1
|
Caliendo A, Camorani S, Ibarra LE, Pinto G, Agnello L, Albanese S, Caianiello A, Illiano A, Festa R, Ambrosio V, Scognamiglio G, Cantile M, Amoresano A, Fedele M, Zannetti A, Cerchia L. A novel CD44-targeting aptamer recognizes chemoresistant mesenchymal stem-like TNBC cells and inhibits tumor growth. Bioact Mater 2025; 50:443-460. [PMID: 40342488 PMCID: PMC12059597 DOI: 10.1016/j.bioactmat.2025.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/09/2025] [Accepted: 04/20/2025] [Indexed: 05/11/2025] Open
Abstract
Triple-negative breast cancer (TNBC) represents a significant therapeutic challenge owing to the scarcity of targeted medicines and elevated recurrence rates. We previously reported the development of the nuclease-resistant RNA sTN58 aptamer, which selectively targets TNBC cells. Here, sTN58 aptamer was employed to capture and purify its binding target from the membrane protein fraction of cisplatin-resistant mesenchymal stem-like TNBC cells. Mass spectrometry in conjunction with aptamer binding assays across various cancer cell lines identified CD44 as the cellular target of sTN58. By binding to CD44, sTN58 inhibits the invasive growth and hyaluronic acid-dependent tube formation in chemoresistant TNBC cells, where CD44 serves as a key driver of tumor cell aggressiveness and stem-like plasticity. Moreover, in vivo studies demonstrated the aptamer's high tumor targeting efficacy and its capacity to significantly inhibit tumor growth and lung metastases following intravenous administration in mice with orthotopic TNBC. Overall, our findings reveal the striking potential of sTN58 as a targeting reagent for the recognition and therapy of cancers overexpressing CD44.
Collapse
Affiliation(s)
- Alessandra Caliendo
- Institute of Endotypes in Oncology, Metabolism and Immunology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Simona Camorani
- Institute of Endotypes in Oncology, Metabolism and Immunology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Luis Exequiel Ibarra
- Institute of Environmental Biotechnology and Health (INBIAS), National University of Rio Cuarto (UNRC), National Council for Scientific and Technological Research (CONICET), Río Cuarto, X5800BIA, Argentina
| | - Gabriella Pinto
- Dipartimento di Scienze Chimiche Università di Napoli Federico II, Consorzio Interuniversitario Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Lisa Agnello
- Institute of Endotypes in Oncology, Metabolism and Immunology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Sandra Albanese
- Institute of Biostructures and Bioimaging, National Research Council, 80145, Naples, Italy
| | - Antonietta Caianiello
- Institute of Endotypes in Oncology, Metabolism and Immunology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Anna Illiano
- Dipartimento di Scienze Chimiche Università di Napoli Federico II, Consorzio Interuniversitario Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Rosaria Festa
- Institute of Endotypes in Oncology, Metabolism and Immunology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Vincenzo Ambrosio
- Institute of Endotypes in Oncology, Metabolism and Immunology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Giosuè Scognamiglio
- Institutional Biobank-Scientific Directorate, National Cancer Institute INT-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Monica Cantile
- Institutional Biobank-Scientific Directorate, National Cancer Institute INT-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Angela Amoresano
- Dipartimento di Scienze Chimiche Università di Napoli Federico II, Consorzio Interuniversitario Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Monica Fedele
- Institute of Endotypes in Oncology, Metabolism and Immunology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council, 80145, Naples, Italy
| | - Laura Cerchia
- Institute of Endotypes in Oncology, Metabolism and Immunology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| |
Collapse
|
2
|
Babu SS, Kamaraj M, Nithya TG, Babu PR, Anoop G. Bioactive human platelet lysate gel for enhanced proliferation of human umbilical cord tissue derived mesenchymal stem cells. Cell Tissue Bank 2025; 26:25. [PMID: 40366481 DOI: 10.1007/s10561-025-10175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025]
Abstract
Mesenchymal Stem cells (MSCs) have a wide range of therapeutic applications due to their self-renewal and multi-lineage differentiation ability; large-scale production of MSCs is possible only with a highly efficient medium, which facilitates increased proliferation of MSCs within a short period. Recently, Human Platelet Lysate (hPL) has emerged as a promising substitute for fetal bovine serum (FBS) for cell expansion. The goal of this study is to optimize a stable gel formulation for the 3D expansion of MSCs using hPL as a matrix material for the improved proliferation of Human Umbilical Cord Tissue derived MSCs (hUCT-MSCs) in comparison to FBS and hPL-supplemented media in 2D culture. To assess the potential benefits of the hPL gel system, in promoting cell proliferation capacity, hUCT-MSCs were cultured on hPL gel coated-dish supplemented with hPL CM, and in FBS CM. Among the varying concentrations, 20% hPL gel was optimized to have more functional stability and shorter gelation time. SEM analysis and gel degradation study at different concentrations revealed the structural integrity and morphology of the gel. Microscopic images and histological staining by H&E were conducted to understand the multi-layered proliferation of hUCT-MSCs in hPL Gel. Flow cytometry analysis reported the expression of positive markers for human umbilical cord MSCs, namely CD 90+ and CD 105+, in hPL Gel and hPL Complete Medium (CM) similar to that in FBS. The CCK8 Assay carried out for each culture system, generated OD values respective to cell viability and proliferation. OD values of 1.65 nm, 1.27 nm, and 0.92 nm on average were observed for hPL Gel, hPL CM, and FBS control, respectively. Cells in hPL gel showed a 50% higher proliferation rate of viable cells compared to other culture media. AO/EtBr staining with FBS CM, hPL CM, and hPL gel revealed an increase in viable cells and a decrease in early apoptotic and necrotic cells in hPL Gel. In conclusion, the results of this study highlight the potential of hPL-based gels as superior matrices for multi-layered and enhanced proliferation of hUCT-MSCs.
Collapse
Affiliation(s)
- Seetha S Babu
- Department of Biochemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology-Ramapuram Campus, Chennai, Tamil Nadu, 600089, India
- Life Science Division, Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Malaysia
| | - T G Nithya
- Department of Biochemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - P Raghu Babu
- Acadicell Innovations International Pvt Ltd, Seethakathi Estate, Grand Southern Trunk Road, Vandalur, Chennai, 600048, India
| | - Gayathri Anoop
- Department of Biochemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| |
Collapse
|
3
|
Li K, He Y, Jin X, Jin K, Qian J. Reproducible extracellular matrices for tumor organoid culture: challenges and opportunities. J Transl Med 2025; 23:497. [PMID: 40312683 PMCID: PMC12044958 DOI: 10.1186/s12967-025-06349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/03/2025] [Indexed: 05/03/2025] Open
Abstract
Tumor organoid models have emerged as valuable 3D in vitro systems to study cancer behavior in a physiologically relevant environment. The composition and architecture of the extracellular matrix (ECM) play critical roles in tumor organoid culture by influencing the tumor microenvironment and tumor behavior. Traditional matrices such as Matrigel and collagen, have been widely used, but their batch-to-batch variability and limited tunability hinder their reproducibility and broader applications. To address these challenges, researchers have turned to synthetic/engineered matrices and biopolymer-based matrices, which offer precise tunability, reproducibility, and chemically defined compositions. However, these matrices also present challenges of their own. In this review, we explore the significance of ECMs in tumor organoid culture, discuss the limitations of commonly used matrices, and highlight recent advancements in engineered/synthetic matrices for improved tumor organoid modeling.
Collapse
Affiliation(s)
- Kan Li
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yibo He
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, 310006, China
- Department of Breast Surgery, Affiliated Hangzhou First People'S Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, China
| | - Xue Jin
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People'S Hospital (Affiliated People'S Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, China.
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People'S Hospital, Affiliated Xinchang Hosptial, Wenzhou Medical University, Xinchang, Zhejiang, 312500, China.
| |
Collapse
|
4
|
Babajnai A, Rahmani S, Asadi MJ, Gheytanchi E, Adibhesami G, Vakhshiteh F, Madjd Z. Molecular and phenotypic characterization of 5-FU resistant colorectal cancer cells: toward enrichment of cancer stem cells. Cancer Cell Int 2025; 25:154. [PMID: 40251609 PMCID: PMC12008981 DOI: 10.1186/s12935-025-03758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 03/18/2025] [Indexed: 04/20/2025] Open
Abstract
Cancer stem cells (CSCs) as a subgroup of cells within a tumor capable of self-renewal, thereby driving tumor initiation and spread. Addressing treatment failures in cancer, linked to CSCs and their resistance mechanisms, requires effective preclinical models for testing targeted therapies. Caco2- and HT-29-resistant cells were generated by repeated treatment of cells with growing concentrations of 5-fluorouracil (5-FU) anticancer drug for an extended time. The sensitivity of 5-FU-resistant cells was evaluated by cytotoxicity assay. Stemness, epithelial-mesenchymal transition (EMT), migration and drug resistance characteristics were assessed through gene expression investigation by real-time PCR. The expression of CD44, CD133, and CD66 were evaluated by flow cytometry. To end, the bioinformatic analysis estimated the molecular function and biological pathways considering the differential expression of selected genes and proteins. 5-FU-exposed cells displayed increased resistance to 5-FU. The gene expression analysis showed an upregulation of stemness genes (KLF4, SOX2, OCT4, C-MYC), enhanced scavenging system, and elevated expression of CSC surface markers (CD44 and CD133) compared to parental cells. Additionally, pro-EMT genes (TWIST1, SNAIL1, ZEB1, Vimentin, and N-cadherin) were significantly upregulated compared to parental cells, with the downregulation of E-cadherin as an EMT suppressor gene reflected in increased migration capacity. Moreover, increased expression of ABC transporter genes (ABCB1, ABCC1) was observed, correlating with enhanced drug resistance. The bioinformatic analysis highlighted pathways related to microRNAs in cancer, cells pluripotency, and proteoglycans. Methods of drug exposure take priority over spheroid formation, particularly due to their enhanced efficacy in stemness, EMT, and surface markers. This positions them as a promising protocol for establishing experimental models of CSCs.
Collapse
Affiliation(s)
- Amirhesam Babajnai
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Rahmani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Jamal Asadi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Elmira Gheytanchi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Glavizh Adibhesami
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Zhang W, Ding Y, He H, Chen K, Zeng Q, Cao X, Xiang Y, Zeng H. Prospects and challenges of ovarian cancer organoids in chemotherapy research (Review). Oncol Lett 2025; 29:198. [PMID: 40052067 PMCID: PMC11883337 DOI: 10.3892/ol.2025.14944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/20/2025] [Indexed: 03/09/2025] Open
Abstract
Ovarian cancer (OC), a prevalent and severe malignancy of the female reproductive system, often presents with mild early symptoms and is therefore diagnosed at advanced stages, leading to a poor prognosis. Current chemotherapeutic treatment relies on platinum-based combinational therapy and there have been no recent breakthroughs in the development of new drugs. Advances in organoid technology offer a novel approach to study OC by simulating tumors and their microenvironment, enhancing drug screening effectiveness and accuracy, and providing a foundation for personalized therapy. In recent years, researchers have made notable advancements, successfully developing a diverse array of OC organoid models, with biobanks serving a pivotal role in enhancing their success rates and overall efficiency. The present review summarizes the advantages of organoids over other models, such as two-dimensional cell models, three-dimensional spheres and patient-derived xenograft models, as well as the application of organoids. In particular, the current review emphasizes the application of organoids in chemotherapeutic drug screening, testing and personalized treatment. The limitations and prospects of organoid technology are also discussed. The present study aimed to reveal the unique advantages of OC organoids in chemotherapeutic applications, so as to provide insights into screening and testing new drugs for OC.
Collapse
Affiliation(s)
- Weijia Zhang
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yuqing Ding
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Hui He
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Keming Chen
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Qingsong Zeng
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Xiaoming Cao
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Ying Xiang
- Department of Cell Biology and Medical Genetics, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Hai Zeng
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
6
|
Ashrafi P, Sari S, Javani Jouni F, Zafari J, Asgari F. Potentiated Effects of Photobiomodulation and Celecoxib on the Epithelial-Mesenchymal Transition Signaling of E-Cadherin, N-Cadherin, α-SMA in Breast Cancer Cells, MCF7, and MDA-MB-231. Photobiomodul Photomed Laser Surg 2025; 43:115-123. [PMID: 39992209 DOI: 10.1089/photob.2024.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Background and Objective: Breast cancer (BC) is one of the most common cancers among women, with a high potential for metastasis. The epithelial-mesenchymal transition (EMT) is crucial in the invasion and metastasis of cancer cells. This research was designed to examine the efficacy of photobiomodulation therapy in combination with celecoxib in inhibiting the EMT process. We also analyzed the changes in the expression of E-cadherin, N-cadherin, and α-SMA genes in BC cell lines MCF-7 and MDA-MB-231. Material and Methods: In this study, the IC50 of celecoxib was first determined using the 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide assay for both cell lines. The cells were then treated with celecoxib, laser irradiation, and their combination. A migration assay was performed to evaluate the cell migration. Real-time polymerase chain reaction also assessed the changes in the expression of the abovementioned genes. Results: A combination of celecoxib and laser therapy significantly reduced the migration of cancer cells. Additionally, the potentiated effect of the combined therapy altered the expression levels of the aforementioned genes, indicating the potential role of the combination treatment in regulating EMT. Conclusions: Our research discloses that combining laser therapy with celecoxib could serve as an effective therapeutic approach to inhibit BC invasion and metastasis by targeting the EMT process and decelerating disease progression. Further investigations are essential to validate these results in clinical environments.
Collapse
Affiliation(s)
- Parisa Ashrafi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soyar Sari
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Javani Jouni
- Department of Biochemistry and Biophysics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Jaber Zafari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Asgari
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Xu X, Zhang Y, Huang G, Perekatt A, Wang Y, Chen L. Advances and applications of gut organoids: modeling intestinal diseases and therapeutic development. LIFE MEDICINE 2025; 4:lnaf012. [PMID: 40276096 PMCID: PMC12018802 DOI: 10.1093/lifemedi/lnaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 03/04/2025] [Indexed: 04/26/2025]
Abstract
Gut organoids are 3D cellular structures derived from adult or pluripotent stem cells, capable of closely replicating the physiological properties of the gut. These organoids serve as powerful tools for studying gut development and modeling the pathogenesis of intestinal diseases. This review provides an in-depth exploration of technological advancements and applications of gut organoids, with a focus on their construction methods. Additionally, the potential applications of gut organoids in disease modeling, microenvironmental simulation, and personalized medicine are summarized. This review aims to offer perspectives and directions for understanding the mechanisms of intestinal health and disease as well as for developing innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoting Xu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210031, China
| | - Yuping Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210031, China
| | - Guoxin Huang
- Clinical Research Center, Shantou Key Laboratory of Basic and Translational Research of Malignant Tumor, Shantou Central Hospital, Shantou 515041, China
| | - Ansu Perekatt
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210031, China
- Institute of Microphysiological Systems, Southeast University, Nanjing 211189, China
| |
Collapse
|
8
|
Mendes RV, Ribeiro JM, Gouveia H, Rebelo de Almeida C, Castillo-Martin M, Brito MJ, Canas-Marques R, Batista E, Alves C, Sousa B, Gouveia P, Ferreira MG, Cardoso MJ, Cardoso F, Fior R. Zebrafish Avatar testing preclinical study predicts chemotherapy response in breast cancer. NPJ Precis Oncol 2025; 9:94. [PMID: 40169839 PMCID: PMC11961725 DOI: 10.1038/s41698-025-00882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/15/2025] [Indexed: 04/03/2025] Open
Abstract
Chemotherapy remains the mainstay in most high-risk breast cancer (BC) settings, with several equivalent options of treatment. However, the efficacy of each treatment varies between patients and there is currently no test to determine which option will be the most effective for each individual patient. Here, we developed a fast in-vivo test for BC therapy screening: the zebrafish patient-derived-xenograft model (zAvatars), where in-vivo results can be obtained in just 10 days. To determine the predictive value of the BC zAvatars we performed a preclinical study, where zAvatars were treated with the same therapy as the donor-patient and their response to therapy was compared. Our data show a 100% concordance (18 out of 18) between the zAvatar-test and the corresponding patient's clinical response to treatment. Altogether, our results suggest that the zAvatar model constitutes a promising in-vivo assay to optimize cancer treatments in a truly personalized manner.
Collapse
Affiliation(s)
- Raquel V Mendes
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Joana M Ribeiro
- Gustave Roussy, Département de Médecine Oncologique, Villejuif, France
| | - Helena Gouveia
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | | | - Mireia Castillo-Martin
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Service of Pathology, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Maria José Brito
- Service of Pathology, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Rita Canas-Marques
- Service of Pathology, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Eva Batista
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Celeste Alves
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Berta Sousa
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Pedro Gouveia
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Miguel Godinho Ferreira
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284 INSERM U1081, Université Côte d'Azur, 06107, Nice, France
| | - Maria João Cardoso
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Fatima Cardoso
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - Rita Fior
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
9
|
Gong D, Liu R, Cui Y, Rhodes M, Bae JW, Beechem JM, Hwang WL. Integrated spatial morpho-transcriptomics predicts functional traits in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642933. [PMID: 40161804 PMCID: PMC11952565 DOI: 10.1101/2025.03.12.642933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Analyses of patient-derived cell lines have greatly enhanced discovery of molecular biomarkers and therapeutic targets. However, characterization of cellular morphological properties is limited. We studied cell morphologies of human pancreatic adenocarcinoma (PDAC) cell lines and their associations with drug sensitivity, gene expression, and functional properties. By integrating live cell and spatial mRNA imaging, we identified KRAS inhibitor-induced morphological changes specific for drug-resistant cells that correlated with gene expression changes. We then categorized a large panel of patient-derived PDAC cell lines into morphological (e.g., polygonal, irregular, spheroid) and organizational (e.g., tightly aggregated, multilayered, dispersed) subtypes and found differences in gene expression, therapeutic targeting potential, and metastatic proclivity. In human PDAC tissues, we identified prognostic expression signatures associated with distinct cancer cell organization patterns. In summary, we highlight the potential of cell morphological information in rapid, cost-effective assays to aid precision oncology efforts leveraging patient-derived in vitro models and tissues.
Collapse
|
10
|
Pasquali S, Moura DS, Danks MR, Manasterski PJ, Zaffaroni N, Stacchiotti S, Mondaza-Hernandez JL, Kerrison WGJ, Martin-Broto J, Huang PH, Brunton VG. Preclinical models of soft tissue sarcomas - generation and applications to enhance translational research. Crit Rev Oncol Hematol 2025; 207:104621. [PMID: 39824369 DOI: 10.1016/j.critrevonc.2025.104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025] Open
Abstract
Soft tissue sarcomas (STS) represent a large group of rare and ultra-rare tumors distinguished by unique morphological, molecular and clinical features. Patients with such rare cancers are generally underrepresented in clinical trials which has limited the introduction of new treatment options and subsequent improvement of patient outcomes. Preclinical models of STS that recapitulate the human disease can aid progress in identifying new effective treatments. However, due to the rarity of these tumors there are limited STS models available. Here we review the existing preclinical models of STS, including patient-derived cell lines and organoids, patient-derived xenografts and genetically engineered mouse models. We discuss the advantages and disadvantages of the different models and describe to what extent they have aided clinical translation. Finally, we consider what can be done in the future to enhance their predictivity in the preclinical setting.
Collapse
Affiliation(s)
- Sandro Pasquali
- Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Instituto Nazionale dei Tumori di Milano, via G. Amadeo 42, Milano 20133, Italy
| | - David S Moura
- Research Health Institute of Fundacion Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain; Department of Medical Oncology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain; University Hospital General of Villalba, Madrid, Spain
| | - Molly R Danks
- Edinburgh Cancer Research, CRUK Scotland Centre, University of Edinburgh, Crewe Road South, Edinburgh EH4 2RX, UK
| | - Piotr J Manasterski
- Edinburgh Cancer Research, CRUK Scotland Centre, University of Edinburgh, Crewe Road South, Edinburgh EH4 2RX, UK
| | - Nadia Zaffaroni
- Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Instituto Nazionale dei Tumori di Milano, via G. Amadeo 42, Milano 20133, Italy
| | - Silvia Stacchiotti
- Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Instituto Nazionale dei Tumori di Milano, via G. Amadeo 42, Milano 20133, Italy
| | - Jose L Mondaza-Hernandez
- Research Health Institute of Fundacion Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain; Department of Medical Oncology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain; University Hospital General of Villalba, Madrid, Spain
| | - William G J Kerrison
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road Sutton, London, SM2 5NG, UK
| | - Javier Martin-Broto
- Research Health Institute of Fundacion Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain; Department of Medical Oncology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain; University Hospital General of Villalba, Madrid, Spain
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road Sutton, London, SM2 5NG, UK
| | - Valerie G Brunton
- Edinburgh Cancer Research, CRUK Scotland Centre, University of Edinburgh, Crewe Road South, Edinburgh EH4 2RX, UK.
| |
Collapse
|
11
|
Lopez-Vince E, Simon-Yarza T, Wilhelm C. A polysaccharide-based hydrogel platform for tumor spheroid production and anticancer drug screening. Sci Rep 2025; 15:4213. [PMID: 39905058 PMCID: PMC11794876 DOI: 10.1038/s41598-025-87896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025] Open
Abstract
Extracellular matrix mimics are still needed to grow cancer cells in 3D environments and study their evolution in vitro while precisely controlling relevant features. Most models currently use collagen, which is biomimetic but degrades quickly, or artificial polymers, which can be chemically modified but remain stiff. Herein we introduced a soft, non-adhesive, and resistant hydrogel platform for tumor spheroid production using a polysaccharide-based formulation. To ensure micro-structuring of the hydrogel and enable spheroid formation, 3D printed molds consisting of a network of 200-µm-diameter micropillars were used to generate microstructured hydrogel constructs that fit into a multi-well plate. This platform was validated for drug testing using three cancer cell lines (A673, MCF7 and U87) and 2 anticancer drugs (doxorubicin and paclitaxel). Drug response was assessed through bright-field microscopy monitoring and viability measurements after 48 h of treatment. This study validates the use of pullulan-dextran hydrogels for spheroid formation, combined with in situ drug screening.
Collapse
Affiliation(s)
- Elliot Lopez-Vince
- Université Paris Cité, Université Sorbonne Paris Nord, LVTS Inserm U1148, 75018, Paris, France
- Laboratoire Physico Chimie Curie, PCC, Institut Curie, CNRS UMR168, Sorbonne University, PSL University, 75005, Paris, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, LVTS Inserm U1148, 75018, Paris, France.
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie, PCC, Institut Curie, CNRS UMR168, Sorbonne University, PSL University, 75005, Paris, France.
| |
Collapse
|
12
|
Shah S, Osuala KO, Brock EJ, Ji K, Sloane BF, Mattingly RR. Three-Dimensional Models: Biomimetic Tools That Recapitulate Breast Tissue Architecture and Microenvironment to Study Ductal Carcinoma In Situ Transition to Invasive Ductal Breast Cancer. Cells 2025; 14:220. [PMID: 39937011 PMCID: PMC11817749 DOI: 10.3390/cells14030220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Diagnosis of ductal carcinoma in situ (DCIS) presents a challenge as we cannot yet distinguish between those lesions that remain dormant from cases that may progress to invasive ductal breast cancer (IDC) and require therapeutic intervention. Our overall interest is to develop biomimetic three-dimensional (3D) models that more accurately recapitulate the structure and characteristics of pre-invasive breast cancer in order to study the underlying mechanisms driving malignant progression. These models allow us to mimic the microenvironment to investigate many aspects of mammary cell biology, including the role of the extracellular matrix (ECM), the interaction between carcinoma-associated fibroblasts (CAFs) and epithelial cells, and the dynamics of cytoskeletal reorganization. In this review article, we outline the significance of 3D culture models as reliable pre-clinical tools that mimic the in vivo tumor microenvironment and facilitate the study of DCIS lesions as they progress to invasive breast cancer. We also discuss the role of CAFs and other stromal cells in DCIS transition as well as the clinical significance of emerging technologies like tumor-on-chip and co-culture models.
Collapse
Affiliation(s)
- Seema Shah
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.S.); (E.J.B.)
| | | | - Ethan J. Brock
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.S.); (E.J.B.)
| | - Kyungmin Ji
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Bonnie F. Sloane
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.S.); (E.J.B.)
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Raymond R. Mattingly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
13
|
Sohaib M, Shabani S, Mohammed SA, Parvin B. 3D-Organoid-SwinNet: High-Content Profiling of 3D Organoids. IEEE J Biomed Health Inform 2025; 29:792-798. [PMID: 40030494 PMCID: PMC11970996 DOI: 10.1109/jbhi.2024.3511422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Profiling of Patient-Derived organoids is necessary for drug screening and precision medicine. This step requires accurate segmentation of three-dimensional cellular structures followed by protein readouts. While fully Convolutional Neural Networks are widely used in medical image segmentation, they struggle to capture long-range dependencies necessary for accurate segmentation. On the other hand, transformer models have shown promise in capturing long-range dependencies and self-similarities. Motivated by this, we present 3D-Organoid-SwinNet, a unique segmentation model explicitly designed for organoid semantic segmentation. We evaluated the performance of our technique using an Organoid dataset from four breast cancer subtypes. We demonstrated consistent top-tier performance in both the validation and testing phases, achieving a Dice score of 94.91 while reducing the number of parameters to 21 million. Our findings indicate that the proposed model offers a foundation for transformer-based models designed for high-content profiling of organoid models.
Collapse
|
14
|
Lyu SY, Meshesha SM, Hong CE. Synergistic Effects of Mistletoe Lectin and Cisplatin on Triple-Negative Breast Cancer Cells: Insights from 2D and 3D In Vitro Models. Int J Mol Sci 2025; 26:366. [PMID: 39796221 PMCID: PMC11719730 DOI: 10.3390/ijms26010366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/09/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Triple-negative breast cancer (TNBC) remains a challenging subtype due to its aggressive nature and limited treatment options. This study investigated the potential synergistic effects of Korean mistletoe lectin (Viscum album L. var. coloratum agglutinin, VCA) and cisplatin on MDA-MB-231 TNBC cells using both 2D and 3D culture models. In 2D cultures, the combination of VCA and cisplatin synergistically inhibited cell proliferation, induced apoptosis, and arrested the cell cycle at the G2/M phase. Also, the combination treatment significantly reduced cell migration and invasion. Gene expression analysis showed significant changes in specific genes related to apoptosis (Bax, Bcl-2), metastasis (MMP-2, MMP-9), and EMT (E-cadherin, N-cadherin). Three-dimensional spheroid models corroborated these findings, demonstrating enhanced cytotoxicity and reduced invasion with the combination treatment. Significantly, the 3D models exhibited differential drug sensitivity compared to 2D cultures, emphasizing the importance of utilizing physiologically relevant models in preclinical studies. The combination treatment also reduced the expression of angiogenesis-related factors VEGF-A and HIF-1α. This comprehensive study provides substantial evidence for the potential of VCA and cisplatin combination therapy in TNBC treatment and underscores the significance of integrating 2D and 3D models in preclinical cancer research.
Collapse
Affiliation(s)
- Su-Yun Lyu
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea; (S.-Y.L.)
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Saporie Melaku Meshesha
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea; (S.-Y.L.)
| | - Chang-Eui Hong
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea; (S.-Y.L.)
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
15
|
Krishnan B B S, Vijayakumar S, Dhakshanamoorthy R, Baskaran A, Maddaly R. 3-Dimensional multicellular aggregates of human cervical cancer cell line SiHa - getting to the core of their morphologies. Pathol Res Pract 2025; 265:155740. [PMID: 39608313 DOI: 10.1016/j.prp.2024.155740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/30/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
3-Dimensional (3D) cultures of cancer cell lines exhibit unique morphologies, a feature that can be utilized for understanding several aspects of solid tumors. This study aims to investigate the morphology and morphometrics of agarose hydrogel-induced 3D aggregates of SiHa cell line. Floating 3D aggregates of SiHa cells were obtained using liquid overlay technique on 1 % agarose hydrogel. The aggregates were monitored daily for its progressive growth and morphology, and documented. The morphometric analysis of the multicellular 3D spheroids were performed on cultures in the late exponential/log phase (the 93rd hour in culture). The morphology exhibited by the 3D aggregates at this stage was "grape-like". Three morphometric parameters viz. average area, average number, and average roundness of aggregates, were determined and was found that the compactness of the aggregates was the maximum on Day 5 post-seeding. Additionally, the aggregates exhibited multi-acinar structures and extracellular matrix, characteristic of tumour progression. Establishing the morphological parameters of SiHa is an approach to better understand the characteristics of 3D aggregates. Such analysis has a direct bearing on translational benefits towards solid tumour research.
Collapse
Affiliation(s)
- Sabari Krishnan B B
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Sudikshaa Vijayakumar
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Raveena Dhakshanamoorthy
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Akshaya Baskaran
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Ravi Maddaly
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India.
| |
Collapse
|
16
|
Olvera-Valencia M, Garcia-Castillo V, Ramos-Payan R, Aguilar-Medina M, Trujano-Camacho S, López-Saavedra A, Marchat LA, López-Camarillo C, Sumagin R, Pérez-Yepez E, Pérez-Plasencia C. Development of a reliable method for human triple-negative breast cancer organotypic culture: Improving imaging and genomic studies in 3D cultures. J Tissue Eng 2025; 16:20417314251326668. [PMID: 40342587 PMCID: PMC12059422 DOI: 10.1177/20417314251326668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/25/2025] [Indexed: 05/11/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is highly aggressive and lacks targeted therapies, posing a major challenge in oncology. Traditional two-dimensional (2D) cell cultures fail to capture the tumor microenvironment's complexity, whereas three-dimensional (3D) cultures provide a more accurate model of tumor biology. We developed an advanced 3D culture system for TNBC cell lines BT-20 and MDA-MB-231, enhancing the hanging-drop method with Matrigel to restore essential extracellular matrix interactions. Confocal imaging showed MDA-MB-231 cells forming clusters typical of aggressive carcinoma, while BT-20 cells organized into duct-like structures. Molecular analysis of PI3K and β-catenin target genes revealed distinct expression patterns, with PI3K overexpressed and β-catenin downregulated in 3D cultures. Moreover, β-catenin distribution in the 3D cell culture closely resembles its pattern in tissue. These findings underscore the value of 3D models in understanding TNBC progression and in supporting the exploration of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mercedes Olvera-Valencia
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Ticoman, CDMX, Mexico
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, CDMX, Mexico
| | - Verónica Garcia-Castillo
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla Estado de México, Mexico
| | - Rosalío Ramos-Payan
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacan, Sinaloa, Mexico
| | - Maribel Aguilar-Medina
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacan, Sinaloa, Mexico
| | - Samuel Trujano-Camacho
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, CDMX, Mexico
- Experimental Biology PhD Program, DCBS, Universidad Autónoma Metropolitana- Iztapalapa, Iztapalapa, Mexico
| | - Alejandro López-Saavedra
- Advanced Microscopy Applications Unit (ADMIRA)-Instituto Nacional de Cancerología, Tlalpan, CDMX, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Laurence A. Marchat
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Ticoman, CDMX, Mexico
| | - Cesar López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Benito Juarez, CDMX, Mexico
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eloy Pérez-Yepez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, CDMX, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla Estado de México, Mexico
| |
Collapse
|
17
|
Patel T, Jain N. Multicellular tumor spheroids: A convenient in vitro model for translational cancer research. Life Sci 2024; 358:123184. [PMID: 39490437 DOI: 10.1016/j.lfs.2024.123184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
In the attempts to mitigate uncertainties in the results of monolayer culture for the identification of cancer therapeutic targets and compounds, there has been a growing interest in using 3D cancer spheroid models, which include tumorospheres (TSs), tissue-derived tumor spheres (TDTSs), organotypic multicellular tumor spheroids (OMSs), and multicellular tumor spheroids (MCTSs). The MCTSs, either Mono-MCTSs or Hetero-MCTSs, with or without scaffold, in particular, offer numerous advantages over other spheroid models, including easy cultivation, high reproducibility, accessibility, high throughput, controllable size, well-rounded shape, simplicity of genetic manipulation, economical and availability of various biological methods for their development. In this review, we have attempted to discuss the role of MCTSs concerning various aspects of translational cancer research, such as drug response and penetration, cell-cell interaction, and invasion and metastasis. However, the Mono-MCTSs, either scaffold-free or scaffold-based, may not adequately represent the cellular heterogeneity and complexity of clinical tumors, limiting their utility in translational cancer research. Conversely, Hetero-MCTS models, both scaffold-free and scaffold-based, show better suitability due to the presence of a similar in vivo type tumor microenvironment. Nonetheless, scaffold-based Hetero-MCTS models show batch variability and challenges in performing quantitative assays due to difficulties extracting spheroids and cells from scaffolds. Further, incorporating stromal cells with cancer cells in a more precise ratio to develop Hetero-MCTSs can enhance the model's relevance, yielding more clinically reliable outcomes for drug candidates and improving insights into tumor biology.
Collapse
Affiliation(s)
- Tushar Patel
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa 388 421, India
| | - Neeraj Jain
- Dr. K C Patel Research and Development Centre, University Research Centre(s), Charotar University of Science and Technology (CHARUSAT), Changa 388 421, India.
| |
Collapse
|
18
|
Topalović D, Živković L, Borozan S, Santibanez JF, Spremo-Potparević B. An in vitro evaluation of the cytotoxic potential of medicinal mushrooms against human breast cancer cell lines. Arh Hig Rada Toksikol 2024; 75:297-302. [PMID: 39718091 PMCID: PMC11667711 DOI: 10.2478/aiht-2024-75-3915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/01/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Medicinal mushroom extracts, i.e. their dried biomass, have long been known as sources of bioactive compounds with positive effects on the human health. The antioxidant, antigenotoxic, antiviral, and immunomodulatory properties of the commercially available extracts Agaricus blazei auct. non Murrill (AB), Cordyceps sinensis (Berk.) Sacc. (CS), and Immune Assist (IA) have already been documented. This study, studied the influence of these three mushrooms on the viability of cell lines MCF-7, MDA-MB-231, and HS-5. The cytotoxicity of AB, CS, and IA at different concentrations (25, 50, 100, 200, 400 and 800 μg/mL) was evaluated using the MTT assay. The results showed that AB was the most effective and induced cytotoxicity in both cancer cell lines, with IC50 values of 96.7 μg/mL for MCF-7 and 368.4 μg/mL for MDA-MB-231. After treatment with CS and IA, the half-maximal inhibitory concentration was reached only in MDA- MB-231 cells (IC50=613 μg/mL for CS and 343.3 μg/mL for IA). We have shown here that AB, CS and IA can suppress the growth of MCF-7 and MDA-MB-231 cell lines, while affecting the survival of healthy HS-5 cells to a much lesser extent. Our in vitro results suggested that AB, CS and IA are promising natural sources with potential anticancer activity.
Collapse
Affiliation(s)
- Dijana Topalović
- University of Belgrade Faculty of Pharmacy, Department of Pathobiology, Belgrade, Serbia
| | - Lada Živković
- University of Belgrade Faculty of Pharmacy, Department of Pathobiology, Belgrade, Serbia
| | - Sunčica Borozan
- University of Belgrade Faculty of Veterinary Medicine, Department of Chemistry, Belgrade, Serbia
| | - Juan F. Santibanez
- University of Belgrade Institute for Medical Research National Institute of the Republic of Serbia, Department of Molecular Oncology, Belgrade, Serbia
- Bernardo O’Higgins University, Integrative Center for Biology and Applied Chemistry (CIBQA), Santiago, Chile
| | | |
Collapse
|
19
|
Tharp KM. Have plastic culture models prevented the discovery of effective cancer therapeutics? Br J Pharmacol 2024. [PMID: 39491545 DOI: 10.1111/bph.17387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/31/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024] Open
Abstract
Conventional cell culture techniques generally fail to recapitulate the expression profiles or functional phenotypes of the in vivo equivalents they are meant to model. These cell culture models are indispensable for preclinical drug discovery and mechanistic studies. However, if our goal is to develop effective therapies that work as intended in the human body, we must revise our cell culture models to recapitulate normal and disease physiology to ensure that we identify compounds that are useful and effective beyond our in vitro models.
Collapse
Affiliation(s)
- Kevin M Tharp
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
20
|
Stewart DC, Brisson BK, Dekky B, Berger AC, Yen W, Mauldin EA, Loebel C, Gillette D, Assenmacher CA, Quincey C, Stefanovski D, Cristofanilli M, Cukierman E, Burdick JA, Borges VF, Volk SW. Prognostic and therapeutic implications of tumor-restrictive type III collagen in the breast cancer microenvironment. NPJ Breast Cancer 2024; 10:86. [PMID: 39358397 PMCID: PMC11447064 DOI: 10.1038/s41523-024-00690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Collagen plays a critical role in regulating breast cancer progression and therapeutic resistance. An improved understanding of both the features and drivers of tumor-permissive and -restrictive collagen matrices are critical to improve prognostication and develop more effective therapeutic strategies. In this study, using a combination of in vitro, in vivo and bioinformatic experiments, we show that type III collagen (Col3) plays a tumor-restrictive role in human breast cancer. We demonstrate that Col3-deficient, human fibroblasts produce tumor-permissive collagen matrices that drive cell proliferation and suppress apoptosis in non-invasive and invasive breast cancer cell lines. In human triple-negative breast cancer biopsy samples, we demonstrate elevated deposition of Col3 relative to type I collagen (Col1) in non-invasive compared to invasive regions. Similarly, bioinformatics analysis of over 1000 breast cancer patient biopsies from The Cancer Genome Atlas BRCA cohort revealed that patients with higher Col3:Col1 bulk tumor expression had improved overall, disease-free, and progression-free survival relative to those with higher Col1:Col3 expression. Using an established 3D culture model, we show that Col3 increases spheroid formation and induces the formation of lumen-like structures that resemble non-neoplastic mammary acini. Finally, our in vivo study shows co-injection of murine breast cancer cells (4T1) with rhCol3-supplemented hydrogels limits tumor growth and decreases pulmonary metastatic burden compared to controls. Taken together, these data collectively support a tumor-suppressive role for Col3 in human breast cancer and suggest that strategies that increase Col3 may provide a safe and effective therapeutic modality to limit recurrence in breast cancer patients.
Collapse
Affiliation(s)
- Daniel C Stewart
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Becky K Brisson
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bassil Dekky
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashton C Berger
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William Yen
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudia Loebel
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Deborah Gillette
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corisa Quincey
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Darko Stefanovski
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jason A Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Virginia F Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan W Volk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Bjørnstad OV, Carrasco M, Finne K, Ardawatia V, Winge I, Askeland C, Arnes JB, Knutsvik G, Kleftogiannis D, Paulo JA, Akslen LA, Vethe H. Global and single-cell proteomics view of the co-evolution between neural progenitors and breast cancer cells in a co-culture model. EBioMedicine 2024; 108:105325. [PMID: 39232464 PMCID: PMC11404160 DOI: 10.1016/j.ebiom.2024.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Presence of nerves in tumours, by axonogenesis and neurogenesis, is gaining increased attention for its impact on cancer initiation and development, and the new field of cancer neuroscience is emerging. A recent study in prostate cancer suggested that the tumour microenvironment may influence cancer progression by recruitment of Doublecortin (DCX)-expressing neural progenitor cells (NPCs). However, the presence of such cells in human breast tumours has not been comprehensively explored. METHODS Here, we investigate the presence of DCX-expressing cells in breast cancer stromal tissue from patients using Imaging Mass Cytometry. Single-cell analysis of 372,468 cells across histopathological images of 107 breast cancers enabled spatial resolution of neural elements in the stromal compartment in correlation with clinicopathological features of these tumours. In parallel, we established a 3D in vitro model mimicking breast cancer neural progenitor-innervation and examined the two cell types as they co-evolved in co-culture by using mass spectrometry-based global proteomics. FINDINGS Stromal presence of DCX + cells is associated with tumours of higher histological grade, a basal-like phenotype, and shorter patient survival in tumour tissue from patients with breast cancer. Global proteomics analysis revealed significant changes in the proteomic landscape of both breast cancer cells and neural progenitors in co-culture. INTERPRETATION These results support that neural involvement plays an active role in breast cancer and warrants further studies on the relevance of nerve elements for tumour progression. FUNDING This work was supported by the Research Council of Norway through its Centre of Excellence funding scheme, project number 223250 (to L.A.A), the Norwegian Cancer Society (to L.A.A. and H.V.), the Regional Health Trust Western Norway (Helse Vest) (to L.A.A.), the Meltzer Research Fund (to H.V.) and the National Institutes of Health (NIH)/NIGMS grant R01 GM132129 (to J.A.P.).
Collapse
Affiliation(s)
- Ole Vidhammer Bjørnstad
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen N-5021, Norway
| | - Manuel Carrasco
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen N-5021, Norway
| | - Kenneth Finne
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen N-5021, Norway
| | - Vandana Ardawatia
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen N-5021, Norway
| | - Ingeborg Winge
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen N-5021, Norway
| | - Cecilie Askeland
- Department of Pathology, Haukeland University Hospital, Bergen N-5021, Norway
| | - Jarle B Arnes
- Department of Pathology, Haukeland University Hospital, Bergen N-5021, Norway
| | - Gøril Knutsvik
- Department of Pathology, Haukeland University Hospital, Bergen N-5021, Norway
| | - Dimitrios Kleftogiannis
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen N-5021, Norway; Computational Biology Unit (CBU), Department of Informatics, University of Bergen, Bergen N-5021, Norway
| | - Joao A Paulo
- Computational Biology Unit (CBU), Department of Informatics, University of Bergen, Bergen N-5021, Norway; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen N-5021, Norway; Department of Pathology, Haukeland University Hospital, Bergen N-5021, Norway
| | - Heidrun Vethe
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen N-5021, Norway.
| |
Collapse
|
22
|
Alsharabasy AM, Pandit A. Hyaluronan-Based Hydrogels for 3D Modeling of Tumor Tissues. Tissue Eng Part C Methods 2024; 30:452-499. [PMID: 39345138 DOI: 10.1089/ten.tec.2024.0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Although routine two-dimensional (2D) cell culture techniques have advanced basic cancer research owing to their simplicity, cost-effectiveness, and reproducibility, they have limitations that necessitate the development of advanced three-dimensional (3D) tumor models that better recapitulate the tumor microenvironment. Various biomaterials have been used to establish these 3D models, enabling the study of cancer cell behavior within different matrices. Hyaluronic acid (HA), a key component of the extracellular matrix (ECM) in tumor tissues, has been widely studied and employed in the development of multiple cancer models. This review first examines the role of HA in tumors, including its function as an ECM component and regulator of signaling pathways that affect tumor progression. It then explores HA-based models for various cancers, focusing on HA as a central component of the 3D matrix and its mobilization within the matrix for targeted studies of cell behavior and drug testing. The tumor models discussed included those for breast cancer, glioblastoma, fibrosarcoma, gastric cancer, hepatocellular carcinoma, and melanoma. The review concludes with a discussion of future prospects for developing more robust and high-throughput HA-based models to more accurately mimic the tumor microenvironment and improve drug testing. Impact Statement This review underscores the transformative potential of hyaluronic acid (HA)-based hydrogels in developing advanced tumor models. By exploring HA's dual role as a critical extracellular matrix component and a regulator of cancer cell dynamics, we highlight its unique contributions to replicating the tumor microenvironment. The recent advancements in HA-based models provide new opportunities for more accurate studies of cancer cell behavior and drug responses. Looking ahead, these innovations pave the way for high-throughput, biomimetic platforms that could revolutionize drug testing and accelerate the discovery of effective cancer therapies.
Collapse
Affiliation(s)
- Amir M Alsharabasy
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
23
|
Cruceriu D, Balacescu L, Baldasici O, Gaal OI, Balacescu O, Russom A, Irimia D, Tudoran O. Gene expression-phenotype association study reveals the dual role of TNF-α/TNFR1 signaling axis in confined breast cancer cell migration. Life Sci 2024; 354:122982. [PMID: 39151886 DOI: 10.1016/j.lfs.2024.122982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
AIMS While enhanced tumor cell migration is a key process in the tumor dissemination, mechanistic insights into causal relationships between tumor cells and mechanical confinement are still limited. Here we combine the use of microfluidic platforms to characterize confined cell migration with genomic tools to systematically unravel the global signaling landscape associated with the migratory phenotype of breast cancer (BC) cells. METERIALS AND METHODS The spontaneous migration capacity of seven BC cell lines was evaluated in 3D microfluidic devices and their migration capacity was correlated with publicly available molecular signatures. The role of identified signaling pathways on regulating BC migration capacity was determined by receptor stimulation through ligand binding or inhibition through siRNA silencing. Downstream effects on cell migration were evaluated in microfluidic devices, while the molecular changes were monitored by RT-qPCR. KEY FINDINGS Expression of 715 genes was correlated with BC cells migratory phenotype, revealing TNF-α as one of the top upstream regulators. Signal transduction experiments revealed that TNF-α stimulates the confined migration of triple negative, mesenchymal-like BC cells that are also characterized by high TNFR1 expression, but inhibits the migration of epithelial-like cells with low TNFR1 expression. TNFR1 was strongly associated with the migration capacity and triple-negative, mesenchymal phenotype. Downstream of TNF/TNFR1 signaling, transcriptional regulation of NFKB seems to be important in driving cell migration in confined spaces. SIGNIFICANCE TNF-α/TNFR1 signaling axis reveals as a key player in driving BC cells confined migration, emerging as a promising therapeutic strategy in targeting dissemination and metastasis of triple negative, mesenchymal BC cells.
Collapse
Affiliation(s)
- Daniel Cruceriu
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Department of Genetics, Genomics and Experimental Pathology, 34-36 Republicii Street, Cluj-Napoca, Romania; "Babes-Bolyai" University, Department of Molecular Biology and Biotechnology, 1 Mihail Kogalniceanu Street, Cluj-Napoca, Romania.
| | - Loredana Balacescu
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Department of Genetics, Genomics and Experimental Pathology, 34-36 Republicii Street, Cluj-Napoca, Romania.
| | - Oana Baldasici
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Department of Genetics, Genomics and Experimental Pathology, 34-36 Republicii Street, Cluj-Napoca, Romania.
| | - Orsolya Ildiko Gaal
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Department of Genetics, Genomics and Experimental Pathology, 34-36 Republicii Street, Cluj-Napoca, Romania; Iuliu Hațieganu University of Medicine and Pharmacy, Department of Medical Genetics, 8 Victor Babes Street, Cluj-Napoca, Romania.
| | - Ovidiu Balacescu
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Department of Genetics, Genomics and Experimental Pathology, 34-36 Republicii Street, Cluj-Napoca, Romania.
| | - Aman Russom
- KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, Tomtebodavägen 23a 171 65, Solna, Sweden.
| | - Daniel Irimia
- Harvard Medical School, Center for Engineering in Medicine and Surgery, Department of Surgery, 51 Blossom Street, Boston, MA, United States of America.
| | - Oana Tudoran
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Department of Genetics, Genomics and Experimental Pathology, 34-36 Republicii Street, Cluj-Napoca, Romania; KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, Tomtebodavägen 23a 171 65, Solna, Sweden.
| |
Collapse
|
24
|
Esposito A, Ferraresi A, Vallino L, Garavaglia B, Dhanasekaran DN, Isidoro C. Three-Dimensional In Vitro Cell Cultures as a Feasible and Promising Alternative to Two-Dimensional and Animal Models in Cancer Research. Int J Biol Sci 2024; 20:5293-5311. [PMID: 39430243 PMCID: PMC11488579 DOI: 10.7150/ijbs.96469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/25/2024] [Indexed: 10/22/2024] Open
Abstract
Cancer represents one of the diseases with the highest mortality rate worldwide. The burden of cancer continues to increase, not only affecting the health-related quality of life of patients but also causing an elevated global financial impact. The complexity and heterogeneity of cancer pose significant challenges in research and clinical practice, contributing to increase the failure rate of clinical trials for antitumoral drugs. This is partially due to the fact that preclinical models still present important limitations in faithfully recapitulating human tumors to serve as reliable indicators of drug effectiveness. Up to now, research and development strategies employ expensive animal models (including the so-called "humanized mice") that not only raise ethical concerns, but also frequently fail to accurately predict responses to anticancer drugs because they do not faithfully replicate human physiology as well as the patient's tumor microenvironment. On the other side, traditional two-dimensional (2D) cell cultures fail to adequately reproduce the structural organization of tumor and the cellular heterogeneity found in vivo. The growing necessity to develop more accurate cancer models has increasingly emphasized the importance of three-dimensional (3D) in vitro cell cultures, such as cancer-derived spheroids and organoids, as promising alternatives to bridge the gap between 2D and animal models. In this review, we provide a brief overview focusing on 3D in vitro cell cultures as preclinical models capable of properly reproducing the tissue organization, biological composition, and complexity of in vivo tumors in a fine-tuned microenvironment. Despite their limitations, these models collectively enhance our understanding of the mechanisms underlying cancer and may offer the potential for a more reliable assessment of drug efficacy before clinical testing and, consequently, improve therapeutic outcomes for cancer patients.
Collapse
Affiliation(s)
- Andrea Esposito
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Beatrice Garavaglia
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| |
Collapse
|
25
|
Holthaus D, Rogmans C, Gursinski I, Quevedo-Olmos A, Ehsani M, Mangler M, Flörkemeier I, Weimer JP, Meyer TF, Maass N, Bauerschlag DO, Hedemann N. Inhibition of ADAM17 increases the cytotoxic effect of cisplatin in cervical spheroids and organoids. Front Oncol 2024; 14:1432239. [PMID: 39286024 PMCID: PMC11402614 DOI: 10.3389/fonc.2024.1432239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Cervical cancer represents one of the main causes of female, cancer-related mortality worldwide. The majority of cancers are caused by human papillomaviruses such as HPV16 and HPV18. As chemotherapeutic resistance to first-line platinum treatment is still a predominant clinical challenge in advanced cervical cancer, novel treatment options including combinatorial therapies are urgently required to overcome chemotherapeutic resistance. Inhibition of A Disintegrin And Metalloproteinase (ADAM)-family members, heavily involved in tumour progression of a vast range of solid tumours, strongly improved response to chemotherapeutic treatment in other tumour entities including ovarian cancer. Methods We established two- and three-dimensional models derived from three traditional cervical cancer cell lines and ectocervical cancer-derived organoids. Following characterisation, these models were used to investigate their response to cisplatin treatment in the absence and presence of ADAM inhibitors using viability assays and automated live cell imaging. Results The pivotal role of the metalloprotease ADAM17 driving chemotherapy resistance was detectable in all ectocervical cultures irrespective of the model system used, whereas ADAM10 inhibition was predominantly effective only in loosely aggregated spheroids. We showed prominent differences regarding treatment responses between 2D monolayers compared to 3D spheroid and 3D organoid model systems. Particularly, the organoid system, regarded as the closest representation of primary tumours, exhibited reliably the combinatorial effect of ADAM17 inhibition and cisplatin in all three individual donors. Discussion As two- and three-dimensional models of the same cell lines differ in their responses to chemotherapy it is essential to validate treatment strategies in more advanced model systems representing the patient situation more realistically. Ectocervical organoids showed reliable results regarding treatment responses closely mimicking the primary tumours and could therefore serve as an important tool for personalized medicine in cervical cancer. These findings strengthen the role of ADAM17 as a potential novel target for combinatorial treatments to overcome chemoresistance in cervical cancer.
Collapse
Affiliation(s)
- David Holthaus
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christoph Rogmans
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ina Gursinski
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alvaro Quevedo-Olmos
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Marzieh Ehsani
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Mandy Mangler
- Department of Gynaecology and Obstetrics, Vivantes Auguste Viktoria-Klinikum, Berlin, Germany
- Department of Gynaecology, Charité University Medicine, Berlin, Germany
| | - Inken Flörkemeier
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jörg P Weimer
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas F Meyer
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nicolai Maass
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Dirk O Bauerschlag
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinic and Polyclinic for Gynaecology and Reproductive Medicine, University Hospital Jena, Jena, Germany
| | - Nina Hedemann
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
26
|
Ahuja S, Lazar IM. Proteomic insights into breast cancer response to brain cell-secreted factors. Sci Rep 2024; 14:19351. [PMID: 39169222 PMCID: PMC11339284 DOI: 10.1038/s41598-024-70386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
The most devastating feature of cancer cells is their ability to metastasize to distant sites in the body. HER2 + and TN breast cancers frequently metastasize to the brain and stay potentially dormant for years until favorable conditions support their proliferation. The sheltered and delicate nature of the brain prevents, however, early disease detection and effective delivery of therapeutic drugs. Moreover, the challenges associated with the acquisition of brain biopsies add compounding difficulties to exploring the mechanistic aspects of tumor development. To provide insights into the determinants of cancer cell behavior at the brain metastatic site, this study was aimed at exploring the early response of HER2 + breast cancer cells (SKBR3) to factors present in the brain perivascular niche. The neural microenvironment was simulated by using the secretome of a set of brain cells that come first in contact with the cancer cells upon crossing the blood brain barrier, i.e., endothelial cells, astrocytes, and microglia. Cytokine microarrays were used to investigate the secretome mediators of intercellular communication, and proteomic technologies for assessing the changes in the behavior of cancer cells upon exposure to the brain cell-secreted factors. The cytokines detected in the brain secretomes were supportive of inflammatory conditions, while the SKBR3 cells secreted numerous cancer-promoting growth factors that were either absent or present in lower abundance in the brain cell cultures, indicating that upon exposure the SKBR3 cells may have been deprived of favorable conditions for optimal growth. Altogether, the results suggest that the exposure of SKBR3 cells to the brain cell-secreted factors altered their growth potential and drove them toward a state of quiescence, with broader overall outcomes that affected cellular metabolism, adhesion and immune response processes. The findings of this study underscore the key role played by the neural niche in shaping the behavior of metastasized cancer cells, provide insights into the cellular cross-talk that may lead cancer cells into dormancy, and highlight novel opportunities for the development of metastatic breast cancer therapeutic strategies.
Collapse
Affiliation(s)
- Shreya Ahuja
- Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Iulia M Lazar
- Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
- Fralin Life Sciences Institute, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
- Carilion School of Medicine, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
- Division of Systems Biology/AIS, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
| |
Collapse
|
27
|
Moragas N, Fernandez-Nogueira P, Recalde-Percaz L, Inman JL, López-Plana A, Bergholtz H, Noguera-Castells A, Del Burgo PJ, Chen X, Sorlie T, Gascón P, Bragado P, Bissell M, Carbó N, Fuster G. The SEMA3F-NRP1/NRP2 axis is a key factor in the acquisition of invasive traits in in situ breast ductal carcinoma. Breast Cancer Res 2024; 26:122. [PMID: 39138514 PMCID: PMC11320849 DOI: 10.1186/s13058-024-01871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND A better understanding of ductal carcinoma in situ (DCIS) is urgently needed to identify these preinvasive lesions as distinct clinical entities. Semaphorin 3F (SEMA3F) is a soluble axonal guidance molecule, and its coreceptors Neuropilin 1 (NRP1) and NRP2 are strongly expressed in invasive epithelial BC cells. METHODS We utilized two cell line models to represent the progression from a healthy state to the mild-aggressive or ductal carcinoma in situ (DCIS) stage and, ultimately, to invasive cell lines. Additionally, we employed in vivo models and conducted analyses on patient databases to ensure the translational relevance of our results. RESULTS We revealed SEMA3F as a promoter of invasion during the DCIS-to-invasive ductal carcinoma transition in breast cancer (BC) through the action of NRP1 and NRP2. In epithelial cells, SEMA3F activates epithelialmesenchymal transition, whereas it promotes extracellular matrix degradation and basal membrane and myoepithelial cell layer breakdown. CONCLUSIONS Together with our patient database data, these proof-of-concept results reveal new SEMA3F-mediated mechanisms occurring in the most common preinvasive BC lesion, DCIS, and represent potent and direct activation of its transition to invasion. Moreover, and of clinical and therapeutic relevance, the effects of SEMA3F can be blocked directly through its coreceptors, thus preventing invasion and keeping DCIS lesions in the preinvasive state.
Collapse
MESH Headings
- Humans
- Neuropilin-1/metabolism
- Neuropilin-1/genetics
- Female
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/genetics
- Neuropilin-2/metabolism
- Neuropilin-2/genetics
- Neoplasm Invasiveness
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Cell Line, Tumor
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/genetics
- Epithelial-Mesenchymal Transition/genetics
- Animals
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Mice
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/genetics
- Gene Expression Regulation, Neoplastic
- Signal Transduction
Collapse
Affiliation(s)
- Núria Moragas
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Patricia Fernandez-Nogueira
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
- Department of Biomedicine, School of Medicine, Universitat de Barcelona (UB), 08036, Barcelona, Spain
| | - Leire Recalde-Percaz
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Jamie L Inman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA
| | - Anna López-Plana
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Helga Bergholtz
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0450, Oslo, Norway
| | - Aleix Noguera-Castells
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Department of Biosciences, Faculty of Science, Technology and Engineering, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Barcelona, Catalonia, Spain
| | - Pedro J Del Burgo
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Xieng Chen
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Therese Sorlie
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0450, Oslo, Norway
| | - Pere Gascón
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Paloma Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Mina Bissell
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA
| | - Neus Carbó
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Gemma Fuster
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain.
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain.
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), UVIC-UCC, Vic, Spain.
| |
Collapse
|
28
|
Gonçalves PP, da Silva CL, Bernardes N. Advancing cancer therapeutics: Integrating scalable 3D cancer models, extracellular vesicles, and omics for enhanced therapy efficacy. Adv Cancer Res 2024; 163:137-185. [PMID: 39271262 DOI: 10.1016/bs.acr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Cancer remains as one of the highest challenges to human health. However, anticancer drugs exhibit one of the highest attrition rates compared to other therapeutic interventions. In part, this can be attributed to a prevalent use of in vitro models with limited recapitulative potential of the in vivo settings. Three dimensional (3D) models, such as tumor spheroids and organoids, offer many research opportunities to address the urgent need in developing models capable to more accurately mimic cancer biology and drug resistance profiles. However, their wide adoption in high-throughput pre-clinical studies is dependent on scalable manufacturing to support large-scale therapeutic drug screenings and multi-omic approaches for their comprehensive cellular and molecular characterization. Extracellular vesicles (EVs), which have been emerging as promising drug delivery systems (DDS), stand to significantly benefit from such screenings conducted in realistic cancer models. Furthermore, the integration of these nanomedicines with 3D cancer models and omics profiling holds the potential to deepen our understanding of EV-mediated anticancer effects. In this chapter, we provide an overview of the existing 3D models used in cancer research, namely spheroids and organoids, the innovations in their scalable production and discuss how omics can facilitate the implementation of these models at different stages of drug testing. We also explore how EVs can advance drug delivery in cancer therapies and how the synergy between 3D cancer models and omics approaches can benefit in this process.
Collapse
Affiliation(s)
- Pedro P Gonçalves
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Nuno Bernardes
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
29
|
Harris ED, Sharpe JC, Strozen T, Abdi S, Kliewer M, Sanchez MG, Hogan NS, MacDonald-Dickinson V, Vizeacoumar FJ, Toosi BM. The EphA2 Receptor Regulates Invasiveness and Drug Sensitivity in Canine and Human Osteosarcoma Cells. Cells 2024; 13:1201. [PMID: 39056783 PMCID: PMC11275032 DOI: 10.3390/cells13141201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Osteosarcoma is an aggressive bone cancer affecting both humans and dogs, often leading to pulmonary metastasis. Despite surgery and chemotherapy being the primary treatment modalities, survival rates remain low in both species, underscoring the urgent need for more efficacious therapeutic options. Accumulating evidence indicates numerous biological and clinical similarities between human and canine osteosarcoma, making it an ideal choice for comparative oncological research that should benefit both species. The EphA2 receptor has been implicated in controlling invasive responses across different human malignancies, and its expression is associated with poor prognosis. In this study, we utilized a comparative approach to match EphA2 functions in human and canine osteosarcoma models. Our objectives were to assess EphA2 levels and its pro-malignant action in osteosarcoma cells of both species. We found that EphA2 is overexpressed in most of both canine and human osteosarcoma cell lines, while its silencing significantly reduced cell viability, migration, and invasion. Moreover, EphA2 silencing enhanced the sensitivity of osteosarcoma cells to cisplatin, a drug commonly used for treating this cancer. Furthermore, inhibition of EphA2 expression led to a significant reduction in tumor development capability of canine osteosarcoma cells. Our data suggest that these EphA2 effects are likely mediated through various signaling mechanisms, including the SRC, AKT, and ERK-MAPK pathways. Collectively, our findings indicate that EphA2 promotes malignant behaviors in both human and canine osteosarcoma and that targeting EphA2, either alone or in combination with chemotherapy, could offer potential benefits to osteosarcoma patients.
Collapse
Affiliation(s)
- Evelyn D. Harris
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (E.D.H.); (J.C.S.); (T.S.); (S.A.); (M.K.); (M.G.S.); (V.M.-D.)
| | - Jessica C. Sharpe
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (E.D.H.); (J.C.S.); (T.S.); (S.A.); (M.K.); (M.G.S.); (V.M.-D.)
| | - Timothy Strozen
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (E.D.H.); (J.C.S.); (T.S.); (S.A.); (M.K.); (M.G.S.); (V.M.-D.)
| | - Shabnam Abdi
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (E.D.H.); (J.C.S.); (T.S.); (S.A.); (M.K.); (M.G.S.); (V.M.-D.)
| | - Maya Kliewer
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (E.D.H.); (J.C.S.); (T.S.); (S.A.); (M.K.); (M.G.S.); (V.M.-D.)
| | - Malkon G. Sanchez
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (E.D.H.); (J.C.S.); (T.S.); (S.A.); (M.K.); (M.G.S.); (V.M.-D.)
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, GA20 Health Sciences, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Natacha S. Hogan
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| | - Valerie MacDonald-Dickinson
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (E.D.H.); (J.C.S.); (T.S.); (S.A.); (M.K.); (M.G.S.); (V.M.-D.)
| | - Franco J. Vizeacoumar
- Cancer Research, Saskatchewan Cancer Agency and Division of Oncology, University of Saskatchewan, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
| | - Behzad M. Toosi
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; (E.D.H.); (J.C.S.); (T.S.); (S.A.); (M.K.); (M.G.S.); (V.M.-D.)
| |
Collapse
|
30
|
Wu Y, Liu H, Sun Z, Liu J, Li K, Fan R, Dai F, Tang H, Hou Q, Li J, Tang X. The adhesion-GPCR ADGRF5 fuels breast cancer progression by suppressing the MMP8-mediated antitumorigenic effects. Cell Death Dis 2024; 15:455. [PMID: 38937435 PMCID: PMC11211477 DOI: 10.1038/s41419-024-06855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
ADGRF5 (GPR116) has been identified as a facilitator of breast cancer cell migration and metastasis, yet the underlying mechanisms remain largely elusive. Our current study reveals that the absence of ADGRF5 in breast cancer cells impairs extracellular matrix (ECM)-associated cell motility and impedes in vivo tumor growth. This correlates with heightened expression of matrix metalloproteinase 8 (MMP8), a well-characterized antitumorigenic MMP, and a shift in the polarization of tumor-associated neutrophils (TANs) towards the antitumor N1 phenotype in the tumor microenvironment (TME). Mechanistically, ADGRF5 inhibits ERK1/2 activity by enhancing RhoA activation, leading to decreased phosphorylation of C/EBPβ at Thr235, hindering its nuclear translocation and subsequent activation. Crucially, two C/EBPβ binding motifs essential for MMP8 transcription are identified within its promoter region. Consequently, ADGRF5 silencing fosters MMP8 expression and CXCL8 secretion, attracting increased infiltration of TANs; simultaneously, MMP8 plays a role in decorin cleavage, which leads to trapped-inactivation of TGF-β in the TME, thereby polarizing TANs towards the antitumor N1 neutrophil phenotype and mitigating TGF-β-enhanced cell motility in breast cancer. Our findings reveal a novel connection between ADGRF5, an adhesion G protein-coupled receptor, and the orchestration of the TME, which dictates malignancy progression. Overall, the data underscore ADGRF5 as a promising therapeutic target for breast cancer intervention.
Collapse
Grants
- 82372645 National Natural Science Foundation of China (National Science Foundation of China)
- 81972602 National Natural Science Foundation of China (National Science Foundation of China)
- 82002716 National Natural Science Foundation of China (National Science Foundation of China)
- 82273497 National Natural Science Foundation of China (National Science Foundation of China)
- 81502331 National Natural Science Foundation of China (National Science Foundation of China)
- The Natural Science Foundation of Hunan Province (grant nos. 2023JJ20021), the Fundamental Research Funds for the Central Universities (521119200099, 541109030051).
- The Natural Science Foundation of Hunan Province (grant nos.2024JJ6490)
- Natural Science Foundation of Henan Province (222300420029), Program for Science and Technology Innovation Talents in Universities of Henan Province (23HASTIT042).
- The Project of Department of Education of Guangdong Province, (2019KTSCX146), the Shenzhen Science and Technology Program (JCYJ20190808164209301), the Shenzhen Scientific Research Foundation for Excellent Returned Scholars (000493), the Natural Science Foundation of Shenzhen University General Hospital (SUGH2020QD005), the Disciple gathering teaching project of Shenzhen University, the Shenzhen Key Laboratory Foundation (ZDSYS20200811143757022), the Teaching Reform Research Project of Shenzhen University (YXBJG202339), and the Shenzhen International Cooperation Research Project (GJHZ20220913143004008).
- The Wisdom Accumulation and Talent Cultivation Project of the Third Xiangya Hospital of Central South University (YX202105), Natural Science Foundation of Hunan Province (Grant Nos. 2021JJ31010).
Collapse
Affiliation(s)
- Yalan Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Huixia Liu
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Zhe Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jieling Liu
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Kai Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ronghui Fan
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Fujun Dai
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Hui Tang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, 637003, Sichuan, China
| | - Qi Hou
- Department of Urology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
- International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen, 518061, China
| | - JinSong Li
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Xiaolong Tang
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, China.
| |
Collapse
|
31
|
Nicotra R, Lutz C, Messal HA, Jonkers J. Rat Models of Hormone Receptor-Positive Breast Cancer. J Mammary Gland Biol Neoplasia 2024; 29:12. [PMID: 38913216 PMCID: PMC11196369 DOI: 10.1007/s10911-024-09566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024] Open
Abstract
Hormone receptor-positive (HR+) breast cancer (BC) is the most common type of breast cancer among women worldwide, accounting for 70-80% of all invasive cases. Patients with HR+ BC are commonly treated with endocrine therapy, but intrinsic or acquired resistance is a frequent problem, making HR+ BC a focal point of intense research. Despite this, the malignancy still lacks adequate in vitro and in vivo models for the study of its initiation and progression as well as response and resistance to endocrine therapy. No mouse models that fully mimic the human disease are available, however rat mammary tumor models pose a promising alternative to overcome this limitation. Compared to mice, rats are more similar to humans in terms of mammary gland architecture, ductal origin of neoplastic lesions and hormone dependency status. Moreover, rats can develop spontaneous or induced mammary tumors that resemble human HR+ BC. To date, six different types of rat models of HR+ BC have been established. These include the spontaneous, carcinogen-induced, transplantation, hormone-induced, radiation-induced and genetically engineered rat mammary tumor models. Each model has distinct advantages, disadvantages and utility for studying HR+ BC. This review provides a comprehensive overview of all published models to date.
Collapse
Affiliation(s)
- Raquel Nicotra
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| | - Hendrik A Messal
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| |
Collapse
|
32
|
Zha L, Matsu-ura T, Sluka JP, Murakawa T, Tsuta K. Morphological basis of the lung adenocarcinoma subtypes. iScience 2024; 27:109742. [PMID: 38706836 PMCID: PMC11066476 DOI: 10.1016/j.isci.2024.109742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/20/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
Lung adenocarcinoma (LUAD), which accounts for a large proportion of lung cancers, is divided into five major subtypes based on histologic characteristics. The clinical characteristics, prognosis, and responses to treatments vary among subtypes. Here, we demonstrate that the variations of cell-cell contact energy result in the LUAD subtype-specific morphogenesis. We reproduced the morphologies of the papillary LUAD subtypes with the cellular Potts Model (CPM). Simulations and experimental validations revealed modifications of cell-cell contact energy changed the morphology from a papillary-like structure to micropapillary or solid subtype-like structures. Remarkably, differential gene expression analysis revealed subtype-specific expressions of genes relating to cell adhesion. Knockdown experiments of the micropapillary upregulated ITGA11 gene resulted in the morphological changes of the spheroids produced from an LUAD cell line PC9. This work shows the consequences of gene mutations and gene expressions on patient prognosis through differences in tissue composing physical forces among LUAD subtypes.
Collapse
Affiliation(s)
- Linjun Zha
- Department of Pathology, Kansai Medical University, Hirakata, Osaka 573-0033, Japan
| | - Toru Matsu-ura
- Department of Pathology, Kansai Medical University, Hirakata, Osaka 573-0033, Japan
| | - James P. Sluka
- Biocomplexity Institute, Indiana University, Bloomington, IN 47405-7105, USA
| | - Tomohiro Murakawa
- Department of Thoracic Surgery, Kansai Medical University, Hirakata, Osaka 573-0033, Japan
| | - Koji Tsuta
- Department of Pathology, Kansai Medical University, Hirakata, Osaka 573-0033, Japan
- Biocomplexity Institute, Indiana University, Bloomington, IN 47405-7105, USA
| |
Collapse
|
33
|
Sharma MP, Shukla S, Misra G. Recent advances in breast cancer cell line research. Int J Cancer 2024; 154:1683-1693. [PMID: 38230499 DOI: 10.1002/ijc.34849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
Breast cancer, a formidable global health challenge, needs continuous translational research to understand the complexity of mechanisms and improve therapeutic and diagnostic strategies. Breast cancer cell lines are of paramount importance as they significantly contribute to the initial stage of research to understand cancer biology. This review provides insights into targeted therapies and immunotherapies that have emerged using in vitro models and microbiome analysis. It focuses on therapeutic development using cell lines and the limitations of tumor heterogeneity and microenvironment. We explore the evolving landscape of breast cancer cell lines from two-dimensional (2-D) cultures to patient-derived xenograft (PDX) models advancing both fundamental and translational research. Patient-derived xenografts, cell line-derived xenografts (CDX), three-dimensional (3-D) cultures, organoids, and circulating tumor cells (CTC) models provide promising alternatives that capture the intricacies of the tumor microenvironment. This review bridges the gap between traditional cell lines and newer developments exploring the therapeutic and diagnostic advancements and needs for cell lines to expedite the progress in breast cancer research and treatment.
Collapse
Affiliation(s)
- Manika P Sharma
- Molecular Diagnostics and COVID-19 Kit Testing Laboratory, National Institute of Biologicals (Ministry of Health and Family Welfare), Noida, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Supriya Shukla
- Molecular Diagnostics and COVID-19 Kit Testing Laboratory, National Institute of Biologicals (Ministry of Health and Family Welfare), Noida, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gauri Misra
- Molecular Diagnostics and COVID-19 Kit Testing Laboratory, National Institute of Biologicals (Ministry of Health and Family Welfare), Noida, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
34
|
Jamshidi N, Jamshidi N, Modarresi Chahardehi A, Shams E, Chaleshi V. A promising breakthrough in pancreatic cancer research: The potential of spheroids as 3D models. BIOIMPACTS : BI 2024; 15:30241. [PMID: 39963557 PMCID: PMC11830132 DOI: 10.34172/bi.30241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands as the fourth leading cause of cancer-related deaths, primarily attributable to its resistance to chemotherapy, resulting in a nearly universal fatality rate. Despite the promise exhibited by numerous drugs in preclinical studies, their subsequent failure in clinical trials underscores the inherent limitations of conventional two-dimensional cell culture models commonly employed in early drug screening endeavors. The inadequacies of two-dimensional (2D) models prompted the exploration of three-dimensional (3D) culture systems, which more faithfully recapitulate the native tumor microenvironment. These 3D systems have distinct advantages over 2D models in morphology, proliferation, drug response, and protein expression. Among these 3D platforms, tumor organoids and spheroids, generated through different methodologies, have emerged as next-generation models that closely mirror aspects of pancreatic tumor biology. This comprehensive review scrutinizes pancreatic cancer spheroids' techniques, tissue sources, and applications, offering a nuanced analysis of their advantages and limitations. By comparing these distinct 3D culture systems, researchers gain valuable insights to inform the selection of optimal model designs aligned with their specific experimental objectives. The utilization of these advanced models holds significant promise for enhancing the clinical relevance of both in vitro and in vivo cancer research, thereby contributing to the development of improved therapeutics against pancreatic cancer.
Collapse
Affiliation(s)
- Nazanin Jamshidi
- Kimia Andisheh Teb Medical and Molecular Laboratory Research Co, Tehran, Iran
| | - Negar Jamshidi
- Kimia Andisheh Teb Medical and Molecular Laboratory Research Co, Tehran, Iran
| | | | - Elahe Shams
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Chaleshi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Giannakakis A, Tsifintaris M, Gouzouasis V, Ow GS, Aau MY, Papp C, Ivshina AV, Kuznetsov VA. KDM7A-DT induces genotoxic stress, tumorigenesis, and progression of p53 missense mutation-associated invasive breast cancer. Front Oncol 2024; 14:1227151. [PMID: 38756663 PMCID: PMC11097164 DOI: 10.3389/fonc.2024.1227151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Stress-induced promoter-associated and antisense lncRNAs (si-paancRNAs) originate from a reservoir of oxidative stress (OS)-specific promoters via RNAPII pausing-mediated divergent antisense transcription. Several studies have shown that the KDM7A divergent transcript gene (KDM7A-DT), which encodes a si-paancRNA, is overexpressed in some cancer types. However, the mechanisms of this overexpression and its corresponding roles in oncogenesis and cancer progression are poorly understood. We found that KDM7A-DT expression is correlated with highly aggressive cancer types and specific inherently determined subtypes (such as ductal invasive breast carcinoma (BRCA) basal subtype). Its regulation is determined by missense TP53 mutations in a subtype-specific context. KDM7A-DT transcribes several intermediate-sized ncRNAs and a full-length transcript, exhibiting distinct expression and localization patterns. Overexpression of KDM7A-DT upregulates TP53 protein expression and H2AX phosphorylation in nonmalignant fibroblasts, while in semi-transformed fibroblasts, OS superinduces KDM7A-DT expression in a TP53-dependent manner. KDM7A-DT knockdown and gene expression profiling in TP53-missense mutated luminal A BRCA variant, where it is abundantly expressed, indicate its significant role in cancer pathways. Endogenous over-expression of KDM7A-DT inhibits DNA damage response/repair (DDR/R) via the TP53BP1-mediated pathway, reducing apoptosis and promoting G2/M checkpoint arrest. Higher KDM7A-DT expression in BRCA is associated with KDM7A-DT locus gain/amplification, higher histologic grade, aneuploidy, hypoxia, immune modulation scores, and activation of the c-myc pathway. Higher KDM7A-DT expression is associated with relatively poor survival outcomes in patients with luminal A or Basal subtypes. In contrast, it is associated with favorable outcomes in patients with HER2+ER- or luminal B subtypes. KDM7A-DT levels are coregulated with critical transcripts and proteins aberrantly expressed in BRCA, including those involved in DNA repair via non-homologous end joining and epithelial-to-mesenchymal transition pathway. In summary, KDM7A-DT and its si-lncRNA exhibit several intrinsic biological and clinical characteristics that suggest important roles in invasive BRCA and its subtypes. KDM7A-DT-defined mRNA and protein subnetworks offer resources for identifying clinically relevant RNA-based signatures and prospective targets for therapeutic intervention.
Collapse
Affiliation(s)
- Antonis Giannakakis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- University Research Institute for the Study of Genetic & Malignant Disorders in Childhood, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Tsifintaris
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasileios Gouzouasis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ghim Siong Ow
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mei Yee Aau
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Csaba Papp
- Department of Urology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Anna V. Ivshina
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Vladimir A. Kuznetsov
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Urology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
36
|
Lewis MT, Caldas C. The Power and Promise of Patient-Derived Xenografts of Human Breast Cancer. Cold Spring Harb Perspect Med 2024; 14:a041329. [PMID: 38052483 PMCID: PMC10982691 DOI: 10.1101/cshperspect.a041329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In 2016, a group of researchers engaged in the development of patient-derived xenografts (PDXs) of human breast cancer provided a comprehensive review of the state of the field. In that review, they summarized the clinical problem that PDXs might address, the technical approaches to their generation (including a discussion of host animals and transplant conditions tested), and presented transplantation success (take) rates across groups and across transplantation conditions. At the time, there were just over 500 unique PDX models created by these investigators representing all three clinically defined subtypes (ER+, HER2+, and TNBC). Today, many of these PDX resources have at least doubled in size, and several more PDX development groups now exist, such that there may be well upward of 1000 PDX models of human breast cancer in existence worldwide. They also presented a series of open questions for the field. Many of these questions have been addressed. However, several remain open, or only partially addressed. Herein, we revisit these questions, and recount the progress that has been made in a number of areas with respect to generation, characterization, and use of PDXs in translational research, and re-present questions that remain open. These open questions, and others, are now being addressed not only by individual investigators, but also large, well-funded consortia including the PDXNet program of the National Cancer Institute in the United States, and the EuroPDX Consortium, an organization of PDX developers across Europe. Finally, we discuss the new opportunities in PDX-based research.
Collapse
Affiliation(s)
- Michael T Lewis
- Baylor College of Medicine, The Lester and Sue Smith Breast Center, Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
37
|
Guo L, Li C, Gong W. Toward reproducible tumor organoid culture: focusing on primary liver cancer. Front Immunol 2024; 15:1290504. [PMID: 38571961 PMCID: PMC10987700 DOI: 10.3389/fimmu.2024.1290504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Organoids present substantial potential for pushing forward preclinical research and personalized medicine by accurately recapitulating tissue and tumor heterogeneity in vitro. However, the lack of standardized protocols for cancer organoid culture has hindered reproducibility. This paper comprehensively reviews the current challenges associated with cancer organoid culture and highlights recent multidisciplinary advancements in the field with a specific focus on standardizing liver cancer organoid culture. We discuss the non-standardized aspects, including tissue sources, processing techniques, medium formulations, and matrix materials, that contribute to technical variability. Furthermore, we emphasize the need to establish reproducible platforms that accurately preserve the genetic, proteomic, morphological, and pharmacotypic features of the parent tumor. At the end of each section, our focus shifts to organoid culture standardization in primary liver cancer. By addressing these challenges, we can enhance the reproducibility and clinical translation of cancer organoid systems, enabling their potential applications in precision medicine, drug screening, and preclinical research.
Collapse
Affiliation(s)
| | | | - Weiqiang Gong
- Department of Hepatobiliary and Pancreatic Surgery, Weifang People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
38
|
Nair R, Paul P, Maji I, Gupta U, Mahajan S, Aalhate M, Guru SK, Singh PK. Exploring the current landscape of chitosan-based hybrid nanoplatforms as cancer theragnostic. Carbohydr Polym 2024; 326:121644. [PMID: 38142105 DOI: 10.1016/j.carbpol.2023.121644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023]
Abstract
In the last decade, investigators have put significant efforts to develop several diagnostic and therapeutic strategies against cancer. Many novel nanoplatforms, including lipidic, metallic, and inorganic nanocarriers, have shown massive potential at preclinical and clinical stages for cancer diagnosis and treatment. Each of these nano-systems is distinct with its own benefits and limitations. The need to overcome the limitations of single-component nano-systems, improve their morphological and biological features, and achieve multiple functionalities has resulted in the emergence of hybrid nanoparticles (HNPs). These HNPs integrate multicomponent nano-systems with diagnostic and therapeutic functions into a single nano-system serving as promising nanotools for cancer theragnostic applications. Chitosan (CS) being a mucoadhesive, biodegradable, and biocompatible biopolymer, has emerged as an essential element for the development of HNPs offering several advantages over conventional nanoparticles including pH-dependent drug delivery, sustained drug release, and enhanced nanoparticle stability. In addition, the free protonable amino groups in the CS backbone offer flexibility to its structure, making it easy for the modification and functionalization of CS, resulting in better drug targetability and cell uptake. This review discusses in detail the existing different oncology-directed CS-based HNPs including their morphological characteristics, in-vitro/in-vivo outcomes, toxicity concerns, hurdles in clinical translation, and future prospects.
Collapse
Affiliation(s)
- Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
39
|
Pajic-Lijakovic I, Eftimie R, Milivojevic M, Bordas SPA. Segregation of co-cultured multicellular systems: review and modeling consideration. Q Rev Biophys 2024; 57:e5. [PMID: 38351868 DOI: 10.1017/s0033583524000015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cell segregation caused by collective cell migration (CCM) is crucial for morphogenesis, functional development of tissue parts, and is an important aspect in other diseases such as cancer and its metastasis process. Efficiency of the cell segregation depends on the interplay between: (1) biochemical processes such as cell signaling and gene expression and (2) physical interactions between cells. Despite extensive research devoted to study the segregation of various co-cultured systems, we still do not understand the role of physical interactions in cell segregation. Cumulative effects of these physical interactions appear in the form of physical parameters such as: (1) tissue surface tension, (2) viscoelasticity caused by CCM, and (3) solid stress accumulated in multicellular systems. These parameters primarily depend on the interplay between the state of cell-cell adhesion contacts and cell contractility. The role of these physical parameters on the segregation efficiency is discussed on model systems such as co-cultured breast cell spheroids consisting of two subpopulations that are in contact. This review study aims to: (1) summarize biological aspects related to cell segregation, mechanical properties of cell collectives, effects along the biointerface between cell subpopulations and (2) describe from a biophysical/mathematical perspective the same biological aspects summarized before. So that overall it can illustrate the complexity of the biological systems that translate into very complex biophysical/mathematical equations. Moreover, by presenting in parallel these two seemingly different parts (biology vs. equations), this review aims to emphasize the need for experiments to estimate the variety of parameters entering the resulting complex biophysical/mathematical models.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Beograd, Serbia
| | - Raluca Eftimie
- Laboratoire Mathematiques de Besançon, UMR-CNRS 6623, Université de Bourgogne Franche-Comte, Besançon, France
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Beograd, Serbia
| | - Stéphane P A Bordas
- Faculty of Science, Technology and Communication, University of Luxembourg, Institute for Computational Engineering, Esch-sur-Alzette, Luxembourg
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
40
|
Karimifard SA, Salehzadeh-Yazdi A, Taghizadeh-Tabarsi R, Akbari-Birgani S. Mechanical effects modulate drug resistance in MCF-7-derived organoids: Insights into the wnt/β-catenin pathway. Biochem Biophys Res Commun 2024; 695:149420. [PMID: 38154263 DOI: 10.1016/j.bbrc.2023.149420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Addressing drug resistance poses a significant challenge in cancer treatment, as cancer cells develop diverse mechanisms to evade chemotherapy drugs, leading to treatment failure and disease relapse. Three-dimensional (3D) cell culture has emerged as a valuable model for studying drug resistance, although the underlying mechanisms remain elusive. By obtaining a better understanding of drug resistance within the 3D culture environment, we can develop more effective strategies to overcome it and improve the success of cancer treatments. Notably, the physical structure undergoes notable changes in 3D culture, with mechanical effects believed to play a pivotal role in drug resistance. Hence, our study aimed to explore the influence of mechanical effects on drug resistance by analyzing data related to "drug resistance" and "mechanobiology". Through this analysis, we identified β-catenin and JNK1 as potential factors, which were further examined in MCF-7 cells cultivated under both 2D and 3D culture conditions. Our findings demonstrate that β-catenin is activated through canonical and non-canonical pathways and associated with the drug resistance, particularly in organoids obtained under 3D culture.
Collapse
Affiliation(s)
- Seyed Ali Karimifard
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | | | - Reza Taghizadeh-Tabarsi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| |
Collapse
|
41
|
De Lorenzi F, Hansen N, Theek B, Daware R, Motta A, Breuel S, Nasehi R, Baumeister J, Schöneberg J, Stojanović N, von Stillfried S, Vogt M, Müller-Newen G, Maurer J, Sofias AM, Lammers T, Fischer H, Kiessling F. Engineering Mesoscopic 3D Tumor Models with a Self-Organizing Vascularized Matrix. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303196. [PMID: 37865947 DOI: 10.1002/adma.202303196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/05/2023] [Indexed: 10/24/2023]
Abstract
Advanced in vitro systems such as multicellular spheroids and lab-on-a-chip devices have been developed, but often fall short in reproducing the tissue scale and self-organization of human diseases. A bioprinted artificial tumor model is introduced with endothelial and stromal cells self-organizing into perfusable and functional vascular structures. This model uses 3D hydrogel matrices to embed multicellular tumor spheroids, allowing them to grow to mesoscopic scales and to interact with endothelial cells. It is shown that angiogenic multicellular tumor spheroids promote the growth of a vascular network, which in turn further enhances the growth of cocultivated tumor spheroids. The self-developed vascular structure infiltrates the tumor spheroids, forms functional connections with the bioprinted endothelium, and can be perfused by erythrocytes and polystyrene microspheres. Moreover, cancer cells migrate spontaneously from the tumor spheroid through the self-assembled vascular network into the fluid flow. Additionally, tumor type specific characteristics of desmoplasia, angiogenesis, and metastatic propensity are preserved between patient-derived samples and tumors derived from this same material growing in the bioreactors. Overall, this modular approach opens up new avenues for studying tumor pathophysiology and cellular interactions in vitro, providing a platform for advanced drug testing while reducing the need for in vivo experimentation.
Collapse
Affiliation(s)
- Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIOABCD), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Nadja Hansen
- Department of Dental Materials and Biomaterials Research (ZWBF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Benjamin Theek
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Rasika Daware
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Alessandro Motta
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Saskia Breuel
- Department of Gynecology and Obstetrics, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Ramin Nasehi
- Department of Dental Materials and Biomaterials Research (ZWBF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Julian Baumeister
- Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIOABCD), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Jan Schöneberg
- Department of Dental Materials and Biomaterials Research (ZWBF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Natalija Stojanović
- Department of Dental Materials and Biomaterials Research (ZWBF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | | | - Michael Vogt
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Jochen Maurer
- Department of Gynecology and Obstetrics, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIOABCD), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Norwegian University of Science and Technology (NTNU), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Trondheim, 7491, Norway
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIOABCD), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research (ZWBF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, 28359, Bremen, Germany
| |
Collapse
|
42
|
Sharma K, Dey S, Karmakar R, Rengan AK. A comprehensive review of 3D cancer models for drug screening and translational research. CANCER INNOVATION 2024; 3:e102. [PMID: 38948533 PMCID: PMC11212324 DOI: 10.1002/cai2.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 07/02/2024]
Abstract
The 3D cancer models fill the discovery gap of 2D cancer models and play an important role in cancer research. In addition to cancer cells, a range of other factors include the stroma, density and composition of extracellular matrix, cancer-associated immune cells (e.g., cancer-associated fibroblasts cancer cell-stroma interactions and subsequent interactions, and a number of other factors (e.g., tumor vasculature and tumor-like microenvironment in vivo) has been widely ignored in the 2D concept of culture. Despite this knowledge, the continued use of monolayer cell culture methods has led to the failure of a series of clinical trials. This review discusses the immense importance of tumor microenvironment (TME) recapitulation in cancer research, prioritizing the individual roles of TME elements in cancer histopathology. The TME provided by the 3D model fulfills the requirements of in vivo spatiotemporal arrangement, components, and is helpful in analyzing various different aspects of drug sensitivity in preclinical and clinical trials, some of which are discussed here. Furthermore, it discusses models for the co-assembly of different TME elements in vitro and focuses on their synergistic function and responsiveness as tumors. Furthermore, this review broadly describes of a handful of recently developed 3D models whose main focus is limited to drug development and their screening and/or the impact of this approach in preclinical and translational research.
Collapse
Affiliation(s)
- Karthikey Sharma
- Department of Biomedical EngineeringIndian Institute of Technology (IIT)HyderabadIndia
| | - Sreenath Dey
- Department of Biomedical EngineeringIndian Institute of Technology (IIT)HyderabadIndia
| | - Rounik Karmakar
- Department of Biomedical EngineeringIndian Institute of Technology (IIT)HyderabadIndia
| | - Aravind Kumar Rengan
- Department of Biomedical EngineeringIndian Institute of Technology (IIT)HyderabadIndia
| |
Collapse
|
43
|
Rassomakhina NV, Ryazanova AY, Likhov AR, Bruskin SA, Maloshenok LG, Zherdeva VV. Tumor Organoids: The Era of Personalized Medicine. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S127-S147. [PMID: 38621748 DOI: 10.1134/s0006297924140086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 04/17/2024]
Abstract
The strategies of future medicine are aimed to modernize and integrate quality approaches including early molecular-genetic profiling, identification of new therapeutic targets and adapting design for clinical trials, personalized drug screening (PDS) to help predict and individualize patient treatment regimens. In the past decade, organoid models have emerged as an innovative in vitro platform with the potential to realize the concept of patient-centered medicine. Organoids are spatially restricted three-dimensional clusters of cells ex vivo that self-organize into complex functional structures through genetically programmed determination, which is crucial for reconstructing the architecture of the primary tissue and organs. Currently, there are several strategies to create three-dimensional (3D) tumor systems using (i) surgically resected patient tissue (PDTOs, patient-derived tumor organoids) or (ii) single tumor cells circulating in the patient's blood. Successful application of 3D tumor models obtained by co-culturing autologous tumor organoids (PDTOs) and peripheral blood lymphocytes have been demonstrated in a number of studies. Such models simulate a 3D tumor architecture in vivo and contain all cell types characteristic of this tissue, including immune system cells and stem cells. Components of the tumor microenvironment, such as fibroblasts and immune system cells, affect tumor growth and its drug resistance. In this review, we analyzed the evolution of tumor models from two-dimensional (2D) cell cultures and laboratory animals to 3D tissue-specific tumor organoids, their significance in identifying mechanisms of antitumor response and drug resistance, and use of these models in drug screening and development of precision methods in cancer treatment.
Collapse
Affiliation(s)
- Natalia V Rassomakhina
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Alexandra Yu Ryazanova
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Astemir R Likhov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Sergey A Bruskin
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Liliya G Maloshenok
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victoria V Zherdeva
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
44
|
Santos RA, Pessoa HR, Daleprane JB, de Faria Lopes GP, da Costa DCF. Comparative Anticancer Potential of Green Tea Extract and Epigallocatechin-3-gallate on Breast Cancer Spheroids. Foods 2023; 13:64. [PMID: 38201092 PMCID: PMC10778335 DOI: 10.3390/foods13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Despite advances in diagnosis and therapy, breast cancer remains the leading cause of death in many countries. Green tea (GT) has been proposed to play a crucial role in cancer chemoprevention. Although extensive research has been conducted on GT phytochemicals, most experimental studies concentrate mainly on commercial formulations or isolated catechins. This study presents a comparative investigation into the anticancer properties of green tea extract (GTE) and epigallocatechin-3-gallate (EGCG) in a three-dimensional (3D) MCF-7 breast cancer cell culture. MCF-7 spheroids were exposed to GTE or EGCG, and effects on 3D culture formation, growth, cell viability, and migration were examined. GTE inhibits cell migration and the formation of breast cancer spheroids more effectively than EGCG, while inducing more pronounced morphological changes in the spheroids' structure. These findings suggest that the food matrix improves GTE effects on breast cancer spheroids, supporting the hypothesis that a mixture of phytochemicals might enhance its anticancer potential.
Collapse
Affiliation(s)
- Ronimara A. Santos
- Laboratory of Physiopathology and Biochemistry of Nutrition, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil; (R.A.S.); (H.R.P.)
| | - Heloisa Rodrigues Pessoa
- Laboratory of Physiopathology and Biochemistry of Nutrition, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil; (R.A.S.); (H.R.P.)
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions between Nutrition and Genetics, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil;
| | - Giselle Pinto de Faria Lopes
- Almirante Paulo Moreira Institute of Sea Studies, Division of Natural Products, Department of Marine Biotechnology, Arraial do Cabo 28930-000, Brazil;
| | - Danielly C. Ferraz da Costa
- Laboratory of Physiopathology and Biochemistry of Nutrition, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil; (R.A.S.); (H.R.P.)
| |
Collapse
|
45
|
Witt BL, Tollefsbol TO. Molecular, Cellular, and Technical Aspects of Breast Cancer Cell Lines as a Foundational Tool in Cancer Research. Life (Basel) 2023; 13:2311. [PMID: 38137912 PMCID: PMC10744609 DOI: 10.3390/life13122311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer comprises about 30% of all new female cancers each year and is the most common malignant cancer in women in the United States. Breast cancer cell lines have been harnessed for many years as a foundation for in vitro analytic studies to understand the use of cancer prevention and therapy. There has yet to be a compilation of works to analyze the pitfalls, novel discoveries, and essential techniques for breast cancer cell line studies in a scientific context. In this article, we review the history of breast cancer cell lines and their origins, as well as analyze the molecular pathways that pharmaceutical drugs apply to breast cancer cell lines in vitro and in vivo. Controversies regarding the origins of certain breast cancer cell lines, the benefits of utilizing Patient-Derived Xenograft (PDX) versus Cell-Derived Xenograft (CDX), and 2D versus 3D cell culturing techniques will be analyzed. Novel outcomes from epigenetic discovery with dietary compound usage are also discussed. This review is intended to create a foundational tool that will aid investigators when choosing a breast cancer cell line to use in multiple expanding areas such as epigenetic discovery, xenograft experimentation, and cancer prevention, among other areas.
Collapse
Affiliation(s)
- Brittany L. Witt
- Department of Biology, University of Alabama at Birmingham, 902 14th Street, Birmingham, AL 35228, USA;
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 902 14th Street, Birmingham, AL 35228, USA;
- Integrative Center for Aging Research, University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
- University Wide Microbiome Center, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| |
Collapse
|
46
|
Petri BJ, Piell KM, Wilt AE, Howser AD, Winkler L, Whitworth MR, Valdes BL, Lehman NL, Clem BF, Klinge CM. MicroRNA regulation of the serine synthesis pathway in endocrine-resistant breast cancer cells. Endocr Relat Cancer 2023; 30:e230148. [PMID: 37650685 PMCID: PMC10546957 DOI: 10.1530/erc-23-0148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Despite the successful combination of therapies improving survival of estrogen receptor α (ER+) breast cancer patients with metastatic disease, mechanisms for acquired endocrine resistance remain to be fully elucidated. The RNA binding protein HNRNPA2B1 (A2B1), a reader of N(6)-methyladenosine (m6A) in transcribed RNA, is upregulated in endocrine-resistant, ER+ LCC9 and LY2 cells compared to parental MCF-7 endocrine-sensitive luminal A breast cancer cells. The miRNA-seq transcriptome of MCF-7 cells overexpressing A2B1 identified the serine metabolic processes pathway. Increased expression of two key enzymes in the serine synthesis pathway (SSP), phosphoserine aminotransferase 1 (PSAT1) and phosphoglycerate dehydrogenase (PHGDH), correlates with poor outcomes in ER+ breast patients who received tamoxifen (TAM). We reported that PSAT1 and PHGDH were higher in LCC9 and LY2 cells compared to MCF-7 cells and their knockdown enhanced TAM sensitivity in these-resistant cells. Here we demonstrate that stable, modest overexpression of A2B1 in MCF-7 cells increased PSAT1 and PHGDH and endocrine resistance. We identified four miRNAs downregulated in MCF-7-A2B1 cells that directly target the PSAT1 3'UTR (miR-145-5p and miR-424-5p), and the PHGDH 3'UTR (miR-34b-5p and miR-876-5p) in dual luciferase assays. Lower expression of miR-145-5p and miR-424-5p in LCC9 and ZR-75-1-4-OHT cells correlated with increased PSAT1 and lower expression of miR-34b-5p and miR-876-5p in LCC9 and ZR-75-1-4-OHT cells correlated with increased PHGDH. Transient transfection of these miRNAs restored endocrine-therapy sensitivity in LCC9 and ZR-75-1-4-OHT cells. Overall, our data suggest a role for decreased A2B1-regulated miRNAs in endocrine resistance and upregulation of the SSP to promote tumor progression in ER+ breast cancer.
Collapse
Affiliation(s)
- Belinda J. Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Kellianne M. Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Ali E. Wilt
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Alexa D. Howser
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Laura Winkler
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Mattie R. Whitworth
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Bailey L. Valdes
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Norman L. Lehman
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
- The Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Brian F. Clem
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
- The Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
- The Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS)
| |
Collapse
|
47
|
Batalha S, Gomes CM, Brito C. Immune microenvironment dynamics of HER2 overexpressing breast cancer under dual anti-HER2 blockade. Front Immunol 2023; 14:1267621. [PMID: 38022643 PMCID: PMC10643871 DOI: 10.3389/fimmu.2023.1267621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The clinical prognosis of the HER2-overexpressing (HER2-OE) subtype of breast cancer (BC) is influenced by the immune infiltrate of the tumor. Specifically, monocytic cells, which are promoters of pro-tumoral immunosuppression, and NK cells, whose basal cytotoxic function may be enhanced with therapeutic antibodies. One of the standards of care for HER2+ BC patients includes the combination of the anti-HER2 antibodies trastuzumab and pertuzumab. This dual combination was a breakthrough against trastuzumab resistance; however, this regimen does not yield complete clinical benefit for a large fraction of patients. Further therapy refinement is still hampered by the lack of knowledge on the immune mechanism of action of this antibody-based dual HER2 blockade. Methods To explore how the dual antibody challenge influences the phenotype and function of immune cells infiltrating the HER2-OE BC microenvironment, we developed in vitro 3D heterotypic cell models of this subtype. The models comprised aggregates of HER2+ BC cell lines and human peripheral blood mononuclear cells. Cells were co-encapsulated in a chemically inert alginate hydrogel and maintained in agitation-based culture system for up to 7 days. Results The 3D models of the HER2-OE immune microenvironment retained original BC molecular features; the preservation of the NK cell compartment was achieved upon optimization of culture time and cytokine supplementation. Challenging the models with the standard-of-care combination of trastuzumab and pertuzumab resulted in enhanced immune cytotoxicity compared with trastuzumab alone. Features of the response to therapy within the immune tumor microenvironment were recapitulated, including induction of an immune effector state with NK cell activation, enhanced cell apoptosis and decline of immunosuppressive PD-L1+ immune cells. Conclusions This work presents a unique human 3D model for the study of immune effects of anti-HER2 biologicals, which can be used to test novel therapy regimens and improve anti-tumor immune function.
Collapse
Affiliation(s)
- Sofia Batalha
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Monteiro Gomes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
48
|
Gastélum-López MDLÁ, Aguilar-Medina M, García Mata C, López-Gutiérrez J, Romero-Quintana G, Bermúdez M, Avendaño-Felix M, López-Camarillo C, Pérez-Plascencia C, Beltrán AS, Ramos-Payán R. Organotypic 3D Cell-Architecture Impacts the Expression Pattern of miRNAs-mRNAs Network in Breast Cancer SKBR3 Cells. Noncoding RNA 2023; 9:66. [PMID: 37987362 PMCID: PMC10661268 DOI: 10.3390/ncrna9060066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Currently, most of the research on breast cancer has been carried out in conventional two-dimensional (2D) cell cultures due to its practical benefits, however, the three-dimensional (3D) cell culture is becoming the model of choice in cancer research because it allows cell-cell and cell-extracellular matrix (ECM) interactions, mimicking the native microenvironment of tumors in vivo. METHODS In this work, we evaluated the effect of 3D cell organization on the expression pattern of miRNAs (by Small-RNAseq) and mRNAs (by microarrays) in the breast cancer SKBR3 cell line and analyzed the biological processes and signaling pathways regulated by the differentially expressed protein-coding genes (DE-mRNAs) and miRNAs (DE-microRNAs) found in the organoids. RESULTS We obtained well-defined cell-aggregated organoids with a grape cluster-like morphology with a size up to 9.2 × 105 μm3. The transcriptomic assays showed that cell growth in organoids significantly affected (all p < 0.01) the gene expression patterns of both miRNAs, and mRNAs, finding 20 upregulated and 19 downregulated DE-microRNAs, as well as 49 upregulated and 123 downregulated DE-mRNAs. In silico analysis showed that a subset of 11 upregulated DE-microRNAs target 70 downregulated DE-mRNAs. These genes are involved in 150 gene ontology (GO) biological processes such as regulation of cell morphogenesis, regulation of cell shape, regulation of canonical Wnt signaling pathway, morphogenesis of epithelium, regulation of cytoskeleton organization, as well as in the MAPK and AGE-RAGE signaling KEGG-pathways. Interestingly, hsa-mir-122-5p (Fold Change (FC) = 15.4), hsa-mir-369-3p (FC = 11.4), and hsa-mir-10b-5p (FC = 20.1) regulated up to 81% of the 70 downregulated DE-mRNAs. CONCLUSION The organotypic 3D cell-organization architecture of breast cancer SKBR3 cells impacts the expression pattern of the miRNAs-mRNAs network mainly through overexpression of hsa-mir-122-5p, hsa-mir-369-3p, and hsa-mir-10b-5p. All these findings suggest that the interaction between cell-cell and cell-ECM as well as the change in the culture architecture impacts gene expression, and, therefore, support the pertinence of migrating breast cancer research from conventional cultures to 3D models.
Collapse
Affiliation(s)
- María de los Ángeles Gastélum-López
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Maribel Aguilar-Medina
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Cristina García Mata
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Jorge López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Geovanni Romero-Quintana
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Mercedes Bermúdez
- Faculty of Dentistry, Autonomous University of Chihuahua, Av. Escorza No. 900, Centro, Chihuahua 31125, Chihuahua, Mexico;
| | - Mariana Avendaño-Felix
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - César López-Camarillo
- Postgraduate in Genomic Sciences, Autonomous University of Mexico City, San Lorenzo 290, Col del Valle, Mexico City 03100, Mexico;
| | - Carlos Pérez-Plascencia
- National Cancer Institute, Av. San Fernando 22, Belisario Domínguez Sec. 16, Tlalpan, Mexico City 14080, Mexico;
- FES Iztacala, National Autonomous University of Mexico, Av. de los Barrios S/N, Los Reyes Ixtacala, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Adriana S Beltrán
- Human Pluripotent Stem Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| |
Collapse
|
49
|
Ahuja S, Lazar IM. Proteomic Insights into Metastatic Breast Cancer Response to Brain Cell-Secreted Factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.22.563488. [PMID: 37961261 PMCID: PMC10634729 DOI: 10.1101/2023.10.22.563488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The most devastating feature of cancer cells is their ability to metastasize to distant sites in the body. HER2+ and triple negative breast cancers frequently metastasize to the brain and stay potentially dormant for years, clinging to the microvasculature, until favorable environmental conditions support their proliferation. The sheltered and delicate nature of the brain prevents, however, early disease detection, diagnosis, and effective delivery of therapeutic drugs. Moreover, the challenges associated with the acquisition of brain tissues and biopsies add compounding difficulties to exploring the mechanistic aspects of tumor development, leading to slow progress in understanding the drivers of disease progression and response to therapy. To provide insights into the determinants of cancer cell behavior at the brain metastatic site, this study was aimed at exploring the growth and initial response of HER2+ breast cancer cells (SKBR3) to factors present in the brain perivascular niche. The neural microenvironment conditions were simulated by using the secretome of a set of brain cells that come first in contact with the cancer cells upon crossing the blood brain barrier, i.e., human endothelial cells (HBEC5i), human astrocytes (NHA) and human microglia (HMC3) cells. Cytokine microarrays were used to investigate the cell secretomes and explore the mediators responsible for cell-cell communication, and proteomic technologies for assessing the changes in the behavior of cancer cells upon exposure to the brain cell-secreted factors. The results of the study suggest that the exposure of SKBR3 cells to the brain secretomes altered their growth potential and drove them towards a state of quiescence. The cytokines, growth factors and enzymes detected in the brain cell-conditioned medium were supportive of mostly inflammatory conditions, indicating a collective functional contribution to cell activation, defense, inflammatory responses, chemotaxis, adhesion, angiogenesis, and ECM organization. The SKBR3 cells, on the other hand, secreted numerous cancer-promoting growth factors that were either absent or present in lower abundance in the brain cell culture media, suggesting that upon exposure the SKBR3 cells were deprived of favorable environmental conditions required for optimal growth. The findings of this study underscore the key role played by the neural niche in shaping the behavior of metastasized cancer cells, providing insights into the cancer-host cell cross-talk that contributes to driving metastasized cancer cells into dormancy and into the opportunities that exist for developing novel therapeutic strategies that target the brain metastases of breast cancer.
Collapse
Affiliation(s)
- Shreya Ahuja
- Department of Biological Sciences, Virginia Tech 1981 Kraft Drive, Blacksburg, VA 24061
| | - Iulia M. Lazar
- Department of Biological Sciences, Virginia Tech 1981 Kraft Drive, Blacksburg, VA 24061
- Fralin Life Sciences Institute, Virginia Tech 1981 Kraft Drive, Blacksburg, VA 24061
- Carilion School of Medicine, Virginia Tech 1981 Kraft Drive, Blacksburg, VA 24061
- Division of Systems Biology/AIS, Virginia Tech 1981 Kraft Drive, Blacksburg, VA 24061
| |
Collapse
|
50
|
Wahdan-Alaswad RS, Edgerton SM, Kim HM, Tan AC, Haugen BR, Liu B, Thor AD. Thyroid hormone enhances estrogen-mediated proliferation and cell cycle regulatory pathways in steroid receptor-positive breast Cancer. Cell Cycle 2023:1-20. [PMID: 37723865 DOI: 10.1080/15384101.2023.2249702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/15/2023] [Indexed: 09/20/2023] Open
Abstract
Estrogen receptor (ER) α expression and associated signaling is a major driver of over two-thirds of all breast cancers (BC). ER targeting strategies are typically used as a first-line therapy in patients with steroid receptor positive (SR+) disease. Secondary resistance to anti-estrogenic agents may occur with clonal expansion and disease progression. Mechanisms underlying hormone resistance are an expanding field of significant translational importance. Cross-talk with other nuclear hormones, receptors, and signaling pathways, including thyroid hormones (TH) and their receptors (THRs), have been shown to promote endocrine therapy resistance in some studies. We have shown that TH replacement therapy (THRT) was independently and significantly associated with higher rates of relapse and mortality in SR positive (+), node-negative (LN-) BC patients, whereas it showed no association with outcomes in SR negative (-) patients. LN-, SR+ patients receiving THRT and tamoxifen had the worst outcomes, suggesting a pro-carcinogenic interaction that significantly and independently shortened survival and increased mortality. Using in vivo and in vitro models, we previously showed hormonal cross-talk, altered gene signaling, target gene activation, and resistance to tamoxifen in the presence of TH. In this report, we show TH ± E2 ± tamoxifen inhibits cell cycle control signaling, reduces apoptosis, and enhances cell proliferation, tumor growth, tamoxifen resistance, and clonal expansion. Mechanistically these changes involve numerous genes and pathways, including critical cell cycle regulatory proteins and genes identified using various molecular methods. These studies facilitate a greater mechanistic understanding of the biological and molecular impact of TH on SR+ BC.
Collapse
Affiliation(s)
- Reema S Wahdan-Alaswad
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
| | - Susan M Edgerton
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
| | - Hyun Min Kim
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Aik Choon Tan
- Department of Oncological Sciences and Biomedical Informatics, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Bryan R Haugen
- University of Colorado Cancer Center, Aurora, CO, USA
- Division of Endocrinology, Metabolism, & Diabetes, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Bolin Liu
- Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA
| | - Ann D Thor
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
| |
Collapse
|