1
|
Gamez-Belmonte R, Mahapatro M, Erkert L, Gonzalez-Acera M, Naschberger E, Yu Y, Tena-Garitaonaindia M, Patankar JV, Wagner Y, Podstawa E, Schödel L, Bubeck M, Neurath MF, Stürzl M, Becker C. Epithelial presenilin-1 drives colorectal tumour growth by controlling EGFR-COX2 signalling. Gut 2022; 72:1155-1166. [PMID: 36261293 DOI: 10.1136/gutjnl-2022-327323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/02/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVE Psen1 was previously characterised as a crucial factor in the pathogenesis of neurodegeneration in patients with Alzheimer's disease. Little, if any, is known about its function in the gut. Here, we uncovered an unexpected functional role of Psen1 in gut epithelial cells during intestinal tumourigenesis. DESIGN Human colorectal cancer (CRC) and control samples were investigated for PSEN1 and proteins of theγ-secretase complex. Tumour formation was analysed in the AOM-DSS and Apc min/+ mouse models using newly generated epithelial-specific Psen1 deficient mice. Psen1 deficient human CRC cells were studied in a xenograft tumour model. Tumour-derived organoids were analysed for growth and RNA-Seq was performed to identify Psen1-regulated pathways. Tumouroids were generated to study EGFR activation and evaluation of the influence of prostanoids. RESULTS PSEN1 is expressed in the intestinal epithelium and its level is increased in human CRC. Psen1-deficient mice developed only small tumours and human cancer cell lines deficient in Psen1 had a reduced tumourigenicity. Tumouroids derived from Psen1-deficient Apc min/+ mice exhibited stunted growth and reduced cell proliferation. On a molecular level, PSEN1 potentiated tumour cell proliferation via enhanced EGFR signalling and COX-2 production. Exogenous administration of PGE2 reversed the slow growth of PSEN1 deficient tumour cells via PGE2 receptor 4 (EP4) receptor signalling. CONCLUSIONS Psen1 drives tumour development by increasing EGFR signalling via NOTCH1 processing, and by activating the COX-2-PGE2 pathway. PSEN1 inhibition could be a useful strategy in treatment of CRC.
Collapse
Affiliation(s)
- Reyes Gamez-Belmonte
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yuqiang Yu
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Duke University Medical Center, Durham, North Carolina, USA
| | | | - Jay V Patankar
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yara Wagner
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eva Podstawa
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lena Schödel
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marvin Bubeck
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany .,Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Anticancer and Anti-Inflammatory Mechanisms of NOSH-Aspirin and Its Biological Effects. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4463294. [PMID: 36035295 PMCID: PMC9402325 DOI: 10.1155/2022/4463294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
NOSH-Aspirin, which is generated from NO, H2S, and aspirin, affects a variety of essential pathophysiological processes, including anti-inflammatory, analgesic, antipyretic, antiplatelet, and anticancer properties. Although many people acknowledge the biological significance of NOSH-Aspirin and its therapeutic effects, the mechanism of action of NOSH-Aspirin and its regulation of tissue levels remains obscure. This is in part due to its chemical and physical features, which make processing and analysis difficult. This review focuses on the biological effects of NOSH-Aspirin and provides a comprehensive analysis to elucidate the mechanism underlying its disease-protective benefits.
Collapse
|
3
|
Wang X, Undi RB, Ali N, Huycke MM. It takes a village: microbiota, parainflammation, paligenosis and bystander effects in colorectal cancer initiation. Dis Model Mech 2021; 14:dmm048793. [PMID: 33969420 PMCID: PMC10621663 DOI: 10.1242/dmm.048793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sporadic colorectal cancer (CRC) is a leading cause of worldwide cancer mortality. It arises from a complex milieu of host and environmental factors, including genetic and epigenetic changes in colon epithelial cells that undergo mutation, selection, clonal expansion, and transformation. The gut microbiota has recently gained increasing recognition as an additional important factor contributing to CRC. Several gut bacteria are known to initiate CRC in animal models and have been associated with human CRC. In this Review, we discuss the factors that contribute to CRC and the role of the gut microbiota, focusing on a recently described mechanism for cancer initiation, the so-called microbiota-induced bystander effect (MIBE). In this cancer mechanism, microbiota-driven parainflammation is believed to act as a source of endogenous mutation, epigenetic change and induced pluripotency, leading to the cancerous transformation of colon epithelial cells. This theory links the gut microbiota to key risk factors and common histologic features of sporadic CRC. MIBE is analogous to the well-characterized radiation-induced bystander effect. Both phenomena drive DNA damage, chromosomal instability, stress response signaling, altered gene expression, epigenetic modification and cellular proliferation in bystander cells. Myeloid-derived cells are important effectors in both phenomena. A better understanding of the interactions between the gut microbiota and mucosal immune effector cells that generate bystander effects can potentially identify triggers for parainflammation, and gain new insights into CRC prevention.
Collapse
Affiliation(s)
- Xingmin Wang
- Nantong Institute of Genetics and Reproductive Medicine, Nantong Maternity and Child Healthcare Hospital, Nantong University, Nantong, Jiangsu 226018, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ram Babu Undi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Naushad Ali
- Department of Internal Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mark M. Huycke
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
4
|
Huang YW, Mo YY, Echeveste CE, Oshima K, Zhang J, Yearsley M, Lin CW, Yu J, Liu P, Du M, Sun C, Xiao J, Wang LS. Black raspberries attenuate colonic adenoma development in Apc Min mice: Relationship to hypomethylation of promoters and gene bodies. FOOD FRONTIERS 2020; 1:234-242. [PMID: 34557678 PMCID: PMC8457619 DOI: 10.1002/fft2.45] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recent studies have suggested that in addition to promoter region, DNA methylation in intragenic and intergenic regions also changes during physiological processes and disease. The current study showed that feeding of black raspberries (BRBs) to Apc Min mice suppressed colon and intestinal tumors. MBDCap-seq suggested that dietary BRBs hypomethylated promoter, intragenic, and intergenic regions. Annotation of those regions highlighted genes in pathways involved in immune regulation, inflammatory signaling, production of nitric oxide and reactive oxygen species, and progression of colorectal cancer. BRB phytochemicals (e.g., ellagic acid, anthocyanins, oligosaccharides) and their gut bacterial metabolites (e.g., urolithin, protocatechuic acid, short-chain fatty acids) inhibited DNMT1 and DNMT3B activities in a cell-free assay. Our results suggest that BRBs' hypomethylating activities result from the combined effects of multiple BRB phytochemicals and their gut bacterial metabolites. Because similar substances are found in many plant products, our results with BRBs might also apply to commonly consumed fruits and vegetables.
Collapse
Affiliation(s)
- Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yue Yang Mo
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Carla Elena Echeveste
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kiyoko Oshima
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Jianying Zhang
- Division of Biostatistics, Department of Science of Informatics, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| | - Martha Yearsley
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| | - Pengyuan Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Sir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University, Zhejiang, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology / Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology / The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of Macau, Taipa, Macau, China
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
5
|
Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature 2020; 580:524-529. [PMID: 32322056 PMCID: PMC7490650 DOI: 10.1038/s41586-020-2166-3] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/03/2020] [Indexed: 11/08/2022]
Abstract
The initiation of an intestinal tumour is a probabilistic process that depends on the competition between mutant and normal epithelial stem cells in crypts1. Intestinal stem cells are closely associated with a diverse but poorly characterized network of mesenchymal cell types2,3. However, whether the physiological mesenchymal microenvironment of mutant stem cells affects tumour initiation remains unknown. Here we provide in vivo evidence that the mesenchymal niche controls tumour initiation in trans. By characterizing the heterogeneity of the intestinal mesenchyme using single-cell RNA-sequencing analysis, we identified a population of rare pericryptal Ptgs2-expressing fibroblasts that constitutively process arachidonic acid into highly labile prostaglandin E2 (PGE2). Specific ablation of Ptgs2 in fibroblasts was sufficient to prevent tumour initiation in two different models of sporadic, autochthonous tumorigenesis. Mechanistically, single-cell RNA-sequencing analyses of a mesenchymal niche model showed that fibroblast-derived PGE2 drives the expansion οf a population of Sca-1+ reserve-like stem cells. These express a strong regenerative/tumorigenic program, driven by the Hippo pathway effector Yap. In vivo, Yap is indispensable for Sca-1+ cell expansion and early tumour initiation and displays a nuclear localization in both mouse and human adenomas. Using organoid experiments, we identified a molecular mechanism whereby PGE2 promotes Yap dephosphorylation, nuclear translocation and transcriptional activity by signalling through the receptor Ptger4. Epithelial-specific ablation of Ptger4 misdirected the regenerative reprogramming of stem cells and prevented Sca-1+ cell expansion and sporadic tumour initiation in mutant mice, thereby demonstrating the robust paracrine control of tumour-initiating stem cells by PGE2-Ptger4. Analyses of patient-derived organoids established that PGE2-PTGER4 also regulates stem-cell function in humans. Our study demonstrates that initiation of colorectal cancer is orchestrated by the mesenchymal niche and reveals a mechanism by which rare pericryptal Ptgs2-expressing fibroblasts exert paracrine control over tumour-initiating stem cells via the druggable PGE2-Ptger4-Yap signalling axis.
Collapse
|
6
|
Curcumin and colorectal cancer: An update and current perspective on this natural medicine. Semin Cancer Biol 2020; 80:73-86. [PMID: 32088363 PMCID: PMC7438305 DOI: 10.1016/j.semcancer.2020.02.011] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of most common malignancies worldwide and its incidence is still growing. In spite of recent advances in targeted therapies, their clinical efficacy has been limited, non-curative and unaffordable. A growing body of literature indicates that CRC is a multi-modal disease, where a variety of factors within the tumor microenvironment play a significant role in its pathogenesis. For instance, imbalance in gut microbial profiles and impaired intestinal barrier function contribute to the overall intestinal inflammation and initiation of CRC. Moreover, persistent chronic inflammation favors a tumor microenvironment for the growth of cancer. In addition, autophagy or 'self-eating' is a surveillance mechanism involved in the degradation of cellular constituents that are generated under stressful conditions. Cancer stem cells (CSCs), on the other hand, engage in the onset of CRC and are able to endow cancer cells with chemo-resistance. Furthermore, the aberrant epigenetic alterations promote CRC. These evidences highlight the need for multi-targeted approaches that are not only safe and inexpensive but offer a more effective alternative to current generation of targeted drugs. Curcumin, derived from the plant Curcuma longa, represents one such option that has a long history of its use for a variety of chronic disease including cancer, in Indian ayurvedic and traditional Chinese medicine. Scientific evidence over the past few decades have overwhelmingly shown that curcumin exhibits a multitude of anti-cancer activities orchestrated through key signaling pathways associated with cancer. In this article, we will present a current update and perspective on this natural medicine - incorporating the basic cellular mechanisms it effects and the current state of clinical evidence, challenges and promise for its use as a cancer preventative and potential adjunct together with modern therapies for CRC patients.
Collapse
|
7
|
Microbial Sensing by Intestinal Myeloid Cells Controls Carcinogenesis and Epithelial Differentiation. Cell Rep 2020; 24:2342-2355. [PMID: 30157428 PMCID: PMC6177233 DOI: 10.1016/j.celrep.2018.07.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/24/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
Physiologic microbe-host interactions in the intestine require the maintenance of the microbiota in a luminal compartment through a complex interplay between epithelial and immune cells. However, the roles of mucosal myeloid cells in this process remain incompletely understood. In this study, we identified that decreased myeloid cell phagocytic activity promotes colon tumorigenesis. We show that this is due to bacterial accumulation in the lamina propria and present evidence that the underlying mechanism is bacterial induction of prostaglandin production by myeloid cells. Moreover, we show that similar events in the normal colonic mucosa lead to reductions in Tuft cells, goblet cells, and the mucus barrier of the colonic epithelium. These alterations are again linked to the induction of prostaglandin production in response to bacterial penetration of the mucosa. Altogether, our work highlights immune cell-epithelial cell interactions triggered by the microbiota that control intestinal immunity, epithelial differentiation, and carcinogenesis.
Collapse
|
8
|
Helicase-like transcription factor (Hltf) gene-deletion promotes oxidative phosphorylation (OXPHOS) in colorectal tumors of AOM/DSS-treated mice. PLoS One 2019; 14:e0221751. [PMID: 31461471 PMCID: PMC6713344 DOI: 10.1371/journal.pone.0221751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
The helicase-like transcription factor (HLTF) gene-a tumor suppressor in human colorectal cancer (CRC)-is regulated by alternative splicing and promoter hypermethylation. In this study, we used the AOM/DSS-induced mouse model to show Hltf-deletion caused poor survival concomitant with increased tumor multiplicity, and dramatically shifted the topographic distribution of lesions into the rectum. Differential isoform expression analysis revealed both the truncated isoform that lacks a DNA-repair domain and the full length isoform capable of DNA damage repair are present during adenocarcinoma formation in controls. iPathwayGuide identified 51 dynamically regulated genes of 10,967 total genes with measured expression. Oxidative Phosphorylation (Kegg: 00190), the top biological pathway perturbed by Hltf-deletion, resulted from increased transcription of Atp5e, Cox7c, Uqcr11, Ndufa4 and Ndufb6 genes, concomitant with increased endogenous levels of ATP (p = 0.0062). Upregulation of gene expression, as validated with qRT-PCR, accompanied a stable mtDNA/nDNA ratio. This is the first study to show Hltf-deletion in an inflammation-associated CRC model elevates mitochondrial bioenergetics.
Collapse
|
9
|
Ren J, Sui H, Fang F, Li Q, Li B. The application of Apc Min/+ mouse model in colorectal tumor researches. J Cancer Res Clin Oncol 2019; 145:1111-1122. [PMID: 30887153 DOI: 10.1007/s00432-019-02883-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE ApcMin/+ mouse is an excellent animal model bearing multiple intestinal neoplasia, used to simulate human familial adenomatous polyposis and colorectal tumors. The key point of this model is the mutation of Apc gene, which is a significant tumor-suppressor gene in the Wnt signaling pathway. There are also some other possible mechanisms responsible for the development of colorectal tumors in the ApcMin/+ mouse model, such as tumor-associated signaling pathways activation, the changes of tumor-related genes, and the involvement of some related proteins or molecules. METHODS The relevant literatures about ApcMin/+ mouse model from PUBMED databases are reviewed in this study. RESULTS In recent years, increasing studies have focused on the application of ApcMin/+ mouse model in colorectal tumor, trying to find effective therapeutic targets for further use. CONCLUSION This article will give a brief review on the related molecular mechanisms of the ApcMin/+ mouse model and its application in colorectal tumor researches.
Collapse
Affiliation(s)
- Junze Ren
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Hua Sui
- Department of Medical Oncology, Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fanfu Fang
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Qi Li
- Department of Medical Oncology, Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bai Li
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
10
|
Li Y, Fang C, Fu Y, Hu A, Li C, Zou C, Li X, Zhao S, Zhang C, Li C. A survey of transcriptome complexity in Sus scrofa using single-molecule long-read sequencing. DNA Res 2018; 25:421-437. [PMID: 29850846 PMCID: PMC6105124 DOI: 10.1093/dnares/dsy014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/08/2018] [Indexed: 12/19/2022] Open
Abstract
Alternative splicing (AS) and fusion transcripts produce a vast expansion of transcriptomes and proteomes diversity. However, the reliability of these events and the extend of epigenetic mechanisms have not been adequately addressed due to its limitation of uncertainties about the complete structure of mRNA. Here we combined single-molecule real-time sequencing, Illumina RNA-seq and DNA methylation data to characterize the landscapes of DNA methylation on AS, fusion isoforms formation and lncRNA feature and further to unveil the transcriptome complexity of pig. Our analysis identified an unprecedented scale of high-quality full-length isoforms with over 28,127 novel isoforms from 26,881 novel genes. More than 92,000 novel AS events were detected and intron retention predominated in AS model, followed by exon skipping. Interestingly, we found that DNA methylation played an important role in generating various AS isoforms by regulating splicing sites, promoter regions and first exons. Furthermore, we identified a large of fusion transcripts and novel lncRNAs, and found that DNA methylation of the promoter and gene body could regulate lncRNA expression. Our results significantly improved existed gene models of pig and unveiled that pig AS and epigenetic modify were more complex than previously thought.
Collapse
Affiliation(s)
- Yao Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chengchi Fang
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuhua Fu
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - An Hu
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cencen Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cheng Zou
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinyun Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuhong Zhao
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Changchun Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Du P, Xu B, Zhang D, Shao Y, Zheng X, Li X, Xiong Y, Wu C, Jiang J. Hierarchical investigating the predictive value of p53, COX2, EGFR, nm23 in the post-operative patients with colorectal carcinoma. Oncotarget 2018; 8:954-966. [PMID: 27888614 PMCID: PMC5352209 DOI: 10.18632/oncotarget.13512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to evaluate the correlations between p53, COX2, EGFR, nm23 expression and the progression free survival (PFS) of post-operative patients with colorectal carcinoma. Immunohistochemistry was used to detect the expression of p53, COX2, EGFR and nm23 in 459 specimens from colorectal carcinoma patients. Kaplan-Meier estimates, Cox proportional hazard regression analyses and hierarchical analyses were performed on the collected data. Kaplan-Meier estimates analysis suggested that EGFR expression was as a negative predictor, the median PFS of patients with EGFR high expression was 21.73 months, and the median PFS of patients with low EGFR expression was 57.83 months (χ2=20.880, P<0.001); nm23 expression was positive predictive factor for the prognosis of patients with colorectal carcinoma, the median PFS of patients with high nm23 expression was 37.77 months, and the median PFS was 21.47 months in the patients with low nm23 expression (χ2=7.364, P=0.007). Cox regression analysis revealed that comparing with the patients with low expression of EGFR, the patients with high EGFR expression were at higher risk of tumor progression (HR=1.667, P=0.004); Comparing with the patients with high nm23 expression, the patients with nm23 low expression had a higher risk of tumor progression (HR=0.412, P<0.001); and the risk of tumor progression was higher in the patients with high EGFR expression and low nm23 expression (HR=0.245, P<0.001). Hierarchical analysis showed that EGFR expression mainly correlates with the PFS of TNM stage I-II colorectal cancer patients, the median PFS was 33.53 months in the TNM stage I-II colorectal cancer patients with high EGFR expression patients; The median PFS of the TNM stage I-II colorectal cancer patients with low EGFR expression was 70.43 months (χ2=9.530, P=0.002); The median PFS was 19.2 months in the TNM stage III-IV colorectal cancer patients with high expression EGFR, the PFS of the TNM stage III-IV colorectal cancer patients with low EGFR expression was 37.87 months (χ2=7.97, P=0.005). nm23 expression mainly correlates with the PFS of TNM stage III-IV colorecatal cancer patients. The median PFS was 47.27 months in TNM stage I-II colorectal cancer patients with nm23 high expression, the median PFS was 48.85 months in TNM stage I-II colorectal cancer patients with low nm23 expression (χ2=0.101, P=0.750); The median PFS was 28.8 months in TNM stage III-IV colorectal cancer patients with nm23 high expression, the median PFS was 14.7 months in TNM stage III-IV colorectal cancer patients with low nm23 expression (χ2=13.213, P<0.001). EGFR is mainly a predictive factor for the prognosis of post-operative patients with TNM stage I-II colorectal cancer, and nm23 is important for predicting the prognosis of patients with stage III-IV, and EGFR and nm23 could be as predictor of combination.
Collapse
Affiliation(s)
- Peng Du
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, Changzhou 213003, Jiangsu, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China.,The Second People's Hospital of Gansu Province, Lanzhou 730000, Gansu, China.,Institute of Cell Therapy, Soochow University, Changzhou, 213003, Jiangsu, China
| | - Bin Xu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, Changzhou 213003, Jiangsu, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China.,Institute of Cell Therapy, Soochow University, Changzhou, 213003, Jiangsu, China
| | - Dachuan Zhang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, Changzhou 213003, Jiangsu, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China
| | - Yingjie Shao
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, Changzhou 213003, Jiangsu, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China.,Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, Changzhou 213003, Jiangsu, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China.,Institute of Cell Therapy, Soochow University, Changzhou, 213003, Jiangsu, China
| | - Xiaodong Li
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, Changzhou 213003, Jiangsu, China.,Department of Oncology, The Third Affiliated Hospital, Soochow University, Changzhou 213003, Jiangsu, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China
| | - Yuqi Xiong
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, Changzhou 213003, Jiangsu, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China.,Institute of Cell Therapy, Soochow University, Changzhou, 213003, Jiangsu, China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, Changzhou 213003, Jiangsu, China.,Department of Oncology, The Third Affiliated Hospital, Soochow University, Changzhou 213003, Jiangsu, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, Changzhou 213003, Jiangsu, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, Jiangsu, China.,Institute of Cell Therapy, Soochow University, Changzhou, 213003, Jiangsu, China
| |
Collapse
|
12
|
Hull MA, Cuthbert RJ, Ko CWS, Scott DJ, Cartwright EJ, Hawcroft G, Perry SL, Ingram N, Carr IM, Markham AF, Bonifer C, Coletta PL. Paracrine cyclooxygenase-2 activity by macrophages drives colorectal adenoma progression in the Apc Min/+ mouse model of intestinal tumorigenesis. Sci Rep 2017; 7:6074. [PMID: 28729694 PMCID: PMC5519705 DOI: 10.1038/s41598-017-06253-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/12/2017] [Indexed: 01/29/2023] Open
Abstract
Genetic deletion or pharmacological inhibition of cyclooxygenase (COX)-2 abrogates intestinal adenoma development at early stages of colorectal carcinogenesis. COX-2 is localised to stromal cells (predominantly macrophages) in human and mouse intestinal adenomas. Therefore, we tested the hypothesis that paracrine Cox-2-mediated signalling from macrophages drives adenoma growth and progression in vivo in the ApcMin/+ mouse model of intestinal tumorigenesis. Using a transgenic C57Bl/6 mouse model of Cox-2 over-expression driven by the chicken lysozyme locus (cLys-Cox-2), which directs integration site-independent, copy number-dependent transgene expression restricted to macrophages, we demonstrated that stromal macrophage Cox-2 in colorectal (but not small intestinal) adenomas from cLys-Cox-2 x ApcMin/+ mice was associated with significantly increased tumour size (P = 0.025) and multiplicity (P = 0.025), compared with control ApcMin/+ mice. Transgenic macrophage Cox-2 expression was associated with increased dysplasia, epithelial cell Cox-2 expression and submucosal tumour invasion, as well as increased nuclear β-catenin translocation in dysplastic epithelial cells. In vitro studies confirmed that paracrine macrophage Cox-2 signalling drives catenin-related transcription in intestinal epithelial cells. Paracrine macrophage Cox-2 activity drives growth and progression of ApcMin/+ mouse colonic adenomas, linked to increased epithelial cell β-catenin dysregulation. Stromal cell (macrophage) gene regulation and signalling represent valid targets for chemoprevention of colorectal cancer.
Collapse
Affiliation(s)
- Mark A Hull
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom.
| | - Richard J Cuthbert
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - C W Stanley Ko
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Daniel J Scott
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Elizabeth J Cartwright
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Gillian Hawcroft
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Sarah L Perry
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Nicola Ingram
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Ian M Carr
- Section of Translational Medicine, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Alexander F Markham
- Section of Translational Medicine, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Constanze Bonifer
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - P Louise Coletta
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| |
Collapse
|
13
|
Radiochemistry on electrodes: Synthesis of an 18F-labelled and in vivo stable COX-2 inhibitor. PLoS One 2017; 12:e0176606. [PMID: 28464017 PMCID: PMC5413030 DOI: 10.1371/journal.pone.0176606] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/13/2017] [Indexed: 11/19/2022] Open
Abstract
New radiochemistry techniques can yield novel PET tracers for COX-2 and address the shortcomings in in vivo stability and specificity, which have held back clinical translation of tracers to image COX-2 expression. Current techniques limit radiosynthesis to analogs of the COX-2 inhibitors with fluorine-18 added via a carbon chain, or on an aromatic position which renders the radiolabeled analog less specific towards COX-2, resulting in tracers with low in vivo stability or specificity. To solve this problem, we have developed a new high affinity, 18F-labelled COX-2 inhibitor that is radiolabeled directly on a heteroaromatic ring. This molecule exhibits favorable biodistribution and increased metabolic stability. Synthesis of this molecule cannot be achieved by traditional means; consequently, we have developed an automated electrochemical radiosynthesis platform to synthesize up to 5 mCi of radiochemically pure 18F-COX-2ib in 4 hours (2% decay-corrected radiochemical yield). In vitro studies demonstrated clear correlation between COX-2 expression and uptake of the tracer. PET imaging of healthy animals confirmed that the molecule is excreted from blood within an hour, mainly through the hepatobiliary excretion pathway. In vivo metabolism data demonstrated that > 95% of the injected radioactivity remains in the form of the parent molecule 1 hour after injection.
Collapse
|
14
|
GRP78 haploinsufficiency suppresses acinar-to-ductal metaplasia, signaling, and mutant Kras-driven pancreatic tumorigenesis in mice. Proc Natl Acad Sci U S A 2017; 114:E4020-E4029. [PMID: 28461470 DOI: 10.1073/pnas.1616060114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal disease in critical need of new therapeutic strategies. Here, we report that the stress-inducible 78-kDa glucose-regulated protein (GRP78/HSPA5), a key regulator of endoplasmic reticulum homeostasis and PI3K/AKT signaling, is overexpressed in the acini and PDAC of Pdx1-Cre;KrasG12D/+;p53f/+ (PKC) mice as early as 2 mo, suggesting that GRP78 could exert a protective effect on acinar cells under stress, as during PDAC development. The PKC pancreata bearing wild-type Grp78 showed detectable PDAC by 3 mo and rapid subsequent tumor growth. In contrast, the PKC pancreata bearing a Grp78f/+ allele (PKC78f/+ mice) expressing about 50% of GRP78 maintained normal sizes during the early months, with reduced proliferation and suppression of AKT, S6, ERK, and STAT3 activation. Acinar-to-ductal metaplasia (ADM) has been identified as a key tumor initiation mechanism of PDAC. Compared with PKC, the PKC78f/+ pancreata showed substantial reduction of ADM as well as pancreatic intraepithelial neoplasia-1 (PanIN-1), PanIN-2, and PanIN-3 and delayed onset of PDAC. ADM in response to transforming growth factor α was also suppressed in ex vivo cultures of acinar cell clusters isolated from mouse pancreas bearing targeted heterozygous knockout of Grp78 (c78f/+ ) and subjected to 3D culture in collagen. We further discovered that GRP78 haploinsufficiency in both the PKC78f/+ and c78f/+ pancreata leads to reduction of epidermal growth factor receptor, which is critical for ADM initiation. Collectively, our studies establish a role for GRP78 in ADM and PDAC development.
Collapse
|
15
|
Koliaraki V, Pallangyo CK, Greten FR, Kollias G. Mesenchymal Cells in Colon Cancer. Gastroenterology 2017; 152:964-979. [PMID: 28111227 DOI: 10.1053/j.gastro.2016.11.049] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 02/07/2023]
Abstract
Mesenchymal cells in the intestine comprise a variety of cell types of diverse origins, functions, and molecular markers. They provide mechanical and structural support and have important functions during intestinal organogenesis, morphogenesis, and homeostasis. Recent studies of the human transcriptome have revealed their importance in the development of colorectal cancer, and studies from animal models have provided evidence for their roles in the pathogenesis of colitis-associated cancer and sporadic colorectal cancer. Mesenchymal cells in tumors, called cancer-associated fibroblasts, arise via activation of resident mesenchymal cell populations and the recruitment of bone marrow-derived mesenchymal stem cells and fibrocytes. Cancer-associated fibroblasts have a variety of activities that promote colon tumor development and progression; these include regulation of intestinal inflammation, epithelial proliferation, stem cell maintenance, angiogenesis, extracellular matrix remodeling, and metastasis. We review the intestinal mesenchymal cell-specific pathways that regulate these processes, with a focus on their roles in mediating interactions between inflammation and carcinogenesis. We also discuss how increasing our understanding of intestinal mesenchymal cell biology and function could lead to new strategies to identify and treat colitis-associated cancers.
Collapse
Affiliation(s)
| | - Charles K Pallangyo
- Muhimbili University of Health and Allied Sciences, School of Medicine, Dar es Salaam, Tanzania
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany; German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany.
| | - George Kollias
- Biomedical Sciences Research Centre "Alexander Fleming," Vari, Greece; Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
16
|
Sancho SC, Olson SL, Young So E, Shimomura K, Ouchi T, Preuss F. Fibersol-2 induces apoptosis of Apc-deficient colorectal Cancer (SW480) cells and decreases polyp formation in Apc MIN mice. Cancer Biol Ther 2016; 17:657-63. [PMID: 27143108 DOI: 10.1080/15384047.2016.1177685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The consumption of dietary fibers has been implicated with a lowered risk of human colorectal cancer. Proposed mechanisms involve alterations in the stool consistency, transit time, and formation of short-chain fatty acid by dietary fiber fermentation, and the reorganization of gut microbiota. Here we show that Fibersol-2, a digest-resistant maltodextrin, not only inhibits proliferation of colorectal SW480 cancer cell lines by increasing reactive oxygen species (ROS), but decreases the numbers of the adenoma count in Multiple Intestinal Neoplasia (MIN) mice carrying a mutation in the Adenomatous Polyposis Coli gene by 84 d of age. These observations provide direct evidence that Fibersol-2 intrinsically contains anti-cancer activity, independent of the intestinal metabolism and any potential interactions with the microbiota.
Collapse
Affiliation(s)
- Sara Cuesta Sancho
- a Department of Cancer Genetics , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Susan Losee Olson
- b Deparment of Biological Sciences , University of Wisconsin Parkside , Kenosha , WI , USA
| | - Eui Young So
- a Department of Cancer Genetics , Roswell Park Cancer Institute , Buffalo , NY , USA
| | | | - Toru Ouchi
- a Department of Cancer Genetics , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Fabian Preuss
- b Deparment of Biological Sciences , University of Wisconsin Parkside , Kenosha , WI , USA
| |
Collapse
|
17
|
Savari S, Chandrashekar NK, Osman J, Douglas D, Bellamkonda K, Jönsson G, Juhas M, Greicius G, Pettersson S, Sjölander A. Cysteinyl leukotriene 1 receptor influences intestinal polyp incidence in a gender-specific manner in the ApcMin/+mouse model. Carcinogenesis 2016; 37:491-9. [DOI: 10.1093/carcin/bgw031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/25/2016] [Indexed: 12/24/2022] Open
|
18
|
Yokoo Y, Kijima A, Ishii Y, Takasu S, Tsuchiya T, Umemura T. Effects of Nrf2 silencing on oxidative stress-associated intestinal carcinogenesis in mice. Cancer Med 2016; 5:1228-38. [PMID: 26899729 PMCID: PMC4924381 DOI: 10.1002/cam4.672] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/23/2016] [Accepted: 01/25/2016] [Indexed: 12/22/2022] Open
Abstract
To assess the risk of colorectal cancer in humans with inactivation of NRF2, Nrf2‐proficient (Nrf2+/+) and ‐deficient (Nrf2−/−) mice were exposed to potassium bromate (KBrO3) at concentrations of 750 or 1500 ppm for 52 weeks. Neoplastic proliferative lesions were observed in the small intestine and exhibited accumulations of β‐catenin and cyclin D1. The lesions had characteristics similar to those in experimental models of human hereditary colorectal cancer. An additional 13‐week study was performed to examine the role of Nrf2 in the effects of oxidative stress. Significant increase in combined incidences of preneoplastic and neoplastic lesions in Nrf2−/− mice administered high‐dose KBrO3. In the short‐term study, although 8‐hydroxydeoxyguanosine (8‐OHdG) levels in the epithelial DNA of Nrf2−/− mice at the high dose were significantly lower than those of the corresponding Nrf2+/+ mice, the difference was very small. mRNA levels of Nrf2‐regulated genes were increased in Nrf2+/+ mice. Overexpression of cyclooxygenase 2 (COX2) and increased numbers of proliferating cell nuclear antigen (PCNA)‐positive cells in the jejunal crypts were observed in Nrf2−/− mice administered high‐dose KBrO3. Overall, these data suggested that individuals having single‐nucleotide polymorphisms in NRF2 may have a risk of colorectal cancer to some extent.
Collapse
Affiliation(s)
- Yuh Yokoo
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Aki Kijima
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Yuji Ishii
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Shinji Takasu
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Takuma Tsuchiya
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Takashi Umemura
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| |
Collapse
|
19
|
Chang J, Vacher J, Yao B, Fan X, Zhang B, Harris RC, Zhang MZ. Prostaglandin E receptor 4 (EP4) promotes colonic tumorigenesis. Oncotarget 2015; 6:33500-11. [PMID: 26378024 PMCID: PMC4741781 DOI: 10.18632/oncotarget.5589] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/23/2015] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) continues to be a major cause of morbidity and mortality. Although the factors underlying CRC development and progression are multifactorial, there is an important role for tumor-host interactions, especially interactions with myeloid cells. There is also increasing evidence that cyclooxygenase-derived prostaglandins are important mediators of CRC development and growth. Although prevention trials with either nonselective NSAIDs or COX-2 selective agents have shown promise, the gastrointestinal or cardiovascular side effects of these agents have limited their implementation. The predominant prostaglandin involved in CRC pathogenesis is PGE2. Since myeloid cells express high levels of the PGE2 receptor subtype, EP4, we selectively ablated EP4 in myeloid cells and studied adenoma formation in a mouse model of intestinal adenomatous polyposis, ApcMin/+ mice. ApcMin/+mice with selective myeloid cell deletion of EP4 had marked inhibition of both adenoma number and size, with associated decreases in mTOR and ERK activation. Either genetic or pharmacologic inhibition of EP4 receptors led to an anti-tumorigenic M1 phenotype of macrophages/dendritic cells. Therefore, PGE2-mediated EP4 signaling in myeloid cells promotes tumorigenesis, suggesting EP4 as a potentially attractive target for CRC chemoprevention or treatment.
Collapse
Affiliation(s)
- Jian Chang
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hepatobiliary Surgery Department, Wuhan No.1 Hospital, Wuhan, China
| | - Jean Vacher
- Départment of Médecine, Clinical Research Institute of Montreal, Université de Montréal, Montreal, Quebec, Canada
| | - Bing Yao
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Xiaofeng Fan
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Raymond C. Harris
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ming-Zhi Zhang
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
- Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
- Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, China
| |
Collapse
|
20
|
Leo VI, Tan SH, Bergmann H, Cheah PY, Chew MH, Lim KH, Ruland J, Reilly PT. CARD9 Promotes Sex-Biased Colon Tumors in the APCmin Mouse Model. Cancer Immunol Res 2015; 3:721-6. [PMID: 25941350 DOI: 10.1158/2326-6066.cir-14-0148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 04/14/2015] [Indexed: 11/16/2022]
Abstract
Caspase recuitment domain-containing protein 9 (CARD9) functions in different inflammation pathways to elicit responses to microbial signals and is known to affect intestinal inflammation. Examining the APC(min) mouse model of intestinal tumorigenesis and using stringently controlled, sex- and age-matched pairs of CARD9-competent and CARD9-deficient mice, we have found that CARD9 has a restricted but strong effect on tumorigenesis in the large intestine. We have found that CARD9 reduces viability specifically in males and promotes tumorigenesis specifically in the large intestines of these male mice. To our knowledge, this is the first gene ablation in APC(min) mice that solely affects colon tumors in male subjects and, as such, may have significant clinical implications. Additional data suggest correlative disruption of plasma cytokine expression and immune infiltration of the tumors. We speculate that known sex-specific differences in human colorectal cancer may involve inflammation, particularly CARD9-dependent inflammation.
Collapse
Affiliation(s)
- Vonny I Leo
- Laboratory of Inflammation Biology, National Cancer Centre, Singapore, Singapore
| | - Sze Huey Tan
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre, Singapore, Singapore
| | - Hanna Bergmann
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, Münich, Germany
| | - Peh Yean Cheah
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore. Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore. Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore
| | - Min Hoe Chew
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Kiat Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, Münich, Germany
| | - Patrick T Reilly
- Laboratory of Inflammation Biology, National Cancer Centre, Singapore, Singapore.
| |
Collapse
|
21
|
Cherukuri DP, Ishikawa TO, Chun P, Catapang A, Elashoff D, Grogan TR, Bugni J, Herschman HR. Targeted Cox2 gene deletion in intestinal epithelial cells decreases tumorigenesis in female, but not male, ApcMin/+ mice. Mol Oncol 2013; 8:169-77. [PMID: 24268915 DOI: 10.1016/j.molonc.2013.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 01/03/2023] Open
Abstract
Mice heterozygous for mutations in the adenomatous polyposis coli gene (Apc(+/-) mice) develop intestinal neoplasia. Apc(+/-) tumor formation is thought to be dependent on cyclooxygenase 2 (COX2) expression; both pharmacologic COX2 inhibition and global Cox2 gene deletion reduce the number of intestinal tumors in Apc(+/-) mice. COX2 expression is reported in epithelial cells, fibroblasts, macrophages and endothelial cells of Apc(+/-) mouse polyps. However, the cell type(s) in which COX2 expression is required for Apc(+/-) tumor induction is not known. To address this question, we developed Apc(Min/+) mice in which the Cox2 gene is specifically deleted either in intestinal epithelial cells or in myeloid cells. There is no significant difference in intestinal polyp number between Apc(Min/+) mice with a targeted Cox2 gene deletion in myeloid cells and their control littermate Apc(Min/+) mice. In contrast, Apc(Min/+) mice with a targeted Cox2 deletion in intestinal epithelial cells have reduced intestinal tumorigenesis when compared to their littermate control Apc(Min/+) mice. However, two gender-specific effects are notable. First, female Apc(Min/+) mice developed more intestinal tumors than male Apc(Min/+) mice. Second, targeted intestinal epithelial cell Cox2 deletion decreased tumorigenesis in female, but not in male, Apc(Min/+) mice. Considered in the light of pharmacologic studies and studies with global Cox2 gene knockout mice, our data suggest that (i) intrinsic COX2 expression in intestinal epithelial cells plays a gender-specific role in tumor development in Apc(Min/+) mice, and (ii) COX2 expression in cell type(s) other than intestinal epithelial cells also modulates intestinal tumorigenesis in Apc(Min/+) mice, by a paracrine process.
Collapse
Affiliation(s)
- Durga P Cherukuri
- Department of Molecular and Medical Pharmacology and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tomo-O Ishikawa
- Department of Molecular and Medical Pharmacology and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Patrick Chun
- Department of Molecular and Medical Pharmacology and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Art Catapang
- Department of Molecular and Medical Pharmacology and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tristan R Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - James Bugni
- Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Harvey R Herschman
- Department of Molecular and Medical Pharmacology and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|