the development of Type-2 diabetes. However, the causal link between excessive body fat mass and potential degradation of ß-cells remains largely unknown and debated. Over the last decades, intensive research has been conducted on the role of lipids in the pathogenesis of ß-cells, also referred to as lipotoxicity. Among various lipid species, the usual suspects are essentially the non-esterified fatty acids (NEFA), in particular the saturated ones such as palmitate. This review describes the fundamentals and the latest advances of research on the role of fatty acids in ß-cells. This includes intracellular pathways and receptor-mediated signaling, both participating in regulated glucose-stimulated insulin secretion as well as being implicated in ß-cell dysfunction. The discussion extends to the contribution of high glucose exposure, or glucotoxicity, to ß-cell defects. Combining glucotoxicity and lipotoxicity results in the synergistic and more deleterious glucolipotoxicity effect. In recent years, alternative roles for intracellular lipids have been uncovered, pointing to a protective function in case of nutrient overload. This requires dynamic storage of NEFA as neutral lipid droplets within the ß-cell, along with active glycerolipid/NEFA cycle allowing subsequent recruitment of lipid species supporting glucose-stimulated insulin secretion. Overall, the latest studies have revealed the two faces of the same coin.
Collapse
Affiliation(s)
- Cecilia Jiménez-Sánchez
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Lucie Oberhauser
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.
| |
Collapse
|
6
|
Wolosiewicz M, Balatskyi VV, Duda MK, Filip A, Ntambi JM, Navrulin VO, Dobrzyn P. SCD4 deficiency decreases cardiac steatosis and prevents cardiac remodeling in mice fed a high-fat diet. J Lipid Res 2024; 65:100612. [PMID: 39094772 PMCID: PMC11402454 DOI: 10.1016/j.jlr.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Stearoyl-CoA desaturase (SCD) is a lipogenic enzyme that catalyzes formation of the first double bond in the carbon chain of saturated fatty acids. Four isoforms of SCD have been identified in mice, the most poorly characterized of which is SCD4, which is cardiac-specific. In the present study, we investigated the role of SCD4 in systemic and cardiac metabolism. We used WT and global SCD4 KO mice that were fed standard laboratory chow or a high-fat diet (HFD). SCD4 deficiency reduced body adiposity and decreased hyperinsulinemia and hypercholesterolemia in HFD-fed mice. The loss of SCD4 preserved heart morphology in the HFD condition. Lipid accumulation decreased in the myocardium in SCD4-deficient mice and in HL-1 cardiomyocytes with knocked out Scd4 expression. This was associated with an increase in the rate of lipolysis and, more specifically, adipose triglyceride lipase (ATGL) activity. Possible mechanisms of ATGL activation by SCD4 deficiency include lower protein levels of the ATGL inhibitor G0/G1 switch protein 2 and greater activation by protein kinase A under lipid overload conditions. Moreover, we observed higher intracellular Ca2+ levels in HL-1 cells with silenced Scd4 expression. This may explain the activation of protein kinase A in response to higher Ca2+ levels. Additionally, the loss of SCD4 inhibited mitochondrial enlargement, NADH overactivation, and reactive oxygen species overproduction in the heart in HFD-fed mice. In conclusion, SCD4 deficiency activated lipolysis, resulting in a reduction of cardiac steatosis, prevented the induction of left ventricular hypertrophy, and reduced reactive oxygen species levels in the heart in HFD-fed mice.
Collapse
Affiliation(s)
- Marcin Wolosiewicz
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Monika K Duda
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Anna Filip
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - James M Ntambi
- Departments of Biochemistry and Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Viktor O Navrulin
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
7
|
Ghasemi Gojani E, Rai S, Norouzkhani F, Shujat S, Wang B, Li D, Kovalchuk O, Kovalchuk I. Targeting β-Cell Plasticity: A Promising Approach for Diabetes Treatment. Curr Issues Mol Biol 2024; 46:7621-7667. [PMID: 39057094 PMCID: PMC11275945 DOI: 10.3390/cimb46070453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The β-cells within the pancreas play a pivotal role in insulin production and secretion, responding to fluctuations in blood glucose levels. However, factors like obesity, dietary habits, and prolonged insulin resistance can compromise β-cell function, contributing to the development of Type 2 Diabetes (T2D). A critical aspect of this dysfunction involves β-cell dedifferentiation and transdifferentiation, wherein these cells lose their specialized characteristics and adopt different identities, notably transitioning towards progenitor or other pancreatic cell types like α-cells. This process significantly contributes to β-cell malfunction and the progression of T2D, often surpassing the impact of outright β-cell loss. Alterations in the expressions of specific genes and transcription factors unique to β-cells, along with epigenetic modifications and environmental factors such as inflammation, oxidative stress, and mitochondrial dysfunction, underpin the occurrence of β-cell dedifferentiation and the onset of T2D. Recent research underscores the potential therapeutic value for targeting β-cell dedifferentiation to manage T2D effectively. In this review, we aim to dissect the intricate mechanisms governing β-cell dedifferentiation and explore the therapeutic avenues stemming from these insights.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| |
Collapse
|
8
|
Mori H, Peterson SK, Simmermon RC, Overmyer KA, Nishii A, Paulsson E, Li Z, Jen A, Uranga RM, Maung JN, Yacawych WT, Lewis KT, Schill RL, Hetrick T, Seino R, Inoki K, Coon JJ, MacDougald OA. Scd1 and monounsaturated lipids are required for autophagy and survival of adipocytes. Mol Metab 2024; 83:101916. [PMID: 38492843 PMCID: PMC10975504 DOI: 10.1016/j.molmet.2024.101916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVE Exposure of adipocytes to 'cool' temperatures often found in the periphery of the body induces expression of Stearoyl-CoA Desaturase-1 (Scd1), an enzyme that converts saturated fatty acids to monounsaturated fatty acids. The goal of this study is to further investigate the roles of Scd in adipocytes. METHOD In this study, we employed Scd1 knockout cells and mouse models, along with pharmacological Scd1 inhibition to dissect the enzyme's function in adipocyte physiology. RESULTS Our study reveals that production of monounsaturated lipids by Scd1 is necessary for fusion of autophagosomes to lysosomes and that with a Scd1-deficiency, autophagosomes accumulate. In addition, Scd1-deficiency impairs lysosomal and autolysosomal acidification resulting in vacuole accumulation and eventual cell death. Blocking autophagosome formation or supplementation with monounsaturated fatty acids maintains vitality of Scd1-deficient adipocytes. CONCLUSION This study demonstrates the indispensable role of Scd1 in adipocyte survival, with its inhibition in vivo triggering autophagy-dependent cell death and its depletion in vivo leading to the loss of bone marrow adipocytes.
Collapse
Affiliation(s)
- Hiroyuki Mori
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Sydney K Peterson
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rachel C Simmermon
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, WI, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | - Akira Nishii
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Emma Paulsson
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ziru Li
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA; Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Romina M Uranga
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jessica N Maung
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Warren T Yacawych
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kenneth T Lewis
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rebecca L Schill
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Taryn Hetrick
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ryo Seino
- Dojindo Molecular Technologies, Inc., Rockville, MD, USA
| | - Ken Inoki
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI, USA; Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA; Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Sun Q, Xing X, Wang H, Wan K, Fan R, Liu C, Wang Y, Wu W, Wang Y, Wang R. SCD1 is the critical signaling hub to mediate metabolic diseases: Mechanism and the development of its inhibitors. Biomed Pharmacother 2024; 170:115586. [PMID: 38042113 DOI: 10.1016/j.biopha.2023.115586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 12/04/2023] Open
Abstract
Metabolic diseases, featured with dysregulated energy homeostasis, have become major global health challenges. Patients with metabolic diseases have high probability to manifest multiple complications in lipid metabolism, e.g. obesity, insulin resistance and fatty liver. Therefore, targeting the hub genes in lipid metabolism may systemically ameliorate the metabolic diseases, along with the complications. Stearoyl-CoA desaturase 1(SCD1) is a key enzyme that desaturates the saturated fatty acids (SFAs) derived from de novo lipogenesis or diet to generate monounsaturated fatty acids (MUFAs). SCD1 maintains the metabolic and tissue homeostasis by responding to, and integrating the multiple layers of endogenous stimuli, which is mediated by the synthesized MUFAs. It critically regulates a myriad of physiological processes, including energy homeostasis, development, autophagy, tumorigenesis and inflammation. Aberrant transcriptional and epigenetic activation of SCD1 regulates AMPK/ACC, SIRT1/PGC1α, NcDase/Wnt, etc, and causes aberrant lipid accumulation, thereby promoting the progression of obesity, non-alcoholic fatty liver, diabetes and cancer. This review critically assesses the integrative mechanisms of the (patho)physiological functions of SCD1 in metabolic homeostasis, inflammation and autophagy. For translational perspective, potent SCD1 inhibitors have been developed to treat various types of cancer. We thus discuss the multidisciplinary advances that greatly accelerate the development of SCD1 new inhibitors. In conclusion, besides cancer treatment, SCD1 may serve as the promising target to combat multiple metabolic complications simultaneously.
Collapse
Affiliation(s)
- Qin Sun
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaorui Xing
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Huanyu Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Kang Wan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ruobing Fan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Cheng Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yongjian Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
10
|
Mori H, Peterson SK, Simmermon R, Overmyer KA, Nishii A, Paulsson E, Li Z, Jen A, Uranga RM, Maung J, Yacawych WT, Lewis KT, Schill RL, Hetrick T, Seino R, Inoki K, Coon JJ, MacDougald OA. SCD1 and monounsaturated lipids are required for autophagy and survival of adipocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564376. [PMID: 37961537 PMCID: PMC10634865 DOI: 10.1101/2023.10.27.564376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Exposure of adipocytes to 'cool' temperatures often found in the periphery of the body induces expression of Stearoyl-CoA Desaturase-1 (SCD1), an enzyme that converts saturated fatty acids to monounsaturated fatty acids. In this study, we employed Scd1 knockout cells and mouse models, along with pharmacological SCD1 inhibition, to investigate further the roles of SCD1 in adipocytes. Our study reveals that production of monounsaturated lipids by SCD1 is necessary for fusion of autophagosomes to lysosomes and that with a SCD1-deficiency, autophagosomes accumulate. In addition, SCD1-deficiency impairs lysosomal and autolysosomal acidification resulting in vacuole accumulation and eventual cell death. Blocking autophagosome formation or supplementation with monounsaturated fatty acids maintains vitality of SCD1-deficient adipocytes. Taken together, our results demonstrate that in vitro inhibition of SCD1 in adipocytes leads to autophagy-dependent cell death, and in vivo depletion leads to loss of bone marrow adipocytes.
Collapse
|
11
|
Otero A, Becerril S, Martín M, Cienfuegos JA, Valentí V, Moncada R, Catalán V, Gómez-Ambrosi J, Burrell MA, Frühbeck G, Rodríguez A. Effect of guanylin peptides on pancreas steatosis and function in experimental diet-induced obesity and after bariatric surgery. Front Endocrinol (Lausanne) 2023; 14:1185456. [PMID: 37274331 PMCID: PMC10233012 DOI: 10.3389/fendo.2023.1185456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Obesity contributes to ectopic fat deposition in non-adipose organs, including the pancreas. Pancreas steatosis associates with inflammation and β-cell dysfunction, contributing to the onset of insulin resistance and type 2 diabetes. An improvement of pancreatic steatosis and indices of insulin resistance is observed following bariatric surgery, but the underlying mechanisms remain unknown. We sought to analyze whether guanylin (GUCA2A) and uroguanylin (GUCA2B), two gut hormones involved in the regulation of satiety, food preference and adiposity, are involved in the amelioration of pancreas fat accumulation after bariatric surgery. Methods Pancreas steatosis, inflammation, islet number and area were measured in male Wistar rats with diet-induced obesity (n=125) subjected to surgical (sham operation and sleeve gastrectomy) or dietary (pair-fed to the amount of food eaten by gastrectomized animals) interventions. The tissue distribution of guanylate cyclase C (GUCY2C) and the expression of the guanylin system were evaluated in rat pancreata by real-time PCR, Western-blot and immunohistochemistry. The effect of guanylin and uroguanylin on factors involved in insulin secretion and lipogenesis was determined in vitro in RIN-m5F β-cells exposed to lipotoxic conditions. Results Sleeve gastrectomy reduced pancreas steatosis and inflammation and improved insulin sensitivity and synthesis. An upregulation of GUCA2A and GUCY2C, but not GUCA2B, was observed in pancreata from rats with diet-induced obesity one month after sleeve gastrectomy. Interestingly, both guanylin and uroguanylin diminished the lipotoxicity in palmitate-treated RIN-m5F β-cells, evidenced by lower steatosis and downregulated lipogenic factors Srebf1, Mogat2 and Dgat1. Both guanylin peptides reduced insulin synthesis (Ins1 and Ins2) and release from RIN-m5F β-cells, but only guanylin upregulated Wnt4, a factor that controls β-cell proliferation and function. Discussion Together, sleeve gastrectomy reduced pancreatic steatosis and improved β-cell function. Several mechanisms, including the modulation of inflammation and lipogenesis as well as the upregulation of GUCA2A in the pancreas, might explain this beneficial effect of bariatric surgery.
Collapse
Affiliation(s)
- Aarón Otero
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Marina Martín
- Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - Javier A. Cienfuegos
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Víctor Valentí
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Rafael Moncada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Anesthesia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - María A. Burrell
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|