1
|
Giovarelli M, Mocciaro E, Carnovale C, Cervia D, Perrotta C, Clementi E. Immunosenescence in skeletal muscle: The role-play in cancer cachexia chessboard. Semin Cancer Biol 2025; 111:48-59. [PMID: 40020976 DOI: 10.1016/j.semcancer.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
With the increase in life expectancy, age-related conditions and diseases have become a widespread and relevant social burden. Among these, immunosenescence and cancer cachexia play a significant often intertwined role. Immunosenescence is the progressive aging decline of both the innate and adaptive immune systems leading to increased infection susceptibility, poor vaccination efficacy, autoimmune disease, and malignancies. Cancer cachexia affects elderly patients with cancer causing severe weight loss, muscle wasting, inflammation, and reduced response to therapies. Whereas the connections between immunosenescence and cancer cachexia have been raising attention, the molecular mechanisms still need to be completely elucidated. This review aims at providing the current knowledge about the interplay between immunosenescence, skeletal muscle, and cancer cachexia, analyzing the molecular pathways known so far to be involved. Finally, we highlight potential therapeutic strategies suited for elderly population aimed to block immunosenescence and to preserve muscle mass in cachexia, also presenting the analysis of the current state-of-the-art of related clinical trials.
Collapse
Affiliation(s)
- Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy.
| | - Emanuele Mocciaro
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo 01100, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy.
| |
Collapse
|
2
|
Liu K, Cui Y, Han H, Guo E, Shi X, Xiong K, Zhang N, Zhai S, Sang S, Liu M, Chen B, Gu Y. Fibroblast atlas: Shared and specific cell types across tissues. SCIENCE ADVANCES 2025; 11:eado0173. [PMID: 40173240 PMCID: PMC11963979 DOI: 10.1126/sciadv.ado0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Understanding the heterogeneity of fibroblasts depends on decoding the complexity of cell subtypes, their origin, distribution, and interactions with other cells. Here, we integrated 249,156 fibroblasts from 73 studies across 10 tissues to present a single-cell atlas of fibroblasts. We provided a high-resolution classification of 18 fibroblast subtypes. In particular, we revealed a previously undescribed cell population, TSPAN8+ chromatin remodeling fibroblasts, characterized by high expression of genes with functions related to histone modification and chromatin remodeling. Moreover, TSPAN8+ chromatin remodeling fibroblasts were detectable in spatial transcriptome data and multiplexed immunofluorescence assays. Compared with other fibroblast subtypes, TSPAN8+ chromatin remodeling fibroblasts exhibited higher scores in cell differentiation and resident fibroblast, mainly interacting with endothelial cells and T cells through ligand VEGFA and receptor F2R, and their presence was associated with poor prognosis. Our analyses comprehensively defined the shared and specific characteristics of fibroblast subtypes across tissues and provided a user-friendly data portal, Fibroblast Atlas.
Collapse
Affiliation(s)
- Kaidong Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yanrui Cui
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Huiming Han
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Erliang Guo
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Xingyang Shi
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kai Xiong
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Nan Zhang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Songmei Zhai
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shaocong Sang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mingyue Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Bo Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Dai Q, Peng Y, He P, Wu X. Interactions and communications in the prostate tumour microenvironment: evolving towards effective cancer therapy. J Drug Target 2025; 33:295-315. [PMID: 39445641 DOI: 10.1080/1061186x.2024.2418344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Prostate cancer is one of the most common malignancies in men. The tumour microenvironment (TME) has a critical role in the initiation, progression, and metastasis of prostate cancer. TME contains various cell types, including cancer-associated fibroblasts (CAFs), endothelial cells, immune cells such as macrophages, lymphocytes B and T, natural killer (NK) cells, and other proteins such as extracellular matrix (ECM) components. The interactions and communications between these cells within the TME are crucial for the growth and response of various solid tumours, such as prostate cancer to different anticancer modalities. In this review article, we exemplify the various mechanisms by which the TME influences prostate cancer progression. The roles of different cells, cytokines, chemokines, and growth factors in modulating the immune response and prostate tumour growth will be discussed. The impact of these cells and factors and other ECM components on tumour cell invasion and metastasis will also be discussed. We explain how these interactions in TME can affect the response of prostate cancer to therapy. We also highlight the importance of understanding these interactions to develop novel therapeutic approaches for prostate cancer.
Collapse
Affiliation(s)
- Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Peng
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
4
|
Moradi A, Sahebi U, Nazarian H, Majdi L, Bayat M. Oncogenic MicroRNAs: Key players in human prostate cancer pathogenesis, a narrative review. Urol Oncol 2024; 42:429-437. [PMID: 39341711 DOI: 10.1016/j.urolonc.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Prostate cancer (PC) is a leading cause of cancer-related mortality in men worldwide, and identifying key molecular players in its pathogenesis is essential for advancing effective diagnosis and therapy. MicroRNAs (miRNAs) have recently emerged as significant molecules involved in the progression of various cancers. As noncoding RNAs, miRNAs play a vital role in regulating gene expression and are implicated in several aspects of cancer pathogenesis. In the context of human PC, growing evidence suggests that certain miRNAs with oncogenic properties are key players in the initiation, progression, and metastasis of the disease. In conclusion, dysregulated miRNAs are critical in prostate cancer progression, influencing key cellular processes. Oncogenic miRNAs exhibit diagnostic and therapeutic potential in PC. Targeting these miRNAs presents novel treatment avenues, but further research is needed to fully understand their clinical utility. Additional investigation into the mechanisms of miRNA regulation and their interactions with other signaling pathways is necessary to comprehensively understand the role of oncogenic miRNAs in PC and to develop effective treatments for this disease. Overall, substantiating the role of oncogenic miRNAs in PC pathogenesis provides valuable insights into the mechanisms underlying the disease and may lead to the development of novel targeted therapies for improved patient outcomes.
Collapse
Affiliation(s)
- Ali Moradi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Teh, Iran
| | - Unes Sahebi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Teh, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Teh, Iran
| | - Leila Majdi
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Teh, Iran
| | - Mohammad Bayat
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC of Louisville in Louisville, KY; Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Teh, Iran.
| |
Collapse
|
5
|
Giordo R, Ahmadi FAM, Husaini NA, Al-Nuaimi NRA, Ahmad SM, Pintus G, Zayed H. microRNA 21 and long non-coding RNAs interplays underlie cancer pathophysiology: A narrative review. Noncoding RNA Res 2024; 9:831-852. [PMID: 38586315 PMCID: PMC10995982 DOI: 10.1016/j.ncrna.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a diverse group of functional RNA molecules that lack the ability to code for proteins. Despite missing this traditional role, ncRNAs have emerged as crucial regulators of various biological processes and have been implicated in the development and progression of many diseases, including cancer. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two prominent classes of ncRNAs that have emerged as key players in cancer pathophysiology. In particular, miR-21 has been reported to exhibit oncogenic roles in various forms of human cancer, including prostate, breast, lung, and colorectal cancer. In this context, miR-21 overexpression is closely associated with tumor proliferation, growth, invasion, angiogenesis, and chemoresistance, whereas miR-21 inactivation is linked to the regression of most tumor-related processes. Accordingly, miR-21 is a crucial modulator of various canonical oncogenic pathways such as PTEN/PI3K/Akt, Wnt/β-catenin, STAT, p53, MMP2, and MMP9. Moreover, interplays between lncRNA and miRNA further complicate the regulatory mechanisms underlying tumor development and progression. In this regard, several lncRNAs have been found to interact with miR-21 and, by functioning as competitive endogenous RNAs (ceRNAs) or miRNA sponges, can modulate cancer tumorigenesis. This work presents and discusses recent findings highlighting the roles and pathophysiological implications of the miR-21-lncRNA regulatory axis in cancer occurrence, development, and progression. The data collected indicate that specific lncRNAs, such as MEG3, CASC2, and GAS5, are strongly associated with miR-21 in various types of cancer, including gastric, cervical, lung, and glioma. Indeed, these lncRNAs are well-known tumor suppressors and are commonly downregulated in different types of tumors. Conversely, by modulating various mechanisms and oncogenic signaling pathways, their overexpression has been linked with preventing tumor formation and development. This review highlights the significance of these regulatory pathways in cancer and their potential for use in cancer therapy as diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
| | - Fatemeh Abdullah M. Ahmadi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nedal Al Husaini
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Noora Rashid A.M. Al-Nuaimi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Salma M.S. Ahmad
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
6
|
Matuszewska J, Krawiec A, Radziemski A, Uruski P, Tykarski A, Mikuła-Pietrasik J, Książek K. Alterations of receptors and insulin-like growth factor binding proteins in senescent cells. Eur J Cell Biol 2024; 103:151438. [PMID: 38945074 DOI: 10.1016/j.ejcb.2024.151438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
The knowledge about cellular senescence expands dynamically, providing more and more conclusive evidence of its triggers, mechanisms, and consequences. Senescence-associated secretory phenotype (SASP), one of the most important functional traits of senescent cells, is responsible for a large extent of their context-dependent activity. Both SASP's components and signaling pathways are well-defined. A literature review shows, however, that a relatively underinvestigated aspect of senescent cell autocrine and paracrine activity is the change in the production of proteins responsible for the reception and transmission of SASP signals, i.e., receptors and binding proteins. For this reason, we present in this article the current state of knowledge regarding senescence-associated changes in cellular receptors and insulin-like growth factor binding proteins. We also discuss the role of these alterations in senescence induction and maintenance, pro-cancerogenic effects of senescent cells, and aging-related structural and functional malfunctions.
Collapse
Affiliation(s)
- Julia Matuszewska
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Adrianna Krawiec
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Artur Radziemski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Paweł Uruski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Andrzej Tykarski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Justyna Mikuła-Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Krzysztof Książek
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland.
| |
Collapse
|
7
|
Du M, Sun L, Guo J, Lv H. Macrophages and tumor-associated macrophages in the senescent microenvironment: From immunosuppressive TME to targeted tumor therapy. Pharmacol Res 2024; 204:107198. [PMID: 38692466 DOI: 10.1016/j.phrs.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
In-depth studies of the tumor microenvironment (TME) have helped to elucidate its cancer-promoting mechanisms and inherent characteristics. Cellular senescence, which acts as a response to injury and can the release of senescence-associated secretory phenotypes (SASPs). These SASPs release various cytokines, chemokines, and growth factors, remodeling the TME. This continual development of a senescent environment could be associated with chronic inflammation and immunosuppressive TME. Additionally, SASPs could influence the phenotype and function of macrophages, leading to the recruitment of tumor-associated macrophages (TAMs). This contributes to tumor proliferation and metastasis in the senescent microenvironment, working in tandem with immune regulation, angiogenesis, and therapeutic resistance. This comprehensive review covers the evolving nature of the senescent microenvironment, macrophages, and TAMs in tumor development. We also explored the links between chronic inflammation, immunosuppressive TME, cellular senescence, and macrophages. Moreover, we compiled various tumor-specific treatment strategies centered on cellular senescence and the current challenges in cellular senescence research. This study aimed to clarify the mechanism of macrophages and the senescent microenvironment in tumor progression and advance the development of targeted tumor therapies.
Collapse
Affiliation(s)
- Ming Du
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Lu Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jinshuai Guo
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Huina Lv
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
8
|
Li L, Xiang T, Guo J, Guo F, Wu Y, Feng H, Liu J, Tao S, Fu P, Ma L. Inhibition of ACSS2-mediated histone crotonylation alleviates kidney fibrosis via IL-1β-dependent macrophage activation and tubular cell senescence. Nat Commun 2024; 15:3200. [PMID: 38615014 PMCID: PMC11016098 DOI: 10.1038/s41467-024-47315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/25/2024] [Indexed: 04/15/2024] Open
Abstract
Histone lysine crotonylation (Kcr), as a posttranslational modification, is widespread as acetylation (Kac); however, its roles are largely unknown in kidney fibrosis. In this study, we report that histone Kcr of tubular epithelial cells is abnormally elevated in fibrotic kidneys. By screening these crotonylated/acetylated factors, a crotonyl-CoA-producing enzyme ACSS2 (acyl-CoA synthetase short chain family member 2) is found to remarkably increase histone 3 lysine 9 crotonylation (H3K9cr) level without influencing H3K9ac in kidneys and tubular epithelial cells. The integrated analysis of ChIP-seq and RNA-seq of fibrotic kidneys reveal that the hub proinflammatory cytokine IL-1β, which is regulated by H3K9cr, play crucial roles in fibrogenesis. Furthermore, genetic and pharmacologic inhibition of ACSS2 both suppress H3K9cr-mediated IL-1β expression, which thereby alleviate IL-1β-dependent macrophage activation and tubular cell senescence to delay renal fibrosis. Collectively, our findings uncover that H3K9cr exerts a critical, previously unrecognized role in kidney fibrosis, where ACSS2 represents an attractive drug target to slow fibrotic kidney disease progression.
Collapse
Affiliation(s)
- Lingzhi Li
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China
| | - Ting Xiang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China
| | - Jingjing Guo
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Fan Guo
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China
| | - Yiting Wu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China
| | - Han Feng
- Tulane Research and Innovation for Arrhythmia Discoveries-TRIAD Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jing Liu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China
| | - Sibei Tao
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China.
| | - Liang Ma
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China.
| |
Collapse
|
9
|
He X, Chen X, Yang C, Wang W, Sun H, Wang J, Fu J, Dong H. Prognostic value of RNA methylation-related genes in gastric adenocarcinoma based on bioinformatics. PeerJ 2024; 12:e16951. [PMID: 38436027 PMCID: PMC10909369 DOI: 10.7717/peerj.16951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Background Gastric cancer (GC) is a malignant tumor that originates from the epithelium of the gastric mucosa and has a poor prognosis. Stomach adenocarcinoma (STAD) covers 95% of total gastric cancer. This study aimed to identify the prognostic value of RNA methylation-related genes in gastric cancer. Methods In this study, The Cancer Genome Atlas (TCGA)-STAD and GSE84426 cohorts were downloaded from public databases. Patients were classified by consistent cluster analysis based on prognosis-related differentially expressed RNA methylation genes Prognostic genes were obtained by differential expression, univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses. The prognostic model was established and validated in the training set, test set and validation set respectively. Independent prognostic analysis was implemented. Finally, the expression of prognostic genes was affirmed by reverse transcription quantitative PCR (RT-qPCR). Results In total, four prognostic genes (ACTA2, SAPCD2, PDK4 and APOD) related to RNA methylation were identified and enrolled into the risk signature. The STAD patients were divided into high- and low-risk groups based on the medium value of the risk score, and patients in the high-risk group had a poor prognosis. In addition, the RNA methylation-relevant risk signature was validated in the test and validation sets, and was authenticated as a reliable independent prognostic predictor. The nomogram was constructed based on the independent predictors to predict the 1/3/5-year survival probability of STAD patients. The gene set enrichment analysis (GSEA) result suggested that the poor prognosis in the high-risk subgroup may be related to immune-related pathways. Finally, the experimental results indicated that the expression trends of RNA methylation-relevant prognostic genes in gastric cancer cells were in agreement with the result of bioinformatics. Conclusion Our study established a novel RNA methylation-related risk signature for STAD, which was of considerable significance for improving prognosis of STAD patients and offering theoretical support for clinical therapy.
Collapse
Affiliation(s)
- Xionghui He
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Xiang Chen
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Changcheng Yang
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Wei Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Hening Sun
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Junjie Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Jincheng Fu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| |
Collapse
|
10
|
Ribatti D, Tamma R, Annese T, Ingravallo G, Specchia G. Macrophages and angiogenesis in human lymphomas. Clin Exp Med 2024; 24:26. [PMID: 38285283 PMCID: PMC10824884 DOI: 10.1007/s10238-023-01291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
A link exists between chronic inflammation and cancer and immune cells, angiogenesis, and tumor progression. In hematologic malignancies, tumor-associated macrophages (TAMs) are a significant part of the tumor microenvironment. Macrophages are classified into M1/classically activated and M2/alternatively activated. In tumors, TAMs are mainly constituted by M2 subtype, which promotes angiogenesis, lymphangiogenesis, repair, and remodeling, suppressing adaptive immunity, increasing tumor cell proliferation, drug resistance, histological malignancy, and poor clinical prognosis. The aim of our review article is to define the role of TAMs and their relationship with the angiogenesis in patients with lymphoma reporting both an analysis of main published data and those emerging from our studies. Finally, we have discussed the anti-angiogenic approach in the treatment of lymphomas.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy.
| | - Roberto Tamma
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy
| | - Tiziana Annese
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy
- Department of Medicine and Surgery, Libera Università del Mediterraneo (LUM) Giuseppe Degennaro University, Bari, Italy
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Medical School, Bari, Italy
| | | |
Collapse
|
11
|
Guo Y, Cui J, Liang X, Chen T, Lu C, Peng T. Pancreatic cancer stem cell-derived exosomal miR-210 mediates macrophage M2 polarization and promotes gemcitabine resistance by targeting FGFRL1. Int Immunopharmacol 2024; 127:111407. [PMID: 38134594 DOI: 10.1016/j.intimp.2023.111407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Pancreatic cancer (PC) is a serious threat to human health, with most patients diagnosed at the advanced stages of the disease. Treatment with gemcitabine (GEM) leads to PC GEM resistance. In addition, cancer stem cell (CSC)-derived exosomes play an important role in cancer progression. We aimed to investigate the role and mechanism of action of PC stem cell-derived exosomes in PC drug resistance and progression. CSC-derived exosomes increased the proportion of F4/80+/CD86 + cells and levels of M2 polarization factors. miR-210 is expressed in CSC-derived exosomes. Thus, following co-culture, miR-210 was taken up by macrophages. Transfection or the addition of miR-210 mimics increased the proportion of F4/80+/CD206 + cells and levels of M2 polarization factors. Further, the miR-210 targets inhibited the levels of FGFRL1. The FGFRL1 overexpression plasmid also inhibited miR-210-mediated M2 polarization. After co-culture of THP-M2 cells with PC cells and treatment with GEM, the survival rate, migration rate, and levels of MDR, YB-1, BCRP, p-PI3K, p-AKT, and p-mTOR in PC cells increased. And THP-M2 increased the tumor volume and MDR, YB-1, BCRP, p-PI3K, p-AKT, and p-mTOR levels. Overall, miR-210 from PC stem cell-derived exosome targets and inhibits FGFRL1 to promote macrophage M2 polarization, which activates the p-PI3K/p-AKT/p-mTOR pathway and increases GEM resistance.
Collapse
Affiliation(s)
- Yao Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Cui
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueyi Liang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Taoyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chong Lu
- Department of thyroid and breast surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Tao Peng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
12
|
Fu Z, Xu H, Yue L, Zheng W, Pan L, Gao F, Liu X. Immunosenescence and cancer: Opportunities and challenges. Medicine (Baltimore) 2023; 102:e36045. [PMID: 38013358 PMCID: PMC10681516 DOI: 10.1097/md.0000000000036045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023] Open
Abstract
As individuals age, cancer becomes increasingly common. This continually rising risk can be attributed to various interconnected factors that influence the body's susceptibility to cancer. Among these factors, the accumulation of senescent cells in tissues and the subsequent decline in immune cell function and proliferative potential are collectively referred to as immunosenescence. Reduced T-cell production, changes in secretory phenotypes, increased glycolysis, and the generation of reactive oxygen species are characteristics of immunosenescence that contribute to cancer susceptibility. In the tumor microenvironment, senescent immune cells may promote the growth and spread of tumors through multiple pathways, thereby affecting the effectiveness of immunotherapy. In recent years, immunosenescence has gained increasing attention due to its critical role in tumor development. However, our understanding of how immunosenescence specifically impacts cancer immunotherapy remains limited, primarily due to the underrepresentation of elderly patients in clinical trials. Furthermore, there are several age-related intervention methods, including metformin and rapamycin, which involve genetic and pharmaceutical approaches. This article aims to elucidate the defining characteristics of immunosenescence and its impact on malignant tumors and immunotherapy. We particularly focus on the future directions of cancer treatment, exploring the complex interplay between immunosenescence, cancer, and potential interventions.
Collapse
Affiliation(s)
- Zhibin Fu
- Weifang Hospital of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Hailong Xu
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Lanping Yue
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Weiwei Zheng
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Linkang Pan
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Fangyi Gao
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Xingshan Liu
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| |
Collapse
|
13
|
Hazrati A, Malekpour K, Mirsanei Z, Khosrojerdi A, Rahmani-Kukia N, Heidari N, Abbasi A, Soudi S. Cancer-associated mesenchymal stem/stromal cells: role in progression and potential targets for therapeutic approaches. Front Immunol 2023; 14:1280601. [PMID: 38022534 PMCID: PMC10655012 DOI: 10.3389/fimmu.2023.1280601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Malignancies contain a relatively small number of Mesenchymal stem/stromal cells (MSCs), constituting a crucial tumor microenvironment (TME) component. These cells comprise approximately 0.01-5% of the total TME cell population. MSC differentiation potential and their interaction with the tumor environment enable these cells to affect tumor cells' growth, immune evasion, metastasis, drug resistance, and angiogenesis. This type of MSC, known as cancer-associated mesenchymal stem/stromal cells (CA-MSCs (interacts with tumor/non-tumor cells in the TME and affects their function by producing cytokines, chemokines, and various growth factors to facilitate tumor cell migration, survival, proliferation, and tumor progression. Considering that the effect of different cells on each other in the TME is a multi-faceted relationship, it is essential to discover the role of these relationships for targeting in tumor therapy. Due to the immunomodulatory role and the tissue repair characteristic of MSCs, these cells can help tumor growth from different aspects. CA-MSCs indirectly suppress antitumor immune response through several mechanisms, including decreasing dendritic cells (DCs) antigen presentation potential, disrupting natural killer (NK) cell differentiation, inducing immunoinhibitory subsets like tumor-associated macrophages (TAMs) and Treg cells, and immune checkpoint expression to reduce effector T cell antitumor responses. Therefore, if these cells can be targeted for treatment so that their population decreases, we can hope for the treatment and improvement of the tumor conditions. Also, various studies show that CA-MSCs in the TME can affect other vital aspects of a tumor, including cell proliferation, drug resistance, angiogenesis, and tumor cell invasion and metastasis. In this review article, we will discuss in detail some of the mechanisms by which CA-MSCs suppress the innate and adaptive immune systems and other mechanisms related to tumor progression.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Khosrojerdi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nasim Rahmani-Kukia
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Heidari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Gao D, Fang L, Liu C, Yang M, Yu X, Wang L, Zhang W, Sun C, Zhuang J. Microenvironmental regulation in tumor progression: Interactions between cancer-associated fibroblasts and immune cells. Biomed Pharmacother 2023; 167:115622. [PMID: 37783155 DOI: 10.1016/j.biopha.2023.115622] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
The tumor microenvironment (TME), the "soil" on which tumor cells grow, has an important role in regulating the proliferation and metastasis of tumor cells as well as their response to treatment. Cancer-associated fibroblasts (CAFs), as the most abundant stromal cells of the TME, can not only directly alter the immunosuppressive effect of the TME through their own metabolism, but also influence the aggregation and function of immune cells by secreting a large number of cytokines and chemokines, reducing the body's immune surveillance of tumor cells and making them more prone to immune escape. Our study provides a comprehensive review of fibroblast chemotaxis, malignant transformation, metabolic characteristics, and interactions with immune cells. In addition, the current small molecule drugs targeting CAFs have been summarized, including both natural small molecules and targeted drugs for current clinical therapeutic applications. A complete review of the role of fibroblasts in TME from an immune perspective is presented, which has important implications in improving the efficiency of immunotherapy by targeting fibroblasts.
Collapse
Affiliation(s)
- Dandan Gao
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Liguang Fang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Mengrui Yang
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Longyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Wenfeng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
15
|
Chen JS, Teng YN, Chen CY, Chen JY. A novel STAT3/ NFκB p50 axis regulates stromal-KDM2A to promote M2 macrophage-mediated chemoresistance in breast cancer. Cancer Cell Int 2023; 23:237. [PMID: 37821959 PMCID: PMC10568766 DOI: 10.1186/s12935-023-03088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Lysine Demethylase 2A (KDM2A) plays a crucial role in cancer cell growth, differentiation, metastasis, and the maintenance of cancer stemness. Our previous study found that cancer-secreted IL-6 can upregulate the expression of KDM2A to promote further the transition of cells into cancer-associated fibroblasts (CAFs). However, the molecular mechanism by which breast cancer-secreted IL-6 regulates the expression of KDM2A remains unclear. Therefore, this study aimed to elucidate the underlying molecular mechanism of IL-6 in regulating KDM2A expression in CAFs and KDM2A-mediated paclitaxel resistance in breast cancer. METHODS The ectopic vector expression and biochemical inhibitor were used to analyze the KDM2A expression regulated by HS-578 T conditioned medium or IL-6 in mammary fibroblasts. Immunoprecipitation and chromatin immunoprecipitation assays were conducted to examine the interaction between STAT3 and NFκB p50. M2 macrophage polarization was assessed by analyzing M2 macrophage-specific markers using flow cytometry and RT-PCR. ESTIMATE algorithm was used to analyze the tumor microenvironment-dominant breast cancer samples from the TCGA database. The correlation between stromal KDM2A and CD163 + M2 macrophages was analyzed using the Pearson correlation coefficient. Cell viability was determined using trypan blue exclusion assay. RESULTS IL-6 regulates gene expression via activation and dimerization of STAT3 or collaboration of STAT3 and NFκB. However, STAT3, a downstream transcription factor of the IL-6 signaling pathway, was directly complexed with NFκB p50, not NFκB p65, to upregulate the expression of KDM2A in CAFs. Enrichment analysis of immune cells/stromal cells using TCGA-breast cancer RNA-seq data unveiled a positive correlation between stromal KDM2A and the abundance of M2 macrophages. CXCR2-associated chemokines secreted by KDM2A-expressing CAFs stimulated M2 macrophage polarization, which in turn secreted CCL2 to increase paclitaxel resistance in breast cancer cells by activating CCR2 signaling. CONCLUSION This study revealed the non-canonical molecular mechanism of IL-6 secreted by breast cancer upregulated KDM2A expression in CAFs via a novel STAT3/NFκB p50 axis, which STAT3 complexed with NFκB p50 in NFκB p50 binding motif of KDM2A promoter. KDM2A-expressing CAFs dominantly secreted the CXCR2-associated chemokines to promote M2 macrophage polarization and enhance paclitaxel resistance in breast cancer. These findings underscore the therapeutic potential of targeting the CXCR2 or CCR2 pathway as a novel strategy for paclitaxel-resistant breast cancer.
Collapse
Affiliation(s)
- Jia-Shing Chen
- School of Medicine for International Students, College of Medicine, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung, 82425, Taiwan
| | - Yu-Ning Teng
- School of Medicine, College of Medicine, I-Shou University, 8 Yida Road, Kaohsiung, 82445, Taiwan ROC
- Department of Pharmacy, E-Da Cancer Hospital, 21 Yida Road, Kaohsiung, 82445, Taiwan ROC
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan ROC
| | - Jing-Yi Chen
- School of Medicine for International Students, College of Medicine, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung, 82425, Taiwan.
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung, 82425, Taiwan ROC.
| |
Collapse
|
16
|
Deng Z, Guo T, Bi J, Wang G, Hu Y, Du H, Zhou Y, Jia S, Xing X, Ji J. Transcriptome profiling of patient-derived tumor xenografts suggests novel extracellular matrix-related signatures for gastric cancer prognosis prediction. J Transl Med 2023; 21:638. [PMID: 37726803 PMCID: PMC10510236 DOI: 10.1186/s12967-023-04473-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/27/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND A major obstacle to the development of personalized therapies for gastric cancer (GC) is the prevalent heterogeneity at the intra-tumor, intra-patient, and inter-patient levels. Although the pathological stage and histological subtype diagnosis can approximately predict prognosis, GC heterogeneity is rarely considered. The extracellular matrix (ECM), a major component of the tumor microenvironment (TME), extensively interacts with tumor and immune cells, providing a possible proxy to investigate GC heterogeneity. However, ECM consists of numerous protein components, and there are no suitable models to screen ECM-related genes contributing to tumor growth and prognosis. We constructed patient-derived tumor xenograft (PDTX) models to obtain robust ECM-related transcriptomic signatures to improve GC prognosis prediction and therapy design. METHODS One hundred twenty two primary GC tumor tissues were collected to construct PDTX models. The tumorigenesis rate and its relationship with GC prognosis were investigated. Transcriptome profiling was performed for PDTX-originating tumors, and least absolute shrinkage and selection operator (LASSO) Cox regression analysis was applied to extract prognostic ECM signatures and establish PDTX tumorigenicity-related gene (PTG) scores. The predictive ability of the PTG score was validated using two independent cohorts. Finally, we combined PTG score, age, and pathological stage information to establish a robust nomogram for GC prognosis prediction. RESULTS We found that PDTX tumorigenicity indicated a poor prognosis in patients with GC, even at the same pathological stage. Transcriptome profiling of PDTX-originating GC tissues and corresponding normal controls identified 383 differentially expressed genes, with enrichment of ECM-related genes. A robust prognosis prediction model using the PTG score showed robust performance in two validation cohorts. A high PTG score was associated with elevated M2 polarized macrophage and cancer-associated fibroblast infiltration. Finally, combining the PTG score with age and TNM stage resulted in a more effective prognostic model than age or TNM stage alone. CONCLUSIONS We found that ECM-related signatures may contribute to PDTX tumorigenesis and indicate a poor prognosis in GC. A feasible survival prediction model was built based on the PTG score, which was associated with immune cell infiltration. Together with patient ages and pathological TNM stages, PTG score could be a new approach for GC prognosis prediction.
Collapse
Affiliation(s)
- Ziqian Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Jiwang Bi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Gangjian Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Ying Hu
- Biological Sample Bank, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, People's Republic of China.
| | - Shuqin Jia
- Department of Molecular Diagnosis, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
| |
Collapse
|
17
|
Liu B, Meng Q, Gao X, Sun H, Xu Z, Wang Y, Zhou H. Lipid and glucose metabolism in senescence. Front Nutr 2023; 10:1157352. [PMID: 37680899 PMCID: PMC10481967 DOI: 10.3389/fnut.2023.1157352] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Senescence is an inevitable biological process. Disturbances in glucose and lipid metabolism are essential features of cellular senescence. Given the important roles of these types of metabolism, we review the evidence for how key metabolic enzymes influence senescence and how senescence-related secretory phenotypes, autophagy, apoptosis, insulin signaling pathways, and environmental factors modulate glucose and lipid homeostasis. We also discuss the metabolic alterations in abnormal senescence diseases and anti-cancer therapies that target senescence through metabolic interventions. Our work offers insights for developing pharmacological strategies to combat senescence and cancer.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Xin Gao
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huihui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Zhixiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
18
|
Yang F, Li J, Ge Q, Zhang Y, Zhang M, Zhou J, Wang H, Du J, Gao S, Liang C, Meng J. Non-coding RNAs: emerging roles in the characterization of immune microenvironment and immunotherapy of prostate cancer. Biochem Pharmacol 2023:115669. [PMID: 37364622 DOI: 10.1016/j.bcp.2023.115669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Prostate cancer is the most common tumor among men. Although the prognosis for early-stage prostate cancer is good, patients with advanced disease often progress to metastatic castration-resistant prostate cancer (mCRPC), which usually leads to death owing to resistance to existing treatments and lack of long-term effective therapy. In recent years, immunotherapy, especially immune checkpoint inhibitors (ICIs), has made great progress in the treatment of various solid tumors, including prostate cancer. However, the ICIs have only shown modest outcomes in mCRPC compared with other tumors. Previous studies have suggested that the suppressive tumor immune microenvironment (TIME) of prostate cancer leads to poor anti-tumor immune response and tumor resistance to immunotherapy. It has been reported that non-coding RNAs (ncRNAs) are capable of regulating upstream signaling at the transcriptional level, leading to a "cascade of changes" in downstream molecules. As a result, ncRNAs have been identified as an ideal class of molecules for cancer treatment. The discovery of ncRNAs provides a new perspective on TIME regulation in prostate cancer. ncRNAs have been associated with establishing an immunosuppressive microenvironment in prostate cancer through multiple pathways to modulate the immune escape of tumor cells which can promote resistance of prostate cancer to immunotherapy. Targeting these related ncRNAs presents an opportunity to improve the effectiveness of immunotherapy in this patient population.
Collapse
Affiliation(s)
- Feixiang Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China.
| | - Jiawei Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Qintao Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Yuchen Zhang
- First School of Clinical Medicine, Anhui Medical University, Hefei 230022, China.
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Haitao Wang
- Center for Cancer Research, Clinical Research/NCI/NIH, Bethesda, MD 20892, USA
| | - Juan Du
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China.
| | - Shenglin Gao
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, Jiangsu, China; Gonghe County Hospital of Traditional Chinese Medicine, Hainan 813099, Qinghai, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
19
|
Bedeschi M, Marino N, Cavassi E, Piccinini F, Tesei A. Cancer-Associated Fibroblast: Role in Prostate Cancer Progression to Metastatic Disease and Therapeutic Resistance. Cells 2023; 12:cells12050802. [PMID: 36899938 PMCID: PMC10000679 DOI: 10.3390/cells12050802] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in European males. Although therapeutic approaches have changed in recent years, and several new drugs have been approved by the Food and Drug Administration (FDA), androgen deprivation therapy (ADT) remains the standard of care. Currently, PCa represents a clinical and economic burden due to the development of resistance to ADT, paving the way to cancer progression, metastasis, and to long-term side effects induced by ADT and radio-chemotherapeutic regimens. In light of this, a growing number of studies are focusing on the tumor microenvironment (TME) because of its role in supporting tumor growth. Cancer-associated fibroblasts (CAFs) have a central function in the TME because they communicate with prostate cancer cells, altering their metabolism and sensitivity to drugs; hence, targeted therapy against the TME, and, in particular, CAFs, could represent an alternative therapeutic approach to defeat therapy resistance in PCa. In this review, we focus on different CAF origins, subsets, and functions to highlight their potential in future therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Martina Bedeschi
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
- Correspondence: (M.B.); (A.T.); Tel.: +39-0543739932 (A.T.)
| | - Noemi Marino
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Elena Cavassi
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Filippo Piccinini
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Anna Tesei
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
- Correspondence: (M.B.); (A.T.); Tel.: +39-0543739932 (A.T.)
| |
Collapse
|
20
|
Mandys V, Popov A, Gürlich R, Havránek J, Pfeiferová L, Kolář M, Vránová J, Smetana K, Lacina L, Szabo P. Expression of Selected miRNAs in Normal and Cancer-Associated Fibroblasts and in BxPc3 and MIA PaCa-2 Cell Lines of Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24043617. [PMID: 36835029 PMCID: PMC9961675 DOI: 10.3390/ijms24043617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Therapy for pancreatic ductal adenocarcinoma remains challenging, and the chances of a complete cure are very limited. As in other types of cancer, the expression and role of miRNAs in controlling the biological properties of this type of tumor have been extensively studied. A better insight into miRNA biology seems critical to refining diagnostics and improving their therapeutic potential. In this study, we focused on the expression of miR-21, -96, -196a, -210, and -217 in normal fibroblasts, cancer-associated fibroblasts prepared from a ductal adenocarcinoma of the pancreas, and pancreatic carcinoma cell lines. We compared these data with miRNAs in homogenates of paraffin-embedded sections from normal pancreatic tissues. In cancer-associated fibroblasts and cancer cell lines, miRNAs differed significantly from the normal tissue. In detail, miR-21 and -210 were significantly upregulated, while miR-217 was downregulated. Similar transcription profiles were earlier reported in cancer-associated fibroblasts exposed to hypoxia. However, the cells in our study were cultured under normoxic conditions. We also noted a relation to IL-6 production. In conclusion, cultured cancer-associated fibroblasts and carcinoma cells reflect miR-21 and -210 expression similarly to the cancer tissue samples harvested from the patients.
Collapse
Affiliation(s)
- Václav Mandys
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic
| | - Alexey Popov
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic
| | - Robert Gürlich
- Department of Surgery, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00 Prague, Czech Republic
| | - Jan Havránek
- Institute of Molecular Genetics, Czech Academy of Sciences, 100 00 Prague, Czech Republic
- Laboratory of Informatics and Chemistry, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Lucie Pfeiferová
- Institute of Molecular Genetics, Czech Academy of Sciences, 100 00 Prague, Czech Republic
- Laboratory of Informatics and Chemistry, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics, Czech Academy of Sciences, 100 00 Prague, Czech Republic
- Laboratory of Informatics and Chemistry, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Jana Vránová
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Karel Smetana
- First Faculty of Medicine, BIOCEV, Charles University, 252 50 Vestec, Czech Republic
- First Faculty of Medicine, Institute of Anatomy, Charles University, 128 00 Prague, Czech Republic
| | - Lukáš Lacina
- First Faculty of Medicine, BIOCEV, Charles University, 252 50 Vestec, Czech Republic
- First Faculty of Medicine, Institute of Anatomy, Charles University, 128 00 Prague, Czech Republic
- Department Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 128 08 Prague, Czech Republic
| | - Pavol Szabo
- First Faculty of Medicine, BIOCEV, Charles University, 252 50 Vestec, Czech Republic
- First Faculty of Medicine, Institute of Anatomy, Charles University, 128 00 Prague, Czech Republic
- Correspondence:
| |
Collapse
|
21
|
Pardella E, Pranzini E, Nesi I, Parri M, Spatafora P, Torre E, Muccilli A, Castiglione F, Fambrini M, Sorbi F, Cirri P, Caselli A, Puhr M, Klocker H, Serni S, Raugei G, Magherini F, Taddei ML. Therapy-Induced Stromal Senescence Promoting Aggressiveness of Prostate and Ovarian Cancer. Cells 2022; 11:cells11244026. [PMID: 36552790 PMCID: PMC9776582 DOI: 10.3390/cells11244026] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer progression is supported by the cross-talk between tumor cells and the surrounding stroma. In this context, senescent cells in the tumor microenvironment contribute to the development of a pro-inflammatory milieu and the acquisition of aggressive traits by cancer cells. Anticancer treatments induce cellular senescence (therapy-induced senescence, TIS) in both tumor and non-cancerous cells, contributing to many detrimental side effects of therapies. Thus, we focused on the effects of chemotherapy on the stromal compartment of prostate and ovarian cancer. We demonstrated that anticancer chemotherapeutics, regardless of their specific mechanism of action, promote a senescent phenotype in stromal fibroblasts, resulting in metabolic alterations and secretion of paracrine factors, sustaining the invasive and clonogenic potential of both prostate and ovarian cancer cells. The clearance of senescent stromal cells, through senolytic drug treatment, reverts the malignant phenotype of tumor cells. The clinical relevance of TIS was validated in ovarian and prostate cancer patients, highlighting increased accumulation of lipofuscin aggregates, a marker of the senescent phenotype, in the stromal compartment of tissues from chemotherapy-treated patients. These data provide new insights into the potential efficacy of combining traditional anticancer strategies with innovative senotherapy to potentiate anticancer treatments and overcome the adverse effects of chemotherapy.
Collapse
Affiliation(s)
- Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Ilaria Nesi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Matteo Parri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Pietro Spatafora
- Department of Minimally Invasive and Robotic Urologic Surgery and Kidney Transplantation, University of Florence, 50134 Florence, Italy
| | - Eugenio Torre
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Angela Muccilli
- Department of Health Sciences, Section of Pathology, University of Florence, 50134 Florence, Italy
| | - Francesca Castiglione
- Histopathology and Molecular Diagnostics, Careggi Teaching Hospital, 50134 Florence, Italy
| | - Massimiliano Fambrini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Flavia Sorbi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Paolo Cirri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Anna Caselli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Martin Puhr
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Sergio Serni
- Department of Minimally Invasive and Robotic Urologic Surgery and Kidney Transplantation, University of Florence, 50134 Florence, Italy
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Francesca Magherini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
- Correspondence:
| |
Collapse
|
22
|
Ribatti D. A double-edged sword in tumor angiogenesis and progression. Dual roles of mast cells, macrophages, and neutrophils. Pathol Res Pract 2022; 240:154167. [DOI: 10.1016/j.prp.2022.154167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
|
23
|
Doldi V, Lecchi M, Ljevar S, Colecchia M, Campi E, Centonze G, Marenghi C, Rancati T, Miceli R, Verderio P, Valdagni R, Gandellini P, Zaffaroni N. Potential of the Stromal Matricellular Protein Periostin as a Biomarker to Improve Risk Assessment in Prostate Cancer. Int J Mol Sci 2022; 23:7987. [PMID: 35887333 PMCID: PMC9324424 DOI: 10.3390/ijms23147987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Prostate cancer (PCa) ranges from indolent to aggressive tumors that may rapidly progress and metastasize. The switch to aggressive PCa is fostered by reactive stroma infiltrating tumor foci. Therefore, reactive stroma-based biomarkers may potentially improve the early detection of aggressive PCa, ameliorating disease classification. Gene expression profiles of PCa reactive fibroblasts highlighted the up-regulation of genes related to stroma deposition, including periostin and sparc. Here, the potential of periostin as a stromal biomarker has been investigated on PCa prostatectomies by immunohistochemistry. Moreover, circulating levels of periostin and sparc have been assessed in a low-risk PCa patient cohort enrolled in active surveillance (AS) by ELISA. We found that periostin is mainly expressed in the peritumoral stroma of prostatectomies, and its stromal expression correlates with PCa grade and aggressive disease features, such as the cribriform growth. Moreover, stromal periostin staining is associated with a shorter biochemical recurrence-free survival of PCa patients. Interestingly, the integration of periostin and sparc circulating levels into a model based on standard clinico-pathological variables improves its performance in predicting disease reclassification of AS patients. In this study, we provide the first evidence that circulating molecular biomarkers of PCa stroma may refine risk assessment and predict the reclassification of AS patients.
Collapse
Affiliation(s)
- Valentina Doldi
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (V.D.); (N.Z.)
| | - Mara Lecchi
- Bioinformatics and Biostatistics Unit, Department of Applied Research and Technological Development, Fondazione IRCSS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.L.); (P.V.)
| | - Silva Ljevar
- Clinical Epidemiology and Trial Organization, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (S.L.); (R.M.)
| | - Maurizio Colecchia
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.C.); (E.C.); (G.C.)
| | - Elisa Campi
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.C.); (E.C.); (G.C.)
| | - Giovanni Centonze
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.C.); (E.C.); (G.C.)
| | - Cristina Marenghi
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (C.M.); (T.R.); (R.V.)
| | - Tiziana Rancati
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (C.M.); (T.R.); (R.V.)
| | - Rosalba Miceli
- Clinical Epidemiology and Trial Organization, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (S.L.); (R.M.)
| | - Paolo Verderio
- Bioinformatics and Biostatistics Unit, Department of Applied Research and Technological Development, Fondazione IRCSS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.L.); (P.V.)
| | - Riccardo Valdagni
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (C.M.); (T.R.); (R.V.)
- Division of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20133 Milan, Italy
| | - Paolo Gandellini
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (V.D.); (N.Z.)
| |
Collapse
|
24
|
Saw PE, Chen J, Song E. Targeting CAFs to overcome anticancer therapeutic resistance. Trends Cancer 2022; 8:527-555. [PMID: 35331673 DOI: 10.1016/j.trecan.2022.03.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/20/2022]
Abstract
The view of cancer as a tumor cell-centric disease is now replaced by our understanding of the interconnection and dependency of tumor stroma. Cancer-associated fibroblasts (CAFs), the most abundant stromal cells in the tumor microenvironment (TME), are involved in anticancer therapeutic resistance. As we unearth more solid evidence on the link between CAFs and tumor progression, we gain insight into the role of CAFs in establishing resistance to cancer therapies. Herein, we review the origin, heterogeneity, and function of CAFs, with a focus on how CAF subsets can be used as biomarkers and can contribute to therapeutic resistance in cancer. We also depict current breakthroughs in targeting CAFs to overcome anticancer therapeutic resistance and discuss emerging CAF-targeting modalities.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; Fountain-Valley Institute for Life Sciences, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
25
|
Mikuła-Pietrasik J, Rutecki S, Książek K. The functional multipotency of transforming growth factor β signaling at the intersection of senescence and cancer. Cell Mol Life Sci 2022; 79:196. [PMID: 35305149 PMCID: PMC11073081 DOI: 10.1007/s00018-022-04236-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
The transforming growth factor β (TGF-β) family of cytokines comprises a group of proteins, their receptors, and effector molecules that, in a coordinated manner, modulate a plethora of physiological and pathophysiological processes. TGF-β1 is the best known and plausibly most active representative of this group. It acts as an immunosuppressant, contributes to extracellular matrix remodeling, and stimulates tissue fibrosis, differentiation, angiogenesis, and epithelial-mesenchymal transition. In recent years, this cytokine has been established as a vital regulator of organismal aging and cellular senescence. Finally, the role of TGF-β1 in cancer progression is no longer in question. Because this protein is involved in so many, often overlapping phenomena, the question arises whether it can be considered a molecular bridge linking some of these phenomena together and governing their reciprocal interactions. In this study, we reviewed the literature from the perspective of the role of various TGF-β family members as regulators of a complex mutual interplay between senescence and cancer. These aspects are then considered in a broader context of remaining TGF-β-related functions and coexisting processes. The main narrative axis in this work is centered around the interaction between the senescence of normal peritoneal cells and ovarian cancer cells. The discussion also includes examples of TGF-β activity at the interface of other normal and cancer cell types.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland
| | - Szymon Rutecki
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland.
| |
Collapse
|
26
|
Ermakov MS, Nushtaeva AA, Richter VA, Koval OA. Cancer-associated fibroblasts and their role in tumor progression. Vavilovskii Zhurnal Genet Selektsii 2022; 26:14-21. [PMID: 35342854 PMCID: PMC8894099 DOI: 10.18699/vjgb-22-03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
The stromal elements of a malignant tumor can promote cancer progression and metastasis. The structure of the tumor stroma includes connective tissue elements, blood vessels, nerves, and extracellular matrix (ECM). Some of the cellular elements of the tumor stroma are cancer-associated fibroblasts (CAFs). The origin and function of CAFs have been actively studied over the past thirty years. CAFs produce collagen, the main scaffold protein of the extracellular matrix. Collagen in the tumor stroma stimulates fibrosis, enhances the rigidity of tumor tissue, and disrupts the transmission of proliferation and differentiation signaling pathways. CAFs control tumor angiogenesis, cell motility, tumor immunogenic properties, and the development of resistance to chemo- and immunotherapy. As a result of metabolic adaptation of rapidly growing tumor tissue to the nutrients and oxygen deprivation, the main type of energy production in cells changes from oxidative phosphorylation to anaerobic glycolysis. These changes lead to sequential molecular alterations, including the induction of specified transcriptional factors that result in the CAFs activation. The molecular phenotype of activated CAFs is similar to fibroblasts activated during inflammation. In activated CAFs, alpha-smooth muscle actin (α-SMA) is synthetized de novo and various proteases and fibronectin are produced. Since CAFs are found in all types of carcinomas, these cells are potential targets for the development of new approaches for anticancer therapy. Some CAFs originate from resident fibroblasts of the organs invaded by the tumor, while others originate from epithelial tumor cells, which are undergoing an epithelial-mesenchymal transition (EMT). To date, many molecular and metabolic inducers of the EMT have been discovered including the transforming growth factor-beta (TGF-β), hypoxia, and inflammation. This review classifies modern concepts of molecular markers of CAFs, their functional features, and discusses the stages of epithelial-mesenchymal transition, and the potential of CAFs as a target for antitumor therapy.
Collapse
Affiliation(s)
- M. S. Ermakov
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
| | - A. A. Nushtaeva
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
| | - V. A. Richter
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
| | - O. A. Koval
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
| |
Collapse
|
27
|
TRPC3 shapes the ER-mitochondria Ca 2+ transfer characterizing tumour-promoting senescence. Nat Commun 2022; 13:956. [PMID: 35177596 PMCID: PMC8854551 DOI: 10.1038/s41467-022-28597-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence is implicated in a great number of diseases including cancer. Although alterations in mitochondrial metabolism were reported as senescence drivers, the underlying mechanisms remain elusive. We report the mechanism altering mitochondrial function and OXPHOS in stress-induced senescent fibroblasts. We demonstrate that TRPC3 protein, acting as a controller of mitochondrial Ca2+ load via negative regulation of IP3 receptor-mediated Ca2+ release, is down regulated in senescence regardless of the type of senescence inducer. This remodelling promotes cytosolic/mitochondrial Ca2+ oscillations and elevates mitochondrial Ca2+ load, mitochondrial oxygen consumption rate and oxidative phosphorylation. Re-expression of TRPC3 in senescent cells diminishes mitochondrial Ca2+ load and promotes escape from OIS-induced senescence. Cellular senescence evoked by TRPC3 downregulation in stromal cells displays a proinflammatory and tumour-promoting secretome that encourages cancer epithelial cell proliferation and tumour growth in vivo. Altogether, our results unravel the mechanism contributing to pro-tumour behaviour of senescent cells. Mitochondrial Ca2+ homeostasis is reported to influence cellular senescence. Here the authors show that TRPC3 limits senescence by inhibiting IP3R-mediated Ca2+ release and ER mitochondria Ca2+ transfer and that the downregulation of TRPC3 in stromal cells affects SASP production and tumour progression.
Collapse
|
28
|
Bell CJ, Potts KG, Hitt MM, Pink D, Tuszynski JA, Lewis JD. Novel colchicine derivative CR42-24 demonstrates potent anti-tumor activity in urothelial carcinoma. Cancer Lett 2022; 526:168-179. [PMID: 34838691 DOI: 10.1016/j.canlet.2021.11.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Bladder cancers, and specifically urothelial carcinoma, have few effective treatment options, and tumors typically develop resistance against standard of care chemotherapies leading to significant mortality. The development of alternative therapies with increased selectivity and improved tolerability would significantly impact this patient population. Here, we investigate a novel colchicine derivative, CR42-24, with increased selectivity for the βIII tubulin subtype as a treatment for urothelial carcinoma. βIII tubulin is a promising target due to its low expression in healthy tissues and its clinical association with poor prognosis. This study demonstrated that CR42-24 is selectively cytotoxic to several cancer cell lines at low nanomolar IC50, with high activity in bladder cancer cell lines both in vitro and in vivo. CR42-24 monotherapy in an aggressive urothelial carcinoma xenograft model results in effective control when treated early. We observed significant ablation of large tumors and patient-derived xenografts at low doses with excellent tolerability. CR42-24 was highly synergistic in combination with the standard of care chemotherapies gemcitabine and cisplatin, further increasing its therapeutic potential as a novel treatment for urothelial carcinoma.
Collapse
Affiliation(s)
- Clayton J Bell
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Kyle G Potts
- Department Microbiology, Immunology & Infectious Diseases, Alberta Children's Hospital Research Institute, T2N-4N1, Canada
| | - Mary M Hitt
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Desmond Pink
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Jack A Tuszynski
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| |
Collapse
|
29
|
ChallaSivaKanaka S, Vickman RE, Kakarla M, Hayward SW, Franco OE. Fibroblast heterogeneity in prostate carcinogenesis. Cancer Lett 2022; 525:76-83. [PMID: 34715252 PMCID: PMC8788937 DOI: 10.1016/j.canlet.2021.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/17/2021] [Accepted: 10/19/2021] [Indexed: 01/30/2023]
Abstract
Our understanding of stromal components, specifically cancer-associated fibroblasts (CAF), in prostate cancer (PCa), has evolved from considering these cells as inert bystanders to acknowledging their significance as players in prostate tumorigenesis. CAF are multifaceted-they promote cancer cell growth, migration and remodel the tumor microenvironment. Although targeting CAF could be a promising strategy for PCa treatment, they incorporate a high but undefined degree of intrinsic cellular heterogeneity. The interaction between CAF subpopulations, with the normal and tumor epithelium and with other cell types is not yet characterized. Defining these interactions and the critical signaling nodes that support tumorigenesis will enable the development of novel strategies to control prostate cancer progression. Here we will discuss the origins, molecular and functional heterogeneity of CAF in PCa. We highlight the challenges associated with delineating CAF heterogeneity and discuss potential areas of research that would assist in expanding our knowledge of CAF and their role in PCa tumorigenesis.
Collapse
Affiliation(s)
- Sathyavathi ChallaSivaKanaka
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Evanston, IL, 60201, USA
| | - Renee E Vickman
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Evanston, IL, 60201, USA
| | - Mamatha Kakarla
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Evanston, IL, 60201, USA
| | - Simon W Hayward
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Evanston, IL, 60201, USA
| | - Omar E Franco
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Evanston, IL, 60201, USA. http://
| |
Collapse
|
30
|
Abstract
Acute kidney injury (AKI) is a common clinical complication characterized by a sudden deterioration of the kidney's excretory function, which normally occurs secondary to another serious illness. AKI is an important risk factor for chronic kidney disease (CKD) occurrence and progression to kidney failure. It is, therefore, crucial to block the development of AKI as early as possible. To date, existing animal studies have shown that senescence occurs in the early stage of AKI and is extremely critical to prognosis. Cellular senescence is an irreversible process of cell cycle arrest that is accompanied by alterations at the transcriptional, metabolic, and secretory levels along with modified cellular morphology and chromatin organization. Acute cellular senescence tends to play an active role, whereas chronic senescence plays a dominant role in the progression of AKI to CKD. The occurrence of chronic senescence is inseparable from senescence-associated secretory phenotype (SASP) and senescence-related pathways. SASP acts on normal cells to amplify the senescence signal through senescence-related pathways. Senescence can be improved by initiating reprogramming, which plays a crucial role in blocking the progression of AKI to CKD. This review integrates the existing studies on senescence in AKI from several aspects to find meaningful research directions to improve the prognosis of AKI and prevent the progression of CKD.
Collapse
|
31
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X, Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer 2021; 20:131. [PMID: 34635121 PMCID: PMC8504100 DOI: 10.1186/s12943-021-01428-1] [Citation(s) in RCA: 1227] [Impact Index Per Article: 306.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), a stromal cell population with cell-of-origin, phenotypic and functional heterogeneity, are the most essential components of the tumor microenvironment (TME). Through multiple pathways, activated CAFs can promote tumor growth, angiogenesis, invasion and metastasis, along with extracellular matrix (ECM) remodeling and even chemoresistance. Numerous previous studies have confirmed the critical role of the interaction between CAFs and tumor cells in tumorigenesis and development. However, recently, the mutual effects of CAFs and the tumor immune microenvironment (TIME) have been identified as another key factor in promoting tumor progression. The TIME mainly consists of distinct immune cell populations in tumor islets and is highly associated with the antitumor immunological state in the TME. CAFs interact with tumor-infiltrating immune cells as well as other immune components within the TIME via the secretion of various cytokines, growth factors, chemokines, exosomes and other effector molecules, consequently shaping an immunosuppressive TME that enables cancer cells to evade surveillance of the immune system. In-depth studies of CAFs and immune microenvironment interactions, particularly the complicated mechanisms connecting CAFs with immune cells, might provide novel strategies for subsequent targeted immunotherapies. Herein, we shed light on recent advances regarding the direct and indirect crosstalk between CAFs and infiltrating immune cells and further summarize the possible immunoinhibitory mechanisms induced by CAFs in the TME. In addition, we present current related CAF-targeting immunotherapies and briefly describe some future perspectives on CAF research in the end.
Collapse
Affiliation(s)
- Xiaoqi Mao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
32
|
Wang X, Liu H, Ni Y, Shen P, Han X. Lactate shuttle: from substance exchange to regulatory mechanism. Hum Cell 2021; 35:1-14. [PMID: 34606041 DOI: 10.1007/s13577-021-00622-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Lactate, as the product of glycolytic metabolism and the substrate of energy metabolism, is an intermediate link between cancer cell and tumor microenvironment metabolism. The exchange of lactate between the two cells via mono-carboxylate transporters (MCTs) is known as the lactate shuttle in cancer. Lactate shuttle is the core of cancer cell metabolic reprogramming between two cells such as aerobic cancer cells and hypoxic cancer cells, tumor cells and stromal cells, cancer cells and vascular endothelial cells. Cancer cells absorb lactate by mono-carboxylate transporter 1 (MCT1) and convert lactate to pyruvate via intracellular lactate dehydrogenase B (LDH-B) to maintain their growth and metabolism. Since lactate shuttle may play a critical role in energy metabolism of cancer cells, components related to lactate shuttle may be a crucial target for tumor antimetabolic therapy. In this review, we describe the lactate shuttle in terms of both substance exchange and regulatory mechanisms in cancer. Meanwhile, we summarize the difference of key proteins of lactate shuttle in common types of cancer.
Collapse
Affiliation(s)
- Xingchen Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - He Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yingqian Ni
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Peibo Shen
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China. .,Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China. .,Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan, 250117, Shandong, China.
| |
Collapse
|
33
|
Maggiorani D, Beauséjour C. Senescence and Aging: Does It Impact Cancer Immunotherapies? Cells 2021; 10:1568. [PMID: 34206425 PMCID: PMC8307798 DOI: 10.3390/cells10071568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer incidence increases drastically with age. Of the many possible reasons for this, there is the accumulation of senescent cells in tissues and the loss of function and proliferation potential of immune cells, often referred to as immuno-senescence. Immune checkpoint inhibitors (ICI), by invigorating immune cells, have the potential to be a game-changers in the treatment of cancer. Yet, the variability in the efficacy of ICI across patients and cancer types suggests that several factors influence the success of such inhibitors. There is currently a lack of clinical studies measuring the impact of aging and senescence on ICI-based therapies. Here, we review how cellular senescence and aging, either by directly altering the immune system fitness or indirectly through the modification of the tumor environment, may influence the cancer-immune response.
Collapse
Affiliation(s)
- Damien Maggiorani
- Centre de Recherche du CHU Ste-Justine, Montréal, QC H3T 1C5, Canada;
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Christian Beauséjour
- Centre de Recherche du CHU Ste-Justine, Montréal, QC H3T 1C5, Canada;
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
34
|
Natua S, Dhamdhere SG, Mutnuru SA, Shukla S. Interplay within tumor microenvironment orchestrates neoplastic RNA metabolism and transcriptome diversity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1676. [PMID: 34109748 DOI: 10.1002/wrna.1676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
The heterogeneous population of cancer cells within a tumor mass interacts intricately with the multifaceted aspects of the surrounding microenvironment. The reciprocal crosstalk between cancer cells and the tumor microenvironment (TME) shapes the cancer pathophysiome in a way that renders it uniquely suited for immune tolerance, angiogenesis, metastasis, and therapy resistance. This dynamic interaction involves a dramatic reconstruction of the transcriptomic landscape of tumors by altering the synthesis, modifications, stability, and processing of gene readouts. In this review, we categorically evaluate the influence of TME components, encompassing a myriad of resident and infiltrating cells, signaling molecules, extracellular vesicles, extracellular matrix, and blood vessels, in orchestrating the cancer-specific metabolism and diversity of both mRNA and noncoding RNA, including micro RNA, long noncoding RNA, circular RNA among others. We also highlight the transcriptomic adaptations in response to the physicochemical idiosyncrasies of TME, which include tumor hypoxia, extracellular acidosis, and osmotic stress. Finally, we provide a nuanced analysis of existing and prospective therapeutics targeting TME to ameliorate cancer-associated RNA metabolism, consequently thwarting the cancer progression. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Subhashis Natua
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Shruti Ganesh Dhamdhere
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Srinivas Abhishek Mutnuru
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
35
|
Sadasivan SM, Chen Y, Gupta NS, Han X, Bobbitt KR, Chitale DA, Williamson SR, Rundle AG, Tang D, Rybicki BA. The interplay of growth differentiation factor 15 (GDF15) expression and M2 macrophages during prostate carcinogenesis. Carcinogenesis 2021; 41:1074-1082. [PMID: 32614434 DOI: 10.1093/carcin/bgaa065] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/05/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023] Open
Abstract
M2 (tumor-supportive) macrophages may upregulate growth differentiation factor 15 (GDF15), which is highly expressed in prostate tumors, but the combined utility of these markers as prognostic biomarkers are unclear. We retrospectively studied 90 prostate cancer cases that underwent radical prostatectomy as their primary treatment and were followed for biochemical recurrence (BCR). These cases also had a benign prostate biopsy at least 1 year or more before their prostate cancer surgery. Using computer algorithms to analyze digitalized immunohistochemically stained slides, GDF15 expression and the presence of M2 macrophages based on the relative density of CD204- and CD68-positive macrophages were measured in prostate: (i) benign biopsy, (ii) cancer and (iii) tumor-adjacent benign (TAB) tissue. Both M2 macrophages (P = 0.0004) and GDF15 (P < 0.0001) showed significant inter-region expression differences. Based on a Cox proportional hazards model, GDF15 expression was not associated with BCR but, in men where GDF15 expression differences between cancer and TAB were highest, the risk of BCR was significantly reduced (hazard ratio = 0.26; 95% confidence interval = 0.09-0.94). In addition, cases with high levels of M2 macrophages in prostate cancer had almost a 5-fold increased risk of BCR (P = 0.01). Expression of GDF15 in prostate TAB was associated with M2 macrophage levels in both prostate cancer and TAB and appeared to moderate M2-macrophage-associated BCR risk. In summary, the relationship of GDF15 expression and CD204-positive M2 macrophage levels is different in a prostate tumor environment compared with an earlier benign biopsy and, collectively, these markers may predict aggressive disease.
Collapse
Affiliation(s)
| | - Yalei Chen
- Department of Public Health Sciences, Detroit, MI, USA
| | | | - Xiaoxia Han
- Department of Public Health Sciences, Detroit, MI, USA
| | | | | | | | - Andrew G Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Deliang Tang
- Environmental Heath Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | |
Collapse
|
36
|
Khalaf K, Hana D, Chou JTT, Singh C, Mackiewicz A, Kaczmarek M. Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance. Front Immunol 2021; 12:656364. [PMID: 34122412 PMCID: PMC8190405 DOI: 10.3389/fimmu.2021.656364] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and ever-changing "rogue organ" composed of its own blood supply, lymphatic and nervous systems, stroma, immune cells and extracellular matrix (ECM). These complex components, utilizing both benign and malignant cells, nurture the harsh, immunosuppressive and nutrient-deficient environment necessary for tumor cell growth, proliferation and phenotypic flexibility and variation. An important aspect of the TME is cellular crosstalk and cell-to-ECM communication. This interaction induces the release of soluble factors responsible for immune evasion and ECM remodeling, which further contribute to therapy resistance. Other aspects are the presence of exosomes contributed by both malignant and benign cells, circulating deregulated microRNAs and TME-specific metabolic patterns which further potentiate the progression and/or resistance to therapy. In addition to biochemical signaling, specific TME characteristics such as the hypoxic environment, metabolic derangements, and abnormal mechanical forces have been implicated in the development of treatment resistance. In this review, we will provide an overview of tumor microenvironmental composition, structure, and features that influence immune suppression and contribute to treatment resistance.
Collapse
Affiliation(s)
- Khalil Khalaf
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Doris Hana
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Jadzia Tin-Tsen Chou
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Chandpreet Singh
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
37
|
Noncoding RNAs in the Interplay between Tumor Cells and Cancer-Associated Fibroblasts: Signals to Catch and Targets to Hit. Cancers (Basel) 2021; 13:cancers13040709. [PMID: 33572359 PMCID: PMC7916113 DOI: 10.3390/cancers13040709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cancer aggressiveness is the result of a proficient bidirectional interaction between tumor and stromal cells within the tumor microenvironment, among which a major role is played by the so-called cancer-associated fibroblasts. Upon such interplay, both cancer cells and fibroblasts are reprogrammed to sustain malignancy, with changes in the repertoire of noncoding RNAs, mainly microRNAs and long noncoding RNAs. Such molecules are also exchanged between the two cell types through extracellular vesicles. In this review, we summarize the current knowledge of microRNAs and long noncoding RNAs that act intracellularly or extracellularly to sustain tumor-stroma interplay. We also provide our view regarding the possible clinical utility of such noncoding RNAs as therapeutic target/tools or biomarkers to predict patient outcome or response to specific treatments. Abstract Cancer development and progression are not solely cell-autonomous and genetically driven processes. Dynamic interaction of cancer cells with the surrounding microenvironment, intended as the chemical/physical conditions as well as the mixture of non-neoplastic cells of the tumor niche, drive epigenetic changes that are pivotal for the acquisition of malignant traits. Cancer-associated fibroblasts (CAF), namely fibroblasts that, corrupted by cancer cells, acquire a myofibroblast-like reactive phenotype, are able to sustain tumor features by the secretion of soluble paracrine signals and the delivery extracellular vesicles. In such diabolic liaison, a major role has been ascribed to noncoding RNAs. Defined as RNAs that are functional though not being translated into proteins, noncoding RNAs predominantly act as regulators of gene expression at both the transcriptional and post-transcriptional levels. In this review, we summarize the current knowledge of microRNAs and long noncoding RNAs that act intracellularly in either CAFs or cancer cells to sustain tumor-stroma interplay. We also report on the major role of extracellular noncoding RNAs that are bidirectionally transferred between either cell type. Upon presenting a comprehensive view of the existing literature, we provide our critical opinion regarding the possible clinical utility of tumor-stroma related noncoding RNAs as therapeutic target/tools or prognostic/predictive biomarkers.
Collapse
|
38
|
TGF-β in Cancer: Metabolic Driver of the Tolerogenic Crosstalk in the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13030401. [PMID: 33499083 PMCID: PMC7865468 DOI: 10.3390/cancers13030401] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Overcoming tumor immunosuppression still represents one ambitious achievement for cancer immunotherapy. Of note, the cytokine TGF-β contributes to immune evasion in multiple cancer types, by feeding the establishment of a tolerogenic environment in the host. Indeed, it fosters the expansion and accumulation of immunosuppressive regulatory cell populations within the tumor microenvironment (TME), where it also activates resident stromal cells and enhances angiogenesis programs. More recently, TGF-β has also turned out as a key metabolic adjuster in tumors orchestrating metabolic pathways in the TME. In this review, we will scrutinize TGF-β-mediated immune and stromal cell crosstalk within the TME, with a primary focus on metabolic programs.
Collapse
|
39
|
Patil N, Allgayer H, Leupold JH. MicroRNAs in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1277:1-31. [PMID: 33119862 DOI: 10.1007/978-3-030-50224-9_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) is decisive for the eradication or survival of any tumor mass. Moreover, it plays a pivotal role for metastasis and for providing the metastatic niche. The TME offers special physiological conditions and is composed of, for example, surrounding blood vessels, the extracellular matrix (ECM), diverse signaling molecules, exosomes and several cell types including, but not being limited to, infiltrated immune cells, cancer-associated endothelial cells (CAEs), and cancer-associated fibroblasts (CAFs). These cells can additionally and significantly contribute to tumor and metastasis progression, especially also by acting via their own deregulated micro (mi) RNA expression or activity. Thus, miRNAs are essential players in the crosstalk between cancer cells and the TME. MiRNAs are small non-coding (nc) RNAs that typically inhibit translation and stability of messenger (m) RNAs, thus being able to regulate several cell functions including proliferation, migration, differentiation, survival, invasion, and several steps of the metastatic cascade. The dynamic interplay between miRNAs in different cell types or organelles such as exosomes, ECM macromolecules, and the TME plays critical roles in many aspects of cancer development. This chapter aims to give an overview on the multiple contributions of miRNAs as players within the TME, to summarize the role of miRNAs in the crosstalk between different cell populations found within the TME, and to illustrate how they act on tumorigenesis and the behavior of cells in the TME context. Lastly, the potential clinical utility of miRNAs for cancer therapy is discussed.
Collapse
Affiliation(s)
- Nitin Patil
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany
| | - Heike Allgayer
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany
| | - Jörg H Leupold
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany.
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karls University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
40
|
Virga F, Quirico L, Cucinelli S, Mazzone M, Taverna D, Orso F. MicroRNA-Mediated Metabolic Shaping of the Tumor Microenvironment. Cancers (Basel) 2021; 13:E127. [PMID: 33401522 PMCID: PMC7795884 DOI: 10.3390/cancers13010127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
The metabolism of cancer cells is generally very different from what is found in normal counterparts. However, in a tumor mass, the continuous crosstalk and competition for nutrients and oxygen among different cells lead to metabolic alterations, not only in cancer cells, but also in the different stromal and immune cells of the tumor microenvironment (TME), which are highly relevant for tumor progression. MicroRNAs (miRs) are small non-coding RNAs that silence their mRNA targets post-transcriptionally and are involved in numerous physiological cell functions as well as in the adaptation to stress situations. Importantly, miRs can also be released via extracellular vesicles (EVs) and, consequently, take part in the bidirectional communication between tumor and surrounding cells under stress conditions. Certain miRs are abundantly expressed in stromal and immune cells where they can regulate various metabolic pathways by directly suppressing enzymes or transporters as well as by controlling important regulators (such as transcription factors) of metabolic processes. In this review, we discuss how miRs can induce metabolic reprogramming in stromal (fibroblasts and adipocytes) and immune (macrophages and T cells) cells and, in turn, how the biology of the different cells present in the TME is able to change. Finally, we debate the rebound of miR-dependent metabolic alterations on tumor progression and their implications for cancer management.
Collapse
Affiliation(s)
- Federico Virga
- Molecular Biotechnology Center (MBC), University of Torino, 10126 Torino, Italy; (F.V.); (L.Q.); (S.C.); (M.M.); (D.T.)
- Department Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- VIB Center for Cancer Biology (CCB), Department of Oncology, University of Leuven, B-3000 Leuven, Belgium
| | - Lorena Quirico
- Molecular Biotechnology Center (MBC), University of Torino, 10126 Torino, Italy; (F.V.); (L.Q.); (S.C.); (M.M.); (D.T.)
- Department Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Stefania Cucinelli
- Molecular Biotechnology Center (MBC), University of Torino, 10126 Torino, Italy; (F.V.); (L.Q.); (S.C.); (M.M.); (D.T.)
- Department Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Massimiliano Mazzone
- Molecular Biotechnology Center (MBC), University of Torino, 10126 Torino, Italy; (F.V.); (L.Q.); (S.C.); (M.M.); (D.T.)
- Department Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- VIB Center for Cancer Biology (CCB), Department of Oncology, University of Leuven, B-3000 Leuven, Belgium
| | - Daniela Taverna
- Molecular Biotechnology Center (MBC), University of Torino, 10126 Torino, Italy; (F.V.); (L.Q.); (S.C.); (M.M.); (D.T.)
- Department Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Francesca Orso
- Molecular Biotechnology Center (MBC), University of Torino, 10126 Torino, Italy; (F.V.); (L.Q.); (S.C.); (M.M.); (D.T.)
- Department Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| |
Collapse
|
41
|
Fang Z, Xu J, Zhang B, Wang W, Liu J, Liang C, Hua J, Meng Q, Yu X, Shi S. The promising role of noncoding RNAs in cancer-associated fibroblasts: an overview of current status and future perspectives. J Hematol Oncol 2020; 13:154. [PMID: 33213510 PMCID: PMC7678062 DOI: 10.1186/s13045-020-00988-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
As the most important component of the stromal cell population in the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) are crucial players in tumor initiation and progression. The interaction between CAFs and tumor cells, as well as the resulting effect, is much greater than initially expected. Numerous studies have shown that noncoding RNAs (ncRNAs) play an irreplaceable role in this interplay, and related evidence continues to emerge and advance. Under the action of ncRNAs, normal fibroblasts are directly or indirectly activated into CAFs, and their metabolic characteristics are changed; thus, CAFs can more effectively promote tumor progression. Moreover, via ncRNAs, activated CAFs can affect the gene expression and secretory characteristics of cells, alter the TME and enhance malignant biological processes in tumor cells to contribute to tumor promotion. Previously, ncRNA dysregulation was considered the main mechanism by which ncRNAs participate in the crosstalk between CAFs and tumor cells. Recently, however, exosomes containing ncRNAs have been identified as another vital mode of interaction between these two types of cells, with a more direct and clear function. Gaining an in-depth understanding of ncRNAs in CAFs and the complex regulatory network connecting CAFs with tumor cells might help us to establish more effective and safer approaches for cancer therapies targeting ncRNAs and CAFs and offer new hope for cancer patients.
Collapse
Affiliation(s)
- Zengli Fang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
42
|
Turnham DJ, Bullock N, Dass MS, Staffurth JN, Pearson HB. The PTEN Conundrum: How to Target PTEN-Deficient Prostate Cancer. Cells 2020; 9:E2342. [PMID: 33105713 PMCID: PMC7690430 DOI: 10.3390/cells9112342] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Loss of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN), which negatively regulates the PI3K-AKT-mTOR pathway, is strongly linked to advanced prostate cancer progression and poor clinical outcome. Accordingly, several therapeutic approaches are currently being explored to combat PTEN-deficient tumors. These include classical inhibition of the PI3K-AKT-mTOR signaling network, as well as new approaches that restore PTEN function, or target PTEN regulation of chromosome stability, DNA damage repair and the tumor microenvironment. While targeting PTEN-deficient prostate cancer remains a clinical challenge, new advances in the field of precision medicine indicate that PTEN loss provides a valuable biomarker to stratify prostate cancer patients for treatments, which may improve overall outcome. Here, we discuss the clinical implications of PTEN loss in the management of prostate cancer and review recent therapeutic advances in targeting PTEN-deficient prostate cancer. Deepening our understanding of how PTEN loss contributes to prostate cancer growth and therapeutic resistance will inform the design of future clinical studies and precision-medicine strategies that will ultimately improve patient care.
Collapse
Affiliation(s)
- Daniel J. Turnham
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - Nicholas Bullock
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Manisha S. Dass
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - John N. Staffurth
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| |
Collapse
|
43
|
Yang B, Damodaran S, Khemees TA, Filon MJ, Schultz A, Gawdzik J, Etheridge T, Malin D, Richards KA, Cryns VL, Jarrard DF. Synthetic Lethal Metabolic Targeting of Androgen-Deprived Prostate Cancer Cells with Metformin. Mol Cancer Ther 2020; 19:2278-2287. [DOI: 10.1158/1535-7163.mct-19-1141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/28/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022]
|
44
|
Jain N, Moeller J, Vogel V. Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis. Annu Rev Biomed Eng 2020; 21:267-297. [PMID: 31167103 DOI: 10.1146/annurev-bioeng-062117-121224] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In addition to their early-recognized functions in host defense and the clearance of apoptotic cell debris, macrophages play vital roles in tissue development, homeostasis, and repair. If misregulated, they steer the progression of many inflammatory diseases. Much progress has been made in understanding the mechanisms underlying macrophage signaling, transcriptomics, and proteomics, under physiological and pathological conditions. Yet, the detailed mechanisms that tune circulating monocytes/macrophages and tissue-resident macrophage polarization, differentiation, specification, and their functional plasticity remain elusive. We review how physical factors affect macrophage phenotype and function, including how they hunt for particles and pathogens, as well as the implications for phagocytosis, autophagy, and polarization from proinflammatory to prohealing phenotype. We further discuss how this knowledge can be harnessed in regenerative medicine and for the design of new drugs and immune-modulatory drug delivery systems, biomaterials, and tissue scaffolds.
Collapse
Affiliation(s)
- Nikhil Jain
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| | - Jens Moeller
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
45
|
Emerging Therapeutic RNAs for the Targeting of Cancer Associated Fibroblasts. Cancers (Basel) 2020; 12:cancers12061365. [PMID: 32466591 PMCID: PMC7352655 DOI: 10.3390/cancers12061365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor mass consists of a complex ensemble of malignant cancer cells and a wide variety of resident and infiltrating cells, secreted factors, and extracellular matrix proteins that are referred as tumor microenvironment (TME). Cancer associated fibroblasts (CAFs) are key TME components that support tumor growth, generating a physical barrier against drugs and immune infiltration, and contributing to regulate malignant progression. Thus, it is largely accepted that therapeutic approaches aimed at hampering the interactions between tumor cells and CAFs can enhance the effectiveness of anti-cancer treatments. In this view, nucleic acid therapeutics have emerged as promising molecules. Here, we summarize recent knowledge about their role in the regulation of CAF transformation and tumor-promoting functions, highlighting their therapeutic utility and challenges.
Collapse
|
46
|
Harquail J, LeBlanc N, Ouellette RJ, Robichaud GA. miRNAs 484 and 210 regulate Pax-5 expression and function in breast cancer cells. Carcinogenesis 2020; 40:1010-1020. [PMID: 30605519 DOI: 10.1093/carcin/bgy191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/13/2018] [Indexed: 01/12/2023] Open
Abstract
Recent studies have enabled the identification of important factors regulating cancer progression, such as paired box gene 5 (Pax-5). This transcription factor has consistently been associated to B-cell cancer lesions and more recently solid tumors including breast carcinoma. Although Pax-5 downstream activity is relatively well characterized, aberrant Pax-5 expression in a cancer-specific context is poorly understood. To investigate the regulation of Pax-5 expression, we turned to micro RNAs (miRNAs), small non-coding RNA molecules that regulate key biological processes. Extensive studies show that miRNA deregulation is prevalent in cancer lesions. In this study, we aim to elucidate a causal link between differentially expressed miRNAs in cancer cells and their putative targeting of Pax-5-dependent cancer processes. Bioinformatic prediction tools indicate that miRNAs 484 and 210 are aberrantly expressed in breast cancer and predicted to target Pax-5 messenger RNA (mRNA). Through conditional modulation of these miRNAs in breast cancer cells, we demonstrate that miRNAs 484 and 210 inhibit Pax-5 expression and regulate Pax-5-associated cancer processes. In validation, we show that these effects are probably caused by direct miRNA/mRNA interaction, which are reversible by Pax-5 recombinant expression. Interestingly, miRNAs 484 and 210, which are both overexpressed in clinical tumor samples, are also modulated during epithelial-mesenchymal transitioning and hypoxia that correlate inversely to Pax-5 expression. This is the first study demonstrating the regulation of Pax-5 expression and function by non-coding RNAs. These findings will help us better understand Pax-5 aberrant expression within cancer cells, creating the possibility for more efficient diagnosis and treatments for cancer patients.
Collapse
Affiliation(s)
- Jason Harquail
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Nicolas LeBlanc
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Rodney J Ouellette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Gilles A Robichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| |
Collapse
|
47
|
Yang M, Jiang Z, Yao G, Wang Z, Sun J, Qin H, Zhao H. GALC Triggers Tumorigenicity of Colorectal Cancer via Senescent Fibroblasts. Front Oncol 2020; 10:380. [PMID: 32318333 PMCID: PMC7154132 DOI: 10.3389/fonc.2020.00380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC)-associated senescent fibroblasts may play a crucial role in tumor progression, but the mechanism remains unclear. In order to solve this complicated problem, we randomly collected 16 patients with CRC, who had been treated with oxaliplatin and capecitabine (XELOX). Hematoxylin-eosin (HE) staining revealed that the tumor-stroma ratio (TSR) of CRC was affected by XELOX treatment. Immunohistochemistry (IHC) and senescence-associated β-galactosidase (SAβG) staining were used to verify a stable model of senescent fibroblasts. IHC analysis showed that high expression levels of galactosylceramidase (GALC) and significant senescence-associated β-galactosidase (SAβG) staining were associated with CRC patient survival. We observed that fibroblasts overexpressing GALC underwent cell cycle arrest. Changes in cell morphology and cell cycle characteristics were accompanied by the upregulation of the p16, p21, and p53 gene, and the downregulation of hTERT expression. In a co-culture system, fibroblasts overexpressing GALC significantly increased the proliferation of CRC cells. Transmission electron microscopy (TEM) analysis confirmed that GALC overexpression fibroblasts co-cultured with CRC caused changes in CRC cell morphology. The aging fibroblast co-culture group (70%) had a higher migration ability. In vivo experiments and transcriptomics analysis were performed to verify the effect of senescent fibroblasts on tumor formation and to identify the potential mechanisms for the above results. We found that a high expression of ATF3 was related to good survival rates. However, a high expression of KIAA0907 was bad for survival rates (p < 0.05). The knockdown of ATF3 can promote cell proliferation, migration, and clonogenic assays, while downregulation of KIAA0907 inhibits cell proliferation, migration, and clonogenic assays. The results demonstrate that senescent fibroblasts with a high level of GALC regulated several aspects of the tumor growth process, including migration and invasion.
Collapse
Affiliation(s)
- Mengdi Yang
- Department of Internal Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhiyuan Jiang
- Department of Internal Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guangyu Yao
- Department of Internal Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhiyu Wang
- Department of Internal Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Sun
- Department of Internal Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated With Tongji University, Shanghai, China
| | - Hui Zhao
- Department of Internal Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
48
|
Ortiz-Otero N, Clinch AB, Hope J, Wang W, Reinhart-King CA, King MR. Cancer associated fibroblasts confer shear resistance to circulating tumor cells during prostate cancer metastatic progression. Oncotarget 2020; 11:1037-1050. [PMID: 32256977 PMCID: PMC7105166 DOI: 10.18632/oncotarget.27510] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Previous studies have demonstrated that CTCs do not travel in the bloodstream alone, but rather are accompanied by clusters of stromal cells such as cancer associated fibroblasts (CAFs). Our laboratory has confirmed the presence of CAFs in the peripheral blood of prostate cancer (PC) patients. The observation that CAFs disseminate with CTCs prompts the examination of the role of CAFs in CTC survival under physiological shear stress during the dissemination process using a clinically relevant, three-dimensional (3D) co-culture model. In this study, we found that "reactive CAFs" induce shear resistance to prostate tumor cells via intercellular contact and soluble derived factors. In addition, these reactive CAFs conserve the proliferative capability of tumor cells in the presence of high magnitude fluid shear stress (FSS). This reactive CAF phenotype emerges from normal fibroblasts (NF), which take on the CAF phenotype when co-cultured with tumor cells. The reactive CAFs showed higher expression of α-smooth muscle actin (α-SMA) and fibroblast activation protein (FAP) compared to differentiated CAFs, when co-cultured with PC cells at the same experimental conditions. Together, we found that the activation mechanism of NF to CAF comprises different stages that progress from a reactive to quiescent cellular state in which these two states are differentiated by the fluctuation of intensity in CAF markers. Here we determined that a reactive state of CAFs proved to be important for supporting tumor cell survival and proliferation. These findings suggest the use of CAFs as a marker for cancer progression and a potential target for novel cancer therapeutics to treat metastatic disease.
Collapse
Affiliation(s)
- Nerymar Ortiz-Otero
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Andrea B Clinch
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37202, USA
| | - Jacob Hope
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37202, USA
| | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37202, USA
| | | | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37202, USA
| |
Collapse
|
49
|
Petanidis S, Domvri K, Porpodis K, Anestakis D, Freitag L, Hohenforst-Schmidt W, Tsavlis D, Zarogoulidis K. Inhibition of kras-derived exosomes downregulates immunosuppressive BACH2/GATA-3 expression via RIP-3 dependent necroptosis and miR-146/miR-210 modulation. Biomed Pharmacother 2020; 122:109461. [PMID: 31918262 DOI: 10.1016/j.biopha.2019.109461] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Immunosuppressive chemoresistance is a major challenge in lung cancer treatment. Exosomes present in the tumor microenviroment are implicated in chemoresistant-related immune suppression, and metastasis but the exact pathogenic role of lung-derived exosomes is still uncertain. Recent reports reveal that lung cancer pathogenesis is strictly associated with a exosomal tumor supportive status and a dysfunctional immune system. In this study, we investigate the role of Kras-derived exosomes in chemoresistant immunosuppression in which neoplastic cells create a metabolic-sustained microenvironment. Findings reveal that Kras-derived exosomes induce regulation of SMARCE1/NCOR1 chromatin remodeling genes promoting pre-metastatic niche formation in naive mice and consequently increase lung metastatic burden. Furthermore, exosomal Kras inhibition downregulated transcription factor BACH2/GATA-3 expression in lung tumor tissues by shifting pyruvate/PKM2 dependent metabolism, contributing to a tumor-restraining status. Further co-treatment with carboplatin triggered RIP3/TNFa dependent necroptosis in ex vivo cells accompanied by differential expression of immunosuppressive miR-146/miR-210 regulators in metastatic lung cancer patients. Overall, these findings demonstrate the multifaceted roles of Kras-derived exosomes in sustaining lung immunosuppressive metastasis and provide new opportunities for effective metastasis inhibition, especially in chemoresistant tumors.
Collapse
Affiliation(s)
- Savvas Petanidis
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; Department of Pulmonology, I.M. Sechenov First Moscow State Medical University, Moscow, 119992, Russian Federation
| | - Kalliopi Domvri
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, 57010, Greece
| | - Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, 57010, Greece
| | - Doxakis Anestakis
- Department of Medicine, Laboratory of Forensic Medicine and Toxicology, Aristotle University of Thessaloniki, 54124, Greece
| | - Lutz Freitag
- Department of Pulmonology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich Switzerland
| | | | - Drosos Tsavlis
- Department of Medicine, Laboratory of Experimental Physiology, Aristotle University of Thessaloniki, 54124, Greece
| | - Konstantinos Zarogoulidis
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
| |
Collapse
|
50
|
Angel CZ, Lynch SM, Nesbitt H, McKenna MM, Walsh CP, McKenna DJ. miR-210 is induced by hypoxia and regulates neural cell adhesion molecule in prostate cells. J Cell Physiol 2020; 235:6194-6203. [PMID: 31975433 DOI: 10.1002/jcp.29548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Hypoxia in prostate tumours has been associated with disease progression and metastasis. MicroRNAs are short noncoding RNA molecules that are important in several cell processes, but their role in hypoxic signalling is still poorly understood. miR-210 has been linked with hypoxic mechanisms, but this relationship has been poorly characterised in prostate cancer. In this report, the link between hypoxia and miR-210 in prostate cancer cells is investigated. Polymerase chain reaction analysis demonstrates that miR-210 is induced by hypoxia in prostate cancer cells using in vitro cell models and an in vivo prostate tumour xenograft model. Analysis of The Cancer Genome Atlas prostate biopsy datasets shows that miR-210 is significantly correlated with Gleason grade and other clinical markers of prostate cancer progression. Neural cell adhesion molecule (NCAM) is identified as a target of miR-210, providing a biological mechanism whereby hypoxia-induced miR-210 expression can contribute to prostate cancer. This study provides evidence that miR-210 is an important regulator of cell response to hypoxic stress and proposes that its regulation of NCAM may play an important role in the pathogenesis of prostate cancer.
Collapse
Affiliation(s)
- Charlotte Zoe Angel
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| | - Seodhna M Lynch
- Cancer Biology & Therapeutics Laboratory, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Heather Nesbitt
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| | - Michael M McKenna
- Department of Cellular Pathology, Altnagelvin Area Hospital, Western Health & Social Care Trust, Co. Derry, UK
| | - Colum P Walsh
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| | - Declan J McKenna
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| |
Collapse
|