1
|
Chen J, Feng Y, Ma J, Zhang Q, Dong Y, Li D, Duan X, Zhou L, Li Z, Yang Y, Cai B, Liu Z, Yu J, Zhou B, Liu T. Genomic and metabolomic insights into the antimicrobial compounds and plant growth-promoting potential of Bacillus velezensis B115. Sci Rep 2025; 15:10666. [PMID: 40148367 PMCID: PMC11950384 DOI: 10.1038/s41598-025-92322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
The B115 strain, isolated from the inter-root soil of healthy plants in a continuous cropping site of Panax notoginseng, was identified as Bacillus velezensis B115 by 16S rDNA sequence comparison and comparative genomic analysis. B115 is a strain of beneficial microorganisms present in the inter-root zone of plants, with favorable plant growth-promoting properties and antagonistic effects against the plant pathogen Fusarium oxysporum. However, the whole genome of B115 remains unclear, thus restricting its potential applications. To address this gap, the whole genome of B115 has been sequenced and annotated to elucidate the molecular mechanisms underlying its plant growth-promoting and antimicrobial activities. The genome analysis revealed that B115 comprises a single circular chromosome of 4,200,774 bp and a plasmid region 16,878 bp long, possessing a GC content of 45.95%. Moreover, 4349 protein-coding genes were predicted. Notably, the B115 genome contains a substantial number of genes (103) involved in the biosynthesis, transport, and catabolism of secondary metabolites. Through genome mining, 13 BGCs and 540 genes encoding secondary metabolites with predicted roles were identified, including members of the surfactin and fengycin families. Utilizing LC-MS/MS technologies, 2318 metabolites were detected in the fermentation broth of B. velezensis B115, encompassing compounds such as Corynebactin, Gamabufotalin, Pracinostat, Indoleacetic acid, (8)-Gingerol, Luteolin, Liquiritigenin, and other metabolites with antimicrobial, growth-promoting, antioxidant, and antitumor properties. By exploring secondary metabolite-related genes and predicting potential secondary metabolites from the B115 genome based on the whole-genome sequence results, we further elucidate the genomic basis for its ability to promote plant growth and inhibit pathogen activity.
Collapse
Affiliation(s)
- Jili Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Yuzhou Feng
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Junchi Ma
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qing Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yumei Dong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Dongjie Li
- Raw Material Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, 650201, Yunnan, China
| | - Xuemei Duan
- Tobacco Leaf Quality Inspection Section, Raw Material Department, Hongyun Honghe Tobacco (Group) Co., Ltd., Kunming, 650201, China
| | - Lequn Zhou
- Tobacco Leaf Quality Inspection Section, Raw Material Department, Hongyun Honghe Tobacco (Group) Co., Ltd., Kunming, 650201, China
| | - Zhihua Li
- Tobacco Leaf Quality Inspection Section, Raw Material Department, Hongyun Honghe Tobacco (Group) Co., Ltd., Kunming, 650201, China
| | - Ying Yang
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, 650201, Yunnan, China
| | - Bo Cai
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, 650201, Yunnan, China
| | - Ze Liu
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, 650201, Yunnan, China
| | - Jialong Yu
- Yunnan Tobacco Company, Kunming, 650051, China
| | - Bo Zhou
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, 650201, Yunnan, China.
| | - Tao Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
2
|
Cheng LT, Wang ZL, Zhu QH, Ye M, Ye CY. A long road ahead to reliable and complete medicinal plant genomes. Nat Commun 2025; 16:2150. [PMID: 40032878 PMCID: PMC11876585 DOI: 10.1038/s41467-025-57448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
Long-read DNA sequencing has propelled medicinal plant genomics forward, with over 400 genomes from 203 plants sequenced by February 2025. However, many genomes still have assembly and annotation flaws, with only 11 gapless telomere-to-telomere assemblies. The core challenge remains identifying genes linked to secondary metabolite biosynthesis, regulation and evolution. High-quality complete genomes are essential for characterizing biosynthetic gene clusters and for enabling robust functional genomics and synthetic biology applications. We propose to focus on achieving more complete genome assemblies in diverse varieties on the basis of refining the currently available ones, leverage lessons from crop genomics research, and apply the cutting-edge genomics technologies in research of medicinal plant genomics.
Collapse
Affiliation(s)
- Ling-Tong Cheng
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang University, Hangzhou, China
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | | | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chu-Yu Ye
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Ning K, Huai H, Li M, Xu Y, Wei F, Chen Z, Wang Y, Huang P, Yu Y, Chen S, Dong L. Transcriptomics and metabolomics revealed the molecular basis of the color formation in the roots of Panax notoginseng. Heliyon 2024; 10:e37532. [PMID: 39381219 PMCID: PMC11459398 DOI: 10.1016/j.heliyon.2024.e37532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Panax notoginseng is a traditional Chinese medicine rich in many pharmacological components. The root of the 'Miaoxiang Sanqi No. 2' is yellow or greenish yellow, while a novel cultivar-'Wenyuan Ziqi No. 1' shows purple root and is thought to have high medicinal value. Little information is available about the anthocyanin biosynthesis in P. notoginseng root. In this study, we compared the 'Miaoxiang Sanqi No. 2' and 'Wenyuan Ziqi No. 1' in morphological, transcriptional and metabolic levels. The results showed that purple rich in the periderm, rhizome and phloem around cambium of the 'Wenyuan Ziqi No. 1' root and cyanidin 3-O-galactoside was the main anthocyanin causing purple. Moreover, 'Wenyuan Ziqi No. 1' highly accumulated in 155 metabolites, including flavones, phenylpropanoids and lipids. Transcriptome data showed that phenylpropanoid biosynthesis pathway genes are highly expressed in 'Wenyuan Ziqi No. 1'. Conjoint analysis showed that anthocyanin biosynthesis pathway substances were highly accumulated in 'Wenyuan Ziqi No. 1', and the expression level of structural genes involved in anthocyanin biosynthesis pathway was higher in 'Wenyuan Ziqi No. 1'. Meanwhile, eight R2R3-MYB genes that might be involved in anthocyanin biosynthesis were identified. The comprehensive analysis of two cultivars provides new insights into the understanding of root coloration in P. notoginseng.
Collapse
Affiliation(s)
- Kang Ning
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Hao Huai
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, 443002, Yichang, China
| | - Mengzhi Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yuli Xu
- Zhangzhou Pianzaihuang Pharmaceutical Co., Ltd., 363099, Fujian, China
| | - Fugang Wei
- Wenshan Miaoxiang Notoginseng Technology, Co., Ltd., 663000, Wenshan, China
| | - Zhongjian Chen
- Institute of Sanqi Research, Wenshan University, 663000, Wenshan, China
| | - Yong Wang
- Institute of Sanqi Research, Wenshan University, 663000, Wenshan, China
| | - Pengcheng Huang
- Zhangzhou Pianzaihuang Pharmaceutical Co., Ltd., 363099, Fujian, China
| | - Yuqi Yu
- Wenshan Miaoxiang Notoginseng Technology, Co., Ltd., 663000, Wenshan, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| |
Collapse
|
4
|
Zhang Y, Zhang J, Wang Y, Luo Z, Li X, Wang Y, Luo J, Yang M. Unveiling the Contamination Patterns of Neonicotinoid Insecticides: Detection, Distribution, and Risk Assessment in Panax notoginseng across Plant Parts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17834-17846. [PMID: 39083644 DOI: 10.1021/acs.jafc.4c02561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
This study analyzed neonicotinoid insecticides (NEOs) and metabolite (m-NEOs) residues in 136 Panax notoginseng samples via ultra-performance liquid chromatography-tandem mass spectrometry. Imidacloprid was the most detected NEO (88.24% of samples), ranging from 1.50 to 2850 μg/kg. To the best of our knowledge, some novel NEOs were detected in P. notoginseng for the first time. NEO clustering patterns varied among plant parts, with higher contamination in leaves and flowers. Fourteen NEO/m-NEOs, including cycloxaprid and acetamiprid, showed site-specific behavior, indicating the possibility of using multiple NEOs simultaneously during planting, resulting in formation of distinct metabolites in different plant parts. Transfer rates in decoction and infusion ranged from 10.06 to 32.33%, reducing residues postprocessing. Dietary risk assessment showed low hazard quotients (HQa: 7.05 × 10-7 to 2.09 × 10-2; HQc: 3.74 × 10-7 to 2.38 × 10-3), but risk-ranking scores indicated potential hazards with imidacloprid and acetamiprid in flowers and leaves. The findings are expected to promote safety assessment and distribution research of NEOs in plants.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jing Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yudan Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zuliang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xueli Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yunyun Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meihua Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
| |
Collapse
|
5
|
Yan X, Zhang A, Guan Y, Jiao J, Ghanim M, Zhang Y, He X, Shi R. Comparative Metabolome and Transcriptome Analyses Reveal Differential Enrichment of Metabolites with Age in Panax notoginseng Roots. PLANTS (BASEL, SWITZERLAND) 2024; 13:1441. [PMID: 38891250 PMCID: PMC11175106 DOI: 10.3390/plants13111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Panax notoginseng is a perennial plant well known for its versatile medicinal properties, including hepatoprotective, antioxidant, anti-inflammatory, anti-tumor, estrogen-like, and antidepressant characteristics. It has been reported that plant age affects the quality of P. notoginseng. This study aimed to explore the differential metabolome and transcriptome of 2-year (PN2) and 3-year-old (PN3) P. notoginseng plant root samples. Principal component analysis of metabolome and transcriptome data revealed major differences between the two groups (PN2 vs. PN3). A total of 1813 metabolites and 28,587 genes were detected in this study, of which 255 metabolites and 3141 genes were found to be differential (p < 0.05) between PN2 vs. PN3, respectively. Among differential metabolites and genes, 155 metabolites and 1217 genes were up-regulated, while 100 metabolites and 1924 genes were down-regulated. The KEGG pathway analysis revealed differentially enriched metabolites belonging to class lipids ("13S-hydroperoxy-9Z, 11E-octadecadionic acid", "9S-hydroxy-10E, 12Z-octadecadionic acid", "9S-oxo-10E, 12Z-octadecadionic acid", and "9,10,13-trihydroxy-11-octadecadionic acid"), nucleotides and derivatives (guanine and cytidine), and phenolic acids (chlorogenic acid) were found to be enriched (p < 0.05) in PN3 compared to PN2. Further, these differentially enriched metabolites were found to be significantly (p < 0.05) regulated via linoleic acid metabolism, nucleotide metabolism, plant hormone signal transduction, and arachidonic acid metabolism pathways. Furthermore, the transcriptome analysis showed the up-regulation of key genes MAT, DMAS, SDH, gallate 1-beta-glucosyltransferase, and beta-D-glucosidase in various plants' secondary metabolic pathways and SAUR, GID1, PP2C, ETR, CTR1, EBF1/2, and ERF1/2 genes observed in phytohormone signal transduction pathway that is involved in plant growth and development, and protection against the various stressors. This study concluded that the roots of a 3-year-old P. notoginseng plant have better metabolome and transcriptome profiles compared to a 2-year-old plant with importantly enriched metabolites and genes in pathways related to metabolism, plant hormone signal transduction, and various biological processes. These findings provide insights into the plant's dynamic biochemical and molecular changes during its growth that have several implications regarding its therapeutic use.
Collapse
Affiliation(s)
- Xinru Yan
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| | - Ao Zhang
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| | - Yiming Guan
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun 130112, China;
| | - Jinlong Jiao
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| | - Murad Ghanim
- Department of Entomology, Institute of Plant Protection, 68 Hamaccabim Road, Rishon LeZion 7505101, Israel;
| | - Yayu Zhang
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun 130112, China;
| | - Xiahong He
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| | - Rui Shi
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| |
Collapse
|
6
|
Wang Y, Wang W, Chi X, Cheng M, Wang T, Zhan X, Bai Y, Shen C, Li X. Analysis and Identification of Genes Associated with the Desiccation Sensitivity of Panax notoginseng Seeds. PLANTS (BASEL, SWITZERLAND) 2023; 12:3881. [PMID: 38005778 PMCID: PMC10674602 DOI: 10.3390/plants12223881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Panax notoginseng (Burk.) F. H. Chen, a species of the genus Panax, radix has been traditionally used to deal with various hematological diseases and cardiovascular diseases since ancient times in East Asia. P. notoginseng produces recalcitrant seeds which are sensitive to desiccation and difficult to store for a long time. However, few data are available on the mechanism of the desiccation sensitivity of P. notoginseng seeds. To gain a comprehensive perspective of the genes associated with desiccation sensitivity, cDNA libraries from seeds under control and desiccation processes were prepared independently for Illumina sequencing. The data generated a total of 70,189,896 reads that were integrated and assembled into 55,097 unigenes with a mean length of 783 bp. In total, 12,025 differentially expressed genes (DEGs) were identified during the desiccation process. Among these DEGs, a number of central metabolism, hormonal network-, fatty acid-, and ascorbate-glutathione-related genes were included. Our data provide a comprehensive resource for identifying the genes associated with the desiccation sensitivity of P. notoginseng seeds.
Collapse
Affiliation(s)
- Yanan Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (X.C.); (M.C.); (T.W.); (Y.B.)
| | - Weiqing Wang
- Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Xiulian Chi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (X.C.); (M.C.); (T.W.); (Y.B.)
| | - Meng Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (X.C.); (M.C.); (T.W.); (Y.B.)
| | - Tielin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (X.C.); (M.C.); (T.W.); (Y.B.)
| | - Xiaori Zhan
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China; (X.Z.); (C.S.)
| | - Yunjun Bai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (X.C.); (M.C.); (T.W.); (Y.B.)
| | - Chenjia Shen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China; (X.Z.); (C.S.)
| | - Xiaolin Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (X.C.); (M.C.); (T.W.); (Y.B.)
| |
Collapse
|
7
|
Zhang T, Zhang C, Zhang X, Liang Z, Xia P. Multi-algorithm cooperation research of WRKY genes under nitrogen stress in Panax notoginseng. PROTOPLASMA 2023; 260:1081-1096. [PMID: 36564534 DOI: 10.1007/s00709-022-01832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/17/2022] [Indexed: 06/07/2023]
Abstract
WRKY transcription factors play an important role in the immune system and the innate defense response of plants. WRKY transcription factors have great feedback on nitrogen stress. In this study, bioinformatics was used to detect the WRKYs of Panax notoginseng (PnWRKYs). The response of PnWRKYs under nitrogen stress was also well studied. PnWRKYs were distributed on 11 chromosomes. According to PnWRKY and Arabidopsis thaliana WRKY (AtWRKY) domains, these PnWRKY proteins were divided into three groups by phylogenetic analysis. MEME analysis showed that almost every member contained motif 1 and motif 2. PlantCARE online predicted the cis-acting elements of the promoter. PnWRKY gene family members obtained 22 pairs of repeat fragments by collinearity analysis. The expression levels of PnWRKYs in different parts (roots, flowers, and leafs) were analyzed by the gene expression pattern. They reflected tissue-specific expressions. The qRT-PCR experiments were used to detect 74 PnWRKYs under nitrogen stress. The results showed that the expression levels of 8 PnWRKYs were significantly induced. The PnWRKY gene family may be involved in biotic/abiotic stresses and hormone induction. This study will not only lay the foundation to explore the functions of PnWRKYs but also provide candidate genes for the future improvement of P. notoginseng.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Caijuan Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xuemin Zhang
- Tianjin TASLY Modern Chinese Medicine Resources Co., Ltd, Tianjin, 300402, China
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Pengguo Xia
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
8
|
Jia JS, Ge N, Wang QY, Zhao LT, Chen C, Chen JW. Genome-wide identification and characterization of members of the LEA gene family in Panax notoginseng and their transcriptional responses to dehydration of recalcitrant seeds. BMC Genomics 2023; 24:126. [PMID: 36932328 PMCID: PMC10024439 DOI: 10.1186/s12864-023-09229-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Late embryogenesis abundant (LEA) proteins play an important role in dehydration process of seed maturation. The seeds of Panax notoginseng (Burkill) F. H. Chen are typically characterized with the recalcitrance and are highly sensitive to dehydration. However, it is not very well known about the role of LEA proteins in response to dehydration stress in P. notoginseng seeds. We will perform a genome-wide analysis of the LEA gene family and their transcriptional responses to dehydration stress in recalcitrant P. notoginseng seeds. RESULTS In this study, 61 LEA genes were identified from the P. notoginseng genome, and they were renamed as PnoLEA. The PnoLEA genes were classified into seven subfamilies based on the phylogenetic relationships, gene structure and conserved domains. The PnoLEA genes family showed relatively few introns and was highly conserved. Unexpectedly, the LEA_6 subfamily was not found, and the LEA_2 subfamily contained 46 (75.4%) members. Within 19 pairs of fragment duplication events, among them 17 pairs were LEA_2 subfamily. In addition, the expression of the PnoLEA genes was obviously induced under dehydration stress, but the germination rate of P. notoginseng seeds decreased as the dehydration time prolonged. CONCLUSIONS We found that the lack of the LEA_6 subfamily, the expansion of the LEA_2 subfamily and low transcriptional levels of most PnoLEA genes might be implicated in the recalcitrant formation of P. notoginseng seeds. LEA proteins are essential in the response to dehydration stress in recalcitrant seeds, but the protective effect of LEA protein is not efficient. These results could improve our understanding of the function of LEA proteins in the response of dehydration stress and their contributions to the formation of seed recalcitrance.
Collapse
Affiliation(s)
- Jin-Shan Jia
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Na Ge
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Qing-Yan Wang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Li-Ting Zhao
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Cui Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China.
| |
Collapse
|
9
|
Chen X, Mao Y, Chai W, Yan K, Liang Z, Xia P. Genome-wide identification and expression analysis of MYB gene family under nitrogen stress in Panax notoginseng. PROTOPLASMA 2023; 260:189-205. [PMID: 35524823 DOI: 10.1007/s00709-022-01770-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
The myeloblastosis (MYB) gene family, involved in regulating many important physiological and biochemical processes, is one of the largest transcript factor superfamilies in plants. Since the identification of genome sequencing of Panax notoginseng has been completed, there was little known about the whole genome of its specific MYB gene family and the response to abiotic stresses, in consideration of the excessive application of nitrogen fertilizers in P. notoginseng. In this study, 123 PnMYB genes (MYB genes of P. notoginseng) have been identified and divided into 3 subfamilies by the phylogenetic analysis. These PnMYB genes were unevenly located on 12 chromosomes. Meanwhile, the gene structure and protein conserved domain were established by MEME Suite. The analysis of collinear relationships reflected that there were 121 homologous genes between P. notoginseng and Arabidopsis and 30 between P. notoginseng and rice. Moreover, cis-acting elements of PnMYB gene promoters were predicted which indicated that PnMYBs are involved in biotic, abiotic stress, and hormone induction. The expressions of PnMYB transcription factors in its roots, flowers, and leaves were detected by qRT-PCR and they had tissue-specific expressions and related to the growth of different tissues. Under nitrogen stress, MYB transcription factors had great feedback. Ten R2R3-MYB subfamily genes were significantly induced and indicated the possible function of protecting P. notoginseng from excess nitrogen. With further knowledge on identification of PnMYB gene related to tissue selectivity and abiotic stresses, this study laid the foundation for the functional development of PnMYB gene family and improved the cultivation of P. notoginseng.
Collapse
Affiliation(s)
- Xiang Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yucheng Mao
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weiguo Chai
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, Zhejiang Province, China
| | - Kaijing Yan
- Tasly Pharmaceutical Group Co., Ltd, Tianjin, 300410, China
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Pengguo Xia
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
10
|
Li X, Ma L, Wang Y, Ye C, Guo C, Li Y, Mei X, Du F, Huang H. PlantNLRatlas: a comprehensive dataset of full- and partial-length NLR resistance genes across 100 chromosome-level plant genomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1178069. [PMID: 37123823 PMCID: PMC10146310 DOI: 10.3389/fpls.2023.1178069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Plants have evolved two layers of protection against biotic stress: PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). The primary mechanism of ETI involves nucleotide-binding leucine-rich repeat immune receptors (NLRs). Although NLR genes have been studied in several plant species, a comprehensive database of NLRs across a diverse array of species is still lacking. Here, we present a thorough analysis of NLR genes across 100 high-quality plant genomes (PlantNLRatlas). The PlantNLRatlas includes a total of 68,452 NLRs, of which 3,689 are full-length and 64,763 are partial-length NLRs. The majority of NLR groups were phyletically clustered. In addition, the domain sequences were found to be highly conserved within each NLR group. Our PlantNLRatlas dataset is complementary to RefPlantNLR, a collection of NLR genes which have been experimentally confirmed. The PlantNLRatlas should prove helpful for comparative investigations of NLRs across a range of plant groups, including understudied taxa. Finally, the PlantNLRatlas resource is intended to help the field move past a monolithic understanding of NLR structure and function.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Linna Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yingmin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Chen Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Cunwu Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yingbin Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Xinyue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Fei Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
- *Correspondence: Huichuan Huang,
| |
Collapse
|
11
|
Xu J, Hu Z, He H, Ou X, Yang Y, Xiao C, Yang C, Li L, Jiang W, Zhou T. Transcriptome analysis reveals that jasmonic acid biosynthesis and signaling is associated with the biosynthesis of asperosaponin VI in Dipsacus asperoides. FRONTIERS IN PLANT SCIENCE 2022; 13:1022075. [PMID: 36798802 PMCID: PMC9928152 DOI: 10.3389/fpls.2022.1022075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/01/2022] [Indexed: 05/27/2023]
Abstract
Dipsacus asperoides is a perennial herb, the roots of which are abundant in asperosaponin VI, which has important medicinal value. However, the molecular mechanism underlying the biosynthesis of asperosaponin VI in D. asperoides remains unclear. In present study, a comprehensive investigation of asperosaponin VI biosynthesis was conducted at the levels of metabolite and transcript during root development. The content of asperosaponin VI was significantly accumulated in two-leaf stage roots, and the spatial distribution of asperosaponin VI was localized in the xylem. The concentration of asperosaponin VI gradually increased in the root with the development process. Transcriptome analysis revealed 3916 unique differentially expressed genes (DEGs) including 146 transcription factors (TFs) during root development in D. asperoides. In addition, α-linolenic acid metabolism, jasmonic acid (JA) biosynthesis, JA signal transduction, sesquiterpenoid and triterpenoid biosynthesis, and terpenoid backbone biosynthesis were prominently enriched. Furthermore, the concentration of JA gradually increased, and genes involved in α-linolenic acid metabolism, JA biosynthesis, and triterpenoid biosynthesis were up-regulated during root development. Moreover, the concentration of asperosaponin VI was increased following methyl jasmonate (MeJA) treatment by activating the expression of genes in the triterpenoid biosynthesis pathway, including acetyl-CoA acetyltransferase (DaAACT), 3-hydroxy-3-methylglutaryl coenzyme A synthase (DaHMGCS), 3-hydroxy-3-methylglutaryl coenzyme-A reductase (DaHMGCR). We speculate that JA biosynthesis and signaling regulates the expression of triterpenoid biosynthetic genes and facilitate the biosynthesis of asperosaponin VI. The results suggest a regulatory network wherein triterpenoids, JA, and TFs co-modulate the biosynthesis of asperosaponin VI in D. asperoides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tao Zhou
- Resource Institute for Chinese Medicine and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
12
|
MicroRNAs in Medicinal Plants. Int J Mol Sci 2022; 23:ijms231810477. [PMID: 36142389 PMCID: PMC9500639 DOI: 10.3390/ijms231810477] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Medicinal plant microRNAs (miRNAs) are an endogenous class of small RNA central to the posttranscriptional regulation of gene expression. Biosynthetic research has shown that the mature miRNAs in medicinal plants can be produced from either the standard messenger RNA splicing mechanism or the pre-ribosomal RNA splicing process. The medicinal plant miRNA function is separated into two levels: (1) the cross-kingdom level, which is the regulation of disease-related genes in animal cells by oral intake, and (2) the intra-kingdom level, which is the participation of metabolism, development, and stress adaptation in homologous or heterologous plants. Increasing research continues to enrich the biosynthesis and function of medicinal plant miRNAs. In this review, peer-reviewed papers on medicinal plant miRNAs published on the Web of Science were discussed, covering a total of 78 species. The feasibility of the emerging role of medicinal plant miRNAs in regulating animal gene function was critically evaluated. Staged progress in intra-kingdom miRNA research has only been found in a few medicinal plants, which may be mainly inhibited by their long growth cycle, high demand for growth environment, immature genetic transformation, and difficult RNA extraction. The present review clarifies the research significance, opportunities, and challenges of medicinal plant miRNAs in drug development and agricultural production. The discussion of the latest results furthers the understanding of medicinal plant miRNAs and helps the rational design of the corresponding miRNA/target genes functional modules.
Collapse
|
13
|
Mao Y, Chen X, Yan K, Liang Z, Xia P. Multi-algorithm cooperation comprehensive research of bZIP genes under Nitrogen stress in Panax notoginseng. Gene X 2022; 841:146768. [PMID: 35905849 DOI: 10.1016/j.gene.2022.146768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/30/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
Basic leucine zipper (bZIP) transcription factors play an irreplaceable position in the regulation of plant secondary metabolism, growth and development, and resistance to abiotic stress. Panax notoginseng is a traditional medicinal plant in China, but the systematic identification and the resistance of Panax notoginseng bZIP (PnbZIP) family under nitrogen stress have not been reported before, considering the excessive application of N fertilizers. In this study, we conducted a genome-wide identification of the PnbZIP family and analyzed its phylogeny, tissue selectivity, and abiotic resistence. 74 PnbZIPs were distributed on 12 chromosomes and 8 were not successfully located. Through phylogenetic analysis of Arabidopsis and Panax notoginseng, we divided them into 14 subgroups. In the same subgroup, bZIPs had similiar intron/exon structure and conserved motifs. In the analysis of chromosome structure, two PnbZIP genes were duplicated in tandem on chromosome 3. Intraspecific collinearity analysis showed that 28 PnbZIPs participated in segmental replication. Each PnbZIP promoter contained at least one stress response element or stress-related hormone response element. RNA-seq and qRT-PCR methods were used to analyze the expression patterns of the PnbZIP gene in different tissues (roots, flowers, and leaves) and under different nitrogen stresses. The results showed that the PnbZIP gene had the highest expression level in flowers and reflected tissue-specific expressions. Meanwhile, under the stress of ammonium nitrogen fertilizer and nitrate nitrogen fertilizer, PnbZIPs in roots were differently expressed. 10 PnbZIP stress-responsive genes were screened for significant expression, among which PnbZIP46 was significantly up-regulated, which could be a candidate gene for resistance to Nitrogen stress. This study laid the foundation for functional identification of PnbZIPs and improved the cultivation of Panax notoginseng.
Collapse
Affiliation(s)
- Yucheng Mao
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiang Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kaijing Yan
- Tasly Pharmaceutical Group Co., Ltd, Tianjin 300410, China
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
14
|
Zheng L, Qiu B, Su L, Wang H, Cui X, Ge F, Liu D. Panax notoginseng WRKY Transcription Factor 9 Is a Positive Regulator in Responding to Root Rot Pathogen Fusarium solani. FRONTIERS IN PLANT SCIENCE 2022; 13:930644. [PMID: 35909719 PMCID: PMC9331302 DOI: 10.3389/fpls.2022.930644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Panax notoginseng (Burk) F.H. Chen is a rare and valuable Chinese herb, but root rot mainly caused by Fusarium solani severely affects the yield and quality of P. notoginseng herbal materials. In this study, we isolated 30 P. notoginseng WRKY transcription factors (TFs), which were divided into three groups (I, II, and III) on the basis of a phylogenetic analysis. The expression levels of 10 WRKY genes, including PnWRKY9, in P. notoginseng roots increased in response to a methyl jasmonate (MeJA) treatment and the following F. solani infection. Additionally, PnWRKY9 was functionally characterized. The PnWRKY9 protein was localized to the nucleus. The overexpression of PnWRKY9 in tobacco (Nicotiana tabacum) considerably increased the resistance to F. solani, whereas an RNAi-mediated decrease in the PnWRKY9 expression level in P. notoginseng leaves increased the susceptibility to F. solani. The RNA sequencing and hormone content analyses of PnWRKY9-overexpression tobacco revealed that PnWRKY9 and the jasmonic acid (JA) signaling pathway synergistically enhance disease resistance. The PnWRKY9 recombinant protein was observed to bind specifically to the W-box sequence in the promoter of a JA-responsive and F. solani resistance-related defensin gene (PnDEFL1). A yeast one-hybrid assay indicated that PnWRKY9 can activate the transcription of PnDEFL1. Furthermore, a co-expression assay in tobacco using β-glucuronidase (GUS) as a reporter further verified that PnWRKY9 positively regulates PnDEFL1 expression. Overall, in this study, we identified P. notoginseng WRKY TFs and demonstrated that PnWRKY9 positively affects plant defenses against the root rot pathogen. The data presented herein provide researchers with fundamental information regarding the regulatory mechanism mediating the coordinated activities of WRKY TFs and the JA signaling pathway in P. notoginseng responses to the root rot pathogen.
Collapse
Affiliation(s)
- Lilei Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, China
| | - Bingling Qiu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, China
| | - Linlin Su
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, China
| | - Hanlin Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, China
| | - Feng Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, China
| | - Diqiu Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, China
| |
Collapse
|
15
|
Jiang Z, Gao H, Liu R, Xia M, Lu Y, Wang J, Chen X, Zhang Y, Li D, Tong Y, Liu P, Liu Y, Luo Y, Gao J, Yin Y, Huang L, Gao W. Key Glycosyltransferase Genes of Panax notoginseng: Identification and Engineering Yeast Construction of Rare Ginsenosides. ACS Synth Biol 2022; 11:2394-2404. [PMID: 35687875 DOI: 10.1021/acssynbio.2c00094] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Panax notoginseng is one of the most famous valuable medical plants in China, and its broad application in clinical treatment has an inseparable relationship with the active molecules, ginsenosides. Ginsenosides are glycoside compounds that have varied structures for the diverse sugar chain. Although extensive work has been done, there are still unknown steps in the biosynthetic pathway of ginsenosides. Here, we screened candidate glycosyltransferase genes based on the previous genome and transcriptome data of P. notoginseng and cloned the full length of 27 UGT genes successfully. Among them, we found that PnUGT33 could catalyze different ginsenoside substrates to produce higher polarity rare ginsenosides by extending the sugar chain. We further analyzed the enzymatic kinetics and predicted the catalytic mechanism of PnUGT33 by simulating molecular docking. After that, we reconstructed the biosynthetic pathway of rare ginsenoside Rg3 and gypenoside LXXV in yeast. By combining the Golden Gate method and overexpressing the UDPG biosynthetic genes, we further improved the yield of engineering yeast strain. Finally, the shake-flask culture yield of Rg3 reached 51 mg/L and the fed-batch fermentation yield of gypenoside LXXV reached 94.5 mg/L, which was the first and highest record.
Collapse
Affiliation(s)
- Zhouqian Jiang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, People's Republic of China
| | - Haiyun Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, People's Republic of China
| | - Rong Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, People's Republic of China
| | - Meng Xia
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, People's Republic of China
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, People's Republic of China
| | - Jiadian Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, People's Republic of China
| | - Xiaochao Chen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, People's Republic of China
| | - Yifeng Zhang
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Dan Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Yuru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | - Panting Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, People's Republic of China
| | - Yuan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, People's Republic of China
| | - Yunfeng Luo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, People's Republic of China
| | - Jie Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, People's Republic of China
| | - Yan Yin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| |
Collapse
|
16
|
Shi R, Xiong B, He S, Liu C, Ben-Asher J, Horowitz AR, Wang S, He X. Comparative metabolic profiling of root, leaf, fruit, and stem tissues of Panax notoginseng. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2071294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rui Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
| | - Bingjie Xiong
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
| | - Shu He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
| | - Can Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
| | - Jiftah Ben-Asher
- French Associates Institute for Agriculture and Biotechnology of Dryland, the Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Abraham Rami Horowitz
- French Associates Institute for Agriculture and Biotechnology of Dryland, the Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Shu Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
| | - Xiahong He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
| |
Collapse
|
17
|
Wang Y, Zhang H, Ri HC, An Z, Wang X, Zhou JN, Zheng D, Wu H, Wang P, Yang J, Liu DK, Zhang D, Tsai WC, Xue Z, Xu Z, Zhang P, Liu ZJ, Shen H, Li Y. Deletion and tandem duplications of biosynthetic genes drive the diversity of triterpenoids in Aralia elata. Nat Commun 2022; 13:2224. [PMID: 35468919 PMCID: PMC9038795 DOI: 10.1038/s41467-022-29908-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Araliaceae species produce various classes of triterpene and triterpenoid saponins, such as the oleanane-type triterpenoids in Aralia species and dammarane-type saponins in Panax, valued for their medicinal properties. The lack of genome sequences of Panax relatives has hindered mechanistic insight into the divergence of triterpene saponins in Araliaceae. Here, we report a chromosome-level genome of Aralia elata with a total length of 1.05 Gb. The loss of 12 exons in the dammarenediol synthase (DDS)-encoding gene in A. elata after divergence from Panax might have caused the lack of dammarane-type saponin production, and a complementation assay shows that overexpression of the PgDDS gene from Panax ginseng in callus of A. elata recovers the accumulation of dammarane-type saponins. Tandem duplication events of triterpene biosynthetic genes are common in the A. elata genome, especially for AeCYP72As, AeCSLMs, and AeUGT73s, which function as tailoring enzymes of oleanane-type saponins and aralosides. More than 13 aralosides are de novo synthesized in Saccharomyces cerevisiae by overexpression of these genes in combination. This study sheds light on the diversity of saponins biosynthetic pathway in Araliaceae and will facilitate heterologous bioproduction of aralosides.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - He Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
| | - Hyok Chol Ri
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Biochemistry Institute, University of Science, Pyongyang, 999093, Democratic People's Republic of Korea
| | - Zeyu An
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Xin Wang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jia-Nan Zhou
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Dongran Zheng
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Hao Wu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Pengchao Wang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jianfei Yang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Ding-Kun Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Diyang Zhang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wen-Chieh Tsai
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701, Taiwan, China
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan, China
| | - Zheyong Xue
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Zhichao Xu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Peng Zhang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Zhong-Jian Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Hailong Shen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
- School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Yuhua Li
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China.
| |
Collapse
|
18
|
Xu Q, Niu SC, Li KL, Zheng PJ, Zhang XJ, Jia Y, Liu Y, Niu YX, Yu LH, Chen DF, Zhang GQ. Chromosome-Scale Assembly of the Dendrobium nobile Genome Provides Insights Into the Molecular Mechanism of the Biosynthesis of the Medicinal Active Ingredient of Dendrobium. Front Genet 2022; 13:844622. [PMID: 35299950 PMCID: PMC8921531 DOI: 10.3389/fgene.2022.844622] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 01/07/2023] Open
Abstract
Orchids constitute approximately 10% of flowering plant species. However, only about 10 orchid genomes have been published. Metabolites are the main way through which orchids respond to their environment. Dendrobium nobile, belonging to Dendrobium, the second largest genus in Orchidaceae, has high ornamental, medicinal, and ecological value. D. nobile is the source of many popular horticultural varieties. Among the Dendrobium species, D. nobile has the highest amount of dendrobine, which is regarded as one of the criteria for evaluating medicinal quality. Due to lack of data and analysis at the genomic level, the biosynthesis pathways of dendrobine and other related medicinal ingredients in D. nobile are unknown. In this paper, we report a chromosome-scale reference genome of D. nobile to facilitate the investigation of its genomic characteristics for comparison with other Dendrobium species. The assembled genome size of D. nobile was 1.19 Gb. Of the sequences, 99.45% were anchored to 19 chromosomes. Furthermore, we identified differences in gene number and gene expression patterns compared with two other Dendrobium species by integrating whole-genome sequencing and transcriptomic analysis [e.g., genes in the polysaccharide biosynthesis pathway and upstream of the alkaloid (dendrobine) biosynthesis pathway]. Differences in the TPS and CYP450 gene families were also found among orchid species. All the above differences might contribute to the species-specific medicinal ingredient biosynthesis pathways. The metabolic pathway-related analysis will provide further insight into orchid responses to the environment. Additionally, the reference genome will provide important insights for further molecular elucidation of the medicinal active ingredients of Dendrobium and enhance the understanding of orchid evolution.
Collapse
Affiliation(s)
- Qing Xu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Qing Xu, ; Duan-Fen Chen, ; Guo-Qiang Zhang,
| | - Shan-Ce Niu
- College of Horticulture, Hebei Agricultural University, Baoding, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Kang-Li Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Pei-Ji Zheng
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Jing Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yin Jia
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yang Liu
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yun-Xia Niu
- School of Vocational Education, Tianjin University of Technology and Education, Tianjin, China
| | - Li-Hong Yu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Duan-Fen Chen
- College of Horticulture, Hebei Agricultural University, Baoding, China
- *Correspondence: Qing Xu, ; Duan-Fen Chen, ; Guo-Qiang Zhang,
| | - Guo-Qiang Zhang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
- Laboratory for Orchid Conservation and Utilization, The Orchid Conservation and Research Center of Shenzhen, The National Orchid Conservation Center of China, Shenzhen, China
- *Correspondence: Qing Xu, ; Duan-Fen Chen, ; Guo-Qiang Zhang,
| |
Collapse
|
19
|
Yang L, Wang H, Wang P, Gao M, Huang L, Cui X, Liu Y. De novo and comparative transcriptomic analysis explain morphological differences in Panax notoginseng taproots. BMC Genomics 2022; 23:86. [PMID: 35100996 PMCID: PMC8802446 DOI: 10.1186/s12864-021-08283-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Background Panax notoginseng (Burk.) F. H. Chen (PN) belonging to the genus Panax of family Araliaceae is widely used in traditional Chinese medicine to treat various diseases. PN taproot, as the most vital organ for the accumulation of bioactive components, presents a variable morphology (oval or long), even within the same environment. However, no related studies have yet explained the molecular mechanism of phenotypic differences. To investigate the cause of differences in the taproot phenotype, de novo and comparative transcriptomic analysis on PN taproot was performed. Results A total of 133,730,886 and 114,761,595 paired-end clean reads were obtained based on high-throughput sequencing from oval and long taproot samples, respectively. 121,955 unigenes with contig N50 = 1,774 bp were generated by using the de novo assembly transcriptome, 63,133 annotations were obtained with the BLAST. And then, 42 genes belong to class III peroxidase (PRX) gene family, 8 genes belong to L-Ascorbate peroxidase (APX) gene family, and 55 genes belong to a series of mitogen-activated protein kinase (MAPK) gene family were identified based on integrated annotation results. Differentially expressed genes analysis indicated substantial up-regulation of PnAPX3 and PnPRX45, which are related to reactive oxygen species metabolism, and the PnMPK3 gene, which is related to cell proliferation and plant root development, in long taproots compared with that in oval taproots. Furthermore, the determination results of real-time quantitative PCR, enzyme activity, and H2O2 content verified transcriptomic analysis results. Conclusion These results collectively demonstrate that reactive oxygen species (ROS) metabolism and the PnMPK3 gene may play vital roles in regulating the taproot phenotype of PN. This study provides further insights into the genetic mechanisms of phenotypic differences in other species of the genus Panax. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08283-w.
Collapse
Affiliation(s)
- Lifang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650000, China
| | - Hanye Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650000, China
| | - Panpan Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650000, China
| | - Mingju Gao
- Wenshan University, Wenshan, 663000, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650000, China.,Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, 650000, China.,Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650000, China.,Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, 650000, China.,Sanqi Research Institute of Yunnan Province, Kunming, 650000, China
| | - Yuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650000, China. .,Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, 650000, China. .,Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650000, China. .,Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, 650000, China. .,Sanqi Research Institute of Yunnan Province, Kunming, 650000, China.
| |
Collapse
|
20
|
Lee S, Reddy CK, Ryu JJ, Kyung S, Lim Y, Park MS, Kang S, Lee CH. Solid-State Fermentation With Aspergillus cristatus Enhances the Protopanaxadiol- and Protopanaxatriol-Associated Skin Anti-aging Activity of Panax notoginseng. Front Microbiol 2022; 12:602135. [PMID: 34975775 PMCID: PMC8718098 DOI: 10.3389/fmicb.2021.602135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
A metabolomics approach was used to profile metabolites of Panax notoginseng fermented with Aspergillus cristatus in two ways, liquid-state fermentation (LF-P) and solid-state fermentation (SSF-P) and examine metabolite markers representing antioxidant activity and skin anti-aging. Protopanaxadiol (PPD) and protopanaxatriol (PPT) contents were higher in SSF-P than in LF-P and showed a multiplicative increase over the fermentation period of four days. PPD and PPT levels also correlated with antioxidant and anti-aging effects in skin, based on the mRNA expression of dermal extracellular matrix components. In the bioactivity validation assays, PPD and PPT significantly improved the expression of type-I collagen, fibrillin-1, and elastin in human dermal fibroblasts from both young and old subjects; these were comparable with the effects of the SSF-P extracts. Overall, our results suggest that changes in the metabolites of P. notoginseng fermented with A. cristatus enhance the quality and availability of bioactive compounds associated with skin anti-aging.
Collapse
Affiliation(s)
- Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Seoul, South Korea.,Resource Analysis Research Laboratory, Korea Ginseng Corporation, Daejeon, South Korea
| | - Chagam Koteswara Reddy
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Seoul, South Korea
| | - Jeoung Jin Ryu
- COSMAX BTI R&I Center, Pangyo inno valley E, 255 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Seoyeon Kyung
- COSMAX BTI R&I Center, Pangyo inno valley E, 255 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Yonghwan Lim
- COSMAX BTI R&I Center, Pangyo inno valley E, 255 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Myeong Sam Park
- COSMAX BTI R&I Center, Pangyo inno valley E, 255 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Seunghyun Kang
- COSMAX BTI R&I Center, Pangyo inno valley E, 255 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Seoul, South Korea
| |
Collapse
|
21
|
Liu X, Gong X, Liu Y, Liu J, Zhang H, Qiao S, Li G, Tang M. Application of High-Throughput Sequencing on the Chinese Herbal Medicine for the Data-Mining of the Bioactive Compounds. FRONTIERS IN PLANT SCIENCE 2022; 13:900035. [PMID: 35909744 PMCID: PMC9331165 DOI: 10.3389/fpls.2022.900035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/10/2022] [Indexed: 05/11/2023]
Abstract
The Chinese Herbal Medicine (CHM) has been used worldwide in clinic to treat the vast majority of human diseases, and the healing effect is remarkable. However, the functional components and the corresponding pharmacological mechanism of the herbs are unclear. As one of the main means, the high-throughput sequencing (HTS) technologies have been employed to discover and parse the active ingredients of CHM. Moreover, a tremendous amount of effort is made to uncover the pharmacodynamic genes associated with the synthesis of active substances. Here, based on the genome-assembly and the downstream bioinformatics analysis, we present a comprehensive summary of the application of HTS on CHM for the synthesis pathways of active ingredients from two aspects: active ingredient properties and disease classification, which are important for pharmacological, herb molecular breeding, and synthetic biology studies.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xun Gong
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Sen Qiao
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Gang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- Gang Li,
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Min Tang,
| |
Collapse
|
22
|
Ning K, Li M, Wei G, Zhou Y, Zhang G, Huai H, Wei F, Chen Z, Wang Y, Dong L, Chen S. Genomic and Transcriptomic Analysis Provide Insights Into Root Rot Resistance in Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2021; 12:775019. [PMID: 34975957 PMCID: PMC8714957 DOI: 10.3389/fpls.2021.775019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Panax notoginseng (Panax notoginseng (Burk.) F.H. Chen), a plant of high medicinal value, is severely affected by root rot during cultivation. Here, we generated a reference genome of P. notoginseng, with a contig N50 size of 241.268 kb, and identified 66 disease-resistance genes (R-genes) as candidate genes for breeding disease-resistant varieties. We then investigated the molecular mechanism underlying the responses of resistant and susceptible P. notoginseng genotypes to Fusarium oxysporum infection at six time points by RNA-seq. Functional analysis of the genes differentially expressed between the two genotypes indicated that genes involved in the defense response biological process like hormone transduction and plant-pathogen interaction are continuously and highly expressed in resistant genotype during infection. Moreover, salicylic acid and jasmonic acid levels gradually increased during infection in the resistant genotype. Coexpression analysis showed that PnWRKY22 acts as a hub gene in the defense response of the resistant genotype. Finally, transiently overexpressing PnWRKY22 increased salicylic acid levels in P. notoginseng leaves. Our findings provide a theoretical basis for studying root rot resistance in P. notoginseng.
Collapse
Affiliation(s)
- Kang Ning
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengzhi Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxin Zhou
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guozhuang Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Huai
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Fugang Wei
- Wenshan Miaoxiang Notoginseng Technology, Co., Ltd., Wenshan, China
| | - Zhongjian Chen
- Institute of Sanqi Research, Wenshan University, Wenshan, China
| | - Yong Wang
- Institute of Sanqi Research, Wenshan University, Wenshan, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Xiong R, He T, Wang Y, Liu S, Gao Y, Yan H, Xiang Y. Genome and transcriptome analysis to understand the role diversification of cytochrome P450 gene under excess nitrogen treatment. BMC PLANT BIOLOGY 2021; 21:447. [PMID: 34615481 PMCID: PMC8493724 DOI: 10.1186/s12870-021-03224-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Panax notoginseng (Burk.) F. H. Chen (P. notoginseng) is a medicinal plant. Cytochrome P450 (CYP450) monooxygenase superfamily is involved in the synthesis of a variety of plant hormones. Studies have shown that CYP450 is involved in the synthesis of saponins, which are the main medicinal component of P. notoginseng. To date, the P. notoginseng CYP450 family has not been systematically studied, and its gene functions remain unclear. RESULTS In this study, a total of 188 PnCYP genes were identified, these genes were divided into 41 subfamilies and clustered into 9 clans. Moreover, we identified 40 paralogous pairs, of which only two had Ka/Ks ratio greater than 1, demonstrating that most PnCYPs underwent purification selection during evolution. In chromosome mapping and gene replication analysis, 8 tandem duplication and 11 segmental duplication events demonstrated that PnCYP genes were continuously replicating during their evolution. Gene ontology (GO) analysis annotated the functions of 188 PnCYPs into 21 functional subclasses, suggesting the functional diversity of these gene families. Functional divergence analyzed the members of the three primitive branches of CYP51, CYP74 and CYP97 at the amino acid level, and found some critical amino acid sites. The expression pattern of PnCYP450 related to nitrogen treatment was studied using transcriptome sequencing data, 10 genes were significantly up-regulated and 37 genes were significantly down-regulated. Combined with transcriptome sequencing analysis, five potential functional genes were screened. Quantitative real-time PCR (qRT-PCR) indicated that these five genes were responded to methyl jasmonate (MEJA) and abscisic acid (ABA) treatment. CONCLUSIONS These results provide a valuable basis for comprehending the classification and biological functions of PnCYPs, and offer clues to study their biological functions in response to nitrogen treatment.
Collapse
Affiliation(s)
- Rui Xiong
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Ting He
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yamei Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Shifan Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yameng Gao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Hanwei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
24
|
Chopra P, Chhillar H, Kim YJ, Jo IH, Kim ST, Gupta R. Phytochemistry of ginsenosides: Recent advancements and emerging roles. Crit Rev Food Sci Nutr 2021; 63:613-640. [PMID: 34278879 DOI: 10.1080/10408398.2021.1952159] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ginsenosides, a group of tetracyclic saponins, accounts for the nutraceutical and pharmaceutical relevance of the ginseng (Panax sp.) herb. Owing to the associated therapeutic potential of ginsenosides, their demand has been increased significantly in the last two decades. However, a slow growth cycle, low seed production, and long generation time of ginseng have created a gap between the demand and supply of ginsenosides. The biosynthesis of ginsenosides involves an intricate network of pathways with multiple oxidation and glycosylation reactions. However, the exact functions of some of the associated genes/proteins are still not completely deciphered. Moreover, ginsenoside estimation and extraction using analytical techniques are not feasible with high efficiency. The present review is a step forward in recapitulating the comprehensive aspects of ginsenosides including their distribution, structural diversity, biotransformation, and functional attributes in both plants and animals including humans. Moreover, ginsenoside biosynthesis in the potential plant sources and their metabolism in the human body along with major regulators and stimulators affecting ginsenoside biosynthesis have also been discussed. Furthermore, this review consolidates biotechnological interventions to enhance the biosynthesis of ginsenosides in their potential sources and advancements in the development of synthetic biosystems for efficient ginsenoside biosynthesis to meet their rising industrial demands.
Collapse
Affiliation(s)
- Priyanka Chopra
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Himanshu Chhillar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, College of Natural Resources and Life Sciences, Pusan National University, Miryang, South Korea
| | - Ick Hyun Jo
- Department of Herbal Crop Research, Rural Development Administration, Eumseong, South Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, College of Natural Resources and Life Sciences, Pusan National University, Miryang, South Korea
| | - Ravi Gupta
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India.,Department of Forestry, Environment, and Systems, College of Science and Technology, Kookmin University, Seoul, South Korea
| |
Collapse
|
25
|
Chen Z, Li J, Hou N, Zhang Y, Qiao Y. TCM-Blast for traditional Chinese medicine genome alignment with integrated resources. BMC PLANT BIOLOGY 2021; 21:339. [PMID: 34273956 PMCID: PMC8285853 DOI: 10.1186/s12870-021-03096-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The traditional Chinese medicine (TCM) genome project aims to reveal the genetic information and regulatory network of herbal medicines, and to clarify their molecular mechanisms in the prevention and treatment of human diseases. Moreover, the TCM genome could provide the basis for the discovery of the functional genes of active ingredients in TCM, and for the breeding and improvement of TCM. The traditional Chinese Medicine Basic Local Alignment Search Tool (TCM-Blast) is a web interface for TCM protein and DNA sequence similarity searches. It contains approximately 40G of genome data on TCMs, including protein and DNA sequence for 36 TCMs with high medical value.The development of a publicly accessible TCM genome alignment database hosted on the TCM-Blast website ( http://viroblast.pungentdb.org.cn/TCM-Blast/viroblast.php ) has expanded to query multiple sequence databases to obtain TCM genome data, and provide user-friendly output for easy analysis and browsing of BLAST results. The genome sequencing of TCMs helps to elucidate the biosynthetic pathways of important secondary metabolites and provides an essential resource for gene discovery studies and molecular breeding. The TCMs genome provides a valuable resource for the investigation of novel bioactive compounds and drugs from these TCMs under the guidance of TCM clinical practice. Our database could be expanded to other TCMs after the determination of their genome data.
Collapse
Affiliation(s)
- Zhao Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
- Research Center of TCM-Information Engineering, State Administration of Traditional Chinese Medicine of The Peoples Republic of China, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
| | - Jing Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
- Research Center of TCM-Information Engineering, State Administration of Traditional Chinese Medicine of The Peoples Republic of China, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
| | - Ning Hou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
- Research Center of TCM-Information Engineering, State Administration of Traditional Chinese Medicine of The Peoples Republic of China, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
| | - Yanling Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
- Research Center of TCM-Information Engineering, State Administration of Traditional Chinese Medicine of The Peoples Republic of China, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
| | - Yanjiang Qiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
- Research Center of TCM-Information Engineering, State Administration of Traditional Chinese Medicine of The Peoples Republic of China, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
| |
Collapse
|
26
|
Hou M, Wang R, Zhao S, Wang Z. Ginsenosides in Panax genus and their biosynthesis. Acta Pharm Sin B 2021; 11:1813-1834. [PMID: 34386322 PMCID: PMC8343117 DOI: 10.1016/j.apsb.2020.12.017] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Ginsenosides are a series of glycosylated triterpenoids which belong to protopanaxadiol (PPD)-, protopanaxatriol (PPT)-, ocotillol (OCT)- and oleanane (OA)-type saponins known as active compounds of Panax genus. They are accumulated in plant roots, stems, leaves, and flowers. The content and composition of ginsenosides are varied in different ginseng species, and in different parts of a certain plant. In this review, we summarized the representative saponins structures, their distributions and the contents in nearly 20 Panax species, and updated the biosynthetic pathways of ginsenosides focusing on enzymes responsible for structural diversified ginsenoside biosynthesis. We also emphasized the transcription factors in ginsenoside biosynthesis and non-coding RNAs in the growth of Panax genus plants, and highlighted the current three major biotechnological applications for ginsenosides production. This review covered advances in the past four decades, providing more clues for chemical discrimination and assessment on certain ginseng plants, new perspectives for rational evaluation and utilization of ginseng resource, and potential strategies for production of specific ginsenosides.
Collapse
Key Words
- ABA, abscisic acid
- ADP, adenosine diphosphate
- AtCPR (ATR), Arabidopsis thaliana cytochrome P450 reductase
- BARS, baruol synthase
- Biosynthetic pathway
- Biotechnological approach
- CAS, cycloartenol synthase
- CDP, cytidine diphosphate
- CPQ, cucurbitadienol synthase
- CYP, cytochrome P450
- DDS, dammarenediol synthase
- DM, dammarenediol-II
- DMAPP, dimethylallyl diphosphate
- FPP, farnesyl pyrophosphate
- FPPS (FPS), farnesyl diphosphate synthase
- GDP, guanosine diphosphate
- Ginsenoside
- HEJA, 2-hydroxyethyl jasmonate
- HMGR, HMG-CoA reductase
- IPP, isopentenyl diphosphate
- ITS, internal transcribed spacer
- JA, jasmonic acid
- JA-Ile, (+)-7-iso-jasmonoyl-l-isoleucine
- JAR, JA-amino acid synthetase
- JAZ, jasmonate ZIM-domain
- KcMS, Kandelia candel multifunctional triterpene synthases
- LAS, lanosterol synthase
- LUP, lupeol synthase
- MEP, methylerythritol phosphate
- MVA, mevalonate
- MVD, mevalonate diphosphate decarboxylase
- MeJA, methyl jasmonate
- NDP, nucleotide diphosphate
- Non-coding RNAs
- OA, oleanane or oleanic acid
- OAS, oleanolic acid synthase
- OCT, ocotillol
- OSC, oxidosqualene cyclase
- PPD, protopanaxadiol
- PPDS, PPD synthase
- PPT, protopanaxatriol
- PPTS, PPT synthase
- Panax species
- RNAi, RNA interference
- SA, salicylic acid
- SE (SQE), squalene epoxidase
- SPL, squamosa promoter-binding protein-like
- SS (SQS), squalene synthase
- SUS, sucrose synthase
- TDP, thymine diphosphate
- Transcription factors
- UDP, uridine diphosphate
- UGPase, UDP-glucose pyrophosphosphprylase
- UGT, UDP-dependent glycosyltransferase
- WGD, whole genome duplication
- α-AS, α-amyrin synthase
- β-AS, β-amyrin synthase
Collapse
Affiliation(s)
- Maoqi Hou
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rufeng Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shujuan Zhao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
27
|
Yang Z, Liu G, Zhang G, Yan J, Dong Y, Lu Y, Fan W, Hao B, Lin Y, Li Y, Li X, Tang Q, Xiang G, He S, Chen J, Chen W, Xu Z, Mao Z, Duan S, Jin S, Yang S. The chromosome-scale high-quality genome assembly of Panax notoginseng provides insight into dencichine biosynthesis. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:869-871. [PMID: 33529371 PMCID: PMC8131050 DOI: 10.1111/pbi.13558] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 05/03/2023]
Affiliation(s)
- Zijiang Yang
- State Key Laboratory of Conservation and Utilization of Bio‐Resources in YunnanThe Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest ChinaYunnan Agricultural UniversityKunmingChina
| | - Guanze Liu
- State Key Laboratory of Conservation and Utilization of Bio‐Resources in YunnanThe Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest ChinaYunnan Agricultural UniversityKunmingChina
| | - Guanghui Zhang
- State Key Laboratory of Conservation and Utilization of Bio‐Resources in YunnanThe Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest ChinaYunnan Agricultural UniversityKunmingChina
| | - Jing Yan
- State Key Laboratory of Conservation and Utilization of Bio‐Resources in YunnanThe Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest ChinaYunnan Agricultural UniversityKunmingChina
| | - Yang Dong
- State Key Laboratory of Conservation and Utilization of Bio‐Resources in YunnanThe Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest ChinaYunnan Agricultural UniversityKunmingChina
- Yunnan Plateau Characteristic Agriculture Industry Research InstituteKunmingChina
| | - Yingchun Lu
- State Key Laboratory of Conservation and Utilization of Bio‐Resources in YunnanThe Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest ChinaYunnan Agricultural UniversityKunmingChina
| | - Wei Fan
- State Key Laboratory of Conservation and Utilization of Bio‐Resources in YunnanThe Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest ChinaYunnan Agricultural UniversityKunmingChina
| | - Bing Hao
- State Key Laboratory of Conservation and Utilization of Bio‐Resources in YunnanThe Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest ChinaYunnan Agricultural UniversityKunmingChina
| | - Yuan Lin
- State Key Laboratory of Conservation and Utilization of Bio‐Resources in YunnanThe Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest ChinaYunnan Agricultural UniversityKunmingChina
| | - Ying Li
- State Key Laboratory of Conservation and Utilization of Bio‐Resources in YunnanThe Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest ChinaYunnan Agricultural UniversityKunmingChina
| | - Xuejiao Li
- State Key Laboratory of Conservation and Utilization of Bio‐Resources in YunnanThe Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest ChinaYunnan Agricultural UniversityKunmingChina
| | - Qingyan Tang
- State Key Laboratory of Conservation and Utilization of Bio‐Resources in YunnanThe Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest ChinaYunnan Agricultural UniversityKunmingChina
| | - Guisheng Xiang
- State Key Laboratory of Conservation and Utilization of Bio‐Resources in YunnanThe Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest ChinaYunnan Agricultural UniversityKunmingChina
| | - Simei He
- State Key Laboratory of Conservation and Utilization of Bio‐Resources in YunnanThe Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest ChinaYunnan Agricultural UniversityKunmingChina
| | - Junwen Chen
- State Key Laboratory of Conservation and Utilization of Bio‐Resources in YunnanThe Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest ChinaYunnan Agricultural UniversityKunmingChina
| | - Wei Chen
- State Key Laboratory of Conservation and Utilization of Bio‐Resources in YunnanThe Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest ChinaYunnan Agricultural UniversityKunmingChina
- Yunnan Plateau Characteristic Agriculture Industry Research InstituteKunmingChina
| | - Zhongping Xu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Zichao Mao
- College of Agronomy and BiotechnologyYunnan Agricultural UniversityKunmingChina
| | - Shengchang Duan
- Yunnan Plateau Characteristic Agriculture Industry Research InstituteKunmingChina
- NOWBIO Technology Co. LtdKunmingChina
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio‐Resources in YunnanThe Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest ChinaYunnan Agricultural UniversityKunmingChina
| |
Collapse
|
28
|
Liu H, Gu H, Ye C, Guo C, Zhu Y, Huang H, Liu Y, He X, Yang M, Zhu S. Planting Density Affects Panax notoginseng Growth and Ginsenoside Accumulation by Balancing Primary and Secondary Metabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:628294. [PMID: 33936125 PMCID: PMC8086637 DOI: 10.3389/fpls.2021.628294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/26/2021] [Indexed: 05/24/2023]
Abstract
Adjusting planting density is a common agricultural practice used to achieve maximum yields. However, whether the quality of medicinal herbs can be improved by implementing appropriate planting densities is still uncertain. The medicinal crop Panax notoginseng was used to analyze the effects of planting density on growth and ginsenoside accumulation, and the possible mechanisms of these effects were revealed through metabonomics. The results showed that P. notoginseng achieved high ginsenoside accumulation at high planting densities (8 × 8 and 10 × 10 cm), while simultaneously achieved high biomass and ginsenoside accumulation at moderate planting density of 15 × 15 cm. At the moderate planting density, the primary metabolism (starch and sucrose metabolism) and secondary metabolism (the biosynthesis of phytohormone IAA and ginsenoside) of the plants were significantly enhanced. However, the strong intraspecific competition at the high planting densities resulted in stress as well as the accumulation of phytohormones (SA and JA), antioxidants (gentiobiose, oxalic acid, dehydroascorbic acid) and other stress resistance-related metabolites. Interestingly, the dry biomass and ginsenoside content were significantly lower at low densities (20 × 20 and 30 × 30 cm) with low intraspecific competition, which disturbed normal carbohydrate metabolism by upregulating galactose metabolism. In summary, an appropriate planting density was benefit for the growth and accumulation of ginsenosides in P. notoginseng by balancing primary metabolism and secondary metabolism.
Collapse
Affiliation(s)
- Haijiao Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Hongrui Gu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Chen Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Cunwu Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yifan Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yixiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Xiahong He
- School of Landscape and Horticulture, Southwest Forestry University, Kunming, China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
29
|
Genome survey of Zanthoxylum bungeanum and development of genomic-SSR markers in congeneric species. Biosci Rep 2021; 40:225368. [PMID: 32558907 PMCID: PMC7322109 DOI: 10.1042/bsr20201101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 01/13/2023] Open
Abstract
Zanthoxylum bungeanum, a spice and medicinal plant, is cultivated in many parts of China and some countries in Southeast Asia; however, data on its genome are lacking. In the present study, we performed a whole-genome survey and developed novel genomic-SSR markers of Z. bungeanum. Clean data (∼197.16 Gb) were obtained and assembled into 11185221 scaffolds with an N50 of 183 bp. K-mer analysis revealed that Z. bungeanum has an estimated genome size of 3971.92 Mb, and the GC content, heterozygous rate, and repeat sequence rate are 37.21%, 1.73%, and 86.04%, respectively. These results indicate that the genome of Z. bungeanum is complex. Furthermore, 27153 simple sequence repeat (SSR) loci were identified from 57288 scaffolds with a minimum length > 1 kb. Mononucleotide repeats (19706) were the most abundant type, followed by dinucleotide repeats (5154). The most common motifs were A/T, followed by AT/AT; these SSRs accounted for 71.42% and 11.84% of all repeats, respectively. A total of 21243 non-repeating primer pairs were designed, and 100 were randomly selected and validated by PCR analysis using DNA from 10 Z. bungeanum individuals and 5 Zanthoxylum armatum individuals. Finally, 36 polymorphic SSR markers were developed with polymorphism information content (PIC) values ranging from 0.16 to 0.75. Cluster analysis revealed that Z. bungeanum and Z. armatum could be divided into two major clusters, suggesting that these newly developed SSR markers are useful for genetic diversity and germplasm resource identification in Z. bungeanum and Z. armatum.
Collapse
|
30
|
Abstract
Background Panax ginseng is one of the most valuable medicinal plants in Korea. However, deciphering its full genome sequence information for crop improvement has been hampered due to its complex genomic, genetic, and growth characteristics. Many efforts have been made in the past decade to overcome these limitations and understand the genome structure and the evolutionary history of P. ginseng. Methods This review aims to discuss the current status of genomic studies on P. ginseng and related species, and the experimental clues suggesting phylogenetic classification and evolutionary history of the genus Panax. Conclusion The development of sequencing technologies made genome sequencing of the large P. ginseng genome possible, providing fundamental information to deciphering the evolutionary history of P. ginseng and related species. P. ginseng went through two rounds of whole genome duplication events after diverging from the closest family Apiaceae, which was unveiled from complete whole genome sequences. Further in-depth comparative genome analysis with other related species and genera will uncover the evolutionary history as well as important morphological and ecological characteristics of Panax species.
Collapse
|
31
|
Jiang Z, Tu L, Yang W, Zhang Y, Hu T, Ma B, Lu Y, Cui X, Gao J, Wu X, Tong Y, Zhou J, Song Y, Liu Y, Liu N, Huang L, Gao W. The chromosome-level reference genome assembly for Panax notoginseng and insights into ginsenoside biosynthesis. PLANT COMMUNICATIONS 2021; 2:100113. [PMID: 33511345 PMCID: PMC7816079 DOI: 10.1016/j.xplc.2020.100113] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 05/13/2023]
Abstract
Panax notoginseng, a perennial herb of the genus Panax in the family Araliaceae, has played an important role in clinical treatment in China for thousands of years because of its extensive pharmacological effects. Here, we report a high-quality reference genome of P. notoginseng, with a genome size up to 2.66 Gb and a contig N50 of 1.12 Mb, produced with third-generation PacBio sequencing technology. This is the first chromosome-level genome assembly for the genus Panax. Through genome evolution analysis, we explored phylogenetic and whole-genome duplication events and examined their impact on saponin biosynthesis. We performed a detailed transcriptional analysis of P. notoginseng and explored gene-level mechanisms that regulate the formation of characteristic tubercles. Next, we studied the biosynthesis and regulation of saponins at temporal and spatial levels. We combined multi-omics data to identify genes that encode key enzymes in the P. notoginseng terpenoid biosynthetic pathway. Finally, we identified five glycosyltransferase genes whose products catalyzed the formation of different ginsenosides in P. notoginseng. The genetic information obtained in this study provides a resource for further exploration of the growth characteristics, cultivation, breeding, and saponin biosynthesis of P. notoginseng.
Collapse
Affiliation(s)
- Zhouqian Jiang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lichan Tu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | | | - Yifeng Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Tianyuan Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Baowei Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jie Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Jiawei Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yadi Song
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Nan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Corresponding author
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Corresponding author
| |
Collapse
|
32
|
Cheng QQ, Ouyang Y, Tang ZY, Lao CC, Zhang YY, Cheng CS, Zhou H. Review on the Development and Applications of Medicinal Plant Genomes. FRONTIERS IN PLANT SCIENCE 2021; 12:791219. [PMID: 35003182 PMCID: PMC8732986 DOI: 10.3389/fpls.2021.791219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/23/2021] [Indexed: 05/04/2023]
Abstract
With the development of sequencing technology, the research on medicinal plants is no longer limited to the aspects of chemistry, pharmacology, and pharmacodynamics, but reveals them from the genetic level. As the price of next-generation sequencing technology becomes affordable, and the long-read sequencing technology is established, the medicinal plant genomes with large sizes have been sequenced and assembled more easily. Although the review of plant genomes has been reported several times, there is no review giving a systematic and comprehensive introduction about the development and application of medicinal plant genomes that have been reported until now. Here, we provide a historical perspective on the current situation of genomes in medicinal plant biology, highlight the use of the rapidly developing sequencing technologies, and conduct a comprehensive summary on how the genomes apply to solve the practical problems in medicinal plants, like genomics-assisted herb breeding, evolution history revelation, herbal synthetic biology study, and geoherbal research, which are important for effective utilization, rational use and sustainable protection of medicinal plants.
Collapse
Affiliation(s)
- Qi-Qing Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yue Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Zi-Yu Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Chi-Chou Lao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yan-Yu Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Chun-Song Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Joint Laboratory for Translational Cancer Research of Chinese Medicine, The Ministry of Education of the People’s Republic of China, Macau University of Science and Technology, Taipa, Macao SAR, China
- *Correspondence: Hua Zhou,
| |
Collapse
|
33
|
Yao L, Lu J, Wang J, Gao WY. Advances in biosynthesis of triterpenoid saponins in medicinal plants. Chin J Nat Med 2020; 18:417-424. [PMID: 32503733 DOI: 10.1016/s1875-5364(20)30049-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Indexed: 12/13/2022]
Abstract
In recent years, biosynthesis of triterpenoid saponins in medicinal plants has been widely studied because of their active ingredients with diverse pharmacological activities. Various oxidosqualene cyclases, cytochrome P450 monooxygenases, uridine diphosphate glucuronosyltransferases, and transcription factors related to triterpenoid saponins biosynthesis have been explored and identified. In the biosynthesis of triterpenoid saponins, the progress of gene mining by omics-based sequencing, gene screening, gene function verification, catalyzing mechanism of key enzymes and gene regulation are summarized and discussed. By the progress of the biosynthesis pathway of triterpenoid saponins, the large-scale production of some triterpenoid saponins and aglycones has been achieved through plant tissue culture, transgenic plants and engineered yeast cells. However, the complex biosynthetic pathway and structural diversity limit the biosynthesis of triterpenoid saponins in different system. Special focus can further be placed on the systematic botany information of medicinal plants obtained from omics large dataset, and triterpenoid saponins produced by synthetic biology strategies, gene mutations and gene editing technology.
Collapse
Affiliation(s)
- Lu Yao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Jun Lu
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Wen-Yuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
34
|
Fan G, Liu X, Sun S, Shi C, Du X, Han K, Yang B, Fu Y, Liu M, Seim I, Zhang H, Xu Q, Wang J, Su X, Shao L, Zhu Y, Shao Y, Zhao Y, Wong AKC, Zhuang D, Chen W, Zhang G, Yang H, Xu X, Tsui SKW, Liu X, Lee SMY. The Chromosome Level Genome and Genome-wide Association Study for the Agronomic Traits of Panax Notoginseng. iScience 2020; 23:101538. [PMID: 33083766 PMCID: PMC7509215 DOI: 10.1016/j.isci.2020.101538] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 11/28/2022] Open
Abstract
The Chinese ginseng Panax notoginseng is a domesticated herb with significant medicinal and economic value. Here we report a chromosome-level P. notoginseng genome assembly with a high (∼79%) repetitive sequence content. The juxtaposition with the widely distributed, closely related Korean ginseng (Panax ginseng) genome revealed contraction of plant defense genes (in particular R-genes) in the P. notoginseng genome. We also investigated the reasons for the larger genome size of Panax species, revealing contributions from two Panax-specific whole-genome duplication events and transposable element expansion. Transcriptome data and comparative genome analysis revealed the candidate genes involved in the ginsenoside synthesis pathway. We also performed a genome-wide association study on 240 cultivated P. notoginseng individuals and identified the associated genes with dry root weight (63 genes) and stem thickness (168 genes). The P. notoginseng genome represents a critical step toward harnessing the full potential of an economically important and enigmatic plant.
Collapse
Affiliation(s)
- Guangyi Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
| | | | - Shuai Sun
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
- System Design Engineering, University of Waterloo, Ontario, N2L 3G1 Canada
| | | | - Xiao Du
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
| | - Kai Han
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
| | - Binrui Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Yuanyuan Fu
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
| | - Minghua Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
- Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4102, Australia
| | - He Zhang
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
| | - Qiwu Xu
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
| | - Jiahao Wang
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
| | - Xiaoshan Su
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
| | - Libin Shao
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
| | - Yuanfang Zhu
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
| | | | - Yunpeng Zhao
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Andrew KC. Wong
- System Design Engineering, University of Waterloo, Ontario, N2L 3G1 Canada
| | - Dennis Zhuang
- System Design Engineering, University of Waterloo, Ontario, N2L 3G1 Canada
| | | | - Gengyun Zhang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | | | - Xin Liu
- BGI-QingDao, BGI-Shenzhen, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- BGI-Fuyang, BGI-Shenzhen, Fuyang 236009, China
| | - Simon Ming-Yue Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| |
Collapse
|
35
|
Yang C, Li C, Wei W, Wei Y, Liu Q, Zhao G, Yue J, Yan X, Wang P, Zhou Z. The unprecedented diversity of UGT94-family UDP-glycosyltransferases in Panax plants and their contribution to ginsenoside biosynthesis. Sci Rep 2020; 10:15394. [PMID: 32958789 PMCID: PMC7506552 DOI: 10.1038/s41598-020-72278-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/27/2020] [Indexed: 11/09/2022] Open
Abstract
More than 150 ginsenosides have been isolated and identified from Panax plants. Ginsenosides with different glycosylation degrees have demonstrated different chemical properties and bioactivity. In this study, we systematically cloned and characterized 46 UGT94 family UDP-glycosyltransferases (UGT94s) from a mixed Panax ginseng/callus cDNA sample with high amino acid identity. These UGT94s were found to catalyze sugar chain elongation at C3-O-Glc and/or C20-O-Glc of protopanaxadiol (PPD)-type, C20-O-Glc or C6-O-Glc of protopanaxatriol (PPT)-type or both C3-O-Glc of PPD-type and C6-O-Glc of PPT-type or C20-O-Glc of PPD-type and PPT-type ginsenosides with different efficiencies. We also cloned 26 and 51 UGT94s from individual P. ginseng and P. notoginseng plants, respectively; our characterization results suggest that there is a group of UGT94s with high amino acid identity but diverse functions or catalyzing activities even within individual plants. These UGT94s were classified into three clades of the phylogenetic tree and consistent with their catalytic function. Based on these UGT94s, we elucidated the biosynthetic pathway of a group of ginsenosides. Our present results reveal a series of UGTs involved in second sugar chain elongation of saponins in Panax plants, and provide a scientific basis for understanding the diverse evolution mechanisms of UGT94s among plants.
Collapse
Affiliation(s)
- Chengshuai Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.,Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chaojing Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wei
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yongjun Wei
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qunfang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guoping Zhao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.,Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianmin Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
36
|
Liang Y, Chen S, Wei K, Yang Z, Duan S, Du Y, Qu P, Miao J, Chen W, Dong Y. Chromosome Level Genome Assembly of Andrographis paniculata. Front Genet 2020; 11:701. [PMID: 32714378 PMCID: PMC7340177 DOI: 10.3389/fgene.2020.00701] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/09/2020] [Indexed: 11/13/2022] Open
Abstract
Andrographis paniculata (Chinese name: Chuanxinlian) is an annual dicotyledonous medicinal plant widely grown in China and Southeast Asia. The dried plant has a highly acclaimed usage in the traditional Chinese medicine for its antipyretic, anti-inflammatory, and analgesic effects. In order to help delineate the biosynthetic pathways of various secondary metabolites, we report in this study a high-quality reference genome for A. paniculata. With the help of both PacBio single molecule real time sequencing and Illumina sequencing reads for error correction, the A. paniculata genome was assembled into a total size of 284 Mb with a contig N50 size of 5.14 Mb. The contigs were further assembled into 24 pseudo-chromosomes by the Hi-C technique. We also analyzed the gene families (e.g., KSL, and CYP450) whose protein products are essential for synthesizing bioactive compounds in A. paniculata. In conclusion, the high-quality A. paniculata genome assembly builds the foundation for decoding the biosynthetic pathways of various medicinal compounds.
Collapse
Affiliation(s)
- Ying Liang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | | | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zijiang Yang
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | | | - Yuan Du
- NowBio Biotechnology Company, Kunming, China
| | - Peng Qu
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Jianhua Miao
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, China
| | - Yang Dong
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.,National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, China
| |
Collapse
|
37
|
Kim J, Kang SH, Park SG, Yang TJ, Lee Y, Kim OT, Chung O, Lee J, Choi JP, Kwon SJ, Lee K, Ahn BO, Lee DJ, Yoo SI, Shin IG, Um Y, Lee DY, Kim GS, Hong CP, Bhak J, Kim CK. Whole-genome, transcriptome, and methylome analyses provide insights into the evolution of platycoside biosynthesis in Platycodon grandiflorus, a medicinal plant. HORTICULTURE RESEARCH 2020; 7:112. [PMID: 32637140 PMCID: PMC7327020 DOI: 10.1038/s41438-020-0329-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 05/19/2023]
Abstract
Triterpenoid saponins (TSs) are common plant defense phytochemicals with potential pharmaceutical properties. Platycodon grandiflorus (Campanulaceae) has been traditionally used to treat bronchitis and asthma in East Asia. The oleanane-type TSs, platycosides, are a major component of the P. grandiflorus root extract. Recent studies show that platycosides exhibit anti-inflammatory, antiobesity, anticancer, antiviral, and antiallergy properties. However, the evolutionary history of platycoside biosynthesis genes remains unknown. In this study, we sequenced the genome of P. grandiflorus and investigated the genes involved in platycoside biosynthesis. The draft genome of P. grandiflorus is 680.1 Mb long and contains 40,017 protein-coding genes. Genomic analysis revealed that the CYP716 family genes play a major role in platycoside oxidation. The CYP716 gene family of P. grandiflorus was much larger than that of other Asterid species. Orthologous gene annotation also revealed the expansion of β-amyrin synthases (bASs) in P. grandiflorus, which was confirmed by tissue-specific gene expression. In these expanded gene families, we identified key genes showing preferential expression in roots and association with platycoside biosynthesis. In addition, whole-genome bisulfite sequencing showed that CYP716 and bAS genes are hypomethylated in P. grandiflorus, suggesting that epigenetic modification of these two gene families affects platycoside biosynthesis. Thus whole-genome, transcriptome, and methylome data of P. grandiflorus provide novel insights into the regulation of platycoside biosynthesis by CYP716 and bAS gene families.
Collapse
Affiliation(s)
- Jungeun Kim
- Personal Genomics Institute, Genome Research Foundation, Osong, 28160 Korea
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences (NAS), Jeonju, 54874 Korea
| | - Sin-Gi Park
- Theragen Etex Bio Institute, Suwon, 16229 Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju, 28644 Korea
| | - Ok Tae Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, 27709 Korea
| | | | - Jungho Lee
- Green Plant Institute, Yongin, 16954 Korea
| | - Jae-Pil Choi
- Personal Genomics Institute, Genome Research Foundation, Osong, 28160 Korea
| | - Soo-Jin Kwon
- Genomics Division, National Institute of Agricultural Sciences (NAS), Jeonju, 54874 Korea
| | - Keunpyo Lee
- Genomics Division, National Institute of Agricultural Sciences (NAS), Jeonju, 54874 Korea
| | - Byoung-Ohg Ahn
- Genomics Division, National Institute of Agricultural Sciences (NAS), Jeonju, 54874 Korea
| | | | | | | | - Yurry Um
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, 27709 Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, 27709 Korea
| | - Geum-Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, 27709 Korea
| | | | - Jong Bhak
- Personal Genomics Institute, Genome Research Foundation, Osong, 28160 Korea
- Clinomics Inc, Ulsan, 44919 Korea
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences (NAS), Jeonju, 54874 Korea
| |
Collapse
|
38
|
Xu Z, Pu X, Gao R, Demurtas OC, Fleck SJ, Richter M, He C, Ji A, Sun W, Kong J, Hu K, Ren F, Song J, Wang Z, Gao T, Xiong C, Yu H, Xin T, Albert VA, Giuliano G, Chen S, Song J. Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants. BMC Biol 2020; 18:63. [PMID: 32552824 PMCID: PMC7302004 DOI: 10.1186/s12915-020-00795-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background Plants have evolved a panoply of specialized metabolites that increase their environmental fitness. Two examples are caffeine, a purine psychotropic alkaloid, and crocins, a group of glycosylated apocarotenoid pigments. Both classes of compounds are found in a handful of distantly related plant genera (Coffea, Camellia, Paullinia, and Ilex for caffeine; Crocus, Buddleja, and Gardenia for crocins) wherein they presumably evolved through convergent evolution. The closely related Coffea and Gardenia genera belong to the Rubiaceae family and synthesize, respectively, caffeine and crocins in their fruits. Results Here, we report a chromosomal-level genome assembly of Gardenia jasminoides, a crocin-producing species, obtained using Oxford Nanopore sequencing and Hi-C technology. Through genomic and functional assays, we completely deciphered for the first time in any plant the dedicated pathway of crocin biosynthesis. Through comparative analyses with Coffea canephora and other eudicot genomes, we show that Coffea caffeine synthases and the first dedicated gene in the Gardenia crocin pathway, GjCCD4a, evolved through recent tandem gene duplications in the two different genera, respectively. In contrast, genes encoding later steps of the Gardenia crocin pathway, ALDH and UGT, evolved through more ancient gene duplications and were presumably recruited into the crocin biosynthetic pathway only after the evolution of the GjCCD4a gene. Conclusions This study shows duplication-based divergent evolution within the coffee family (Rubiaceae) of two characteristic secondary metabolic pathways, caffeine and crocin biosynthesis, from a common ancestor that possessed neither complete pathway. These findings provide significant insights on the role of tandem duplications in the evolution of plant specialized metabolism.
Collapse
Affiliation(s)
- Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.,Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xiangdong Pu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Ranran Gao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Olivia Costantina Demurtas
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res. Ctr, 00123, Rome, Italy
| | - Steven J Fleck
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Michaela Richter
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Chunnian He
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.,Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Aijia Ji
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jianqiang Kong
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Kaizhi Hu
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435, China
| | - Fengming Ren
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.,Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435, China
| | - Jiejie Song
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhe Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Ting Gao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Xiong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haoying Yu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Tianyi Xin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res. Ctr, 00123, Rome, Italy.
| | - Shilin Chen
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China. .,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China. .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China. .,Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong, 666100, China.
| |
Collapse
|
39
|
Yue J, Zuo Z, Huang H, Wang Y. Application of Identification and Evaluation Techniques for Ethnobotanical Medicinal Plant of Genus Panax: A Review. Crit Rev Anal Chem 2020; 51:373-398. [PMID: 32166968 DOI: 10.1080/10408347.2020.1736506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genus Panax, as worldwide medicinal plants, has a medical history for thousands of years. Most of the entire genus are traditional ethnobotanical medicine in China, Myanmar, Thailand, Vietnam and Laos, which have given rise to international attention and use. This paper reviewed more than 210 articles and related books on the research of Panax medicinal plants and their Chinese patent medicines published in the last 30 years. The purpose was to review and summarize the species classification, geographical distribution, and ethnic minorities medicinal records of the genus Panax, and further to review the analytical tools and data analysis methods for the authentication and quality assessment of Panax medicinal materials and Chinese patent medicines. Five main technologies applied in the identification and evaluation of Panax have been introduced and summarized. Chromatography was the most widely used one. Further research and development of molecular identification technology had the potential to become a mainstream identification technology. In addition, some novel, controversial, and worthy methods including electronic noses, electronic eyes, and DNA barcoding were also introduced. At the same time, more than 80% of the researches were carried out by a combination of chemometric pattern-recognition technologies and multi-analysis technologies. All the technologies and methods applied can provide strong support and guarantee for the identification and evaluation of genus Panax, and also conduce to excellent reference value for the development and in-depth research of new technologies in Panax.
Collapse
Affiliation(s)
- Jiaqi Yue
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhitian Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Hengyu Huang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
40
|
Till 2018: a survey of biomolecular sequences in genus Panax. J Ginseng Res 2020; 44:33-43. [PMID: 32095095 PMCID: PMC7033366 DOI: 10.1016/j.jgr.2019.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022] Open
Abstract
Ginseng is popularly known to be the king of ancient medicines and is used widely in most of the traditional medicinal compositions due to its various pharmaceutical properties. Numerous studies are being focused on this plant's curative effects to discover their potential health benefits in most human diseases, including cancer- the most life-threatening disease worldwide. Modern pharmacological research has focused mainly on ginsenosides, the major bioactive compounds of ginseng, because of their multiple therapeutic applications. Various issues on ginseng plant development, physiological processes, and agricultural issues have also been studied widely through state-of-the-art, high-throughput sequencing technologies. Since the beginning of the 21st century, the number of publications on ginseng has rapidly increased, with a recent count of more than 6,000 articles and reviews focusing notably on ginseng. Owing to the implementation of various technologies and continuous efforts, the ginseng plant genomes have been decoded effectively in recent years. Therefore, this review focuses mainly on the cellular biomolecular sequences in ginseng plants from the perspective of the central molecular dogma, with an emphasis on genomes, transcriptomes, and proteomes, together with a few other related studies.
Collapse
|
41
|
Ou X, Li S, Liao P, Cui X, Zheng B, Yang Y, Liu D, Zheng Y. The transcriptome variations of Panaxnotoginseng roots treated with different forms of nitrogen fertilizers. BMC Genomics 2019; 20:965. [PMID: 31874632 PMCID: PMC6929466 DOI: 10.1186/s12864-019-6340-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The sensitivity of plants to ammonia is a worldwide problem that limits crop production. Excessive use of ammonium as the sole nitrogen source results in morphological and physiological disorders, and retarded plant growth. RESULTS In this study we found that the root growth of Panax notoginseng was inhibited when only adding ammonium nitrogen fertilizer, but the supplement of nitrate fertilizer recovered the integrity, activity and growth of root. Twelve RNA-seq profiles in four sample groups were produced and analyzed to identify deregulated genes in samples with different treatments. In comparisons to NH[Formula: see text] treated samples, ACLA-3 gene is up-regulated in samples treated with NO[Formula: see text] and with both NH[Formula: see text] and NO[Formula: see text], which is further validated by qRT-PCR in another set of samples. Subsequently, we show that the some key metabolites in the TCA cycle are also significantly enhanced when introducing NO[Formula: see text]. These potentially enhance the integrity and recover the growth of Panax notoginseng roots. CONCLUSION These results suggest that the activated TCA cycle, as demonstrated by up-regulation of ACLA-3 and several key metabolites in this cycle, contributes to the increased Panax notoginseng root yield when applying both ammonium and nitrate fertilizer.
Collapse
Affiliation(s)
- Xiaohong Ou
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Shipeng Li
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Key Lab of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Peiran Liao
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiuming Cui
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ye Yang
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Dahui Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Yun Zheng
- Yunnan Key Lab of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
42
|
Genome-Wide Identification of WRKY Transcription Factors in the Asteranae. PLANTS 2019; 8:plants8100393. [PMID: 31581604 PMCID: PMC6843914 DOI: 10.3390/plants8100393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023]
Abstract
The WRKY transcription factors family, which participates in many physiological processes in plants, constitutes one of the largest transcription factor families. The Asterales and the Apiales are two orders of flowering plants in the superorder Asteranae. Among the members of the Asterales, globe artichoke (Cynara cardunculus var. scolymus L.), sunflower (Helianthus annuus L.), and lettuce (Lactuca sativa L.) are important economic crops worldwide. Within the Apiales, ginseng (Panax ginseng C. A. Meyer) and Panax notoginseng (Burk.) F.H. Chen are important medicinal plants, while carrot (Daucus carota subsp. carota L.) has significant economic value. Research involving genome-wide identification of WRKY transcription factors in the Asterales and the Apiales has been limited. In this study, 490 WRKY genes, 244 from three species of the Apiales and 246 from three species of the Asterales, were identified and categorized into three groups. Within each group, WRKY motif characteristics and gene structures were similar. WRKY gene promoter sequences contained light responsive elements, core regulatory elements, and 12 abiotic stress cis-acting elements. WRKY genes were evenly distributed on each chromosome. Evidence of segmental and tandem duplication events was found in all six species in the Asterales and the Apiales, with segmental duplication inferred to play a major role in WRKY gene evolution. Among the six species, we uncovered 54 syntenic gene pairs between globe artichoke and lettuce. The six species are thus relatively closely related, consistent with their traditional taxonomic placement in the Asterales. This study, based on traditional species classifications, was the first to identify WRKY transcription factors in six species from the Asteranae. Our results lay a foundation for further understanding of the role of WRKY transcription factors in species evolution and functional differentiation.
Collapse
|
43
|
Ji Y, Liu C, Yang Z, Yang L, He Z, Wang H, Yang J, Yi T. Testing and using complete plastomes and ribosomal DNA sequences as the next generation DNA barcodes in
Panax
(Araliaceae). Mol Ecol Resour 2019; 19:1333-1345. [DOI: 10.1111/1755-0998.13050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia Kunming Institute of Botany Chinese Academy of Sciences Kunming China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population Kunming Institute of Botany Chinese Academy of Sciences Kunming China
| | - Changkun Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia Kunming Institute of Botany Chinese Academy of Sciences Kunming China
| | - Zhenyan Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia Kunming Institute of Botany Chinese Academy of Sciences Kunming China
| | - Lifang Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia Kunming Institute of Botany Chinese Academy of Sciences Kunming China
- School of Life Science Yunnan University Kunming China
| | - Zhengshan He
- Germplasm Bank of Wild Species Kunming Institute of Botany Chinese Academy of Sciences Kunming China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden Chinese Academy of Sciences Wuhan China
| | - Junbo Yang
- Germplasm Bank of Wild Species Kunming Institute of Botany Chinese Academy of Sciences Kunming China
| | - Tingshuang Yi
- Germplasm Bank of Wild Species Kunming Institute of Botany Chinese Academy of Sciences Kunming China
| |
Collapse
|
44
|
Xue L, He Z, Bi X, Xu W, Wei T, Wu S, Hu S. Transcriptomic profiling reveals MEP pathway contributing to ginsenoside biosynthesis in Panax ginseng. BMC Genomics 2019; 20:383. [PMID: 31101014 PMCID: PMC6524269 DOI: 10.1186/s12864-019-5718-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 04/18/2019] [Indexed: 11/10/2022] Open
Abstract
Background Panax ginseng C. A. Mey is one of famous medicinal herb plant species. Its major bioactive compounds are various ginsenosides in roots and rhizomes. It is commonly accepted that ginsenosides are synthesized from terpene precursors, IPP and DMAPP, through the cytoplasmic mevalonate (MVA) pathway. Another plastic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway was proved also contributing to ginsenoside generation in the roots of P. ginseng by using specific chemical inhibitors recently. But their gene expression characteristics are still under reveal in P. ginseng. With the development of the high-throughput next generation sequencing (NGS) technologies, we have opportunities to discover more about the complex ginsenoside biosynthesis pathways in P. ginseng. Results We carried out deep RNA sequencing and comprehensive analyses on the ginseng root samples of 1–5 years old and five different tissues of 5 years old ginseng plants. The de novo assembly totally generated 48,165 unigenes, including 380 genes related to ginsenoside biosynthesis and all the genes encoding the enzymes of the MEP pathway and the MVA pathway. We further illustrated the gene expression profiles related to ginsenoside biosynthesis among 1–5 year-old roots and different tissues of 5 year-old ginseng plants. Particularly for the first time, we revealed that the gene transcript abundances of the MEP pathway were similar to those of the MVA pathway in ginseng roots but higher in ginseng leaves. The IspD was predicated to be the rate-limiting enzyme in the MEP pathway through both co-expression network and gene expression profile analyses. Conclusions At the transcriptional level, the MEP pathway has similar contribution to ginsenoside biosynthesis in ginseng roots, but much higher in ginseng leaves, compared with the MVA pathway. The IspD might be the key enzyme for ginsenoside generation through the MEP pathway. These results provide new information for further synthetic biology study on ginsenoside metabolic regulation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5718-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Le Xue
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zilong He
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Xiaochun Bi
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Wei Xu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Ting Wei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Shuangxiu Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China. .,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
45
|
Herbgenomics: A stepping stone for research into herbal medicine. SCIENCE CHINA-LIFE SCIENCES 2019; 62:913-920. [DOI: 10.1007/s11427-018-9472-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
|
46
|
Tang QY, Chen G, Song WL, Fan W, Wei KH, He SM, Zhang GH, Tang JR, Li Y, Lin Y, Yang SC. Transcriptome analysis of Panax zingiberensis identifies genes encoding oleanolic acid glucuronosyltransferase involved in the biosynthesis of oleanane-type ginsenosides. PLANTA 2019; 249:393-406. [PMID: 30219960 DOI: 10.1007/s00425-018-2995-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/28/2018] [Indexed: 05/26/2023]
Abstract
Oleanolic acid glucuronosyltransferase (OAGT) genes synthesizing the direct precursor of oleanane-type ginsenosides were discovered. The four recombinant proteins of OAGT were able to transfer glucuronic acid at C-3 of oleanolic acid that yields oleanolic acid 3-O-β-glucuronide. Ginsenosides are the primary active components in the genus Panax, and great efforts have been made to elucidate the mechanisms underlying dammarane-type ginsenoside biosynthesis. However, there is limited information on oleanane-type ginsenosides. Here, high-performance liquid chromatography analysis demonstrated that oleanane-type ginsenosides (particularly ginsenoside Ro and chikusetsusaponin IV and IVa) are the abundant ginsenosides in Panax zingiberensis, an extremely endangered Panax species in southwest China. These ginsenosides are derived from oleanolic acid 3-O-β-glucuronide, which may be formed from oleanolic acid catalyzed by an unknown oleanolic acid glucuronosyltransferase (OAGT). Transcriptomic analysis of leaves, stems, main roots, and fibrous roots of P. zingiberensis was performed, and a total of 46,098 unigenes were obtained, including all the identified homologous genes involved in ginsenoside biosynthesis. The most upstream genes were highly expressed in the leaves, and the UDP-glucosyltransferase genes were highly expressed in the roots. This finding indicated that the precursors of ginsenosides are mainly synthesized in the leaves and transported to different parts for the formation of particular ginsenosides. For the first time, enzyme activity assay characterized four genes (three from P. zingiberensis and one from P. japonicus var. major, another Panax species with oleanane-type ginsenosides) encoding OAGT, which particularly transfer glucuronic acid at C-3 of oleanolic acid to form oleanolic acid 3-O-β-glucuronide. Taken together, our study provides valuable genetic information for P. zingiberensis and the genes responsible for synthesizing the direct precursor of oleanane-type ginsenosides.
Collapse
Affiliation(s)
- Qing-Yan Tang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Geng Chen
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
| | - Wan-Ling Song
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
| | - Wei Fan
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
| | - Kun-Hua Wei
- Guangxi Medicinal Resources Protection and Genetic Improvement Laboratory, Guangxi Botanical Garden of Medicinal Plant, Nanning, 530023, China
| | - Si-Mei He
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
| | - Guang-Hui Zhang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun-Rong Tang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
| | - Ying Li
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
| | - Yuan Lin
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
| | - Sheng-Chao Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
47
|
Ding X, Mei W, Huang S, Wang H, Zhu J, Hu W, Ding Z, Tie W, Peng S, Dai H. Genome survey sequencing for the characterization of genetic background of Dracaena cambodiana and its defense response during dragon's blood formation. PLoS One 2018; 13:e0209258. [PMID: 30550595 PMCID: PMC6294377 DOI: 10.1371/journal.pone.0209258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/03/2018] [Indexed: 11/26/2022] Open
Abstract
Dragon's blood collected from the genus Dracaena is used as a renowned traditional medicine in various cultures worldwide. However, the genetics of the genus Dracaena and the formation mechanism of dragon's blood remain poorly understood. Here, we generate the first draft genome reference assembly of an elite Chinese Dracaena species, Dracaena cambodiana, from next-generation sequencing data with 89.46× coverage. The reads were assembled into 2,640,704 contigs with an N50 length of 1.87 kb, and a 1.05 Gb assembly was finally assembled with 2,379,659 scaffolds. Furthermore, 97.75% of the 267,243 simple sequence repeats identified from these scaffolds were mononucleotide, dinucleotide, and trinucleotide repeats. Among all 53,700 predicted genes, 158 genes involved in cell wall and plant hormone synthesis and reactive oxygen species scavenging showed altered regulation during the formation of dragon's blood. This study provides a genomic characterization of D. cambodiana and improves understanding of the molecular mechanism of dragon's blood formation. This report represents the first genome-wide characterization of a Dracaena species in the Asparagaceae.
Collapse
Affiliation(s)
- Xupo Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, People’s Republic of China
- Hainan Key Laboratory for Research and Development of Natural Products from Li folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, People’s Republic of China
| | - Wenli Mei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, People’s Republic of China
- Hainan Key Laboratory for Research and Development of Natural Products from Li folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, People’s Republic of China
| | - Shengzhuo Huang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, People’s Republic of China
- Hainan Key Laboratory for Research and Development of Natural Products from Li folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, People’s Republic of China
| | - Hui Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, People’s Republic of China
- Hainan Key Laboratory for Research and Development of Natural Products from Li folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, People’s Republic of China
| | - Jiahong Zhu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, People’s Republic of China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, People’s Republic of China
| | - Zehong Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, People’s Republic of China
| | - Weiwei Tie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, People’s Republic of China
| | - Shiqing Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, People’s Republic of China
| | - Haofu Dai
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, People’s Republic of China
- Hainan Key Laboratory for Research and Development of Natural Products from Li folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, People’s Republic of China
| |
Collapse
|
48
|
Identification of potential genes involved in triterpenoid saponins biosynthesis in Gleditsia sinensis by transcriptome and metabolome analyses. J Nat Med 2018; 73:369-380. [PMID: 30547286 PMCID: PMC6373339 DOI: 10.1007/s11418-018-1270-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/18/2018] [Indexed: 11/25/2022]
Abstract
Gleditsia sinensis is widely used as a medicinal plant in Asia, especially in China. Triterpenes, alkaloids, and sterols were isolated from Gleditsia species. Among them, triterpenoid saponins are very important metabolites owing to their various pharmacological activities. However, the triterpenoid saponin biosynthesis pathway has not been well characterized. In the present study, we performed de novo transcriptome assembly for 14.3 Gbps of clean reads sequenced from nine tissues of G. sinensis. The results showed that 81,511 unique transcripts (unitranscripts) (47,855 unigenes) were constructed, of which 31,717 unigenes were annotated with Gene Ontology and EC numbers by Blast2GO against the NCBI-nr protein database. We also analyzed the metabolite contents in the same nine tissues by LS–MS/MS, and saponins including gleditsioside I were found in fruit at higher levels. Many of the genes with tissue-specific expression in fruit are involved in the flavonoid biosynthesis pathway, and many of those have UDP-glucosyltransferase (UGT) activity. We constructed a saponin biosynthesis pathway and identified two key enzyme families in the triterpenoid saponin biosynthesis pathway, cytochrome P450 and UDP-glucosyltransferase, that are encoded by 37 unigenes and 77 unigenes, respectively. CYP72A, CYP716A, and CYP88D, which are known as key enzymes for saponin biosynthesis, were also identified among the P450s. Our results provide insight into the secondary metabolite biosynthesis and serve as important resources for future research and cultivation of G. sinensis.
Collapse
|
49
|
Trends in herbgenomics. SCIENCE CHINA-LIFE SCIENCES 2018; 62:288-308. [PMID: 30128965 DOI: 10.1007/s11427-018-9352-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Abstract
From Shen Nong's Herbal Classic (Shennong Bencao Jing) to the Compendium of Materia Medica (Bencao Gangmu) and the first scientific Nobel Prize for the mainland of China, each milestone in the historical process of the development of traditional Chinese medicine (TCM) involves screening, testing and integrating. After thousands of years of inheritance and development, herbgenomics (bencaogenomics) has bridged the gap between TCM and international advanced omics studies, promoting the application of frontier technologies in TCM. It is a discipline that uncovers the genetic information and regulatory networks of herbs to clarify their molecular mechanism in the prevention and treatment of human diseases. The main theoretical system includes genomics, functional genomics, proteomics, transcriptomics, metabolomics, epigenomics, metagenomics, synthetic biology, pharmacogenomics of TCM, and bioinformatics, among other fields. Herbgenomics is mainly applicable to the study of medicinal model plants, genomic-assisted breeding, herbal synthetic biology, protection and utilization of gene resources, TCM quality evaluation and control, and TCM drug development. Such studies will accelerate the application of cutting-edge technologies, revitalize herbal research, and strongly promote the development and modernization of TCM.
Collapse
|
50
|
Wang X, Zhang J, He S, Gao Y, Ma X, Gao Y, Zhang G, Kui L, Wang W, Wang Y, Yang S, Dong Y. HMOD: An Omics Database for Herbal Medicine Plants. MOLECULAR PLANT 2018; 11:757-759. [PMID: 29524650 DOI: 10.1016/j.molp.2018.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 05/21/2023]
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, People's Republic of China
| | - Jiajin Zhang
- School of Information Engineering, Yunnan Agricultural University, Kunming 650201, People's Republic of China
| | - Simei He
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, People's Republic of China
| | - Yuanni Gao
- Nowbio Biotech Inc., Kunming 650201, People's Republic of China
| | - Xiaoqin Ma
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming 650201, People's Republic of China
| | - Yun Gao
- Nowbio Biotech Inc., Kunming 650201, People's Republic of China
| | - Guanghui Zhang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, People's Republic of China
| | - Ling Kui
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, People's Republic of China; Nowbio Biotech Inc., Kunming 650201, People's Republic of China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, People's Republic of China.
| | - Yang Dong
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, People's Republic of China; Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming 650201, People's Republic of China.
| |
Collapse
|