1
|
Li X, Liu P, Wang Z, Wei X, Gao S, Fan Y, Liu H, Wang K. The value of promoter methylation of fibroblast factor 21 (FGF21) in predicting the course of chronic hepatitis B and the occurrence of oxidative stress. Virol J 2024; 21:332. [PMID: 39710689 PMCID: PMC11664819 DOI: 10.1186/s12985-024-02605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Oxidative stress plays a crucial role in the pathogenesis of HBV. This study aimed to investigate the value of fibroblast growth factor 21 (FGF21) promoter methylation in the occurrence and development of chronic hepatitis B (CHB) oxidative stress. METHODS A total of 241 participants including 221 patients with CHB and 20 healthy controls (HCs) were recruited. Methylation level of FGF21 promoter in peripheral blood mononuclear cells was quantitatively determined. Enzyme-linked immunosorbent assay was used to assess oxidative stress in CHB patients. RESULTS Our study shows that the FGF21 methylation level was significantly lower in HBeAg-positive CHB patients compared to HBeAg-negative CHB patients and HCs (P < 0.0001). The oxidative stress of HBeAg-positive CHB patients was more severe. Further correlation analysis showed that there was a significant correlation between the methylation level of FGF21 promoter and the occurrence of oxidative stress in CHB patients. In addition, assessment based on FGF21 promoter methylation level proved effective for predicting oxidative stress occurrence and disease progression among CHB patients. CONCLUSION FGF21 promoter methylation level is an important marker for predicting oxidative stress and disease progression in patients with CHB.
Collapse
Affiliation(s)
- Xue Li
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, China
| | - Pei Liu
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, China
| | - Zhaohui Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, China
| | - Xuefei Wei
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, China
| | - YuChen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, China
| | - Huihui Liu
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, China.
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, China.
- Institute of Hepatology, Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Priyanka, Mujwar S, Bharti R, Singh TG, Khatri N. 2,2'- Bipyridine Derivatives Exert Anticancer Effects by Inducing Apoptosis in Hepatocellular Carcinoma (HepG2) Cells. J Hepatocell Carcinoma 2024; 11:2181-2198. [PMID: 39539640 PMCID: PMC11559256 DOI: 10.2147/jhc.s479463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose To elucidate the therapeutic potential of 2,2'-bipyridine derivatives [NPS (1-6)] on hepatocellular carcinoma HepG2 cells. Methods The effects on cell survival, colony formation, cellular and nuclear morphology, generation of reactive oxygen species (ROS), change in the integrity of mitochondrial membrane potential (MMP), and apoptosis were investigated. Additionally, docking studies were conducted to analyze and elucidate the interactions between the derivatives and AKT and BRAF proteins. Results NPS derivatives (1, 2, 5 and 6) significantly impaired cell viability of HepG2 cell lines at nanogram range concentrations - 72.11 ng/mL, 154.42 ng/mL, 71.78 ng/mL, and 71.43 ng/mL, while other derivatives were also effective at concentrations below 1 µg/mL. These compounds reduced the colony formation capacity of HepG2 cells in a dose-dependent manner following treatment. Mechanistic studies revealed that these derivatives induce reactive oxygen species (ROS) accumulation and cause mitochondrial membrane depolarization, ultimately triggering apoptosis in HepG2 cells. In the presence of these derivatives, cells demonstrated that 75% of cells underwent apoptosis, compared to 25% in the control group. Additionally, there was a marked increase in mitochondrial depolarization (95% cells) and a threefold rise in ROS levels compared to the controls. Docking studies revealed interactions between the derivatives and the signaling proteins AKT (PDB ID: 6HHF) and BRAF (PDB ID: 8C7Y) with binding affinities ranging from -7.10 to -9.91, highlighting their pivotal role in targeting key players in hepatocellular carcinoma progression. Conclusion The findings of this study underscore the therapeutic potential of these derivatives against HepG2 cells and offer valuable insights for further experimental validation of their efficacy as inhibitors targeting AKT or BRAF signaling pathways.
Collapse
Affiliation(s)
- Priyanka
- IMTech Centre for Animal Resources & Experimentation (iCARE), CSIR-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India
| | - Ram Bharti
- IMTech Centre for Animal Resources & Experimentation (iCARE), CSIR-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India
| | - Neeraj Khatri
- IMTech Centre for Animal Resources & Experimentation (iCARE), CSIR-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Fu S, Debes JD, Boonstra A. DNA methylation markers in the detection of hepatocellular carcinoma. Eur J Cancer 2023; 191:112960. [PMID: 37473464 DOI: 10.1016/j.ejca.2023.112960] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and has a poor prognosis. Epigenetic modification has been shown to be deregulated during HCC development by dramatically impacting the differentiation, proliferation, and function of cells. One important epigenetic modification is DNA methylation during which methyl groups are added to cytosines without changing the DNA sequence itself. Studies found that methylated DNA markers can be specific for detection of HCC. On the basis of these findings, the utility of methylated DNA markers as novel biomarkers for early-stage HCC has been measured in blood, and indeed superior sensitivity and specificity have been found in several studies when compared to current surveillance methods. However, a variety of factors currently limit the immediate application of these exciting biomarkers. In this review, we provide a detailed rationalisation of the approach and basis for the use of methylation biomarkers for HCC detection and summarise recent studies on methylated DNA markers in HCC focusing on the importance of the aetiological cause of liver disease in the mechanisms leading to cancer.
Collapse
Affiliation(s)
- Siyu Fu
- Erasmus MC University Medical Center, Department of Gastroenterology and Hepatology, Rotterdam, the Netherlands
| | - José D Debes
- Erasmus MC University Medical Center, Department of Gastroenterology and Hepatology, Rotterdam, the Netherlands; Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - André Boonstra
- Erasmus MC University Medical Center, Department of Gastroenterology and Hepatology, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Zhang M, Lai J, Wu Q, Lai J, Su J, Zhu B, Li Y. Naringenin Induces HepG2 Cell Apoptosis via ROS-Mediated JAK-2/STAT-3 Signaling Pathways. Molecules 2023; 28:molecules28114506. [PMID: 37298981 DOI: 10.3390/molecules28114506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Hepatocarcinoma is one of the most prevalent digestive system tumors worldwide and lacks effective therapy. Recently, naringenin has been isolated from some citrus fruits, and its anticancer effects have been tested. However, the molecular mechanisms of naringenin and the potential implications of oxidative stress in naringenin-induced cytotoxicity in HepG2 cells remain elusive. Based on the above, the present study examined the effect of naringenin on the cytotoxic and anticancer mechanisms of HepG2 cells. Naringenin-induced HepG2 cell apoptosis was confirmed via the accumulation of the sub-G1 cell population, phosphatidylserine exposure, mitochondrial transmembrane potential loss, DNA fragmentation, caspase-3 activation, and caspase-9 activation. Furthermore, naringenin enhanced cytotoxic effects on HepG2 cells and triggered intracellular reactive oxygen species; the signaling pathways of JAK-2/STAT-3 were inhibited, and caspase-3 was activated to advance cell apoptosis. These results suggest that naringenin plays an important role in inducing apoptosis in HepG2 cells and that naringenin may be a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Jianmei Lai
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Qianlong Wu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Jia Lai
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Jingyao Su
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
5
|
Eiró-Quirino L, Lima WFD, Aragão WAB, Bittencourt LO, Mendes PFS, Fernandes RM, Rodrigues CA, Dionízio A, Buzalaf MAR, Monteiro MC, Cirovic A, Cirovic A, Puty B, Lima RR. Exposure to tolerable concentrations of aluminum triggers systemic and local oxidative stress and global proteomic modulation in the spinal cord of rats. CHEMOSPHERE 2023; 313:137296. [PMID: 36410523 DOI: 10.1016/j.chemosphere.2022.137296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The tolerable aluminum (Al) intake levels for humans are constantly under review by regulatory agencies due to novel pre-clinical evidence on the neurotoxicity of prolonged Al exposure; however, little is known about the effects of Al on the spinal cord. This study aimed to investigate potential adverse effects on both spinal cord and systemic biochemical balance after prolonged exposure to a low dose of Al. Twenty adult rats were distributed in the control (distilled water) and exposed group (8.3 mg of AlCl3/kg/day). After 60 days, both blood and spinal cord samples were collected for oxidative stress and proteomic analyses. In plasma and erythrocytes, glutathione level was not different between groups; however, exposure to AlCl3 significantly decreased glutathione level in the spinal cord. Thiobarbituric acid reactive substances levels in the plasma and spinal cord of animals from the control group were significantly lower than those animals exposed to AlCl3. Exposure to AlCl3 significantly modulated the expression of proteins associated with the cell cycle, stimulus-response, cytoskeleton, nervous system regulation, protein activity, and synaptic signaling. Therefore, prolonged exposure to a low dose of Al triggered oxidative stress and proteomic changes that may affect spinal cord homeostasis.
Collapse
Affiliation(s)
- Luciana Eiró-Quirino
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Weslley Ferreira de Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Paulo Fernando Santos Mendes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Rafael Monteiro Fernandes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Caroline Azulay Rodrigues
- Laboratory of Clinical Immunology and Oxidative Stress, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Aline Dionízio
- Bauru School of Dentistry, Department of Biological Sciences, University of São Paulo, Bauru, Brazil
| | | | - Marta Chagas Monteiro
- Laboratory of Clinical Immunology and Oxidative Stress, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.
| |
Collapse
|
6
|
Boulahtouf Z, Virzì A, Baumert TF, Verrier ER, Lupberger J. Signaling Induced by Chronic Viral Hepatitis: Dependence and Consequences. Int J Mol Sci 2022; 23:ijms23052787. [PMID: 35269929 PMCID: PMC8911453 DOI: 10.3390/ijms23052787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic viral hepatitis is a main cause of liver disease and hepatocellular carcinoma. There are striking similarities in the pathological impact of hepatitis B, C, and D, although these diseases are caused by very different viruses. Paired with the conventional study of protein-host interactions, the rapid technological development of -omics and bioinformatics has allowed highlighting the important role of signaling networks in viral pathogenesis. In this review, we provide an integrated look on the three major viruses associated with chronic viral hepatitis in patients, summarizing similarities and differences in virus-induced cellular signaling relevant to the viral life cycles and liver disease progression.
Collapse
Affiliation(s)
- Zakaria Boulahtouf
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Alessia Virzì
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
- Service d’Hépato-Gastroentérologie, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Eloi R. Verrier
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Joachim Lupberger
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
- Correspondence:
| |
Collapse
|
7
|
Zhang D, Guo S, Schrodi SJ. Mechanisms of DNA Methylation in Virus-Host Interaction in Hepatitis B Infection: Pathogenesis and Oncogenetic Properties. Int J Mol Sci 2021; 22:9858. [PMID: 34576022 PMCID: PMC8466338 DOI: 10.3390/ijms22189858] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV), the well-studied oncovirus that contributes to the majority of hepatocellular carcinomas (HCC) worldwide, can cause a severe inflammatory microenvironment leading to genetic and epigenetic changes in hepatocyte clones. HBV replication contributes to the regulation of DNA methyltransferase gene expression, particularly by X protein (HBx), and subsequent methylation changes may lead to abnormal transcription activation of adjacent genes and genomic instability. Undoubtedly, the altered expression of these genes has been known to cause diverse aspects of infected hepatocytes, including apoptosis, proliferation, reactive oxygen species (ROS) accumulation, and immune responses. Additionally, pollutant-induced DNA methylation changes and aberrant methylation of imprinted genes in hepatocytes also complicate the process of tumorigenesis. Meanwhile, hepatocytes also contribute to epigenetic modification of the viral genome to affect HBV replication or viral protein production. Meanwhile, methylation levels of HBV integrants and surrounding host regions also play crucial roles in their ability to produce viral proteins in affected hepatocytes. Both host and viral changes can provide novel insights into tumorigenesis, individualized responses to therapeutic intervention, disease progress, and early diagnosis. As such, DNA methylation-mediated epigenetic silencing of cancer-related genes and viral replication is a compelling therapeutic goal to reduce morbidity and mortality from liver cancer caused by chronic HBV infection. In this review, we summarize the most recent research on aberrant DNA methylation associated with HBV infection, which is involved in HCC development, and provide an outlook on the future direction of the research.
Collapse
Affiliation(s)
- Dake Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Shicheng Guo
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Steven J. Schrodi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
8
|
Vairetti M, Di Pasqua LG, Cagna M, Richelmi P, Ferrigno A, Berardo C. Changes in Glutathione Content in Liver Diseases: An Update. Antioxidants (Basel) 2021; 10:364. [PMID: 33670839 PMCID: PMC7997318 DOI: 10.3390/antiox10030364] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Glutathione (GSH), a tripeptide particularly concentrated in the liver, is the most important thiol reducing agent involved in the modulation of redox processes. It has also been demonstrated that GSH cannot be considered only as a mere free radical scavenger but that it takes part in the network governing the choice between survival, necrosis and apoptosis as well as in altering the function of signal transduction and transcription factor molecules. The purpose of the present review is to provide an overview on the molecular biology of the GSH system; therefore, GSH synthesis, metabolism and regulation will be reviewed. The multiple GSH functions will be described, as well as the importance of GSH compartmentalization into distinct subcellular pools and inter-organ transfer. Furthermore, we will highlight the close relationship existing between GSH content and the pathogenesis of liver disease, such as non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), chronic cholestatic injury, ischemia/reperfusion damage, hepatitis C virus (HCV), hepatitis B virus (HBV) and hepatocellular carcinoma. Finally, the potential therapeutic benefits of GSH and GSH-related medications, will be described for each liver disorder taken into account.
Collapse
Affiliation(s)
| | - Laura Giuseppina Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.C.); (P.R.); (C.B.)
| | | | | | - Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.C.); (P.R.); (C.B.)
| | | |
Collapse
|
9
|
Kim SY, Song HK, Lee SK, Kim SG, Woo HG, Yang J, Noh HJ, Kim YS, Moon A. Sex-Biased Molecular Signature for Overall Survival of Liver Cancer Patients. Biomol Ther (Seoul) 2020; 28:491-502. [PMID: 33077700 PMCID: PMC7585639 DOI: 10.4062/biomolther.2020.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Sex/gender disparity has been shown in the incidence and prognosis of many types of diseases, probably due to differences in genes, physiological conditions such as hormones, and lifestyle between the sexes. The mortality and survival rates of many cancers, especially liver cancer, differ between men and women. Due to the pronounced sex/gender disparity, considering sex/gender may be necessary for the diagnosis and treatment of liver cancer. By analyzing research articles through a PubMed literature search, the present review identified 12 genes which showed practical relevance to cancer and sex disparities. Among the 12 sex-specific genes, 7 genes (BAP1, CTNNB1, FOXA1, GSTO1, GSTP1, IL6, and SRPK1) showed sex-biased function in liver cancer. Here we summarized previous findings of cancer molecular signature including our own analysis, and showed that sex-biased molecular signature CTNNB1High, IL6High, RHOAHigh and GLIPR1Low may serve as a female-specific index for prediction and evaluation of OS in liver cancer patients. This review suggests a potential implication of sex-biased molecular signature in liver cancer, providing a useful information on diagnosis and prediction of disease progression based on gender.
Collapse
Affiliation(s)
- Sun Young Kim
- Department of Chemistry, College of Natural Sciences, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hye Kyung Song
- Department of Chemistry, College of Natural Sciences, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Suk Kyeong Lee
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06649, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang 10326, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea
| | - Jieun Yang
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea
| | - Hyun-Jin Noh
- Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea.,Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - You-Sun Kim
- Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea.,Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
10
|
Nguyen TN, Nguyen HQ, Le DH. Unveiling prognostics biomarkers of tyrosine metabolism reprogramming in liver cancer by cross-platform gene expression analyses. PLoS One 2020; 15:e0229276. [PMID: 32542016 PMCID: PMC7295234 DOI: 10.1371/journal.pone.0229276] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Tyrosine is mainly degraded in the liver by a series of enzymatic reactions. Abnormal expression of the tyrosine catabolic enzyme tyrosine aminotransferase (TAT) has been reported in patients with hepatocellular carcinoma (HCC). Despite this, aberration in tyrosine metabolism has not been investigated in cancer development. In this work, we conduct comprehensive cross-platform study to obtain foundation for discoveries of potential therapeutics and preventative biomarkers of HCC. We explore data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Gene Expression Profiling Interactive Analysis (GEPIA), Oncomine and Kaplan Meier plotter (KM plotter) and performed integrated analyses to evaluate the clinical significance and prognostic values of the tyrosine catabolic genes in HCC. We find that five tyrosine catabolic enzymes are downregulated in HCC compared to normal liver at mRNA and protein level. Moreover, low expression of these enzymes correlates with poorer survival in patients with HCC. Notably, we identify pathways and upstream regulators that might involve in tyrosine catabolic reprogramming and further drive HCC development. In total, our results underscore tyrosine metabolism alteration in HCC and lay foundation for incorporating these pathway components in therapeutics and preventative strategies.
Collapse
Affiliation(s)
- Tran N. Nguyen
- Department of Computational Biomedicine, Vingroup Big Data Institute, Hanoi, Vietnam
- * E-mail:
| | - Ha Q. Nguyen
- Department of Computer Vision, Vingroup Big Data Institute, Hanoi, Vietnam
| | - Duc-Hau Le
- Department of Computational Biomedicine, Vingroup Big Data Institute, Hanoi, Vietnam
| |
Collapse
|
11
|
Bender D, Hildt E. Effect of Hepatitis Viruses on the Nrf2/Keap1-Signaling Pathway and Its Impact on Viral Replication and Pathogenesis. Int J Mol Sci 2019; 20:ijms20184659. [PMID: 31546975 PMCID: PMC6769940 DOI: 10.3390/ijms20184659] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
With respect to their genome and their structure, the human hepatitis B virus (HBV) and hepatitis C virus (HCV) are complete different viruses. However, both viruses can cause an acute and chronic infection of the liver that is associated with liver inflammation (hepatitis). For both viruses chronic infection can lead to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Reactive oxygen species (ROS) play a central role in a variety of chronic inflammatory diseases. In light of this, this review summarizes the impact of both viruses on ROS-generating and ROS-inactivating mechanisms. The focus is on the effect of both viruses on the transcription factor Nrf2 (nuclear factor erythroid 2 (NF-E2)-related factor 2). By binding to its target sequence, the antioxidant response element (ARE), Nrf2 triggers the expression of a variety of cytoprotective genes including ROS-detoxifying enzymes. The review summarizes the literature about the pathways for the modulation of Nrf2 that are deregulated by HBV and HCV and describes the impact of Nrf2 deregulation on the viral life cycle of the respective viruses and the virus-associated pathogenesis.
Collapse
Affiliation(s)
- Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straβe 51-59, D-63225 Langen, Germany.
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straβe 51-59, D-63225 Langen, Germany.
| |
Collapse
|
12
|
Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage. J Appl Toxicol 2019; 40:151-168. [PMID: 31389060 DOI: 10.1002/jat.3880] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress is proposed to be a critical factor in various diseases, including liver pathologies. Antioxidants derived from medicinal plants have been studied extensively and are relevant to many illnesses, including liver diseases. Several hepatic disorders, such as viral hepatitis and alcoholic or nonalcoholic steatohepatitis, involve free radicals/oxidative stress as agents that cause or at least exacerbate liver injury, which can result in chronic liver diseases, such as liver fibrosis, cirrhosis and end-stage hepatocellular carcinoma. In this scenario, nuclear factor-E2-related factor-2 (Nrf2) appears to be an essential factor to counteract or attenuate oxidative or nitrosative stress in hepatic cells. In fact, a growing body of evidence indicates that Nrf2 plays complex and multicellular roles in hepatic inflammation, fibrosis, hepatocarcinogenesis and regeneration via the induction of its target genes. Inflammation is the most common feature of chronic liver diseases, triggering fibrosis, cirrhosis and hepatocellular carcinoma. Increasing evidence indicates that Nrf2 counteracts the proinflammatory process by modulating the recruitment of inflammatory cells and inducing the endogenous antioxidant response of the cell. In this review, the interactions between antioxidant and inflammatory molecular pathways are analyzed.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| |
Collapse
|
13
|
Bhat AV, Hora S, Pal A, Jha S, Taneja R. Stressing the (Epi)Genome: Dealing with Reactive Oxygen Species in Cancer. Antioxid Redox Signal 2018; 29:1273-1292. [PMID: 28816066 DOI: 10.1089/ars.2017.7158] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE Growing evidence indicates cross-talk between reactive oxygen species (ROS) and several key epigenetic processes such as DNA methylation, histone modifications, and miRNAs in normal physiology and human pathologies including cancer. This review focuses on how ROS-induced oxidative stress, metabolic intermediates, and epigenetic processes influence each other in various cancers. Recent Advances: ROS alter chromatin structure and metabolism that impact the epigenetic landscape in cancer cells. Several site-specific DNA methylation changes have been identified in different cancers and are discussed in the review. We also discuss the interplay of epigenetic enzymes and miRNAs in influencing malignant transformation in an ROS-dependent manner. CRITICAL ISSUES Loss of ROS-mediated signaling mostly by epigenetic regulation may promote tumorigenesis. In contrast, augmented oxidative stress because of high ROS levels may precipitate epigenetic alterations to effect various phases of carcinogenesis. We address both aspects in the review. FUTURE DIRECTIONS Several drugs targeting ROS are under various stages of clinical development. Recent analysis of human cancers has revealed pervasive deregulation of the epigenetic machinery. Thus, a better understanding of the cross-talk between ROS and epigenetic alterations in cancer could lead to the identification of new drug targets and more effective treatment modalities.
Collapse
Affiliation(s)
- Akshay V Bhat
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Shainan Hora
- 2 Cancer Science Institute, National University of Singapore , Singapore .,3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Ananya Pal
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Sudhakar Jha
- 2 Cancer Science Institute, National University of Singapore , Singapore .,3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Reshma Taneja
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
14
|
Chen M, Du D, Zheng W, Liao M, Zhang L, Liang G, Gong M. Small hepatitis delta antigen selectively binds to target mRNA in hepatic cells: a potential mechanism by which hepatitis D virus downregulates glutathione S-transferase P1 and induces liver injury and hepatocarcinogenesis. Biochem Cell Biol 2018; 97:130-139. [PMID: 30153423 DOI: 10.1139/bcb-2017-0321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Liver coinfection by hepatitis B virus (HBV) and hepatitis D virus (HDV) can result in a severe form of hepatocellular carcinoma with poor prognosis. Coinfection with HDV and HBV causes more deleterious effects than infection with HBV alone. Clinical research has shown that glutathione S-transferase P1 (GSTP1), a tumor suppressor gene, is typically downregulated in liver samples from hepatitis-infected patients. In the present study, our data indicated that small HDV antigen (s-HDAg) could specifically bind to GSTP1 mRNA and significantly downregulate GSTP1 protein expression. For the human fetal hepatocyte cell line L-02, cells transfected with s-HDAg, along with decreased GSTP1 expression, there was a significant accumulation of reactive oxygen species (ROS) and increased apoptotic ratios. Restoring GSTP1 expression through silencing s-HDAg via RNAi or overexpressing exogenous GSTP1 could largely recover the abnormal cell status. Our results revealed a novel potential mechanism of HDV-induced liver injury and hepatocarcinogenesis: s-HDAg can inhibit GSTP1 expression by directly binding to GSTP1 mRNA, which leads to accumulation of cellular ROS, resulting in high cellular apoptotic ratios and increased selective pressure for malignant transformation. To our knowledge, this is the first study to examine s-HDAg-specific pathogenic mechanisms through potential protein-RNA interactions.
Collapse
Affiliation(s)
- Mianzhi Chen
- a Huaxi-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Du
- a Huaxi-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Zheng
- a Huaxi-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingheng Liao
- b Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lu Zhang
- a Huaxi-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ge Liang
- a Huaxi-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Gong
- a Huaxi-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Parvez MK, Alam P, Arbab AH, Al-Dosari MS, Alhowiriny TA, Alqasoumi SI. Analysis of antioxidative and antiviral biomarkers β-amyrin, β-sitosterol, lupeol, ursolic acid in Guiera senegalensis leaves extract by validated HPTLC methods. Saudi Pharm J 2018; 26:685-693. [PMID: 29991912 PMCID: PMC6035322 DOI: 10.1016/j.jsps.2018.02.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/08/2018] [Indexed: 12/11/2022] Open
Abstract
Guiera senegalensis J.F. Gmel is a broad-spectrum African folk- medicinal plant, having activities against fowlpox and herpes viruses. Very recently, we have shown the anti-hepatitis B vius (HBV) potential of G. senegalensis leaves extract (GSLE). Here, we report the antioxidative and hepatoprotective efficacy of GSLE, including HPTLC quantification of four biomarkers of known antioxidative and antiviral activities. In cultured liver cells (HuH7) GSLE attenuated DCFH-induced oxidative stress and cytotoxicity. This was supported by in vitro DPPH radical-scavenging and β-carotene-linoleic acid bleaching assays that showed strong antioxidant activity of GSLE. Further, two simple and sensitive HPTLC methods (I and II) were developed and validated to quantify β-amyrin, β- sitosterol, lupeol, ursolic acid in GSLE. While HPTLC-I (hexane: ethylacetate; 75:25; v/v) enabled quantification of β-amyrin (Rf = 0.39; 20.64 μg/mg) and β-sitosterol (Rf = 0.25; 18.56 μg/mg), HPTLC-II (chloroform: methanol; 97:3; v/v) allowed estimation of lupeol (Rf = 0.47; 6.72 μg/mg) and ursolic acid (Rf = 0.23; 5.81 μg/mg) in GSLE. Taken together, the identified biomarkers strongly supported the antioxidant and anti-HBV potential of GSLE, suggesting its activity via abating the oxidative stress. To our knowledge, this is the first report on HPTLC analysis of these biomarkers in G. senegalensis that could be adopted for standardization and quality-control of herbal-formulations.
Collapse
Affiliation(s)
- Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed H. Arbab
- Department of Pharmacognosy, College of Pharmacy, Omdurman Islamic University, Khartoom 14415, Sudan
| | - Mohammed S. Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tawfeq A. Alhowiriny
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh I. Alqasoumi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Zhang J, Yang L, Xiang X, Li Z, Qu K, Li K. A panel of three oxidative stress-related genes predicts overall survival in ovarian cancer patients received platinum-based chemotherapy. Aging (Albany NY) 2018; 10:1366-1379. [PMID: 29910195 PMCID: PMC6046245 DOI: 10.18632/aging.101473] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/07/2018] [Indexed: 04/13/2023]
Abstract
Ovarian cancer yields the highest mortality rate of all lethal gynecologic cancers, and the prognosis is unsatisfactory with the major obstacle in resistance to chemotherapy. The generation of reactive oxygen species (ROS) in tumor tissues was associated with chemotherapeutic effectiveness by mediating cellular longevity. In this study, we screened the prognostic values of oxidative stress-related genes in ovarian cancer patients received platinum-based chemotherapy, and conducted a prognostic gene signature composing of three genes, TXNRD1, GLA and GSTZ1. This three-gene signature was significantly associated with overall survival (OS), but not progression-free survival (PFS), in both training (n=276) and validation cohorts (n=230). Interestingly, we found that the prognostic value of three-gene signature was reinforced in platinum-sensitive patients. Subgroup analysis further suggested that patients with elder age, higher pathological grades and advanced tumor stages in low-risk score group could benefit from platinum-based chemotherapy. Functional analysis showed that the inactivation of several signaling pathways, including cell cycle, insulin-like growth factor 1 (IGF1) /mTOR and Fas pathways, was affected by three genes. Collectively, our results provided evidence that a panel of three oxidative stress-related gene signature had prognostic values for ovarian cancer patients received platinum-based chemotherapy.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Taishan Medical College, Liaocheng 252000, Shandong Province, China
- Equal contribution
| | - Lixiao Yang
- Department of Obstetrics and Gynecology, Liaocheng People’s Hospital, Taishan Medical College, Liaocheng 252000, Shandong Province, China
- Equal contribution
| | - Xiaohong Xiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Zhuoying Li
- Department of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Ke Li
- Department of Central Laboratory, Liaocheng People’s Hospital, Taishan Medical College, Liaocheng 252000, Shandong Province, China
| |
Collapse
|
17
|
Hernández-Aquino E, Muriel P. Beneficial effects of naringenin in liver diseases: Molecular mechanisms. World J Gastroenterol 2018; 24:1679-1707. [PMID: 29713125 PMCID: PMC5922990 DOI: 10.3748/wjg.v24.i16.1679] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/04/2018] [Accepted: 04/15/2018] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are caused by different etiological agents, mainly alcohol consumption, viruses, drug intoxication or malnutrition. Frequently, liver diseases are initiated by oxidative stress and inflammation that lead to the excessive production of extracellular matrix (ECM), followed by a progression to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). It has been reported that some natural products display hepatoprotective properties. Naringenin is a flavonoid with antioxidant, antifibrogenic, anti-inflammatory and anticancer properties that is capable of preventing liver damage caused by different agents. The main protective effects of naringenin in liver diseases are the inhibition of oxidative stress, transforming growth factor (TGF-β) pathway and the prevention of the transdifferentiation of hepatic stellate cells (HSC), leading to decreased collagen synthesis. Other effects include the inhibition of the mitogen activated protein kinase (MAPK), toll-like receptor (TLR) and TGF-β non-canonical pathways, the inhibition of which further results in a strong reduction in ECM synthesis and deposition. In addition, naringenin has shown beneficial effects on nonalcoholic fatty liver disease (NAFLD) through the regulation of lipid metabolism, modulating the synthesis and oxidation of lipids and cholesterol. Moreover, naringenin protects from HCC, since it inhibits growth factors such as TGF-β and vascular endothelial growth factor (VEGF), inducing apoptosis and regulating MAPK pathways. Naringenin is safe and acts by targeting multiple proteins. However, it possesses low bioavailability and high intestinal metabolism. In this regard, formulations, such as nanoparticles or liposomes, have been developed to improve naringenin bioavailability. We conclude that naringenin should be considered in the future as an important candidate in the treatment of different liver diseases.
Collapse
Affiliation(s)
- Erika Hernández-Aquino
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 07000, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 07000, Mexico
| |
Collapse
|
18
|
Wang W, Liu F, Wang C, Wang C, Tang Y, Jiang Z. Glutathione S-transferase A1 mediates nicotine-induced lung cancer cell metastasis by promoting epithelial-mesenchymal transition. Exp Ther Med 2017; 14:1783-1788. [PMID: 28810650 DOI: 10.3892/etm.2017.4663] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 03/31/2017] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to investigate the effect of glutathione S-transferase A1 (GSTA1) on lung cancer cell viability, invasion and adhesion in the presence of nicotine in vitro. Furthermore, the effect of GSTA1 on the epithelial-mesenchymal transition (EMT), a process strongly associated with lung cancer metastasis, was examined. Human lung carcinoma A549 cells were treated with various concentrations of nicotine (0.01, 0.1, 1 and 10 µM) and levels of GSTA1 mRNA and protein were measured by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. To knock down GSTA1 expression, GSTA1-small interfering RNA was transfected into A549 cells. Cell viability, invasion and adhesion abilities were determined by MTT, Transwell-Matrigel invasion and cell adhesion assays, respectively. The expression of the epithelial cell markers E-cadherin and keratin, and the mesenchymal cell markers vimentin and N-cadherin in A549 cells were examined by western blot analysis. The current study indicated that the expression of GSTA1 was increased in A549 cells following nicotine treatment. GSTA1 suppression inhibited the viability, invasion and adhesion of lung cancer cells. In addition, the increase in lung cancer cell viability, invasion and adhesion by nicotine was suppressed following GSTA1 knockdown. Furthermore, GSTA1 affected the expression of EMT markers in nicotine-treated or untreated lung cancer cells. Thus the present study demonstrates that GSTA1 promotes lung cancer cell invasion and adhesion and mediates the effect of nicotine on lung cancer cell metastasis in vitro. Furthermore, the results demonstrated that GSTA1 exerts its effect on lung cancer cell metastasis by promoting the EMT.
Collapse
Affiliation(s)
- Wei Wang
- Department of Thoracic Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, P.R. China.,Department of Thoracic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Feiyu Liu
- Department of Pharmacy, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Chaoyang Wang
- Department of Thoracic Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Chengde Wang
- Department of Thoracic Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yijun Tang
- Department of Thoracic Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Zhongmin Jiang
- Department of Thoracic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
19
|
Wang Z, Liao K, Zuo W, Liu X, Qiu Z, Gong Z, Liu C, Zeng Q, Qian Y, Jiang L, Bu Y, Hong S, Hu G. Depletion of NFBD1/MDC1 Induces Apoptosis in Nasopharyngeal Carcinoma Cells Through the p53-ROS-Mitochondrial Pathway. Oncol Res 2017; 25:123-136. [PMID: 28081741 PMCID: PMC7840771 DOI: 10.3727/096504016x14732772150226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
NFBD1, a signal amplifier of the p53 pathway, is vital for protecting cells from p53-mediated apoptosis and the early phase of DNA damage response under normal culture conditions. Here we investigated its expression in patients with nasopharyngeal carcinoma (NPC), and we describe the biological functions of the NFBD1 gene. We found that NFBD1 mRNA and protein were more highly expressed in NPC tissues than in nontumorous tissues. To investigate the function of NFBD1, we created NFBD1-depleted NPC cell lines that exhibited decreased cellular proliferation and colony formation, an increase in their rate of apoptosis, and an enhanced sensitivity to chemotherapeutic agents compared with in vitro controls. However, N-acetyl cysteine (NAC) and downregulation of p53 expression could partially reverse the apoptosis caused by the loss of NFBD1. Further analysis showed that loss of NFBD1 resulted in increased production of intracellular reactive oxygen species (ROS) depending on p53, which subsequently triggered the mitochondrial apoptotic pathway. Using a xenograft model in nude mice, we showed that silencing NFBD1 also significantly inhibited tumor growth and led to apoptosis. Taken together, our data suggest that inhibition of NFBD1 in NPC could be therapeutically useful.
Collapse
|
20
|
Ivanov AV, Valuev-Elliston VT, Tyurina DA, Ivanova ON, Kochetkov SN, Bartosch B, Isaguliants MG. Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis. Oncotarget 2017; 8:3895-3932. [PMID: 27965466 PMCID: PMC5354803 DOI: 10.18632/oncotarget.13904] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Virally induced liver cancer usually evolves over long periods of time in the context of a strongly oxidative microenvironment, characterized by chronic liver inflammation and regeneration processes. They ultimately lead to oncogenic mutations in many cellular signaling cascades that drive cell growth and proliferation. Oxidative stress, induced by hepatitis viruses, therefore is one of the factors that drives the neoplastic transformation process in the liver. This review summarizes current knowledge on oxidative stress and oxidative stress responses induced by human hepatitis B and C viruses. It focuses on the molecular mechanisms by which these viruses activate cellular enzymes/systems that generate or scavenge reactive oxygen species (ROS) and control cellular redox homeostasis. The impact of an altered cellular redox homeostasis on the initiation and establishment of chronic viral infection, as well as on the course and outcome of liver fibrosis and hepatocarcinogenesis will be discussed The review neither discusses reactive nitrogen species, although their metabolism is interferes with that of ROS, nor antioxidants as potential therapeutic remedies against viral infections, both subjects meriting an independent review.
Collapse
Affiliation(s)
- Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Daria A. Tyurina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Birke Bartosch
- Inserm U1052, Cancer Research Center Lyon, University of Lyon, Lyon, France
- DevWeCan Laboratories of Excellence Network, France
| | - Maria G. Isaguliants
- Riga Stradins University, Riga, Latvia
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Fan XP, Ji XF, Li XY, Gao S, Fan YC, Wang K. Methylation of the Glutathione-S-Transferase P1 Gene Promoter Is Associated with Oxidative Stress in Patients with Chronic Hepatitis B. TOHOKU J EXP MED 2016; 238:57-64. [PMID: 26725685 DOI: 10.1620/tjem.238.57] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glutathione-S-transferase P1 (GSTP1) and glutathione-S-transferase M3 (GSTM3) catalyze the glutathione-related clearance of xenobiotics. The methylation of these gene promoters was associated with oxidative stress that induced liver damage. This study aims to explore the relationship among GSTP1 and GSTM3 methylation, DNA methyltransferases (DNMTs) expression, and oxidative stress in patients with chronic hepatitis B (CHB). We retrospectively enrolled 153 patients with CHB and 40 healthy controls (HCs). The GSTP1 and GSTM3 methylation status, DNMTs mRNA levels in peripheral mononuclear cells (PBMCs) and TNF-α and malondialdehyde (MDA) levels in plasma were detected. GSTP1 methylation was significantly higher in patients with CHB than HCs (P = 0.047). Patients with HBeAg-positive CHB showed significantly higher GSTP1 methylation than those with HBeAg-negative CHB (P = 0.017) and HCs (P = 0.007). No significant difference was observed between GSTP1 methylation in HBeAg-negative CHB and HCs (P = 0.191). DNMT1 and DNMT3a mRNA levels were significantly higher in participants with GSTP1 methylation than those without. In patients with CHB, the degree of GSTP1 promoter methylation was significantly correlated with DNMT1 mRNA, DNMT3a mRNA, TNF-α, MDA, HBeAg, ALT, AST and TBIL. In contrast, no significant difference was found between GSTM3 methylation in patients with CHB and HCs (P = 0.079). Meanwhile, no significant difference could be observed between GSTM3 promoter methylation in patients with HBeAg-positive CHB and HBeAg-negative CHB (P = 0.146). Therefore, this study demonstrated that GSTP1 hypermethylation was associated with DNMT1, DNMT3a overexpression and oxidative stress in patients with HBeAg-positive CHB.
Collapse
Affiliation(s)
- Xiao-Peng Fan
- Department of Hepatology, Qilu Hospital of Shandong University
| | | | | | | | | | | |
Collapse
|
22
|
Wang Z, Qu K, Niu W, Lin T, Xu X, Huang Z, Liu S, Liu S, Chang H, Liu Y, Dong X, Liu C, Zhang Y. Glutathione S-transferase P1 gene rs4147581 polymorphism predicts overall survival of patients with hepatocellular carcinoma: evidence from an enlarged study. Tumour Biol 2015; 37:943-52. [PMID: 26260272 DOI: 10.1007/s13277-015-3871-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/30/2015] [Indexed: 02/07/2023] Open
Abstract
As the most important detoxifying enzymes in liver, glutathione S-transferases (GSTs) can protect hepatocytes against carcinogens. We conducted a large cohort study to investigate the prognostic value of single nucleotide polymorphisms (SNPs) in seven encoding genes of GSTs for hepatocellular carcinoma (HCC). Twelve SNPs were genotyped and correlated with overall survival in 469 HCC patients. The median follow-up time of all patients was 21 (range 3-60) months, and the median survival time was 22 months. By the end of the study, 135 (28.8 %) patients were alive. Only rs4147581 in GSTP1 gene exhibited a significant association with survival of HCC patients (P = 0.006), with its mutant allele bearing a significantly lower risk of death (hazard ratio, 0.71; 95 % confidence interval 0.53-0.90), compared with the homozygous wide-type. A longer median survival time in patients with rs4147581 mutant allele was noticed than those homozygous wide-type (P = 0.03), and there was a marked adverse effect on survival conferred by smoking exposure in these patients. Conclusively, our findings provide supporting evidence for a contributory role of GSTP1 rs4147581 polymorphism in predicting the prognosis of HCC.
Collapse
Affiliation(s)
- Zhixin Wang
- Department of Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, West Yanta Road 277, Xi'an, 710061, Shaanxi, China.,Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, West Yanta Road 277, Xi'an, 710061, Shaanxi, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, West Yanta Road 277, Xi'an, 710061, Shaanxi, China
| | - Wenquan Niu
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Ruijin Second Road 197, New Huangpu District, Shanghai, 200025, China.
| | - Ting Lin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, West Yanta Road 277, Xi'an, 710061, Shaanxi, China
| | - Xinsen Xu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, West Yanta Road 277, Xi'an, 710061, Shaanxi, China
| | - Zichao Huang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, West Yanta Road 277, Xi'an, 710061, Shaanxi, China
| | - Sushun Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, West Yanta Road 277, Xi'an, 710061, Shaanxi, China
| | - Sinan Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, West Yanta Road 277, Xi'an, 710061, Shaanxi, China
| | - Hulin Chang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, West Yanta Road 277, Xi'an, 710061, Shaanxi, China
| | - Yamin Liu
- Department of Cardiology and Periphery Vascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, West Yanta Road 277, Xi'an, 710061, Shaanxi, China
| | - Xiaoqun Dong
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, 975 NE 10th Street, Biomedical Research Center BRC1366, Oklahoma, OK, 73104, USA.
| | - Chang Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, West Yanta Road 277, Xi'an, 710061, Shaanxi, China
| | - Yuelang Zhang
- Department of Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, West Yanta Road 277, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
23
|
Qu K, Liu SS, Wang ZX, Huang ZC, Liu SN, Chang HL, Xu XS, Lin T, Dong YF, Liu C. Polymorphisms of glutathione S-transferase genes and survival of resected hepatocellular carcinoma patients. World J Gastroenterol 2015; 21:4310-4322. [PMID: 25892883 PMCID: PMC4394094 DOI: 10.3748/wjg.v21.i14.4310] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/19/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of single nucleotide polymorphisms (SNPs) in glutathione S-transferase (GST) genes on survival of hepatocellular carcinoma (HCC) patients.
METHODS: Twelve tagging SNPs in GST genes (including GSTA1, GSTA4, GSTM2, GSTM3, GSTO1, GSTO2 and GSTP1) were genotyped using Sequenom MassARRAY iPLEX genotyping method in a cohort of 214 Chinese patients with resected HCC. The Cox proportional hazards model and log-rank test were performed to determine the SNPs related to outcome. Additionally, stratified analysis was performed at each level of the demographic and clinical variables. An SNP-gene expression association model was further established to investigate the correlation between SNP and gene expression.
RESULTS: Two SNPs (GSTO2: rs7085725 and GSTP1: rs4147581) were significantly associated with overall survival in HCC patients (P = 0.035 and 0.042, respectively). In stratified analysis, they were more significantly associated with overall survival in patients with younger age, male gender and cirrhosis. We further investigated cumulative effects of these two SNPs on overall survival in HCC patients. Compared with the patients carrying no unfavorable genotypes, those carrying 2 unfavorable genotypes had a 1.70-fold increased risk of death (P < 0.001). The cumulative effects were more significant in those patients with younger age, male gender and cirrhosis (HR = 2.00, 1.94 and 1.97, respectively; all P < 0.001). Additionally, we found that heavy smoking resulted in a significantly worse overall survival in those patients carrying variant alleles of rs7085725 (HR = 2.07, 95%CI: 1.13-3.76, P = 0.018). The distributions of GSTO2: rs7085725 and GSTP1: rs4147581 genotypes were associated with altered gene expression and contributed to influences on overall survival.
CONCLUSION: Our study provides the first evidence that GSTO2 and GSTP1 gene polymorphisms may serve as independent prognostic markers for HCC patients.
Collapse
|
24
|
Wang Z, Qu K, Huang Z, Xu X, Zhang J, Zhang L, Liu S, Chang H, Lin T, Liu Y, Niu W, Liu C. Glutathione S-transferase O2 gene rs157077 polymorphism predicts response to transarterial chemoembolization in hepatocellular carcinoma. Tumour Biol 2015; 36:6463-9. [DOI: 10.1007/s13277-015-3336-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/12/2015] [Indexed: 12/21/2022] Open
|
25
|
Abstract
Gene mutation's role in initiating carcinogenesis has been controversial, but it is consensually accepted that both carcinogenesis and cancer metastasis are gene-regulated processes. MTA1, a metastasis-associated protein, has been extensively researched, especially regarding its role in cancer metastasis. In this review, I try to elucidate MTA1's role in both carcinogenesis and metastasis from a different angle. I propose that MTA1 is a stress response protein that is upregulated in various stress-related situations such as heat shock, hypoxia, and ironic radiation. Cancer cells are mostly living in a stressful environment of hypoxia, lack of nutrition, and immune reaction attacks. To cope with all these stresses, MTA1 expression is upregulated, plays a role of master regulator of gene expression, and helps cancer cells to survive and migrate out of their original dwelling.
Collapse
Affiliation(s)
- Rui-An Wang
- State Key Lab for Cancer Biology, Department of Pathology, Xijing Hospital, Xi'an, China,
| |
Collapse
|
26
|
Anestopoulos I, Voulgaridou GP, Georgakilas AG, Franco R, Pappa A, Panayiotidis MI. Epigenetic therapy as a novel approach in hepatocellular carcinoma. Pharmacol Ther 2014; 145:103-19. [PMID: 25205159 DOI: 10.1016/j.pharmthera.2014.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/02/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver malignancy and one with high fatality. Its 5-year survival rate remains low and thus, there is a need for improvement of current treatment strategies as well as development of novel targeted methodologies in order to optimize existing therapeutic protocols. To this end, only recently, it was discovered that its pathophysiology also involves epigenetic alterations in DNA methylation, histone modifications and/or non-coding microRNA patterns. Unlike genetic events, epigenetic alterations are reversible and thus potentially considered to be an alternative option in cancer treatment protocols. In this review, we describe the general characteristics and resulted major alterations of the epigenetic machinery as well as current state of progress of epigenetic therapy (via different single or combinatorial experimental approaches) in HCC.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Alexandros G Georgakilas
- School of Applied Mathematical & Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Rodrigo Franco
- Redox Biology Center, School of Veterinary Medicine & Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | |
Collapse
|
27
|
Ali A, Abdel-Hafiz H, Suhail M, Al-Mars A, Zakaria MK, Fatima K, Ahmad S, Azhar E, Chaudhary A, Qadri I. Hepatitis B virus, HBx mutants and their role in hepatocellular carcinoma. World J Gastroenterol 2014; 20:10238-10248. [PMID: 25132741 PMCID: PMC4130832 DOI: 10.3748/wjg.v20.i30.10238] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/30/2014] [Accepted: 05/25/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of death induced by cancer in the modern world and majority of the cases are related to chronic hepatitis B virus (HBV) infection. HBV-encoded X protein (HBx) is known to play a pivotal role in the pathogenesis of viral induced HCC. HBx is a multifunctional protein of 17 kDa which modulates several cellular processes by direct or indirect interaction with a repertoire of host factors resulting in HCC. HBX might interfere with several cellular processes such as oxidative stress, DNA repair, signal transduction, transcription, protein degradation, cell cycle progression and apoptosis. A number of reports have indicated that HBx is one of the most common viral ORFs that is often integrated into the host genome and its sequence variants play a crucial role in HCC. By mutational or deletion analysis it was shown that carboxy terminal of HBx has a likely role in protein-protein interactions, transcriptional transactivation, DNA repair, cell, signaling and pathogenesis of HCC. The accumulated evidence thus far suggests that it is difficult to understand the mechanistic nature of HBx associated HCC, and HBx mediated transcriptional transactivation and signaling pathways may be a major determinant. This article addresses the role of HBx in the development of HCC with particular emphasis on HBx mutants and their putative targets.
Collapse
|
28
|
Sung MT, Chen YC, Chi CW. Quercetin’s Potential to Prevent and Inhibit Oxidative Stress-Induced Liver Cancer. Cancer 2014. [DOI: 10.1016/b978-0-12-405205-5.00022-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Sirtuin 1 regulates hepatitis B virus transcription and replication by targeting transcription factor AP-1. J Virol 2013; 88:2442-51. [PMID: 24335313 DOI: 10.1128/jvi.02861-13] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a major risk factor for liver cirrhosis and hepatocellular carcinoma. Nevertheless, the molecular mechanism of HBV replication remains elusive. SIRT1 is a class III histone deacetylase that is a structure component of the HBV cccDNA minichromosome. In this study, we found by using microarray-based gene expression profiling analysis that SIRT1 was upregulated in HBV-expressing cells. Gene silencing of SIRT1 significantly inhibited HBV DNA replicative intermediates, 3.5-kb mRNA, and core protein levels. In contrast, the overexpression of SIRT1 augmented HBV replication. Furthermore, SIRT1 enhanced the activity of HBV core promoter by targeting transcription factor AP-1. The c-Jun subunit of AP-1 was bound to the HBV core promoter region, as demonstrated by using a chromatin immunoprecipitation assay. Mutation of AP-1 binding site or knockdown of AP-1 abolished the effect of SIRT1 on HBV replication. Finally, SIRT1 inhibitor sirtinol also suppressed the HBV DNA replicative intermediate, as well as 3.5-kb mRNA. Our study identified a novel host factor, SIRT1, which may facilitate HBV replication in hepatocytes. These data suggest a rationale for the use of SIRT1 inhibitor in the treatment of HBV infection.
Collapse
|
30
|
Wu YL, Wang D, Peng XE, Chen YL, Zheng DL, Chen WN, Lin X. Epigenetic silencing of NAD(P)H:quinone oxidoreductase 1 by hepatitis B virus X protein increases mitochondrial injury and cellular susceptibility to oxidative stress in hepatoma cells. Free Radic Biol Med 2013; 65:632-644. [PMID: 23920313 DOI: 10.1016/j.freeradbiomed.2013.07.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 12/31/2022]
Abstract
NAD(P)H:quinone oxidoreductase 1 (NQO1) is a phase II enzyme that participates in the detoxification of dopamine-derived quinone molecules and reactive oxygen species. Our prior work using a proteomic approach found that NQO1 protein levels were significantly decreased in stable hepatitis B virus (HBV)-producing hepatoma cells relative to the empty-vector-transfected controls. However, the mechanism and biological significance of the NQO1 suppression remain elusive. In this study we demonstrate that HBV X protein (HBx) induces epigenetic silencing of NQO1 in hepatoma cells through promoter hypermethylation via recruitment of DNA methyltransferase DNMT3A to the promoter region of the NQO1 gene. In HBV-related hepatocellular carcinoma (HCC) specimens, HBx expression was correlated negatively to NQO1 transcripts but positively to NQO1 promoter hypermethylation. Downregulation of NQO1 by HBx reduced intracellular glutathione levels, impaired mitochondrial function, and increased susceptibility of hepatoma cells to oxidative stress-induced cell injury. These results suggest a novel mechanism for HBV-mediated pathogenesis of chronic liver diseases, including HCC.
Collapse
Affiliation(s)
- Yun-Li Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Dong Wang
- Department of Hepatobiliary and Pancreatic Surgery, Union Clinical Medical College, Fujian Medical University, Fuzhou 350108, China
| | - Xian-E Peng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Yan-Ling Chen
- Department of Hepatobiliary and Pancreatic Surgery, Union Clinical Medical College, Fujian Medical University, Fuzhou 350108, China
| | - Da-Li Zheng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Wan-Nan Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Xu Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China.
| |
Collapse
|
31
|
Raggi C, Invernizzi P. Methylation and liver cancer. Clin Res Hepatol Gastroenterol 2013; 37:564-71. [PMID: 23806627 DOI: 10.1016/j.clinre.2013.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/30/2013] [Accepted: 05/14/2013] [Indexed: 02/04/2023]
Abstract
Cancer evolution at all stages (including initiation, progression and invasion) is driven by both epigenetic abnormalities and genetic alterations. Epigenetics refer to any structural modification of genomic regions, which lead to modification in gene expression without alterations in DNA sequence. Progressive deregulation of epigenetic process is being increasingly recognized in liver carcinogenesis. This review will provide an overview of DNA methylation, one of the most commonly epigenetic events, which profoundly contributes to liver cancer initiation and progression. Furthermore, the recent advancements in the knowledge of epigenetic reprogramming underlying hepatic cancer stem cells will be highlighted.
Collapse
Affiliation(s)
- Chiara Raggi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, via Manzoni 56, Rozzano, MI, Italy.
| | | |
Collapse
|
32
|
Tian Y, Ni D, Yang W, Zhang Y, Zhao K, Song J, Mao Q, Tian Z, van Velkinburgh JC, Yang D, Wu Y, Ni B. Telbivudine treatment corrects HBV-induced epigenetic alterations in liver cells of patients with chronic hepatitis B. Carcinogenesis 2013; 35:53-61. [PMID: 24067902 DOI: 10.1093/carcin/bgt317] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Hepatitis B virus (HBV) alters the expression of host cellular genes to support its replication and survival and to promote the liver cell injury. However, the underlying mechanism remained incompletely understood. In this study, we investigated HBV-induced epigenetic changes in HepG2 cells by profiling the landscapes of the active histone modification mark H3K4me3 and repressive mark H3K27me3 using chromatin immunoprecipitation-sequencing. HBV caused the altered histone modifications at thousands of genomic loci, which are critically involved in HBV entry, inflammation, fibrosis and carcinogenesis of host cells. Interestingly, treatment of the HBV-transformed HepG2 cells with the anti-HBV drug Telbivudine substantially restored the H3K4me3 level to that of untransformed HepG2 cells. More importantly, our analysis of liver samples from control and chronic hepatitis B patients revealed that treatment of the patients with Telbivudine not only corrected the target gene expression but also the epigenetic modification of critical genes. In addition, the expression of the histone methyltransferases SMYD3 and EZH2 that regulate histone H3-specific methylation showed no difference in HepG2 cell with or without HBV existence. Thus, our data suggest that abnormal histone modifications might critically involved in HBV-mediated liver pathogenesis and Telbivudine therapy might benefit patients with HBV-related chronic infection, liver cirrhosis and even hepatic carcinoma. SUMMARY Telbivudine substantially restores in vitro and in vivo HBV-caused abnormal expressions and histone H3K4me3 and H3K27me3 modifications at thousands of genomic loci that are involved in the pathogenesis of liver cells, revealing a novel mechanism for HBV-mediated liver damage.
Collapse
Affiliation(s)
- Yi Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhao J, Fan YC, Sun FK, Zhao ZH, Wang LY, Hu LH, Yin YP, Li T, Gao S, Wang K. Peripheral type I interferon receptor correlated with oxidative stress in chronic hepatitis B virus infection. J Interferon Cytokine Res 2013; 33:405-414. [PMID: 23663046 PMCID: PMC3741434 DOI: 10.1089/jir.2012.0153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/20/2013] [Indexed: 12/19/2022] Open
Abstract
Type I interferon receptor (IFNAR) has been involved in the progression of chronic hepatitis B (CHB). Oxidative stress is also associated with hepatitis B virus (HBV) infection and might contribute to the structure and function of protein synthesis including the IFNAR family. This study was aimed to determine the possible associations between oxidative stress and peripheral IFNAR expression in chronic HBV infection. Fifty-four CHB patients and 31 liver cirrhosis (LC) patients were consecutively collected, as well as 11 healthy subjects as controls. Expression levels of IFNAR1 and IFNAR2 in peripheral blood lymphocytes and monocytes were measured by flow cytometry. IFNAR1 and IFNAR2c mRNA were detected by real-time reverse transcription-polymerase chain reaction. Levels of plasma-soluble IFNAR and oxidative stress parameters, including xanthine oxidase (XOD), malondialdehyde (MDA), glutathione (GSH), glutathione S-transferase (GST), and glutathione peroxidase (GSH-Px) were detected by enzyme linked immunosorbent assay (ELISA). The frequencies of IFNAR1 and IFNAR2 in lymphocytes and monocytes were significantly increased in CHB and LC patients than in healthy controls. Expression levels of IFNAR1 and IFNAR2c mRNA and plasma-soluble IFNAR level in CHB and LC patients were upregulated compared with healthy controls. Mean fluorescence intensity (MFI) of IFNAR2 in monocytes of CHB patients was higher than that in LC patients. Levels of plasma XOD, MDA, and GST were significantly increased in CHB and LC patients compared with healthy controls. Meanwhile, GSH and GSH-Px in CHB and LC patients were decreased than that in healthy controls. Furthermore, plasma MDA, GSH, and GST levels in CHB patients were higher than that in LC patients. In CHB patients, plasma GST level was negatively correlated with MFI of IFNAR2 in lymphocytes. Our results suggested that oxidative stress play an important role in the regulation of IFNAR in chronic HBV infection.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Hepatology, Shandong University, Jinan, China
| | - Feng-Kai Sun
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Ze-Hua Zhao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Li-Yuan Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Lei-Hua Hu
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan-Ping Yin
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Li
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Hepatology, Shandong University, Jinan, China
| |
Collapse
|
34
|
Herceg Z, Lambert MP, van Veldhoven K, Demetriou C, Vineis P, Smith MT, Straif K, Wild CP. Towards incorporating epigenetic mechanisms into carcinogen identification and evaluation. Carcinogenesis 2013; 34:1955-67. [PMID: 23749751 DOI: 10.1093/carcin/bgt212] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Remarkable progress in the field of epigenetics has turned academic, medical and public attention to the potential applications of these new advances in medicine and various fields of biomedical research. The result is a broader appreciation of epigenetic phenomena in the a etiology of common human diseases, most notably cancer. These advances also represent an exciting opportunity to incorporate epigenetics and epigenomics into carcinogen identification and safety assessment. Current epigenetic studies, including major international sequencing projects, are expected to generate information for establishing the 'normal' epigenome of tissues and cell types as well as the physiological variability of the epigenome against which carcinogen exposure can be assessed. Recently, epigenetic events have emerged as key mechanisms in cancer development, and while our search of the Monograph Volume 100 revealed that epigenetics have played a modest role in evaluating human carcinogens by the International Agency for Research on Cancer (IARC) Monographs so far, epigenetic data might play a pivotal role in the future. Here, we review (i) the current status of incorporation of epigenetics in carcinogen evaluation in the IARC Monographs Programme, (ii) potential modes of action for epigenetic carcinogens, (iii) current in vivo and in vitro technologies to detect epigenetic carcinogens, (iv) genomic regions and epigenetic modifications and their biological consequences and (v) critical technological and biological issues in assessment of epigenetic carcinogens. We also discuss the issues related to opportunities and challenges in the application of epigenetic testing in carcinogen identification and evaluation. Although the application of epigenetic assays in carcinogen evaluation is still in its infancy, important data are being generated and valuable scientific resources are being established that should catalyse future applications of epigenetic testing.
Collapse
Affiliation(s)
- Zdenko Herceg
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, F-69008 Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hepatitis B virus X protein-induced aberrant epigenetic modifications contributing to human hepatocellular carcinoma pathogenesis. Mol Cell Biol 2013; 33:2810-6. [PMID: 23716588 DOI: 10.1128/mcb.00205-13] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most prevalent malignant diseases worldwide, and the majority of cases are related to hepatitis B virus (HBV) infection. Interactions between the HBV-encoded X (HBx) protein and host factors are known to play major roles in the onset and progression of HBV-related HCC. These dynamic molecular mechanisms are extremely complex and lead to prominent changes in the host genetic and epigenetic architecture. This review summarizes the current knowledge about HBx-induced epigenetic changes, including aberrations in DNA methylation, histone modifications, and microRNA expression, and their roles in HBV-infected liver cells and HBV-related HCC. Moreover, the HBx-mediated epigenetic control of HBV covalently closed circular DNA (cccDNA) is also discussed. Although this field of study is relatively new, the accumulated evidence has indicated that the epigenetic events induced by HBx play important roles in the development of HBV-related HCC. Ongoing research will help to identify practical applications of the HBV-related epigenetic signatures as biomarkers for early HCC detection or as potential targets to prevent and treat HBV-related HCC.
Collapse
|
36
|
Zhang H, Li H, Yang Y, Li S, Ren H, Zhang D, Hu H. Differential regulation of host genes including hepatic fatty acid synthase in HBV-transgenic mice. J Proteome Res 2013; 12:2967-79. [PMID: 23675653 DOI: 10.1021/pr400247f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) is the most common of the hepatitis viruses that cause chronic liver infections in humans, and it is considered to be a major global health problem. To gain a better understanding of HBV pathogenesis, and identify novel putative targets for anti-HBV therapy, this study was designed to elucidate the differential expression of host proteins in liver tissue from HBV-transgenic mice. Liver samples from two groups, (1) HBV-transgenic (Tg) mice, (2) corresponding background normal mice, wild-type (WT) mice, were collected and subjected to iTRAQ and mass spectrometry analysis. In total, 1950 unique proteins were identified, and 68 proteins were found to be differentially expressed in HBV-Tg mice as compared with that in WT mice. Several differentially expressed proteins were further validated by real-time quantitative RT-PCR, Western blot and immunohistochemical analysis. Furthermore, the association of HBV replication with fatty acid synthase (FASN), one of the highly expressed proteins in HBV-Tg mice, was verified. Silencing of FASN expression in HepG2.2.15 cells suppressed viral replication through the IFN signaling pathway, and some downstream antiviral effectors. The implicated role of FASN in HBV replication provides an opportunity to test existing compounds against FASN for adjuvant therapy and/or treatment of HBV replication.
Collapse
Affiliation(s)
- Hongmin Zhang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Li T, Zhao XP, Wang LY, Gao S, Zhao J, Fan YC, Wang K. Glutathione S-transferase P1 correlated with oxidative stress in hepatocellular carcinoma. Int J Med Sci 2013; 10:683-690. [PMID: 23569432 PMCID: PMC3619117 DOI: 10.7150/ijms.5947] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/17/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glutathione-S-transferase P1 (GSTP1) is an important phase II enzyme that can protect cells from oxidative stress in various human cancers. However, few clinical studies were undertaken on the relationship between GSTP1 and oxidative stress in hepatocellular carcinoma (HCC). The present study was therefore aimed to evaluate the potential associations between GSTP1 and oxidative stress in HCC patients. METHODS The GSTP1 expression in peripheral blood mononuclear cells (PBMCs) was determined by flow cytometry from 38 HCC patients and 38 chronic hepatitis B (CHB) patients. The GSTP1 mRNA level in PBMCs was determined by real-time quantitative polymerase chain reaction. Enzyme-linked-immunosorbent-assay (ELISA) was performed to measure the oxidative stress status, including plasma levels of malondialdehyde (MDA), xanthine oxidase (XOD), reduced glutathione hormone (GSH) and glutathione-S-transferases (GST). RESULTS Significantly decreased GSTP1 protein expression was found in HCC patients than in CHB patients (P<0.05). The GSTP1 mRNA expression of HCC patients was also decreased compared with CHB patients (P<0.05). MDA and XOD levels were significantly higher in HCC patients than in CHB patients, while plasma GSH and GST levels were statistically lower in HCC patients than in CHB patients. GSTP1 expression level was correlated with plasma levels of MDA (P<0.01), XOD (P = 0.01) and GSH (P< 0.01), GST (P< 0.01). CONCLUSION We demonstrated that the reduced GSTP1 expression might contribute to oxidative stress in the development of HCC from CHB.
Collapse
Affiliation(s)
- Tao Li
- 1. Department of Hepatology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Xin-Ping Zhao
- 2. Department of infectious diseases, The third hospital of Zaozhuang city, Zaozhuang 277100, China
| | - Li-Yuan Wang
- 1. Department of Hepatology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Shuai Gao
- 1. Department of Hepatology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Jing Zhao
- 1. Department of Hepatology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Yu-Chen Fan
- 1. Department of Hepatology, Qilu Hospital, Shandong University, Jinan 250012, China
- 3. Institute of Hepatology, Shandong University, Jinan 250012, China
| | - Kai Wang
- 1. Department of Hepatology, Qilu Hospital, Shandong University, Jinan 250012, China
- 3. Institute of Hepatology, Shandong University, Jinan 250012, China
| |
Collapse
|
38
|
Chen J, Liou A, Zhang L, Weng Z, Gao Y, Cao G, Zigmond MJ, Chen J. GST P1, a novel downstream regulator of LRRK2, G2019S-induced neuronal cell death. Front Biosci (Elite Ed) 2012; 4:2365-77. [PMID: 22652643 DOI: 10.2741/e548] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The enhanced neurotoxicity of the Parkinson's disease-associated LRRK2 mutant, G2019S, than its wild-type counter-part has recently been reported. Overexpression of LRRK2 (G2019S) in cultured neural cells results in caspase-3-dependent apoptosis via a yet undefined signaling pathway. Elucidation of the mechanism underlying LRRK2 (G2019S) neurotoxicity may offer new insights into the pathogenesis of Parkinson's disease. In this study, we identified glutathione s-transferase P1 (GSTP1) as a selective target whose expression is negatively regulated at the transcriptional levels via promoter hyper-methylation by LRRK2 (G2019S). Overexpression of LRRK2 (G2019S) in the human neuronal cell line SH-SY5Y markedly suppressed the expression of GSTP1 prior to any manifestation of cell death. Moreover, shRNA-mediated knockdown of endogenous GSTP1 expression exacerbated LRRK2 (G2019S) neurotoxicity, whereas overexpression of GSTP1 protected against LRRK2 (G2019S)-induced caspase-3 activation and neuronal apoptosis. In conclusion, the results suggest a previously undefined signaling mechanism underlying the neurotoxic effect of LRRK2 (G2019S), in which LRRK2 (G2019S) triggers oxidative stress in cells and, in turn, results in caspase-dependent apoptosis at least in part by suppressing the expression of GSTP1.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University School of Medicine, Shanghai, China, 200032
| | | | | | | | | | | | | | | |
Collapse
|
39
|
A Study of the Wound Healing Mechanism of a Traditional Chinese Medicine, Angelica sinensis, Using a Proteomic Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:467531. [PMID: 22536285 PMCID: PMC3319019 DOI: 10.1155/2012/467531] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/19/2012] [Indexed: 11/18/2022]
Abstract
Angelica sinensis (AS) is a traditional Chinese herbal medicine that has been formulated clinically to treat various form of skin trauma and to help wound healing. However, the mechanism by which it works remains a mystery. In this study we have established a new platform to evaluate the pharmacological effects of total AS herbal extracts as well as its major active component, ferulic acid (FA), using proteomic and biochemical analysis. Cytotoxic and proliferation-promoting concentrations of AS ethanol extracts (AS extract) and FA were tested, and then the cell extracts were subject to 2D PAGE analysis. We found 51 differentially expressed protein spots, and these were identified by mass spectrometry. Furthermore, biomolecular assays, involving collagen secretion, migration, and ROS measurements, gave results that are consistent with the proteomic analysis. In this work, we have demonstrated a whole range of pharmacological effects associated with Angelica sinensis that might be beneficial when developing a wound healing pharmaceutical formulation for the herbal medicine.
Collapse
|
40
|
Pei S, Zhang Y, Xu H, Chen X, Chen S. Inhibition of the replication of hepatitis B virus in vitro by pu-erh tea extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9927-9934. [PMID: 21870867 DOI: 10.1021/jf202376u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Hepatitis B virus (HBV) is one of the most widespread viral infections in the world and poses a significant global public health problem. The implementation of effective vaccination programs has resulted in a significant decrease in the incidence of acute hepatitis B. Nevertheless, there is still a need for as many effective anti-HBV drugs as possible. In this study, the role of pu-erh tea extracts (PTE) against HBV was analyzed in vitro by using a stably HBV-transfected cell line HepG2 2.2.15. The MTT assay showed that PTE and its active components (tea polyphenols, theaflavins, and theanine) presented low cytotoxicity. ELISA analysis revealed that PTE effectively reduced the secretion of HBeAg, but any one of the active components alone showed weaker efficacy, suggesting that the anti-HBV activity of PTE might be a synergetic effect of different components. RT-PCR and luciferase assay showed that PTE suppressed HBV mRNA expression while leaving four HBV promoter transcriptional activities unchanged. Fluorescence quantitative PCR results demonstrated that PTE dramatically diminished HBV DNA produced in cell supernatants as well as encapsidated DNA in intracellular core particles. Finally, PTE significantly reduced intracellular reactive oxygen species (ROS) level. This study is the first to demonstrate that PTE possesses anti-HBV ability and could be used as a potential treatment against HBV infection with an additional merit of low cytotoxicity.
Collapse
Affiliation(s)
- Shaobo Pei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | |
Collapse
|
41
|
Li T, Meng QH, Zou ZQ, Fan YC, Long B, Guo YM, Hou W, Zhao J, Li J, Yu HW, Zhu YK, Wang K. Correlation between promoter methylation of glutathione-S-tranferase P1 and oxidative stress in acute-on-chronic hepatitis B liver failure. J Viral Hepat 2011; 18:e226-e231. [PMID: 21692937 DOI: 10.1111/j.1365-2893.2011.01438.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Promoter methylation of glutathione-S-transferase P1 (GSTP1) may be involved in liver damage caused by oxidative stress in acute-on-chronic hepatitis B-induced liver failure (ACHBLF). This study aimed to explore GSTP1 promoter methylation status and oxidative stress in such patients. DNA was extracted from peripheral blood mononuclear cells (PBMCs) of patients with acute-on-chronic liver hepatitis B-induced liver failure, chronic hepatitis B (CHB) and normal controls, followed by sodium-bisulfite treatment and methylation-specific PCR (MSP) analysis. Plasma malondialdehyde (MDA) adducts levels were detected by enzyme-linked immunosorbent assay as oxidative stress marker. Model for end-stage liver disease (MELD) score was employed to estimate the severity of the liver failure. Eleven of 35 patients with acute-on-chronic liver failure and 3 of 35 patients with stab le hepatitis B displayed GSTP1 promoter methylation, and the difference was significant (χ2) = 5.71, P = 0.02). No differences in standard liver function tests were found in patients with acute-on-chronic liver failure with and without GSTP1 promoter methylation although the levels of total bilirubin were greater in those with methylation. The levels of MDA adducts were significantly higher in patients with liver failure when compared to those with CHB (12.44 ± 5.38 pmol/mg vs 8.42 ± 5.49 pmol/mg, P < 0.01), and in the patients with liver failure who had promoter methylation the levels were higher than in those who did not (15.2 ± 4.68 pmol/mg vs 11.17 ± 5.29 pmol/mg, P < 0.01). The MELD score was not significantly different between methylated and unmethylated patients with liver failure (P > 0.05), although MDA adducts were correlated with MELD scores in patients with acute-on-chronic liver failure (r = 0.579, P < 0.01). GSTP1 promoter methylation may facilitate oxidative stress-associated liver damage in ACHBLF, and oxidative stress is correlated with ACHBLF severity.
Collapse
Affiliation(s)
- T Li
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hepatitis B virus X protein enhances cisplatin-induced hepatotoxicity via a mechanism involving degradation of Mcl-1. J Virol 2011; 85:3214-28. [PMID: 21228225 DOI: 10.1128/jvi.01841-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus X protein (HBx) is implicated in the pathogenesis of hepatitis B virus (HBV)-associated liver diseases. However, whether HBx has the ability to disturb the susceptibility of hepatocytes to common chemotherapeutic agents remains incompletely understood. Here we demonstrate that HBx enhances cisplatin-induced hepatotoxicity by a mechanism involving degradation of Mcl-1, an antiapoptotic member of the Bcl-2 family. Ectopic expression of HBx sensitized hepatocytes to cisplatin-induced apoptosis, which was accompanied by a marked downregulation of Mcl-1 but not of Bcl-2 or Bcl-xL. Overexpression of Mcl-1 prevented HBx-induced proapoptotic and proinflammatory effects during cisplatin treatment both in vitro and in vivo. HBx-induced dysregulation of Mcl-1 resulted mainly from posttranslational degradation rather than transcription repression. Moreover, a caspase-3 inhibitor effectively abrogated HBx-enhanced Mcl-1 degradation and cell death. Importantly, antioxidants blocked activation of caspase-3 and acceleration of Mcl-1 loss, as well as cell death, in HBx-expressing hepatocytes upon cisplatin exposure in vitro and in vivo. Collectively, these data implicate oxidative stress-dependent caspase-3-mediated degradation of Mcl-1 as a mechanism contributing to HBx-mediated sensitization of cisplatin-induced hepatotoxicity. A combination of cisplatin and antioxidants might provide more advantage than cisplatin alone in the treatment of cancer patients with chronic HBV infection.
Collapse
|
43
|
Kew MC. Hepatitis B virus x protein in the pathogenesis of hepatitis B virus-induced hepatocellular carcinoma. J Gastroenterol Hepatol 2011; 26 Suppl 1:144-52. [PMID: 21199526 DOI: 10.1111/j.1440-1746.2010.06546.x] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently available evidence supports a role for the hepatitis B virus (HBV) x gene and protein in the pathogenesis of HBV-induced hepatocellular carcinoma (HCC). HBx gene is often included, and remains functionally active, in the HBV DNA that is frequently integrated into cellular DNA during hepatocellular carcinogenesis. HBx protein promotes cell cycle progression, inactivates negative growth regulators, and binds to and inhibits the expression of p53 tumour suppressor gene and other tumour suppressor genes and senescence-related factors. However, the molecular mechanisms responsible for HBx protein-induced HCC remain uncertain. Only some of the more fully documented or more recently recognised mechanisms are reviewed. During recent years evidence has accumulated that HBx protein modulates transcription of methyl transferases, causing regional hypermethylation of DNA that results in silencing of tumour suppressor genes, or global hypomethylation that results in chromosomal instability, thereby playing a role in hepatocarcinogenesis. HBx protein has both anti-apoptotic and pro-apoptotic actions, apparently contradictory effects that have yet to be explained. Particularly important among the anti-apoptotic properties is inhibition of p53. Recent experimental observations suggest that HBx protein may increase the expression of TERT and telomerase activity, prolonging the life-span of hepatocytes and contributing to malignant transformation. The protein also interferes with nucleotide excision repair through both p53-dependent and p53- independent mechanisms. Carboxy-terminal truncated HBx protein loses its inhibitory effects on cell proliferation and pro-apoptotic properties, and it may enhance the protein's ability to transform oncogenes. Dysregulation of IGF-II enhances proliferation and anti-apoptotic effects of oncogenes, resulting in uncontrolled cell growth.
Collapse
Affiliation(s)
- Michael C Kew
- Department of Medicine, University of Cape Town, Groote Schuur Hospital, South Africa.
| |
Collapse
|
44
|
Ha HL, Shin HJ, Feitelson MA, Yu DY. Oxidative stress and antioxidants in hepatic pathogenesis. World J Gastroenterol 2010; 16:6035-43. [PMID: 21182217 PMCID: PMC3012582 DOI: 10.3748/wjg.v16.i48.6035] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/12/2010] [Accepted: 07/19/2010] [Indexed: 02/06/2023] Open
Abstract
Long term hepatitis B virus (HBV) infection is a major risk factor in pathogenesis of chronic liver diseases, including hepatocellular carcinoma (HCC). The HBV encoded proteins, hepatitis B virus X protein and preS, appear to contribute importantly to the pathogenesis of HCC. Both are associated with oxidative stress, which can damage cellular molecules like lipids, proteins, and DNA during chronic infection. Chronic alcohol use is another important factor that contributes to oxidative stress in the liver. Previous studies reported that treatment with antioxidants, such as curcumin, silymarin, green tea, and vitamins C and E, can protect DNA from damage and regulate liver pathogenesis-related cascades by reducing reactive oxygen species. This review summarizes some of the relationships between oxidative stress and liver pathogenesis, focusing upon HBV and alcohol, and suggests antioxidant therapeutic approaches.
Collapse
|
45
|
DLEC1 Expression Is Modulated by Epigenetic Modifications in Hepatocelluar Carcinoma Cells: Role of HBx Genotypes. Cancers (Basel) 2010; 2:1689-704. [PMID: 24281182 PMCID: PMC3837332 DOI: 10.3390/cancers2031689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 08/23/2010] [Accepted: 09/08/2010] [Indexed: 11/16/2022] Open
Abstract
Deleted in Lung and Esophageal Cancer 1 (DLEC1) is a functional tumor suppressor gene (TSG). It has been found to be silenced in a variety of human cancers including hepatocellular carcinoma (HCC). The silencing of DLEC1 can be modulated by epigenetic modifications, such as DNA hypermethylation and histone hypoacetylation. In the case of HCC, hepatitis B virus X protein (HBx) has been implicated in methylation of target promoters resulting in the down-regulation of tumor suppressor genes, which in turn contributes to the development of HCC. In the present study, we first established a cell system in which epigenetic modifications can be modulated using inhibitors of either DNA methylation or histone deacetylation. The cell system was used to reveal that the expression of DLEC1 was upregulated by HBx in a genotype-dependent manner. In particular, HBx genotype A was found to decrease DNA methylation of the DLEC1 promoter. Our results have provided new insights on the impact of HBx in HCC development by epigenetic modifications.
Collapse
|
46
|
Proteomic analysis of HBV-associated HCC: insights on mechanisms of disease onset and biomarker discovery. J Proteomics 2010; 73:1283-90. [PMID: 20188222 DOI: 10.1016/j.jprot.2010.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 02/10/2010] [Accepted: 02/17/2010] [Indexed: 12/17/2022]
Abstract
The development of hepatocellular carcinoma (HCC) can be considered as an end-stage outcome of chronic hepatitis B virus (HBV) infection. Early prognostic markers are needed to allow effective treatments and prevent HCC from developing. Proteomics analysis has been used to identify markers from clinical samples from HCC patients. This approach can be further improved by identifying early biomarkers before the onset of HCC. One way would be to use the cell-based HBV replication system, which is reflective of the early stage of virus infection and thus secreted proteins identified at this stage may have relevance in HCC prognosis. In this review, we focus the discussion on the current status of proteomics analysis of cellular proteins and HCC biomarker identification, with a special highlight on the potential of the cell-based HBV replication system for the identification of prognostic HCC biomarkers.
Collapse
|
47
|
Tang SC, Sheu GT, Wong RH, Huang CY, Weng MW, Lee LW, Hsu CP, Ko JL. Expression of glutathione S-transferase M2 in stage I/II non-small cell lung cancer and alleviation of DNA damage exposure to benzo[a]pyrene. Toxicol Lett 2009; 192:316-23. [PMID: 19900515 DOI: 10.1016/j.toxlet.2009.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 11/02/2009] [Accepted: 11/02/2009] [Indexed: 12/31/2022]
Abstract
Glutathione S-transferases (GSTs) are a family of inducible enzymes that are important in carcinogen detoxification. GST-Mu class is showing the high activity towards most polycyclic aromatic hydrocarbon (PAH) epoxide. Our objective is to clarify the expression of GST-M2 in non-small-cell lung carcinoma (NSCLC) patients and to determine the role of GST-M2 in protecting against DNA damage. We detected changes in GST-M2 expression at mRNA levels with a panel of lung cell lines and clinical samples of malignant and paired adjacent non-malignant tissues from 50 patients with stage I or II non-small-cell lung carcinoma using real-time RT-PCR. Comet assay and gamma-H2AX were used to clarify whether DNA damaged was protected by GST-M2. Our data demonstrate that the expression of GST-M2 in tumor tissues is significantly lower than in paired adjacent non-malignant tissues (p=0.016). Loss of GST-M2 is closely associated with age, gender, T value, N value and cell differentiation (p<0.05) in early stage I/II patients. Downregulation of GST-M2 is mediated through aberrant hypermethylation in lung cancer cell lines. Protection against B[a]P-induced DNA damage by GST-M2 in lung cancer cells was detected by Comet assay and gamma-H2AX. In conclusion, DNA hypermethylation altered and reduced GST-M2 expression that resulted in susceptible to benzo[a]pyrene (B[a]P) induced DNA damage. It implies that GST-M2 reduction occurs prior to tumorigenesis.
Collapse
Affiliation(s)
- Sheau-Chung Tang
- Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Niu D, Zhang J, Ren Y, Feng H, Chen WN. HBx genotype D represses GSTP1 expression and increases the oxidative level and apoptosis in HepG2 cells. Mol Oncol 2008; 3:67-76. [PMID: 19383368 DOI: 10.1016/j.molonc.2008.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 10/15/2008] [Indexed: 12/11/2022] Open
Abstract
Epigenetics has been implicated in human cancer development. Epigenetic factors include HBx protein, which is able to induce hypermethylation and suppresses tumor suppressor genes. One of such tumor suppressor genes, GSTP1, shows reduced expression in many human cancers. Hypermethylation of GSTP1 is the most studied mechanism of its silence. In the present study, we reported that GSTP1 expression was completely depleted in HBV integrated HepG2.2.15 cells due to the hypermethylation in its promoter region. And it was HBx, especially HBx genotype D, that played the key role in repressing GSTP1 expression. Further functional studies like ROS assay and apoptosis detection were also used to confirm this repression. Our findings should facilitate the understanding of HBV and their influences on the epigenetic modulations for epigenetic tumorigenesis during HBV-mediated hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Dandan Niu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | | | | | | | | |
Collapse
|