1
|
Yuan D, Gao Y, Xia L, Liu H, Wu X, Ding X, Huang Y, Deng C, Li J, Dai W, Liu J, Ma J. Discovery of novel biphenyl compounds bearing hydroxamic acid moiety as the first PD-L1/class I HDACs dual inhibitors. J Enzyme Inhib Med Chem 2025; 40:2461190. [PMID: 39912413 PMCID: PMC11803765 DOI: 10.1080/14756366.2025.2461190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/06/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
Herein, we firstly reported a series of biphenyl compounds bearing hydroxamic acid moiety as PD-L1/class I HDACs dual inhibitors. Among them, compound 14 displayed the strongest inhibitory activity in vitro against HDAC2 and HDAC3 with IC50 values of 27.98 nM and 14.47 nM, and had an IC50 value of 88.10 nM for PD-1/PD-L1 interaction. Importantly, 14 could upregulate the expression of PD-L1 and CXCL10 in a PD-L1 low-expression cancer cell line (MCF-7), highlighting the potential to enhance efficacy by recruiting T-cell infiltration into TME and improving the response of PD-1/PD-L1 inhibitor associated with PD-L1 low-expression. Besides, we identified another compound, 22, which possessed the strongest inhibitory activity against PD-1/PD-L1 interaction with an IC50 value of 12.47 nM, and effectively inhibited the proliferation of three cancer cell lines. Our results suggest that compounds 14 and 22 can be served as lead compounds of PD-L1/class I HDACs dual inhibitors for further optimisation.
Collapse
Affiliation(s)
- Dandan Yuan
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Yali Gao
- Pharmacy Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Lin Xia
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Han Liu
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Xingye Wu
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Xueyan Ding
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Yudan Huang
- School of Medicine, Huaqiao University, Quanzhou, China
| | | | - Jin Li
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Wenqi Dai
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Jieqing Liu
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Junjie Ma
- School of Medicine, Huaqiao University, Quanzhou, China
| |
Collapse
|
2
|
Hu Z, Li S, Pan W, Wu H, Peng X. Design, synthesis and bioevaluation of novel hydrazide derivatives as enhancers of immunotherapy and DNA-damage response in antitumor therapy. Eur J Med Chem 2025; 291:117601. [PMID: 40233424 DOI: 10.1016/j.ejmech.2025.117601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/29/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
We have designed and synthesized a series of novel hydrazide-based HDAC3 inhibitors, with the representative compound 8ae demonstrating potent HDAC3 inhibitory activity, having an IC50 value of 311 nM (with a selectivity index SI greater than 32 over other HDACs). Compound 8ae also exhibited significant anti-proliferative activity against five types of cancer cells, with an average inhibitory rate IC50 value of 5.036 μM, and was capable of inhibiting the migration, invasion, and wound healing activities of B16-F10 cells. Further studies revealed that 8ae effectively modulates the expression of Ac-H3 within tumor cells and can degrade PD-L1 in tumor cells through the lysosome pathway mediated by cathepsin B (CTSB). Notably, 8ae also possesses favorable pharmacokinetic properties. In in vivo experiments, the combination of 8ae with the PD-L1 inhibitor NP-19 activated the immune system in melanoma-bearing mice, leading to an enhanced anti-tumor immune response (TGI = 65 %). When combined with olaparib, 8ae significantly enhanced tumor suppressive activity (TGI = 88 %) in a breast cancer mouse model and displayed a favorable safety profile. Collectively, 8ae is a promising HDAC3 inhibitor that warrants further exploration in cancer therapeutic strategies.
Collapse
Affiliation(s)
- Zhihao Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Shuqing Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Wanyi Pan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Haiyan Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China.
| |
Collapse
|
3
|
Jia Y, Li J, Mei W, Zhang H, Wang Z, Xie X, Gao C, Xu X, Li F. Pan-HDAC inhibitor LAQ824 inhibits the progression of pancreatic ductal adenocarcinoma and suppresses immune escape by promoting antigen presentation. Int Immunopharmacol 2025; 154:114528. [PMID: 40158429 DOI: 10.1016/j.intimp.2025.114528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Pancreatic cancer is the seventh leading cause of cancer-related deaths worldwide, with a dismal 5-year survival rate. New drugs targeting pancreatic ductal adenocarcinoma (PDAC), the primary pathological subtype, are urgently needed. LAQ824, a novel pan-histone deacetylase inhibitor (HDACi), has shown anti-tumor activity in various cancers, but its effects on PDAC remain unexplored. This study investigates the therapeutic potential of LAQ824 in PDAC and its role in modulating immune escape mechanisms. Using a subcutaneous tumor model in C57BL/6 J mice, LAQ824's anti-tumor effects were evaluated. In vitro and in vivo experiments-including IHC, flow cytometry, RNA sequencing, and single-cell RNA sequencing-demonstrated that LAQ824 inhibits tumor proliferation, suppresses the epithelial-mesenchymal transition (EMT), and induces apoptosis. LAQ824 also enhances immunogenicity by upregulating MHC-I-mediated antigen presentation, increasing immune cell infiltration, and promoting CD8+ T cell maturation and differentiation. Mechanistically, LAQ824 upregulated MHC-I expression by enhancing chromatin accessibility of related genes, with HDAC1 identified as a key repressor of MHC-I in PDAC cells. In conclusion, we found that LAQ824 has a significant anti-tumor effect in PDAC. LAQ824 not only directly affects general biological behaviors such as proliferation, apoptosis, and EMT, but also increases the immunogenicity of tumor cells by upregulating the expression of MHC-I in PDAC, which promotes the antigen presentation process and enhances anti-tumor immunity. By showcasing LAQ824's potential as a therapeutic target against PDAC, the present study provides novel insights into the link between epigenetic regulation and immunogenicity in PDAC.
Collapse
Affiliation(s)
- Yuchen Jia
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China
| | - Jie Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China
| | - Wentong Mei
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China; Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Haoyu Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China
| | - Zheng Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China
| | - Xiaozhou Xie
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China
| | - Chongchong Gao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China.
| | - Xiaoqing Xu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China.
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China.
| |
Collapse
|
4
|
Kumari S, Akhter M, Gupta GD, Sharma K. Progression and expansion of ALK inhibitors against NSCLC: A dual target approach. Eur J Med Chem 2025; 293:117722. [PMID: 40339471 DOI: 10.1016/j.ejmech.2025.117722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/19/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
ALK gene is a member of the tyrosine kinase receptor family found on chromosome 2 (2p23) that plays an important role in the progression of the non-small cell lung cancer (NSCLC). Since the ALK inhibitors such as Crizotinib, Ceritinib, Brigatinib, Alectinib and Lorlatinib, was endorsed for the treatment of advanced NSCLC linked to ALK gene rearrangement. But eventually, patients become resistant to the medication, which will result in treatment failure. However, treatment for NSCLC could be greatly advanced by the development of dual inhibitors that target ALK in addition to other oncogenic pathways like ROS1, c-MET, EGFR, etc. These strategies seek to improve therapy efficacy, address resistance mechanisms, and provide treatment alternatives for patients with intricate molecular profiles. The aim of this review is to summarize the introduction to ALK and the synergy between ALK and other anti-tumor targets, recent developments in the synthesis of various dual inhibitors of the ALK. We also thoroughly discussed their design concepts, structure-activity relationships (SARs), preclinical and clinical data as well as in silico studies to provide ideas for further development of novel ALK based dual inhibitors.
Collapse
Affiliation(s)
- Shreya Kumari
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Mymoona Akhter
- Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard, New Delhi, 110062, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
5
|
Xu Y, Zhang H, Nie D. Histone modifications and metabolic reprogramming in tumor-associated macrophages: a potential target of tumor immunotherapy. Front Immunol 2025; 16:1521550. [PMID: 40375990 PMCID: PMC12078272 DOI: 10.3389/fimmu.2025.1521550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/09/2025] [Indexed: 05/18/2025] Open
Abstract
Histone modifications, including methylation, acetylation, lactylation, phosphorylation, ubiquitination, SUMOylation, ADP-ribosylation, and crotonylation, critically regulate tumor-associated macrophages (TAMs) polarization by modulating gene expression and functional states. Reprogramming TAMs from M2 to M1 phenotypes through epigenetic targeting has emerged as a promising strategy to enhance anti-tumor immunity and improve the efficacy of cancer immunotherapy. This review explores the role of histone modifications in TAM biology, their interplay with metabolic reprogramming, and the opportunities and challenges in developing epigenetic-based therapies to advance cancer immunotherapy.
Collapse
Affiliation(s)
- Yiting Xu
- The Second Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Han Zhang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dengyun Nie
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Strzałka P, Krawiec K, Wiśnik A, Jarych D, Czemerska M, Zawlik I, Pluta A, Wierzbowska A. The Role of the Sirtuin Family Histone Deacetylases in Acute Myeloid Leukemia-A Promising Road Ahead. Cancers (Basel) 2025; 17:1009. [PMID: 40149343 PMCID: PMC11940623 DOI: 10.3390/cancers17061009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Acute myeloid leukemia (AML) corresponds to a heterogeneous group of clonal hematopoietic diseases, which are characterized by uncontrolled proliferation of malignant transformed myeloid precursors and their inability to differentiate into mature blood cells. The prognosis of AML depends on many variables, including the genetic features of the disease. Treatment outcomes, despite the introduction of new targeted therapies, are still unsatisfactory. Recently, there have been an increasing number of reports on enzymatic proteins of the sirtuin family and their potential importance in cancer in general. Sirtuins are a group of 7 (SIRT1-7) NAD+-dependent histone deacetylases with pleiotropic effects on metabolism, aging processes, and cell survival. They are not only responsible for post-translational modification of histones but also play various biochemical functions and interact with other proteins regulating cell survival, such as p53. Thus, their role in key mechanisms of tumorigenesis makes them a worthwhile topic in AML. Different sirtuins have been shown to act oppositely depending on the biological context, the mechanism of which requires further exploration. This review provides a comprehensive description of the significance and role of sirtuins in AML in light of the current state of knowledge. It focuses in particular on molecular mechanisms regulated by sirtuins and signaling pathways involved in leukemogenesis, as well as clinical aspects and potential therapeutic targets in AML.
Collapse
Affiliation(s)
- Piotr Strzałka
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Kinga Krawiec
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Aneta Wiśnik
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Dariusz Jarych
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland;
| | - Magdalena Czemerska
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Izabela Zawlik
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Agnieszka Pluta
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| |
Collapse
|
7
|
Yao X, Gao C, Sun C, Chen ZS, Zhuang J. Epigenetic code underlying EGFR-TKI resistance in non-small cell lung cancer: Elucidation of mechanisms and perspectives on therapeutic strategies. Drug Discov Today 2025; 30:104321. [PMID: 40032137 DOI: 10.1016/j.drudis.2025.104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/10/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Non-small-cell lung cancer (NSCLC) is the most common lung cancer subtype, and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are the core drugs used for its treatment. However, the emergence of drug resistance poses a significant challenge to their clinical efficacy. As a significant role-player in cancer development and maintenance, histone modifications, DNA methylation and noncoding RNA (ncRNA) changes have been proven to play a crucial part in driving EGFR-TKI resistance, which provides promising potential therapeutic targets and biomarkers for overcoming drug resistance. This review delves into the complex epigenetic mechanisms that cause EGFR-TKI resistance and emphasizes the potential of combined epigenetic therapies, aiming to provide better-targeted treatment options for NSCLC patients with NSCLC and drive innovative strategies to overcome the challenges of drug resistance.
Collapse
Affiliation(s)
- XiaoYu Yao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chundi Gao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University, NY, USA.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.
| |
Collapse
|
8
|
Jiang Z, Huang H, Guo Y, Wang Z, Huang H, Yin W, Huang H, Wang L, Liu W, Jiang X, Ren C. Unveiling the Role of Protein Posttranslational Modifications in Glioma Prognosis. CNS Neurosci Ther 2025; 31:e70330. [PMID: 40090864 PMCID: PMC11911106 DOI: 10.1111/cns.70330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/18/2025] Open
Abstract
BACKGROUND Gliomas represent the most aggressive malignancies of the central nervous system, with posttranslational modifications (PTMs) emerging as critical regulators of oncogenic processes through dynamic protein functional modulation. Despite their established role in tumor biology, the systematic characterization of PTM-mediated molecular mechanisms driving glioma progression remains unexplored. This study aims to uncover the molecular mechanisms of glioma, with a focus on the role of PTMs. METHODS We analyzed the PTM pathway to classify glioma patients into distinct clusters. Comprehensive analyses compared intercluster differences in clinical outcomes, mutational landscapes, and immune microenvironment profiles. Differentially expressed genes (DEGs) were identified to construct a robust prognostic prediction model with machine learning approaches. Among the genes included in the model, TOM1L1 (Target of Myb1 Like 1 Membrane Trafficking Protein) was selected for in vitro experimental validation to assess its role in glioma progression. RESULTS PTMs were found to influence glioma prognosis significantly. Dysregulation in specific pathways, such as glutathionylation and citrullination, was correlated with more aggressive clinical features. The prognostic model, comprising DEGs such as TOM1L1, demonstrated high predictive accuracy (c-index = 0.867)-the scores derived from the model strongly correlated with glioma progression indicators. In vitro experiments revealed that TOM1L1 facilitates malignant progression by modulating PTM pathways, confirming its functional role in glioma. CONCLUSION Our study establishes the first comprehensive PTM atlas in gliomas, revealing subtype-specific modification patterns with clinical and therapeutic implications. TOM1L1 emerges as a promising prognostic biomarker and a potential therapeutic intervention target. Targeting PTM pathways may offer novel strategies for glioma treatment, enhancing patient outcomes.
Collapse
Affiliation(s)
- Zhipeng Jiang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Hanxue Huang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaP.R. China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of EducationCentral South UniversityChangshaP.R. China
| | - Youwei Guo
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Zihan Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Hailong Huang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Wen Yin
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Haoxuan Huang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Lei Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCentral South UniversityChangshaHunanP.R. China
| | - Weidong Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCentral South UniversityChangshaHunanP.R. China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Caiping Ren
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCentral South UniversityChangshaHunanP.R. China
| |
Collapse
|
9
|
Bao Q, Li Y, Chen Y, Zheng J, Zhao J, Hu T. Transcriptome-Based Network Analysis Related to Histone Deacetylase Genes and Identified EMP1 as a Potential Biomarker for Prognosis in Bladder Cancer. Clin Genitourin Cancer 2025; 23:102262. [PMID: 39603145 DOI: 10.1016/j.clgc.2024.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Abnormal expression and function of histone deacetylases (HDACs) are closely associated with the development of bladder cancer (BCa). Systematic elucidation of the role of HDACs in BCa is expected to improve BCa prognosis and treatment strategies. METHODS We explored the correlation and expression patterns of HDAC family genes in BCa. Consensus clustering was employed to categorize BCa into subtypes based on HDAC expression profiles. Differential analysis, pathway enrichment analysis, and drug responsiveness evaluation were conducted to characterize HDAC subtypes. Then, a prognostic model based on HDAC cluster related genes was constructed and validated across multiple cohorts. RESULTS We identified distinct HDAC expression patterns and correlations with immune cell infiltration and enrichment of pathways in cancer, highlighting their role in BCa. Consensus clustering revealed 2 HDAC gene subtypes. Gene cluster 1 showed worse survival, higher clinical stage, and lower immune cell infiltration compared to gene cluster 2. Additionally, pathway enrichment analysis revealed differences in tumor-promoting pathways between the clusters. Moreover, gene cluster 1 exhibited higher resistance to Rho kinase inhibitor drugs. Multi-omic analysis unveiled unique mutation and CNV profiles between the clusters, indicating distinct molecular features. Furthermore, a HDAC gene-related prognostic model demonstrated robust predictive accuracy and identified EMP1 as a key prognostic gene associated with poor survival and enriched metastatic pathways. CONCLUSION Our study provides comprehensive insights into the landscape of HDACs in BCa, elucidating their roles in tumor heterogeneity, immune modulation, drug responsiveness, and molecular features. EMP1 is a potential therapeutic target and prognostic marker for BCa.
Collapse
Affiliation(s)
- Qiong Bao
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yan Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu Chen
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiang Zhao
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Ting Hu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
10
|
Liang R, Ding D, Li Y, Lan T, Ryabtseva S, Huang S, Ren J, Huang H, Wei B. HDACi combination therapy with IDO1i remodels the tumor microenvironment and boosts antitumor efficacy in colorectal cancer with microsatellite stability. J Nanobiotechnology 2024; 22:753. [PMID: 39676171 DOI: 10.1186/s12951-024-02936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/16/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Immunotherapy for colorectal cancer (CRC) with microsatellite stability (MSS) and mismatch repair proficiency (pMMR) has shown limited success in clinical trials. The combination of immunomodulators and immune checkpoint inhibitors (ICIs) is a potential strategy for treating CRC. METHODS Histone deacetylase (HDAC) and indoleamine 2,3-dioxygenase 1 (IDO1) expression in CRC tissues and adjacent normal tissues was analyzed via database analysis, immunohistochemistry, and western blotting. A nanodrug designated as NP-I/P was subsequently formulated, encapsulating an IDO1 inhibitor (IDO1i; namely, epacadostat) and an immunomodulatory HDAC inhibitor (HDACi; namely, panobinostat). The antitumor efficacy of the nanoparticles and their effects on tumor microenvironment features were evaluated via in vitro and in vivo experiments. RESULTS In the present study, we found that HDAC overexpression and IDO1 expression were attenuated in MSS/pMMR CRC. Thus, a nanodrug designated as NP-I/P was formulated to encapsulate epacadostat and panobinostat. In vitro, NP-I/P treatment promoted the apoptosis of tumor cells and induced the release of damage-associated molecular patterns, thereby leading to cell death-associated immune activation. The in vivo results revealed that NP-I/P treatment reversed the immunosuppressive phenotype of the microenvironment by inducing tumor immunogenic cell death (ICD), promoting CD8+ T cell infiltration, and reducing the numbers of Tregs, tumor-associated macrophages, and myeloid-derived suppressor cells. Finally, the results of the patient-derived xenograft and patient-derived organoid models demonstrated that NP-I/P treatment triggered tumor cell death and modulated the immune microenvironment in human CRC. CONCLUSION The combination of IDO1 and HDAC inhibitors represents a promising strategy for CRC treatment, and NP-I/P is a candidate for clinical trials.
Collapse
Affiliation(s)
- Rongpu Liang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, P.R. China
- Department of Gastrointestinal Surgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Dongbing Ding
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, P.R. China
- Department of Gastrointestinal Surgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Yiquan Li
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, P.R. China
| | - Tianyun Lan
- Central Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Svetlana Ryabtseva
- Center of Electronic and Light Microscopy, Institute of Physiology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Shengxin Huang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, P.R. China
| | - Jiannan Ren
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, P.R. China
| | - He Huang
- Department of Gastrointestinal Surgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China.
- Department of Gastrointestinal Surgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, P.R. China.
| | - Bo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, P.R. China.
- Department of Gastrointestinal Surgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China.
| |
Collapse
|
11
|
Huo G, Lin Y, Liu L, He Y, Qu Y, Liu Y, Zhu R, Wang B, Gong Q, Han Z, Yin H. Decoding ferroptosis: transforming orthopedic disease management. Front Pharmacol 2024; 15:1509172. [PMID: 39712490 PMCID: PMC11659002 DOI: 10.3389/fphar.2024.1509172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
As a mechanism of cell death, ferroptosis has gained popularity since 2012. The process is distinguished by iron toxicity and phospholipid accumulation, in contrast to autophagy, apoptosis, and other cell death mechanisms. It is implicated in the advancement of multiple diseases across the body. Researchers currently know that osteosarcoma, osteoporosis, and other orthopedic disorders are caused by NRF2, GPX4, and other ferroptosis star proteins. The effective relief of osteoarthritis symptoms from deterioration has been confirmed by clinical treatment with multiple ferroptosis inhibitors. At the same time, it should be reminded that the mechanisms involved in ferroptosis that regulate orthopedic diseases are not currently understood. In this manuscript, we present the discovery process of ferroptosis, the mechanisms involved in ferroptosis, and the role of ferroptosis in a variety of orthopedic diseases. We expect that this manuscript can provide a new perspective on clinical diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Guanlin Huo
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lusheng Liu
- Department of Acupuncture and Moxibustion, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqi He
- Department of Blood Transfusion, Lu’an People’s Hospital, The Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Yi Qu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yang Liu
- Orthopaedic Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Renhe Zhu
- Department of Blood Transfusion, Lu’an People’s Hospital, The Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Bo Wang
- Department of Orthopaedics, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Qing Gong
- Orthopaedic Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Zhongyu Han
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongbing Yin
- Orthopedic Center, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
12
|
Skouras P, Markouli M, Papadatou I, Piperi C. Targeting epigenetic mechanisms of resistance to chemotherapy in gliomas. Crit Rev Oncol Hematol 2024; 204:104532. [PMID: 39406277 DOI: 10.1016/j.critrevonc.2024.104532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Glioma, an aggressive type of brain tumors of glial origin is highly heterogeneous, posing significant treatment challenges due to its intrinsic resistance to conventional therapeutic schemes. It is characterized by an interplay between epigenetic and genetic alterations in key signaling pathways which further endorse their resistance potential. Aberrant DNA methylation patterns, histone modifications and non-coding RNAs may alter the expression of genes associated with drug response and cell survival, induce gene silencing or deregulate key pathways contributing to glioma resistance. There is evidence that epigenetic plasticity enables glioma cells to adapt dynamically to therapeutic schemes and allow the formation of drug-resistant subpopulations. Furthermore, the tumor microenvironment adds an extra input on epigenetic regulation, increasing the complexity of resistance mechanisms. Herein, we discuss epigenetic changes conferring to drug resistance mechanisms in gliomas in order to delineate novel therapeutic targets and potential approaches that will enable personalized treatment.
Collapse
Affiliation(s)
- Panagiotis Skouras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece; 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Greece.
| | - Mariam Markouli
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Ioanna Papadatou
- University Research Institute for the Study of Genetic & Malignant Disorders in Childhood, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece.
| |
Collapse
|
13
|
Omar MH, Emam SH, Mikhail DS, Elmeligie S. Combretastatin A-4 based compounds as potential anticancer agents: A review. Bioorg Chem 2024; 153:107930. [PMID: 39504638 DOI: 10.1016/j.bioorg.2024.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
The current review discusses the importance of combretastatin A-4 (CA-4) as a lead compound of microtubule targeting agents. CA-4 holds a unique place among naturally occurring compounds having cytotoxic activity. In this review an overall picture of design strategies, structure-activity relationship, synthesis, cytotoxic activity, and binding interactions of promising CA-4 analogues, are discussed and arranged chronologically from 2016 to early 2023. Also, this review emphasizes their biological activity as anticancer agents, within an overview of clinical application limitation and suggested strategies to overcome. Dual targeting tubulin inhibitors showed highpotentialto surpass medication resistance and provide synergistic efficacy. Linking platinum (IV), amino acids, and HDAC targeting moieties to active tubulin inhibitorsproduced potent active compounds. Analogues of CA-4 bridged with azetidin-2-one, pyrazole, sulfide, or carrying selenium atom exhibited cytotoxic action against a variety of malignant cell lines through different pathways.
Collapse
Affiliation(s)
- Mai H Omar
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Soha H Emam
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Demiana S Mikhail
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Salwa Elmeligie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
14
|
Duan X, Xing Z, Qiao L, Qin S, Zhao X, Gong Y, Li X. The role of histone post-translational modifications in cancer and cancer immunity: functions, mechanisms and therapeutic implications. Front Immunol 2024; 15:1495221. [PMID: 39620228 PMCID: PMC11604627 DOI: 10.3389/fimmu.2024.1495221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/18/2024] [Indexed: 12/11/2024] Open
Abstract
Histones play crucial roles in both promoting and repressing gene expression, primarily regulated through post-translational modifications (PTMs) at specific amino acid residues. Histone PTMs, including methylation, acetylation, ubiquitination, phosphorylation, lactylation, butyrylation, and propionylation, act as important epigenetic markers. These modifications influence not only chromatin compaction but also gene expression. Their importance extends to the treatment and prevention of various human diseases, particularly cancer, due to their involvement in key cellular processes. Abnormal histone modifications and the enzymes responsible for these alterations often serve as critical drivers in tumor cell proliferation, invasion, apoptosis, and stemness. This review introduces key histone PTMs and the enzymes responsible for these modifications, examining their impact on tumorigenesis and cancer progression. Furthermore, it explores therapeutic strategies targeting histone PTMs and offers recommendations for identifying new potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaohong Duan
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Zhiyao Xing
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Jinnan Hospital, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Jinnan Hospital, Tianjin, China
| | - Lu Qiao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shan Qin
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xuejing Zhao
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Yanhua Gong
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xueren Li
- Department of Respiratory Medicine, Jinnan Hospital, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Jinnan Hospital, Tianjin, China
| |
Collapse
|
15
|
Xue M, Ma L, Zhang P, Yang H, Wang Z. New insights into non-small cell lung cancer bone metastasis: mechanisms and therapies. Int J Biol Sci 2024; 20:5747-5763. [PMID: 39494330 PMCID: PMC11528464 DOI: 10.7150/ijbs.100960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
Bone metastasis is a common cause of death in patients with non-small cell lung cancer (NSCLC), with approximately 30-40% of NSCLC patients eventually developing bone metastases. Bone metastasis, especially the occurrence of skeletal-related events (SREs), significantly reduces overall survival (OS) and quality of life (QoL) in patients. Although bone-targeting agents (BTAs) have been shown to reduce SREs and improve QoL in NSCLC patients with bone metastases, the prognosis for these patients remains poor. Understanding the underlying molecular pathways of bone metastasis is crucial for the development of novel therapeutic approaches. Bone metastasis is a complex, multistep process that involves interactions between tumor cells and the bone microenvironment. The bone microenvironment provides a fertile soil for tumor cells, and crosstalk among various signaling pathways and secreted factors also plays a role in regulating the occurrence and progression of bone metastasis in NSCLC. In this article, we provide a comprehensive review of the process, regulatory mechanisms, and clinical treatment in NSCLC bone metastasis, with the hope of assisting with clinical treatment.
Collapse
Affiliation(s)
- Man Xue
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Ma
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hui Yang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Oncology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaoxia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Jasim SA, Altalbawy FMA, Abohassan M, Oghenemaro EF, Bishoyi AK, Singh RP, Kaur P, Sivaprasad GV, Mohammed JS, Hulail HM. Histone Deacetylases (HDACs) Roles in Inflammation-mediated Diseases; Current Knowledge. Cell Biochem Biophys 2024:10.1007/s12013-024-01587-0. [PMID: 39419931 DOI: 10.1007/s12013-024-01587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
The histone acetyl transferases (HATs) and histone deacetylases (HDACs), which are mostly recognized for their involvement in regulating chromatin remodeling via histone acetylation/deacetylation, have been shown to also change several non-histone proteins to regulate other cellular processes. Acetylation affects the activity or function of cytokine receptors, nuclear hormone receptors, intracellular signaling molecules, and transcription factors in connection to inflammation. Some small-molecule HDAC inhibitors are utilized as anticancer medications in clinical settings due to their capability to regulate cellular growth arrest, differentiation, and death. Here, we summarize our present knowledge of the innate and adaptive immunological pathways that classical HDAC enzymes control. The aim is to justify the targeted (or non-targeted) use of inhibitors against certain HDAC enzymes in inflammatory diseases such as arthritis, inflammatory bowel diseases (IBD), airways inflammation and neurological diseases.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Delta State, Nigeria
| | - Ashok Kumar Bishoyi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Ravindra Pal Singh
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | | | - Hanen Mahmod Hulail
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
17
|
Xu T, Fang Y, Gu Y, Xu D, Hu T, Yu T, Xu YY, Shen HY, Ma P, Shu Y. HDAC inhibitor SAHA enhances antitumor immunity via the HDAC1/JAK1/FGL1 axis in lung adenocarcinoma. J Immunother Cancer 2024; 12:e010077. [PMID: 39384195 PMCID: PMC11474878 DOI: 10.1136/jitc-2024-010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Histone deacetylase (HDAC), a kind of protease that regulates gene expression by modifying protein acetylation levels, is usually aberrantly activated in tumors. The approved pan-HDAC inhibitors (HDACi) have exhibited clinical benefits for hematopoietic malignancies. Recently, HDACis have emerged as enhancers of antitumor immunity. However, the effect of HDACs on the tumor immune microenvironment of lung adenocarcinoma (LUAD) and the underlying mechanism is largely unknown. METHODS C57BL/6J and BALB/c nude mice with subcutaneous tumors were used for in vivo therapeutic effects and mechanistic investigations. Flow cytometry was used to measure the toxicity and exhaustion of human CD8+T cells after co-culturing with tumor cells and to determine the immunophenotype of tumor-infiltrating CD8+T cells. A series of experimental techniques, including RNA sequencing, quantitative PCR, western blot, ELISA, mass spectrometry, co-immunoprecipitation, chromatin immunoprecipitation and immunohistochemistry, were used to explore the underlying molecular mechanism. RESULTS The pan-HDACi vorinostat (SAHA) promoted CD8+T cell infiltration and effector function in LUAD through suppressing FGL1, a newly identified major ligand of LAG-3. Mechanistically, SAHA inhibited the activity of HDAC1, an essential deacetylase of JAK1. This increased the acetylation level of JAK1 at lysine 1109, thus promoting its proteasomal degradation and subsequently reducing STAT3-driven FGL1 transcription. The combination regimen of SAHA and anti-LAG-3 therapy was further explored in an immunocompetent LUAD mouse model. Compared with those receiving control or single agent treatments, mice receiving combination therapy exhibited a lower tumor burden and superior CD8+T-cell-killing activity. CONCLUSIONS Our results revealed a novel mechanism by which the HDACi SAHA potentiates CD8+T-cell-mediated antitumor activity through the HDAC1/JAK1/FGL1 axis, providing a rationale for the combined use of HDACis and immunotherapy.
Collapse
Affiliation(s)
- Tingting Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Oncology, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yuan Fang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunru Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Duo Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tong Hu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang-Yue Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao-Yang Shen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Oncology, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Soltan OM, Abdelrahman KS, Bass AKA, Takizawa K, Narumi A, Konno H. Design of Multi-Target drugs of HDACs and other Anti-Alzheimer related Targets: Current strategies and future prospects in Alzheimer's diseases therapy. Bioorg Chem 2024; 151:107651. [PMID: 39029320 DOI: 10.1016/j.bioorg.2024.107651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Alzheimer disease (AD) is the most prevalent form of dementia that develops spontaneously in the elderly. It's worth mentioning that as people age, the epigenetic profile of the central nervous system cells changes, which may speed up the development of various neurodegenerative disorders including AD. Histone deacetylases (HDACs) are a class of epigenetic enzymes that can control gene expression without altering the gene sequence. Moreover, a promising strategy for multi-target hybrid design was proposed to potentially improve drug efficacy and reduce side effects. These hybrids are monocular drugs that contain various pharmacophore components and have the ability to bind to different targets at the same time. The HDACs ability to synergistically boost the performance of other anti-AD drugs, as well as the ease with which HDACs inhibitor cap group, can be modified. This has prompted numerous medicinal chemists to design a novel generation of HDACs multi-target inhibitors. Different HDACs inhibitors and other ones such as acetylcholinesterase, butyryl-cholinesterase, phosphodiesterase 9, phosphodiesterase 5 or glycogen synthase kinase 3β inhibitors were merged into hybrids for treatment of AD. This review goes over the scientific rationale for targeting HDACs along with several other crucial targets in AD therapy. This review presents the latest hybrids of HDACs and other AD target pharmacophores.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Kamal S Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Amr K A Bass
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia 6131567, Egypt
| | - Kazuki Takizawa
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroyuki Konno
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan.
| |
Collapse
|
19
|
Yeo S, Jung S, Kim H, Ahn JH, Hwang SJ. 4-Hexylresorcinol Loaded Solid Lipid Nanoparticles for Enhancing Anticancer Activity. Pharmaceuticals (Basel) 2024; 17:1296. [PMID: 39458937 PMCID: PMC11514591 DOI: 10.3390/ph17101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cancer is one of the most significant threats to human health. Following surgical excision, chemotherapy is an effective strategy against remaining cancer cells. 4-hexylresorcinol (4-HR) has anti-cancer properties and exhibits hydrophobicity-induced aggregation in the blood that has trouble with targeted tumor delivery and cellular uptake of the drug. The purpose of this study is to encapsulate 4-HR into solid lipid nanoparticles (SLNs) to enhance its anti-cancer effect by avoiding aggregation and facilitating cellular uptake. METHODS 4-HR SLNs were prepared via hot melt homogenization with sonication. SLN characteristics were assessed by analyzing particle size, zeta potential, and drug release. Cytotoxicity, as an indicator of the anti-cancer effect, was evaluated against HeLa (cervical cancer in humans), A549 (lung cancer in humans), and CT-26 (colon carcinoma in mice) cell lines. RESULTS Particle size ranged from 169.4 to 644.8 nm, and zeta potential ranged from -19.8 to -40.3 mV, which are conducive to cellular uptake. Entrapment efficiency (EE) of 4-HR was found to be 75.0-96.5%. The cytotoxicity of 4-HR-loaded SLNs demonstrated enhanced anti-cancer effects compared to pure 4-HR. The enhancement of anti-cancer effects depended on reduced particle size based on cellular uptake, the EE, and the cell type. CONCLUSIONS These findings imply that 4-HR-loaded SLN is a promising strategy for chemotherapy in cancer treatment.
Collapse
Affiliation(s)
- Sooho Yeo
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea;
| | - Sukkyun Jung
- Research Center of Barunbarum Co., Seoul 06776, Republic of Korea;
| | - Haneul Kim
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea;
| | - Jun-Hyun Ahn
- Department of Biopharmaceutical Engineering, Hannam University, 1646 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea;
| | - Sung-Joo Hwang
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea;
| |
Collapse
|
20
|
Kuang S, Zhang J, Huang N, Zhang J, Chen B, Wang L, Liu M. The cumulative antitumor effects of regorafenib and radiotherapy in hepatocellular carcinoma. Mol Carcinog 2024; 63:1738-1749. [PMID: 38837427 DOI: 10.1002/mc.23769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
Regorafenib is a second-line standard treatment for hepatocellular carcinoma (HCC). However, the efficacy of regorafenib is often limited due to drug resistance, individual differences among patients, and irrational drug use. Radiotherapy (RT) is an important method of localized HCC treatment, and combining RT with other therapies may exert a synergetic antitumor effect. Platelet-derived growth factor receptor-like (PDGFRL) is a tumor suppressor in various solid tumors. However, the function of PDGFRL in HCC is still unknown. In this study, we explored whether regorafenib and RT exert a synergetic effect on the treatment of HCC. The antitumor effect and mechanisms of the combination of regorafenib and RT were verified in a xenograft mouse model in vivo and in HCC cells in vitro. The combination treatment significantly inhibited cell proliferation and promoted apoptosis both in vitro and in vivo. PDGFRL, a potential target of regorafenib, was increased after cumulative treatment in HCC cells, and PDGFRL suppressed HCC cell proliferation and promoted apoptosis by inhibiting STAT3 pathway activation. Furthermore, the cumulative antitumor effect was dependent on the upregulated expression of PDGFRL and inhibition of STAT3 signaling pathway activation in HCC cells. This study increased the understanding of the molecular mechanism underlying the effect of regorafenib plus RT on HCC and provided a theoretical basis for the clinical practice of HCC.
Collapse
Affiliation(s)
- Shuwen Kuang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiajun Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Huang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Chen
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Maciejewski K, Giers M, Oleksiewicz U, Czerwinska P. The Epigenetic Modifiers HDAC2 and HDAC7 Inversely Associate with Cancer Stemness and Immunity in Solid Tumors. Int J Mol Sci 2024; 25:7841. [PMID: 39063083 PMCID: PMC11277355 DOI: 10.3390/ijms25147841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Dysregulation of histone deacetylases (HDACs) is closely associated with cancer development and progression. Here, we comprehensively analyzed the association between all HDAC family members and several clinicopathological and molecular traits of solid tumors across 22 distinct tumor types, focusing primarily on cancer stemness and immunity. To this end, we used publicly available TCGA data and several bioinformatic tools (i.e., GEPIA2, TISIDB, GSCA, Enrichr, GSEA). Our analyses revealed that class I and class II HDAC proteins are associated with distinct cancer phenotypes. The transcriptomic profiling indicated that class I HDAC members, including HDAC2, are positively associated with cancer stemness, while class IIA HDAC proteins, represented by HDAC7, show a negative correlation to cancer stem cell-like phenotypes in solid tumors. In contrast to tumors with high amounts of HDAC7 proteins, the transcriptome signatures of HDAC2-overexpressing cancers are significantly enriched with biological terms previously determined as stemness-associated genes. Moreover, high HDAC2-expressing tumors are depleted with immune-related processes, and HDAC2 expression correlates with tumor immunosuppressive microenvironments. On the contrary, HDAC7 upregulation is significantly associated with enhanced immune responses, followed by enriched infiltration of CD4+ and CD8+ T cells. This is the first comprehensive report demonstrating robust and versatile associations between specific HDAC family members, cancer dedifferentiation, and anti-tumor immune statuses in solid tumors.
Collapse
Affiliation(s)
- Kacper Maciejewski
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (K.M.); (M.G.)
| | - Marek Giers
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (K.M.); (M.G.)
| | - Urszula Oleksiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Patrycja Czerwinska
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (K.M.); (M.G.)
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
22
|
Tago T, Sakata M, Kanazawa M, Yamamoto S, Ishii K, Toyohara J. Preclinical validation of a novel brain-penetrant PET ligand for visualization of histone deacetylase 6: a potential imaging target for neurodegenerative diseases. Eur J Nucl Med Mol Imaging 2024; 51:2193-2203. [PMID: 38441662 DOI: 10.1007/s00259-024-06666-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/25/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE Histone deacetylase 6 (HDAC6) has emerged as a therapeutic target for neurodegenerative diseases such as Alzheimer's disease. Noninvasive imaging of HDAC6 in the brain by positron emission tomography (PET) would accelerate research into its roles in these diseases. We recently discovered an 18F-labeled derivative of the selective HDAC6 inhibitor SW-100 ([18F]FSW-100) as a potential candidate for brain HDAC6 radioligand. As a mandatory step prior to clinical translation, we performed preclinical validation of [18F]FSW-100. METHODS Process validation of [18F]FSW-100 radiosynthesis for clinical use and assessment of preclinical toxicity and radiation dosimetry estimated from mouse distribution data were performed. In vitro selectivity of FSW-100 for 28 common receptors in the brain and HDAC isoforms was characterized. [18F]FSW-100 PET imaging was performed in non-human primates in a conscious state to estimate the feasibility of HDAC6 imaging in humans. RESULTS Three consecutive validation runs of the automated radiosynthesis gave [18F]FSW-100 injections with radiochemical yields of 12%, and the injections conformed to specified quality control criteria for batch release. No acute toxicity was observed for non-radiolabeled FSW-100 or radioactivity decayed [18F]FSW-100 injection, and the former was negative in the Ames test. The whole-body effective dose estimated from biodistribution in mice was within the range of that of previously reported 18F-radioligands in humans. In vitro selectivity against common receptors and other HDAC isoforms was confirmed. [18F]FSW-100 demonstrated good penetration in monkey brain, and in vivo blocking studies suggested that the uptake was specific. CONCLUSION These results support the clinical utility of [18F]FSW-100 for in vivo imaging of HDAC6 in the brain.
Collapse
Affiliation(s)
- Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Muneyuki Sakata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | | | | | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
| |
Collapse
|
23
|
Schiedlauske K, Deipenbrock A, Pflieger M, Hamacher A, Hänsel J, Kassack MU, Kurz T, Teusch NE. Novel Histone Deacetylase (HDAC) Inhibitor Induces Apoptosis and Suppresses Invasion via E-Cadherin Upregulation in Pancreatic Ductal Adenocarcinoma (PDAC). Pharmaceuticals (Basel) 2024; 17:752. [PMID: 38931419 PMCID: PMC11206922 DOI: 10.3390/ph17060752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal form of pancreatic cancer characterized by therapy resistance and early metastasis, resulting in a low survival rate. Histone deacetylase (HDAC) inhibitors showed potential for the treatment of hematological malignancies. In PDAC, the overexpression of HDAC 2 is associated with the epithelial-mesenchymal transition (EMT), principally accompanied by the downregulation of the epithelial marker E-cadherin and increased metastatic capacity. The effector cytokine transforming growth factor-β (TGF β) is known to be a major inducer of the EMT in PDAC, leading to high metastatic and invasive potential. In addition, the overexpression of HDAC 6 in PDAC is associated with reduced apoptosis. Here, we have demonstrated that a novel HDAC 2/6 inhibitor not only significantly increased E-cadherin expression in PANC-1 cells (5.5-fold) and in 3D PDAC co-culture spheroids (2.5-fold) but was also able to reverse the TGF-β-induced downregulation of E-cadherin expression. Moreover, our study indicates that the HDAC inhibitor mediated re-differentiation resulting in a significant inhibition of tumor cell invasion by approximately 60% compared to control. In particular, we have shown that the HDAC inhibitor induces both apoptosis (2-fold) and cell cycle arrest. In conclusion, the HDAC 2/6 inhibitor acts by suppressing invasion via upregulating E-cadherin mediated by HDAC 2 blockade and by inducing cell cycle arrest leading to apoptosis via HDAC 6 inhibition. These results suggest that the HDAC 2/6 inhibitor might represent a novel therapeutic strategy for the treatment of PDAC tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Katja Schiedlauske
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Alina Deipenbrock
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marc Pflieger
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Alexandra Hamacher
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Jan Hänsel
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Matthias U. Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Nicole E. Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
24
|
Gao X, Zuo X, Min T, Wan Y, He Y, Jiang B. Traditional Chinese medicine for acute myelocytic leukemia therapy: exploiting epigenetic targets. Front Pharmacol 2024; 15:1388903. [PMID: 38895633 PMCID: PMC11183326 DOI: 10.3389/fphar.2024.1388903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy with historically high mortality rates. The treatment strategies for AML is still internationally based on anthracyclines and cytarabine, which remained unchanged for decades. With the rapid advance on sequencing technology, molecular targets of leukemogenesis and disease progression related to epigenetics are constantly being discovered, which are important for the prognosis and treatment of AML. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, low toxicity and limited side effects. Several biologically active ingredients of TCM are effective against AML. This review focuses on bioactive compounds in TCM targeting epigenetic mechanisms to address the complexities and heterogeneity of AML.
Collapse
Affiliation(s)
- Xinlong Gao
- Naval Medical Center of PLA, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xu Zuo
- Naval Medical Center of PLA, Shanghai, China
| | | | - Yu Wan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ying He
- Naval Medical Center of PLA, Shanghai, China
| | - Beier Jiang
- Naval Medical Center of PLA, Shanghai, China
| |
Collapse
|
25
|
Prabhu KS, Sadida HQ, Kuttikrishnan S, Junejo K, Bhat AA, Uddin S. Beyond genetics: Exploring the role of epigenetic alterations in breast cancer. Pathol Res Pract 2024; 254:155174. [PMID: 38306863 DOI: 10.1016/j.prp.2024.155174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Breast cancer remains a major global health challenge. Its rising incidence is attributed to factors such as delayed diagnosis, the complexity of its subtypes, and increasing drug resistance, all contributing to less-than-ideal patient outcomes. Central to the progression of breast cancer are epigenetic aberrations, which significantly contribute to drug resistance and the emergence of cancer stem cell traits. These include alterations in DNA methylation, histone modifications, and the expression of non-coding RNAs. Understanding these epigenetic changes is crucial for developing advanced breast cancer management strategies despite their complexity. Investigating these epigenetic modifications offers the potential for novel diagnostic markers, more accurate prognostic indicators, and the identification of reliable predictors of treatment response. This could lead to the development of new targeted therapies. However, this requires sustained, focused research efforts to navigate the challenges of understanding breast cancer carcinogenesis and its epigenetic underpinnings. A deeper understanding of epigenetic mechanisms in breast cancer can revolutionize personalized medicine. This could lead to significant improvements in patient care, including early detection, precise disease stratification, and more effective treatment options.
Collapse
Affiliation(s)
- Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Hana Q Sadida
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer Research Program, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Kulsoom Junejo
- General Surgery Department, Hamad General Hospital, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Ajaz A Bhat
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer Research Program, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
26
|
Sadida HQ, Abdulla A, Marzooqi SA, Hashem S, Macha MA, Akil ASAS, Bhat AA. Epigenetic modifications: Key players in cancer heterogeneity and drug resistance. Transl Oncol 2024; 39:101821. [PMID: 37931371 PMCID: PMC10654239 DOI: 10.1016/j.tranon.2023.101821] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Cancer heterogeneity and drug resistance remain pivotal obstacles in effective cancer treatment and management. One major contributor to these challenges is epigenetic modifications - gene regulation that does not involve changes to the DNA sequence itself but significantly impacts gene expression. As we elucidate these phenomena, we underscore the pivotal role of epigenetic modifications in regulating gene expression, contributing to cellular diversity, and driving adaptive changes that can instigate therapeutic resistance. This review dissects essential epigenetic modifications - DNA methylation, histone modifications, and chromatin remodeling - illustrating their significant yet complex contributions to cancer biology. While these changes offer potential avenues for therapeutic intervention due to their reversible nature, the interplay of epigenetic and genetic changes in cancer cells presents unique challenges that must be addressed to harness their full potential. By critically analyzing the current research landscape, we identify knowledge gaps and propose future research directions, exploring the potential of epigenetic therapies and discussing the obstacles in translating these concepts into effective treatments. This comprehensive review aims to stimulate further research and aid in developing innovative, patient-centered cancer therapies. Understanding the role of epigenetic modifications in cancer heterogeneity and drug resistance is critical for scientific advancement and paves the way towards improving patient outcomes in the fight against this formidable disease.
Collapse
Affiliation(s)
- Hana Q Sadida
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Alanoud Abdulla
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Sara Al Marzooqi
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Sheema Hashem
- Laboratory of Genomic Medicine, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Jammu & Kashmir, India
| | - Ammira S Al-Shabeeb Akil
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar.
| | - Ajaz A Bhat
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar.
| |
Collapse
|
27
|
Schreiber AR, Kagihara JA, Corr BR, Davis SL, Lieu C, Kim SS, Jimeno A, Camidge DR, Williams J, Heim AM, Martin A, DeMattei JA, Holay N, Triplett TA, Eckhardt SG, Litwiler K, Winkler J, Piscopio AD, Diamond JR. First-in-Human Dose-Escalation Study of the Novel Oral Depsipeptide Class I-Targeting HDAC Inhibitor Bocodepsin (OKI-179) in Patients with Advanced Solid Tumors. Cancers (Basel) 2023; 16:91. [PMID: 38201519 PMCID: PMC10778198 DOI: 10.3390/cancers16010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
(1) Background: Histone deacetylases (HDACs) play a critical role in epigenetic signaling in cancer; however, available HDAC inhibitors have limited therapeutic windows and suboptimal pharmacokinetics (PK). This first-in-human phase I dose escalation study evaluated the safety, PK, pharmacodynamics (PDx), and efficacy of the oral Class I-targeting HDAC inhibitor bocodepsin (OKI-179). (2) Patients and Methods: Patients (n = 34) with advanced solid tumors were treated with OKI-179 orally once daily in three schedules: 4 days on 3 days off (4:3), 5 days on 2 days off (5:2), or continuous in 21-day cycles until disease progression or unacceptable toxicity. Single-patient escalation cohorts followed a standard 3 + 3 design. (3) Results: The mean duration of treatment was 81.2 (range 11-447) days. The most frequent adverse events in all patients were nausea (70.6%), fatigue (47.1%), and thrombocytopenia (41.2%). The maximum tolerated dose (MTD) of OKI-179 was 450 mg with 4:3 and 200 mg with continuous dosing. Dose-limiting toxicities included decreased platelet count and nausea. Prolonged disease control was observed, including two patients with platinum-resistant ovarian cancer. Systemic exposure to the active metabolite exceeded the preclinical efficacy threshold at doses lower than the MTD and was temporally associated with increased histone acetylation in circulating T cells. (4) Conclusions: OKI-179 has a manageable safety profile at the recommended phase 2 dose (RP2D) of 300 mg daily on a 4:3 schedule with prophylactic oral antiemetics. OKI-179 is currently being investigated with the MEK inhibitor binimetinib in patients with NRAS-mutated melanoma in the phase 2 Nautilus trial.
Collapse
Affiliation(s)
- Anna R. Schreiber
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - Jodi A. Kagihara
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
- Division of Medical Oncology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Bradley R. Corr
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - S. Lindsey Davis
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - Christopher Lieu
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - Sunnie S. Kim
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - Antonio Jimeno
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | - D. Ross Camidge
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | | | | | - Anne Martin
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| | | | - Nisha Holay
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Todd A. Triplett
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - S. Gail Eckhardt
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77054, USA
| | | | | | | | - Jennifer R. Diamond
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (D.R.C.)
| |
Collapse
|
28
|
Drakontaeidi A, Pontiki E. A Review on Molecular Docking on HDAC Isoforms: Novel Tool for Designing Selective Inhibitors. Pharmaceuticals (Basel) 2023; 16:1639. [PMID: 38139766 PMCID: PMC10746130 DOI: 10.3390/ph16121639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/24/2023] Open
Abstract
Research into histone deacetylases (HDACs) has experienced a remarkable surge in recent years. These enzymes are key regulators of several fundamental biological processes, often associated with severe and potentially fatal diseases. Inhibition of their activity represents a promising therapeutic approach and a prospective strategy for the development of new therapeutic agents. A critical aspect of their inhibition is to achieve selectivity in terms of enzyme isoforms, which is essential to improve treatment efficacy while reducing undesirable pleiotropic effects. The development of computational chemistry tools, particularly molecular docking, is greatly enhancing the precision of designing molecules with inherent potential for specific activity. Therefore, it was considered necessary to review the molecular docking studies conducted on the major isozymes of the enzyme in order to identify the specific interactions associated with each selective HDAC inhibitor. In particular, the most critical isozymes of HDAC (1, 2, 3, 6, and 8) have been thoroughly investigated within the scope of this review.
Collapse
Affiliation(s)
| | - Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
29
|
Manna PR, Yang S, Reddy PH. Epigenetic Dysregulation and Its Correlation with the Steroidogenic Machinery Impacting Breast Pathogenesis: Data Mining and Molecular Insights into Therapeutics. Int J Mol Sci 2023; 24:16488. [PMID: 38003678 PMCID: PMC10671690 DOI: 10.3390/ijms242216488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer (BC) is a heterogeneous condition and comprises molecularly distinct subtypes. An imbalance in the levels of epigenetic histone deacetylases (HDACs), modulating estrogen accumulation, especially 17β-estradiol (E2), promotes breast tumorigenesis. In the present study, analyses of The Cancer Genome Atlas (TCGA) pan-cancer normalized RNA-Seq datasets revealed the dysregulation of 16 epigenetic enzymes (among a total of 18 members) in luminal BC subtypes, in comparison to their non-cancerous counterparts. Explicitly, genomic profiling of these epigenetic enzymes displayed increases in HDAC1, 2, 8, 10, 11, and Sirtuins (SIRTs) 6 and 7, and decreases in HDAC4-7, -9, and SIRT1-4 levels, respectively, in TCGA breast tumors. Kaplan-Meier plot analyses showed that these HDACs, with the exception of HDAC2 and SIRT2, were not correlated with the overall survival of BC patients. Additionally, disruption of the epigenetic signaling in TCGA BC subtypes, as assessed using both heatmaps and boxplots, was associated with the genomic expression of factors that are instrumental for cholesterol trafficking/utilization for accelerating estrogen/E2 levels, in which steroidogenic acute regulatory protein (STAR) mediates the rate-limiting step in steroid biosynthesis. TCGA breast samples showed diverse expression patterns of a variety of key steroidogenic markers and hormone receptors, including LIPE, CYP27A1, STAR, STARD3, CYP11A1, CYP19A1, ER, PGR, and ERBB2. Moreover, regulation of STAR-governed steroidogenic machinery was found to be influenced by various transcription factors, i.e., CREB1, CREM, SF1, NR4A1, CEBPB, SREBF1, SREBF2, SP1, FOS, JUN, NR0B1, and YY1. Along these lines, ingenuity pathway analysis (IPA) recognized a number of new targets and downstream effectors influencing BCs. Of note, genomic, epigenomic, transcriptional, and hormonal anomalies observed in human primary breast tumors were qualitatively similar in pertinent BC cell lines. These findings identify the functional correlation between dysregulated epigenetic enzymes and estrogen/E2 accumulation in human breast tumors, providing the molecular insights into more targeted therapeutic approaches involving the inhibition of HDACs for combating this life-threatening disease.
Collapse
Affiliation(s)
- Pulak R. Manna
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Shengping Yang
- Department of Biostatistics, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - P. Hemachandra Reddy
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
30
|
Divya Rajaselvi N, Jida MD, Nair DB, Sujith S, Beegum N, Nisha AR. Toxicity prediction and analysis of flavonoid apigenin as a histone deacetylase inhibitor: an in-silico approach. In Silico Pharmacol 2023; 11:34. [PMID: 37941890 PMCID: PMC10630278 DOI: 10.1007/s40203-023-00170-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Occurrence of cancer is driving up on a global scale that exerts greater implications on the physical, psychological and economic stability of the human population. In the present context, numerous research studies are being conducted to explore and discover the drug molecule as an anticancer agent. Diverse scales of flavonoids entail the human diet, and they displayed prospective curative effects against an array of ailments. Among different categories of flavonoids, apigenin a trihydroxy flavone has been proven to have various pharmacological effects. Molecular docking is a key tool in structural molecular biology and computer assisted drug design. In this study, HDAC inhibitory action of apigenin and its probable toxicity was assessed by docking study using Auto dock platform. Molecular dynamics simulation was done by using iMODS server for elucidating the stability of the receptor-ligand complex. Toxicity predictions were evaluated by using tools such as CarcinoPred for carcinogenicity study, pkCSM for ADMET analysis, ProTox-II for rodent oral toxicity, lazar for estimating mutagenicity, BOILED Egg plot analysis for examining the gastrointestinal absorption and blood brain permeability, PASS prediction to identify the various biological functions and DruLiTo program to compute the drug likeness property. Graphical abstract
Collapse
Affiliation(s)
- N. Divya Rajaselvi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, India
- Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - M. D. Jida
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, India
- Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - Devu B. Nair
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, India
- Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - S. Sujith
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, India
- Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - Nisaath Beegum
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, India
- Kerala Veterinary and Animal Sciences University, Wayanad, India
| | - A. R. Nisha
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, India
- Kerala Veterinary and Animal Sciences University, Wayanad, India
| |
Collapse
|
31
|
Deng Y, Cheng Q, He J. HDAC inhibitors: Promising agents for leukemia treatment. Biochem Biophys Res Commun 2023; 680:61-72. [PMID: 37722346 DOI: 10.1016/j.bbrc.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
The essential role of epigenetic modification in the pathogenesis of a series of cancers have gradually been recognized. Histone deacetylase (HDACs), as well-known epigenetic modulators, are responsible for DNA repair, cell proliferation, differentiation, apoptosis and angiogenesis. Studies have shown that aberrant expression of HDACs is found in many cancer types. Thus, inhibition of HDACs has provided a promising therapeutic approach alternative for these patients. Since HDAC inhibitor (HDACi) vorinostat was first approved by the Food and Drug Administration (FDA) for treating cutaneous T-cell lymphoma (CTCL) in 2006, the combination of HDAC inhibitors with other molecules such as chemotherapeutic drugs has drawn much attention in current cancer treatment, especially in hematological malignancies therapy. Up to now, there have been more than twenty HDAC inhibitors investigated in clinic trials with five approvals being achieved. Indeed, Histone deacetylase inhibitors promote or enhance several different anticancer mechanisms and therefore are in evidence as potential antileukemia agents. In this review, we will focus on possible mechanisms by how HDAC inhibitors exert therapeutic benefit and their clinical utility in leukemia.
Collapse
Affiliation(s)
- Yun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Cheng
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing He
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
32
|
Hao S, Yao Z, Liu Y. Hsa_circ_0000106 Acts as a Tumor Promoter in Pancreatic Cancer by Targeting the MiR-455-3p/HDAC4. Horm Metab Res 2023; 55:722-732. [PMID: 37553012 DOI: 10.1055/a-2125-7018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Circular RNAs (circRNAs) frequently participate in pancreatic cancer (PC) progression. This study focuses on circ_0000106, a novel circRNA, and its potential function in PC development. Circ_00001106, miR-455-3p, and HDAC4 expression levels in PC were determined using qRT-PCR and immunoblotting. RNA immunoprecipitation and dual-luciferase reporter assays were performed to verify their binding interactions. Loss-of-function assays, including CCK-8, colony formation, and transwell assays, were used to estimate the proliferative and migratory properties of PC cells. A nude mouse model was constructed to assess the influence of circ_0000106 on tumor formation in vivo. A pronounced elevation of circ_0000106 and HDAC4 and a reduction of miR-455-3p in PC were observed. Circ_0000106 was prone to binding to miR-455-3p, and miR-455-3p further targeted HDAC4. Functionally, the proliferative and migratory properties of PC cells were dampened by the loss of circ_0000106 or HDAC4 and could be potentiated by miR-455-3p inhibition. Moreover, the knockdown of circ_0000106 delayed tumor growth in vivo. Additionally, the downregulation of miR-455-3p attenuated the repressive effects of circ_0000106 deficiency on PC cell migration and proliferation. Loss of HDAC4 exerted similar mitigative effects on miR-455-3p downregulation-stimulated PC cells. In conclusion, circ_0000106 promotes tumor migration and growth in PC by targeting the miR-455-3p/HDAC4 axis. These results suggest that the circ_0000106/miR-455-3p/HDAC4 network could be regarded as a latent target for PC treatment.
Collapse
Affiliation(s)
- Shunxin Hao
- Department of General Surgery, Wuhan University of Science and Technology Hospital, Wuhan, China
| | - Zhi Yao
- Department of General Surgery, Wuhan University of Science and Technology Hospital, Wuhan, China
| | - Yifeng Liu
- Department of General Surgery, Wuhan University of Science and Technology Hospital, Wuhan, China
| |
Collapse
|
33
|
Cai D, Yuan X, Cai DQ, Li A, Yang S, Yang W, Duan J, Zhuo W, Min J, Peng L, Wei J. Integrative analysis of lactylation-related genes and establishment of a novel prognostic signature for hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:11517-11530. [PMID: 37400571 DOI: 10.1007/s00432-023-04947-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/26/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Lactylation has been found to involve in regulating many types of biological process in cancers. However, research on lactylation-related genes in predicting the prognosis of hepatocellular carcinoma (HCC) remains limited. METHODS The differential expression of lactylation-related genes (EP300 and HDAC1-3) in pan-cancer were examined in public databases. HCC patient tissues were obtained for mRNA expression and lactylation level detection by RT-qPCR and western blotting. Transwell migration assay, CCK-8 assay, EDU staining assay and RNA-seq were performed to verify the potential function and mechanisms in HCC cell lines after lactylation inhibitor apicidin treatment. lmmuCellAI, quantiSeq, xCell, TIMER and CIBERSOR were used to analyze the correlation between transcription levels of lactylation-related genes and immune cell infiltration in HCC. Risk model of lactylation-related genes was constructed by LASSO regression analysis, and prediction effect of the model was evaluated. RESULT The mRNA levels of lactylation-related genes and lactylation levels were higher in HCC tissues than normal samples. The lactylation levels, cell migration, and proliferation ability of HCC cell lines were suppressed after apicidin treatment. The dysregulation of EP300 and HDAC1-3 was associated with proportion of immune cell infiltration, especially B cell. Upregulation of HDAC1 and HDAC2 was closely associated with poorer prognosis. Finally, a novel risk model, based on HDAC1 and HDAC2, was developed for prognosis prediction in HCC. CONCLUSION HDAC1 and HDAC2 are expected to become new biomarkers for HCC. Risk scoring model based on HDAC1 and HDAC2 can be used to predict the prognosis of HCC patients.
Collapse
Affiliation(s)
- Diankui Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - D Q Cai
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Cardiovascular Institute, Guangzhou, 510080, China
- General Surgery Department, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, China
| | - Ang Li
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Sijia Yang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Weibang Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Jinxin Duan
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wenfeng Zhuo
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Jun Min
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Li Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Jinxing Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
34
|
Gao Y, Li F, Ni X, Yang S, Liu H, Wu X, Liu J, Ma J. Design, synthesis and biological evaluation of VEGFR-2/HDAC dual inhibitors as multitargeted antitumor agents based on fruquintinib and vorinostat. RSC Adv 2023; 13:28462-28480. [PMID: 37771923 PMCID: PMC10523135 DOI: 10.1039/d3ra05542f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Herein, a series of 4-(benzofuran-6-yloxy)quinazoline derivatives as VEGFR-2/HDAC dual inhibitors were designed and synthesized based on fruquintinib and vorinostat. Among them, compound 13 exhibited potent inhibitory activity against VEGFR-2 and HDAC1 with IC50 values of 57.83 nM and 9.82 nM, and displayed moderate to significant antiproliferative activity against MCF-7, A549, HeLa and HUVEC. The cellular mechanism studies revealed that compound 13 arrested the cell cycle at the S and G2 phases, and induced significant apoptosis in HeLa cells. Tube formation assay in HUVECs demonstrated that 13 had a significant anti-angiogenic effect. Additionally, a molecular docking study supported the initial design strategy. These results highlighted that 13 was a valuable VEGFR-2/HDAC dual inhibitor and deserved further study for cancer therapy.
Collapse
Affiliation(s)
- Yali Gao
- Pharmacy Department, The Second Affiliated Hospital of Fujian Medical University Quanzhou 362000 PR China
| | - Fei Li
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine Shiyan 442008 Hubei PR China
| | - Xin Ni
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| | - Siwang Yang
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| | - Han Liu
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| | - Xingye Wu
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| | - Jieqing Liu
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| | - Junjie Ma
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| |
Collapse
|
35
|
Tang H, Liang Y, Yu M, Cai S, Ding K, Wang Y. Discovery of chiral 1,4-diarylazetidin-2-one-based hydroxamic acid derivatives as novel tubulin polymerization inhibitors with histone deacetylase inhibitory activity. Bioorg Med Chem 2023; 92:117437. [PMID: 37563016 DOI: 10.1016/j.bmc.2023.117437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/22/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Tubulin and histone deacetylase have been clinically proven as promising targets for cancer therapy. Herein, we describe the design and synthesis of chiral 1,4-diarylazetidin-2-one-based hydroxamic acids as novel tubulin/HDAC dual inhibitors. Among them, compound 12a was validated to effectively disrupt tubulin polymerization, and exhibited potent HDAC1/8 inhibitory activities. Meanwhile, 12a showed good antiproliferative activities against four tumor cell lines. Further studies showed 12a works through blocking cellular cycle, inducing apoptosis and inhibiting colony formation. In addition, 12a has suitable physicochemical properties and high liver microsomal metabolic stability. Importantly, compound 12a was found to exhibit significant antitumor efficacy in vivo, thus warranting it as a promising tubulin/HDAC dual inhibitor for further development.
Collapse
Affiliation(s)
- Hairong Tang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuru Liang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Min Yu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shaowen Cai
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
36
|
Callahan SM, Hancock TJ, Doster RS, Parker CB, Wakim ME, Gaddy JA, Johnson JG. A secreted sirtuin from Campylobacter jejuni contributes to neutrophil activation and intestinal inflammation during infection. SCIENCE ADVANCES 2023; 9:eade2693. [PMID: 37566649 PMCID: PMC10421069 DOI: 10.1126/sciadv.ade2693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 07/13/2023] [Indexed: 08/13/2023]
Abstract
Histone modifications control numerous processes in eukaryotes, including inflammation. Some bacterial pathogens alter the activity or expression of host-derived factors, including sirtuins, to modify histones and induce responses that promote infection. In this study, we identified a deacetylase encoded by Campylobacter jejuni which has sirtuin activities and contributes to activation of human neutrophils by the pathogen. This sirtuin is secreted from the bacterium into neutrophils, where it associates with and deacetylates host histones to promote neutrophil activation and extracellular trap production. Using the murine model of campylobacteriosis, we found that a mutant of this bacterial sirtuin efficiently colonized the gastrointestinal tract but was unable to induce cytokine production, gastrointestinal inflammation, and tissue pathology. In conclusion, these results suggest that secreted bacterial sirtuins represent a previously unreported class of bacterial effector and that bacterial-mediated modification of host histones is responsible for the inflammation and pathology that occurs during campylobacteriosis.
Collapse
Affiliation(s)
- Sean M. Callahan
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Trevor J. Hancock
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
- Department of Medicine, University of Tennessee Medical Center, Knoxville, TN 37930, USA
| | - Ryan S. Doster
- Division of Infectious Diseases, Department of Medicine Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
| | - Caroline B. Parker
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Mary E. Wakim
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jennifer A. Gaddy
- Division of Infectious Diseases, Department of Medicine Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeremiah G. Johnson
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
37
|
Bülbül EF, Robaa D, Sun P, Mahmoudi F, Melesina J, Zessin M, Schutkowski M, Sippl W. Application of Ligand- and Structure-Based Prediction Models for the Design of Alkylhydrazide-Based HDAC3 Inhibitors as Novel Anti-Cancer Compounds. Pharmaceuticals (Basel) 2023; 16:968. [PMID: 37513880 PMCID: PMC10386743 DOI: 10.3390/ph16070968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Histone deacetylases (HDAC) represent promising epigenetic targets for several diseases including different cancer types. The HDAC inhibitors approved to date are pan-HDAC inhibitors and most show a poor selectivity profile, side effects, and in particular hydroxamic-acid-based inhibitors lack good pharmacokinetic profiles. Therefore, the development of isoform-selective non-hydroxamic acid HDAC inhibitors is a highly regarded field in medicinal chemistry. In this study, we analyzed different ligand-based and structure-based drug design techniques to predict the binding mode and inhibitory activity of recently developed alkylhydrazide HDAC inhibitors. Alkylhydrazides have recently attracted more attention as they have shown promising effects in various cancer cell lines. In this work, pharmacophore models and atom-based quantitative structure-activity relationship (QSAR) models were generated and evaluated. The binding mode of the studied compounds was determined using molecular docking as well as molecular dynamics simulations and compared with known crystal structures. Calculated free energies of binding were also considered to generate QSAR models. The created models show a good explanation of in vitro data and were used to develop novel HDAC3 inhibitors.
Collapse
Affiliation(s)
- Emre F Bülbül
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ping Sun
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Fereshteh Mahmoudi
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jelena Melesina
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Matthes Zessin
- Department of Enzymology, Institute of Biotechnology, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biotechnology, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
38
|
Kciuk M, Alam M, Ali N, Rashid S, Głowacka P, Sundaraj R, Celik I, Yahya EB, Dubey A, Zerroug E, Kontek R. Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications. Molecules 2023; 28:5246. [PMID: 37446908 PMCID: PMC10343677 DOI: 10.3390/molecules28135246] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 90-001 Lodz, Poland;
- Doctoral School of Medical University of Lodz, Hallera 1 Square, 90-700 Lodz, Poland
| | - Rajamanikandan Sundaraj
- Department of Biochemistry, Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore 641021, India;
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey;
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida 201310, India;
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai 600077, India
| | - Enfale Zerroug
- LMCE Laboratory, Group of Computational and Pharmaceutical Chemistry, University of Biskra, Biskra 07000, Algeria;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
| |
Collapse
|
39
|
Khetmalis YM, Fathima A, Schweipert M, Debarnot C, Bandaru NVMR, Murugesan S, Jamma T, Meyer-Almes FJ, Sekhar KVGC. Design, Synthesis, and Biological Evaluation of Novel Quinazolin-4(3H)-One-Based Histone Deacetylase 6 (HDAC6) Inhibitors for Anticancer Activity. Int J Mol Sci 2023; 24:11044. [PMID: 37446224 DOI: 10.3390/ijms241311044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
A series of novel quinazoline-4-(3H)-one derivatives were designed and synthesized as histone deacetylase 6 (HDAC6) inhibitors based on novel quinazoline-4-(3H)-one as the cap group and benzhydroxamic acid as the linker and metal-binding group. A total of 19 novel quinazoline-4-(3H)-one analogues (5a-5s) were obtained. The structures of the target compounds were characterized using 1H-NMR, 13C-NMR, LC-MS, and elemental analyses. Characterized compounds were screened for inhibition against HDAC8 class I, HDAC4 class IIa, and HDAC6 class IIb. Among the compounds tested, 5b proved to be the most potent and selective inhibitor of HDAC6 with an IC50 value 150 nM. Some of these compounds showed potent antiproliferative activity in several tumor cell lines (HCT116, MCF7, and B16). Amongst all the compounds tested for their anticancer effect against cancer cell lines, 5c emerged to be most active against the MCF-7 line with an IC50 of 13.7 μM; it exhibited cell-cycle arrest in the G2 phase, as well as promoted apoptosis. Additionally, we noted a significant reduction in the colony-forming capability of cancer cells in the presence of 5c. At the intracellular level, selective inhibition of HDAC6 was enumerated by monitoring the acetylation of α-tubulin with a limited effect on acetyl-H3. Importantly, the obtained results suggested a potent effect of 5c at sub-micromolar concentrations as compared to the other molecules as HDAC6 inhibitors in vitro.
Collapse
Affiliation(s)
- Yogesh Mahadu Khetmalis
- Department of Chemistry, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Ashna Fathima
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Markus Schweipert
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | - Cécile Debarnot
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | | | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science Pilani, Pilani Campus, Pilani 333031, Rajasthan, India
| | - Trinath Jamma
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | | |
Collapse
|
40
|
Yang M, Luo H, Yi X, Wei X, Jiang D. The epigenetic regulatory mechanisms of ferroptosis and its implications for biological processes and diseases. MedComm (Beijing) 2023; 4:e267. [PMID: 37229485 PMCID: PMC10203370 DOI: 10.1002/mco2.267] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Ferroptosis is a form of regulated cell death triggered by the iron-dependent peroxidation of phospholipids. Interactions of iron and lipid metabolism factors jointly promote ferroptosis. Ferroptosis has been demonstrated to be involved in the development of various diseases, such as tumors and degenerative diseases (e.g., aortic dissection), and targeting ferroptosis is expected to be an effective strategy for the treatment of these diseases. Recent studies have shown that the regulation of ferroptosis is affected by multiple mechanisms, including genetics, epigenetics, posttranscriptional modifications, and protein posttranslational modifications. Epigenetic changes have garnered considerable attention due to their importance in regulating biological processes and potential druggability. There have been many studies on the epigenetic regulation of ferroptosis, including histone modifications (e.g., histone acetylation and methylation), DNA methylation, and noncoding RNAs (e.g., miRNAs, circRNAs, and lncRNAs). In this review, we summarize recent advances in research on the epigenetic mechanisms involved in ferroptosis, with a description of RNA N6-methyladenosine (m6A) methylation included, and the importance of epigenetic regulation in biological processes and ferroptosis-related diseases, which provides reference for the clinical application of epigenetic regulators in the treatment of related diseases by targeting ferroptosis.
Collapse
Affiliation(s)
- Molin Yang
- Division of Cardiothoracic and Vascular SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Hanshen Luo
- Division of Cardiothoracic and Vascular SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xin Yi
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xiang Wei
- Division of Cardiothoracic and Vascular SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhanHubeiChina
| | - Ding‐Sheng Jiang
- Division of Cardiothoracic and Vascular SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhanHubeiChina
| |
Collapse
|
41
|
Azemin WA, Alias N, Ali AM, Shamsir MS. In silico analysis prediction of HepTH1-5 as a potential therapeutic agent by targeting tumour suppressor protein networks. J Biomol Struct Dyn 2023; 41:1141-1167. [PMID: 34935583 DOI: 10.1080/07391102.2021.2017349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Many studies reported that the activation of tumour suppressor protein, p53 induced the human hepcidin expression. However, its expression decreased when p53 was silenced in human hepatoma cells. Contrary to Tilapia hepcidin TH1-5, HepTH1-5 was previously reported to trigger the p53 activation through the molecular docking approach. The INhibitor of Growth (ING) family members are also shown to directly interact with p53 and promote cell cycle arrest, senescence, apoptosis and participate in DNA replication and DNA damage responses to suppress the tumour initiation and progression. However, the interrelation between INGs and HepTH1-5 remains unknown. Therefore, this study aims to identify the mechanism and their protein interactions using in silico approaches. The finding revealed that HepTH1-5 and its ligands had interacted mostly on hotspot residues of ING proteins which involved in histone modifications via acetylation, phosphorylation, and methylation. This proves that HepTH1-5 might implicate in an apoptosis signalling pathway and preserve the protein structure and function of INGs by reducing the perturbation of histone binding upon oxidative stress response. This study would provide theoretical guidance for the design and experimental studies to decipher the role of HepTH1-5 as a potential therapeutic agent for cancer therapy. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wan-Atirah Azemin
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia.,Faculty of Science, Bioinformatics Research Group (BIRG), Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Nadiawati Alias
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia
| | - Abdul Manaf Ali
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia
| | - Mohd Shahir Shamsir
- Faculty of Science, Bioinformatics Research Group (BIRG), Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Malaysia.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Muar, Malaysia
| |
Collapse
|
42
|
Implications of Transglutaminase-Mediated Protein Serotonylation in the Epigenetic Landscape, Small Cell Lung Cancer, and Beyond. Cancers (Basel) 2023; 15:cancers15041332. [PMID: 36831672 PMCID: PMC9954789 DOI: 10.3390/cancers15041332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
In the case of small-cell lung carcinoma, the highly metastatic nature of the disease and the propensity for several chromatin modifiers to harbor mutations suggest that epigenetic manipulation may also be a promising route for oncotherapy, but histone deacetylase inhibitors on their own do not appear to be particularly effective, suggesting that there may be other regulatory parameters that dictate the effectiveness of vorinostat's reversal of histone deacetylation. Recent discoveries that serotonylation of histone H3 alters the permissibility of gene expression have led to renewed attention to this rare modification, as facilitated by transglutaminase 2, and at the same time introduce new questions about whether this modification belongs to a part of the concerted cohort of regulator events for modulating the epigenetic landscape. This review explores the mechanistic details behind protein serotonylation and its possible connections to the epigenome via histone modifications and glycan interactions and attempts to elucidate the role of transglutaminase 2, such that optimizations to existing histone deacetylase inhibitor designs or combination therapies may be devised for lung and other types of cancer.
Collapse
|
43
|
Sirtuin1 (SIRT1) is involved in the anticancer effect of black raspberry anthocyanins in colorectal cancer. Eur J Nutr 2023; 62:395-406. [PMID: 36056948 DOI: 10.1007/s00394-022-02989-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Abnormal acetylation modification is a common epigenetic change in tumorigenesis and is closely related to the progression of colorectal cancer (CRC). Our previous studies have suggested that black raspberry (BRB) anthocyanins have a significant chemopreventive effect against CRC. This study investigated whether protein acetylation plays an important role in BRB anthocyanins-mediated regulation of CRC progression. METHODS We used the AOM-induced CRC mouse model and the CRC cell lines SW480 and Caco-2 to explore the potential role of acetylation of histone H4 and NF-κB signaling pathway-related proteins (non-histone proteins) in the antitumor process mediated by BRB anthocyanins. The expression of related proteins was detected by western blot. ROS level was detected by immunofluorescence. RESULTS BRB anthocyanins affected the acetylation level by down-regulating the expression of Sirtuin1 (SIRT1) and up-regulating the expression of MOF and EP300. The acetylation level of lysine sites on histone H4 (H4K5, H4K12 and H4K16) was increased. Furthermore, following BRB anthocyanins treatment, the expression of ac-p65 was significantly up-regulated and the NF-κB signal pathway was activated, which in turn up-regulated Bax expression and inhibited Bcl-2, cyclin-D1, c-myc and NLRP3 expression to promote CRC cell cycle arrest, apoptosis and relieve inflammation. CONCLUSION The findings suggested that protein acetylation could play a critical role in BRB anthocyanins-regulated CRC development.
Collapse
|
44
|
Conceição M, Beserra FP, Aldana Mejia JA, Caldas GR, Tanimoto MH, Luzenti AM, Gaspari PDM, Evans ND, Bastos JK, Pellizzon CH. Guttiferones: An insight into occurrence, biosynthesis, and their broad spectrum of pharmacological activities. Chem Biol Interact 2023; 370:110313. [PMID: 36566914 DOI: 10.1016/j.cbi.2022.110313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Guttiferones belong to the polyisoprenylated benzophenone, a class of compounds, a very restricted group of natural plant products, especially in the Clusiaceae family. They are commonly found in bark, stem, leaves, and fruits of plants of the genus Garcinia and Symphonia. Guttiferones have the following classifications according to their chemical structure: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, and T. All of them have received growing attention due to its multiple biological activities. This review provides a first comprehensive approach to plant sources, phytochemical profile, specific pharmacological effects, and mechanisms of guttiferones already described. Studies indicate a broad spectrum of pharmacological activities, such as: anti-inflammatory, immunomodulatory, antioxidant, antitumor, antiparasitic, antiviral, and antimicrobial. Despite the low toxicity of these compounds in healthy cells, there is a lack of studies in the literature related to toxicity in general. Given their beneficial effects, guttiferones are expected to be great potential drug candidates for treating cancer and infectious and transmissible diseases. However, further studies are needed to elucidate their toxicity, specific molecular mechanisms and targets, and to perform more in-depth pharmacokinetic studies. This review highlights chemical properties, biological characteristics, and mechanisms of action so far, offering a broad view of the subject and perspectives for the future of guttiferones in therapeutics.
Collapse
Affiliation(s)
- Mariana Conceição
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Fernando Pereira Beserra
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil; Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| | - Jennyfer Andrea Aldana Mejia
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Gabriel Rocha Caldas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Matheus Hikaru Tanimoto
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Andréia Marincek Luzenti
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Priscyla Daniely Marcato Gaspari
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Nicholas David Evans
- Human Development and Health, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| | - Jairo Kenupp Bastos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Cláudia Helena Pellizzon
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
45
|
Wu F, Tian F, Qin C, Qin X, Zeng W, Liu X, Chen C, Lin Y. Peroxiredoxin2 regulates trophoblast proliferation and migration through SPIB-HDAC2 pathway. Exp Cell Res 2023; 422:113428. [PMID: 36400181 DOI: 10.1016/j.yexcr.2022.113428] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Adequate proliferation and migration of placental trophoblasts is the prerequisite of a successful pregnancy. Peroxiredoxin2 (Prdx2) is a multi-functional gene involved in various signal events to maintain essential biological functions and normal cellular homeostasis. In this study, substantially lower Prdx2 levels were found in the first trimester cytotrophoblasts of women who suffered from recurrent miscarriage (RM). Prdx2 downregulation inhibited trophoblast proliferation and migration. We demonstrated that histone deacetylase2 (HDAC2) acts downstream of Prdx2 in regulating trophoblast proliferation and migration. HDAC2 deacetylates histone-3-lysine-9 in E-cadherin (E-cad) promoter and reduces the transcription of E-cad epigenetically, whereas it promotes the expression of Slug and Snail genes. These molecular changes may contribute to the trophoblast epithelial-mesenchymal transition. We further verified whether Prdx2 modulated the expression of HDAC2 through SPIB. SPIB could bind to the HDAC2 promoter PU-box region and induce HDAC2 expression. In RM, down-regulated Prdx2 suppresses SPIB-HDAC2 pathway, leading to increased E-cad and decreased Slug and Snail, and eventually restrains trophoblast proliferation and migration. Our study unveils the role of Prdx2-regulated SPIB-HDAC2 pathway in the pathology of RM and provides diagnostic and therapeutic targets for RM as well as other "great obstetrical syndromes" including preeclampsia and intrauterine growth restriction.
Collapse
Affiliation(s)
- Fan Wu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Municipal Key Clinical Speciality, Shanghai, 200030, PR China
| | - Fuju Tian
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Municipal Key Clinical Speciality, Shanghai, 200030, PR China
| | - Chuanmei Qin
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Municipal Key Clinical Speciality, Shanghai, 200030, PR China
| | - Xiaoli Qin
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Municipal Key Clinical Speciality, Shanghai, 200030, PR China
| | - Weihong Zeng
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Municipal Key Clinical Speciality, Shanghai, 200030, PR China
| | - Xiaorui Liu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Diseases, Municipal Key Clinical Speciality, Shanghai, 200030, PR China
| | - Cailian Chen
- Department of Automation, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, PR China
| | - Yi Lin
- Reproductive Medicine Center, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China.
| |
Collapse
|
46
|
Saunders MP, Graham J, Cunningham D, Plummer R, Church D, Kerr R, Cook S, Zheng S, La Thangue N, Kerr D. CXD101 and nivolumab in patients with metastatic microsatellite-stable colorectal cancer (CAROSELL): a multicentre, open-label, single-arm, phase II trial. ESMO Open 2022; 7:100594. [PMID: 36327756 PMCID: PMC9808483 DOI: 10.1016/j.esmoop.2022.100594] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Patients with microsatellite stable (MSS) colorectal carcinoma (CRC) do not respond to immune checkpoint inhibitors. Preclinical models suggested synergistic anti-tumour activity combining CXD101 and anti-programmed cell death protein 1 treatment; therefore, we assessed the clinical combination of CXD101 and nivolumab in heavily pre-treated patients with MSS metastatic CRC (mCRC). PATIENTS AND METHODS This single-arm, open-label study enrolled patients aged 18 years or older with biopsy-confirmed MSS CRC; at least two lines of systemic anticancer therapies (including oxaliplatin and irinotecan); at least one measurable lesion; Eastern Cooperative Oncology Group performance status of 0, 1 or 2; predicted life expectancy above 3 months; and adequate organ and bone marrow function. Nine patients were enrolled in a safety run-in study to define a tolerable combination schedule of CXD101 and nivolumab, followed by 46 patients in the efficacy assessment phase. Patients in the efficacy assessment cohort were treated orally with 20 mg CXD101 twice daily for 5 consecutive days every 3 weeks, and intravenously with 240 mg nivolumab every 2 weeks. The primary endpoint was immune disease control rate (iDCR). RESULTS Between 2018 and 2020, 55 patients were treated with CXD101 and nivolumab. The combination therapy was well tolerated with the most frequent grade 3 or 4 adverse events being neutropenia (18%) and anaemia (7%). Immune-related adverse reactions commonly ascribed to checkpoint inhibitors were surprisingly rare although we did see single cases of pneumonitis, hypothyroidism and hypopituitarism. There were no treatment-related deaths. Of 46 patients assessable for efficacy, 4 (9%) achieved partial response and 18 (39%) achieved stable disease, translating to an immune disease control rate of 48%. The median overall survival (OS) was 7.0 months (95% confidence interval 5.13-10.22 months). CONCLUSIONS The primary endpoint was met in this phase II study, which showed that the combination of CXD101 and nivolumab, at full individual doses in the treatment of advanced or metastatic MSS CRC, was both well tolerated and efficacious.
Collapse
Affiliation(s)
- M P Saunders
- The Christie NHS Foundation Trust, Manchester, UK.
| | - J Graham
- The Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - D Cunningham
- The Royal Marsden NHS Foundation Trust, London, UK
| | - R Plummer
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - D Church
- The Churchill Hospital Oxford University Hospitals NHS Trust, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - R Kerr
- The Churchill Hospital Oxford University Hospitals NHS Trust, Oxford, UK
| | - S Cook
- Celleron Therapeutics Limited, Oxford, UK
| | - S Zheng
- Celleron Therapeutics Limited, Oxford, UK
| | | | - D Kerr
- The Churchill Hospital Oxford University Hospitals NHS Trust, Oxford, UK; Celleron Therapeutics Limited, Oxford, UK
| |
Collapse
|
47
|
Wang C, Zhang Y, Yang S, Chen W, Xing D. PROTACs for BRDs proteins in cancer therapy: a review. J Enzyme Inhib Med Chem 2022; 37:1694-1703. [PMID: 35702740 PMCID: PMC9225710 DOI: 10.1080/14756366.2022.2081164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/14/2022] [Accepted: 05/18/2022] [Indexed: 11/11/2022] Open
Abstract
BRDs proteins that recognise chromatin acetylation regulate gene expression, are epigenetic readers and master transcription coactivators. BRDs proteins are now emerging as targets for new therapeutic development. Blocking the function of any of BRDs proteins can be a control agent for diseases, such as cancer. Traditional drugs like enzyme inhibitors and protein-protein inhibitors have many limitations. The therapeutic efficacy of them remains to be proven. Recently, Proteolysis-Targeting Chimaeras (PROTACs) have become an advanced tool in therapeutic intervention as they remove disease-causing proteins. Extremely potent and efficacious small-molecule PROTACs of the BRDs proteins, based on available, potent, and selective BRDs inhibitors, have been reported. This review presents a comprehensive overview of the development of PROTACs for BRDs proteins regulation in cancer, and the chances and challenges associated with this area are also highlighted.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, PR China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, PR China
- School of Pharmacy, Qingdao University, Qingdao, PR China
| | - Shanbo Yang
- The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, PR China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, PR China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, PR China
- School of Life Sciences, Tsinghua University, Beijing, PR China
| |
Collapse
|
48
|
Safaei Z, Thompson GL. Histone deacetylase 4 and 5 translocation elicited by microsecond pulsed electric field exposure is mediated by kinase activity. Front Bioeng Biotechnol 2022; 10:1047851. [PMID: 36466344 PMCID: PMC9713944 DOI: 10.3389/fbioe.2022.1047851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/04/2022] [Indexed: 10/17/2023] Open
Abstract
Electroporation-based technologies using microsecond pulsed electric field (µsPEF) exposures are established as laboratory and clinical tools that permeabilize cell membranes. We demonstrate a µsPEF bioeffect on nucleocytoplasmic import and export of enzymes that regulate genetic expression, histone deacetylases (HDAC) -4 and -5. Their μsPEF-induced nucleocytoplasmic transport depends on presence and absence of extracellular calcium ions (Ca2+) for both MCF7 and CHO-K1 cells. Exposure to 1, 10, 30 and 50 consecutive square wave pulses at 1 Hz and of 100 µs duration with 1.45 kV/cm magnitude leads to translocation of endogenous HDAC4 and HDAC5. We posit that by eliciting a rise in intracellular Ca2+ concentration, a signaling pathway involving kinases, such as Ca2+/CaM-dependent protein kinase II (CaMKII), is activated. This cascade causes nuclear export and import of HDAC4 and HDAC5. The potential of µsPEF exposures to control nucleocytoplasmic transport unlocks future opportunities in epigenetic modification.
Collapse
Affiliation(s)
| | - Gary L. Thompson
- Department of Chemical Engineering, Rowan University, Glassboro, NJ, United States
| |
Collapse
|
49
|
Bou Zerdan M, Atoui A, Hijazi A, Basbous L, Abou Zeidane R, Alame SM, Assi HI. Latest updates on cellular and molecular biomarkers of gliomas. Front Oncol 2022; 12:1030366. [PMID: 36425564 PMCID: PMC9678906 DOI: 10.3389/fonc.2022.1030366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/05/2022] [Indexed: 03/05/2024] Open
Abstract
Gliomas are the most common central nervous system malignancies, compromising almost 80% of all brain tumors and is associated with significant mortality. The classification of gliomas has shifted from basic histological perspective to one that is based on molecular biomarkers. Treatment of this type of tumors consists currently of surgery, chemotherapy and radiation therapy. During the past years, there was a limited development of effective glioma diagnostics and therapeutics due to multiple factors including the presence of blood-brain barrier and the heterogeneity of this type of tumors. Currently, it is necessary to highlight the advantage of molecular diagnosis of gliomas to develop patient targeted therapies based on multiple oncogenic pathway. In this review, we will evaluate the development of cellular and molecular biomarkers for the diagnosis of gliomas and the impact of these diagnostic tools for better tailored and targeted therapies.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Ali Atoui
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Hijazi
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Lynn Basbous
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Reine Abou Zeidane
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Saada M Alame
- Department of Pediatrics, Faculty of Medicine, Lebanese University, Beirut, Lebanon
| | - Hazem I Assi
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
50
|
Xu H, Wang L, Chen H, Cai H. HDAC4 depletion ameliorates IL-13-triggered inflammatory response and mucus production in nasal epithelial cells via activation of SIRT1/NF-κB signaling. Immun Inflamm Dis 2022; 10:e692. [PMID: 36301023 PMCID: PMC9601864 DOI: 10.1002/iid3.692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Allergic rhinitis (AR) is frequently known as a chronic respiratory disease with a global high prevalence. The pivotal roles of histone deacetylase 4 (HDAC4) in multiple human diseases have been underlined by numerous studies. Nevertheless, whether HDAC4 is implicated in AR remains to be elaborated. The objective of the current study is to clarify the impacts of HDAC4 on AR. METHODS First, human nasal epithelial cells (hNECs) were pretreated by interleukin-13 (IL-13). HDAC4 expression in hNECs with the presence or absence of IL-13 treatment was tested by quantitative reverse-transcription polymerase chain reaction (RT-qPCR) and western blot. Following, after HDAC4 was depleted, levels of histamine, Immunoglobulin E (IgE) and inflammatory factors were analyzed by ELISA assay. Then, Mucin-5AC (MUC5AC) expression was examined through RT-qPCR, western blot, and IF assay. Western blot was to analyze the expression of sirtuin 1 (SIRT1)/nuclear factor-kappaB (NF-κB) signaling-related proteins. After IL-13-induced hNECs were cotransfected with HDAC4 interference plasmids and SIRT1 inhibitor EX527, the functional experiments above were conducted again. RESULTS The experimental data in this study presented that HDAC4 expression was increased in IL-13-induced hNECs. Silencing of HDAC4 cut down the levels of histamine, IgE and inflammatory factors and the expression of MUC5AC. Additionally, knockdown of HDAC4 led to the activation of SIRT1/NF-κB signaling. Further, the downregulated levels of histamine, IgE and inflammatory factors and the expression of MUC5AC imposed by HDAC4 interference were all reversed by EX527. CONCLUSIONS In short, HDAC4 inhibition activated SIRT1/NF-κB signaling to mitigate inflammatory response and mucus production in IL-13-treated nasal epithelial cells in AR.
Collapse
Affiliation(s)
- Hangyu Xu
- Department of Otolaryngology, Taizhou Central HospitalTaizhou University HospitalTaizhouZhejiangChina
| | - Lingjun Wang
- Department of General Practice, Taizhou Central HospitalTaizhou University HospitalTaizhouZhejiangChina
| | - Huaqun Chen
- Department of Geriatrics, Taizhou Central HospitalTaizhou University HospitalTaizhouZhejiangChina
| | - Hefei Cai
- Department of Pediatrics, Taizhou Central HospitalTaizhou University HospitalTaizhouZhejiangChina
| |
Collapse
|