1
|
Wu S, Huang X, Fu C, Wan X, Huang K, Shad MA, Hu L, Chen L, Liu G, Wang L. Identification of the regulatory role of SsMYBS25-4 in salt stress from MYB-related transcription factors in sugarcane (Saccharum spontaneum). Int J Biol Macromol 2025; 303:140566. [PMID: 39894099 DOI: 10.1016/j.ijbiomac.2025.140566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/04/2025]
Abstract
Sugarcane is a highly valued crop known for its significant production of sugar and biomass. MYB transcription factors (TFs) are critical regulators in plant growth and stress tolerance, but MYB-related genes, an atypical subset of the MYB family, remain less explored. In this study, we identified 119 MYB-related genes in the genome of wild sugarcane (S. spontaneum). We thoroughly investigated their phylogenetic relationships, chromosomal locations, motif compositions, and three-dimensional (3D) protein structures by bioinformatic methods. Moreover, the expression patterns of these genes demonstrated significant diversity in plant growth and under salt stress. One of the genes, SsMYBS25-4, exhibited a significantly up-regulated expression in response to salt stress and was selected for further functional elucidation. It was found that the overexpression (OE) of SsMYBS25-4 in Arabidopsis can improve the salt stress tolerance of transgenic plants. Interestingly, the expression of some marker genes related to salt stress was significantly up-regulated in OE plants compared to wide-type plants. The SsMYB25-4 protein was localized in the nucleus and was proven to be directly bound to the promoter of the AtDR29B gene. We proposed a mechanism for SsMYB25-4 that enhances salt stress tolerance, contributing to the understanding and application of MYB-related genes in sugarcane breeding.
Collapse
Affiliation(s)
- Songguo Wu
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiaojin Huang
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Chunli Fu
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xincheng Wan
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ke Huang
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Munsif Ali Shad
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Lihua Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China
| | - Lingling Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China
| | - Guoquan Liu
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, Australia
| | - Lingqiang Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, Australia.
| |
Collapse
|
2
|
Liu X, Xu Y, Zhang Y, Chen X, Li P. BrWRKY8: a key regulatory factor involved in delaying postharvest leaf senescence of Pakchoi ( Brassica rapa subsp. chinensis) by 2,4-epibrassinolide. HORTICULTURE RESEARCH 2025; 12:uhaf004. [PMID: 40078720 PMCID: PMC11896971 DOI: 10.1093/hr/uhaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/29/2024] [Indexed: 03/14/2025]
Abstract
Brassinosteroids (BRs) are extensively distributed in plants and play crucial roles throughout all stages of plant growth. Nevertheless, the molecular mechanism through which BRs influence postharvest senescence in pakchoi remains elusive. Previous studies have demonstrated that the application of 1.5 μM of the BRs analog 2,4-epibrassinolide (EBR) delayed the leaf senescence in harvested pakchoi. In this study, we constructed the EBR-delayed senescence transcriptome in pakchoi leaves and discovered that EBR modulates the expression of genes involved in the chlorophyll (Chl) metabolism pathway and the BRs pathway in pakchoi. Notably, we identified and characterized an EBR-suppressed, nucleus-localized WRKY transcription factor called BrWRKY8. BrWRKY8 is a highly expressed transcriptional activator in senescent leaves, targeting the promoters of the Chl degradation-associated gene BrSGR2 and the BRs degradation-associated gene BrCHI2, thereby promoting their expression. Overexpression of the BrWRKY8 gene accelerated the senescence process in Arabidopsis leaves, while EBR treatment mitigated the leaf senescence phenotype induced by BrWRKY8 overexpression. Conversely, silencing of BrWRKY8 through the virus-induced gene silencing extended the postharvest storage period of pakchoi. In conclusion, the newly discovered BRs-BrWRKY8 regulatory model in this study provides novel insights into BRs-mediated leaf senescence in pakchoi.
Collapse
Affiliation(s)
- Xuesong Liu
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Road, Nanjing 210014, Jiangsu, China
| | - Yinghao Xu
- Department of Food Science, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110043, China
| | - Yujun Zhang
- Department of Food Science, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110043, China
| | - Xiaofei Chen
- Department of Food Science, Nanjing Agricultural University, 666 Binjiang Road, Nanjing 211800, China
| | - Pengxia Li
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Road, Nanjing 210014, Jiangsu, China
- Department of Food Science, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110043, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, 50 Zhongling Road, Nanjing 210014, Jiangsu, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Products, Ministry of Agriculture and Rural Affairs, 50 Zhongling Road, Nanjing 210014, China
| |
Collapse
|
3
|
Guo XL, Wang DR, Liu B, Han Y, You CX, An JP. The E3 ubiquitin ligase BRG3 and the protein kinase MPK7 antagonistically regulate LBD36 turnover, a key node for integrating nitrate and gibberellin signaling in apple. THE NEW PHYTOLOGIST 2025. [PMID: 40084628 DOI: 10.1111/nph.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/13/2025] [Indexed: 03/16/2025]
Abstract
Nitrate is the main source of nitrogen in plants. Nitrate stimulation causes changes in plant secondary metabolites, including anthocyanins. However, the molecular mechanism underlying how nitrate regulates anthocyanin biosynthesis remains unclear. In this study, we identified a nitrate response factor MdLBD36 in apple. This factor positively regulated nitrate deficiency-induced anthocyanin biosynthesis by promoting the transcriptional activity of MdABI5, an important regulator of anthocyanins, and directly activated MdABI5 expression. The E3 ubiquitin ligase MdBRG3 promoted the ubiquitinated degradation of MdLBD36 to reduce anthocyanin biosynthesis under nitrate-sufficient conditions. Nitrate deficiency-activated MdMPK7 maintained the stimulating effect of MdLBD36 on anthocyanin biosynthesis by counteracting the MdBRG3-mediated degradation of MdLBD36. Nitrate coordinated gibberellin (GA) signaling to regulate anthocyanin biosynthesis. The GA signaling repressor MdRGL2a contributed to MdLBD36-promoted anthocyanin biosynthesis by enhancing the MdLBD36-MdABI5 interaction and increasing the MdLBD36 transcriptional activation of MdABI5. In summary, our results elucidate the molecular framework of the coordinated regulation of the nitrate signaling response and anthocyanin biosynthesis by ubiquitination and phosphorylation. This study revealed the cross talk between nitrate and GA signaling in the regulation of anthocyanin biosynthesis and provides references for an in-depth exploration of the nitrate signal transduction pathway and its interactions with hormones.
Collapse
Affiliation(s)
- Xin-Long Guo
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Da-Ru Wang
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Baoyou Liu
- Yantai Academy of Agricultural Sciences, Yan-Tai, 265599, Shandong, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Chun-Xiang You
- Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| |
Collapse
|
4
|
Berrian TW, Fabian ML, Rogan CJ, Anderson JC, Clarke CR, Goyer AJ. Investigation of the Effectiveness and Molecular Mechanisms of Thiamin Priming to Control Early Blight Disease in Potato. PHYTOPATHOLOGY 2025; 115:234-246. [PMID: 39565900 DOI: 10.1094/phyto-09-24-0277-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In several plant species, thiamin foliar application primes plant immunity and can be effective in controlling various diseases. However, the effectiveness of thiamin against potato pathogens has seldom been investigated. Additionally, the transcriptomics and metabolomics of immune priming by thiamin have not previously been investigated. Here, we tested the effect of thiamin application against Alternaria solani, the causal agent of early blight in potato, and identified associated changes in gene expression and metabolite content. Thiamin applied on foliage at an optimal concentration of 10 mM reduced lesion size by ∼33%. However, prevention of lesion growth was temporally limited, as a reduction of lesion size occurred when leaves were inoculated 4 h, but not 24 h, following thiamin treatment. Additionally, the effect of thiamin on lesion size was restricted to the application site and was not systemic. RNA-seq analysis showed that thiamin affected the expression of 308 genes involved in the synthesis of salicylic acid, secondary metabolites, fatty acid, chitin, primary metabolism, and photosynthesis. Genes in these pathways were also amongst the thousands of genes differentially regulated in the response to the pathogen alone, though they were often more differentially expressed and enriched when thiamin and the pathogen were combined. Thiamin also delayed the downregulation of photosynthesis-associated genes in plants inoculated with A. solani. Metabolite analyses revealed that thiamin treatment in the absence of a pathogen decreased the amounts of several organic compounds involved in the citric acid cycle. We hypothesize that thiamin primes plant defenses through perturbation of primary metabolism.
Collapse
Affiliation(s)
- Trenton W Berrian
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Matthew L Fabian
- Genetic Improvement for Fruits and Vegetables Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705, U.S.A
| | - Conner J Rogan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Jeffrey C Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Christopher R Clarke
- Genetic Improvement for Fruits and Vegetables Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705, U.S.A
| | - Aymeric J Goyer
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| |
Collapse
|
5
|
Ma Q, Xu S, Hu S, Zuo K. WRKY75-mediated transcriptional regulation of OASA1 controls leaf senescence in Arabidopsis. PHYSIOLOGIA PLANTARUM 2025; 177:e70193. [PMID: 40178051 DOI: 10.1111/ppl.70193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/25/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025]
Abstract
Cysteine plays a crucial role in various processes throughout plant growth and development stages. The gene OASA1 can produce cysteine in Arabidopsis. However, the potential developmental roles of OASA1 have not been explored during senescence. In the present study, the gene OASA1 showed increasing expression during senescence. Compared with Col-0, the mutant oasa1-1 and oasa1-2 showed late leaf senescence, which may be due to disturbed cysteine homeostasis. The mutant exhibited lower total cysteine content and reduced chlorophyll degradation. Meanwhile, WRKY75 promotes cysteine production by inducing the transcription of OASA1 expression, affecting leaf senescence. Our results demonstrate that the senescence-responsive transcription factor WRKY75 directly activates the expression of OASA1 to promote cysteine accumulation and H2O2 content, suggesting a mechanism by which senescence regulates cysteine accumulation in plants.
Collapse
Affiliation(s)
- Qijun Ma
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shi Hu
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kaijing Zuo
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Su M, Yang Y, Lin C, Liu W, Chen X. WRKY transcription factor MdWRKY71 regulates flowering time in apple. PLANT MOLECULAR BIOLOGY 2025; 115:32. [PMID: 39945922 DOI: 10.1007/s11103-024-01544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/05/2024] [Indexed: 04/23/2025]
Abstract
In plants, flowering is crucial to reproductive success. Receiving limited attention in apple research is the function of WRKY transcription factors in regulating flowering time. We characterized a WRKY transcription factor, MdWRKY71, from red-fleshed apple in this study, and ectopically expressed it in Arabidopsis thaliana, which revealed its role in flowering. The sequence of MdWRKY71 exhibited similarity to that of AtWRKY71, and its protein comprised a WRKY domain and a C2H2 zinc finger-like motif, placing it within subgroup IIc of the WRKY family. The similar changing trends demonstrated a significant positive correlation between the expression level of MdWRKY71 and the key flower transition genes in apical buds of apple in flower transition stage. Overexpression of MdWRKY71 promoted the upregulation of certain flower transition genes in apple calli. The ectopic expression of MdWRKY71 in A. thaliana was observed to induce early flowering. Additionally, MdWRKY71 could bind to the promoters of several floral pathway integrators directly and interact with them to enhance their expression levels. These results contribute to our understanding of the molecular mechanism through which MdWRKY71 regulates the flowering process in fruit trees, such as red-fleshed apple.
Collapse
Affiliation(s)
- Mengyu Su
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China.
| | - Yi Yang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Caicai Lin
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai An, Shandong, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai An, Shandong, China
| |
Collapse
|
7
|
Zhou X, Sun Z, Huang Y, He D, Lu L, Wei M, Lin S, Luo W, Liao X, Jin S, Guo M, Hao L, Jiang Z. WRKY45 positively regulates salinity and osmotic stress responses in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109408. [PMID: 39721186 DOI: 10.1016/j.plaphy.2024.109408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Salt damage is a major issue that causes a decline in crop yield. WRKY transcription factors (TFs) extensively regulate plant biotic and abiotic stress responses, growth, and development. WRKY45 is crucial in regulating leaf senescence, low phosphorus responses, and cadmium stress response in Arabidopsis. However, the involvement of WRKY45 in salinity and osmotic stress responses is unclear. Here, we report that WRKY45 plays a vital role in responding to salinity and osmotic stress. NaCl and sorbitol treatments upregulate WRKY45 expression. Furthermore, the overexpression of WRKY45 (WRKY45-OXs) may enhance the tolerance of Arabidopsis to salinity and osmotic stress. Moreover, the root length, fresh weight, chlorophyll, and proline content were significantly higher in WRKY45-OXs than in the wide type (WT) Col-0 plants after salt or PEG treatment, whereas malondialdehyde and reactive oxygen species (ROS) levels were significantly lower than in the WT plants. Correspondingly, the overexpression of WRKY45 modulated the expression of stress-responsive genes. Dual luciferase assay and electrophoretic mobility shift assay further confirmed that WRKY45 can activate the promoter of RD29A by directly binding to specific W-box cis-acting elements. Overall, our experimental evidence suggesting that WRKY45 mainly acts as a key regulator coordinating the response to high salinity and osmotic stress through mechanisms dependent on ABA signaling along with enhanced antioxidant capacity.
Collapse
Affiliation(s)
- Xiangui Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China.
| | - Zhaofei Sun
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Yuanzhi Huang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Dan He
- Center for Quantitative Synthetic Biology, CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lu Lu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Mengting Wei
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Shuangmei Lin
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Wenxi Luo
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Xiaozhen Liao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Songsong Jin
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Manyuan Guo
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Lingyun Hao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Zhonghao Jiang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China.
| |
Collapse
|
8
|
Zhang X, Zhang H, Yin M, Gao S, Xu M, Du G. PyWRKY40 negatively regulates anthocyanin synthesis in pear fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 351:112323. [PMID: 39580032 DOI: 10.1016/j.plantsci.2024.112323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
The deposition of anthocyanin plays a crucial role in fruit pigmentation and serves as the primary determinant of pear quality. Various factors influence the synthesis of anthocyanins, with salicylic acid playing a significant role among them. However, the mechanism by which salicylic acid affects anthocyanin synthesis remains unclear. Our study identifies the transcription factor PyWRKY40 as a pivotal regulator of SA-mediated anthocyanin synthesis in the nucleus. The negative regulatory function of this factor lies in its ability to suppress anthocyanin synthesis, thereby exerting an influence on fruit coloration. We have confirmed the direct binding of PyWRKY40 to the PyDFR promoter through Y1H and EMSA experiments. The findings elucidate a signaling regulatory module, PyWRKY40-PyDFR, which is responsive to SA and enhances fruit pigmentation by modulating anthocyanin metabolism. This insight offers a viable approach to enhancing fruit coloration and improving the overall quality of pear fruits.
Collapse
Affiliation(s)
- Xuefeng Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - He Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingxin Yin
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Siyang Gao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingyang Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Guodong Du
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
9
|
Wang L, Liu H, Sun Y, Wang W, Li C, Liu Y, Liu Z, Ji R, Huang S, Qu G, Wang Y. Identification and Candidate Gene Analysis of Brcl1, a Novel Gene Confers a Leaf Curled Phenotype in Brassica rapa L. Int J Mol Sci 2025; 26:732. [PMID: 39859447 PMCID: PMC11765633 DOI: 10.3390/ijms26020732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Leaf shape is an important determinant of photosynthesis, yield and quality in plants. In this study, we obtained a curled leaf mutant, cl1, from an ethyl methanesulfonate (EMS)-induced mutagenesis population. It was designated the Brcl1YS locus. Bulk segregant RNA sequencing combined with recombinant screening identified the candidate interval responsible for Brcl1YS in a 97.5 kb region on chromosome A02. Twelve genes were identified within the candidate region. Sequence differences and co-separation verification confirmed that BraA02g017030.3C was the most promising candidate gene underlying the Brcl1YS locus. It is homologous to Arabidopsis AT1G66350 (RGL1), which has been shown to act as a negative regulator of the gibberellin pathway. Combined with cell morphology observation, it is speculated that the loss of function of Brcl1YS results in differences in cell development, ultimately leading to changes in leaf morphology. The results will contribute to the understanding of the molecular mechanisms underlying leaf curling in B. rapa.
Collapse
Affiliation(s)
- Lihui Wang
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Huishan Liu
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yunxia Sun
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Wei Wang
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Chao Li
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanwei Liu
- Department of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Ruiqin Ji
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Gaoyang Qu
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yugang Wang
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
10
|
Wu W, Bao ZY, Xiong CX, Shi LY, Chen W, Yin XR, Yang ZF. The Softening of Persimmon Fruit Was Inhibited by Gibberellin via DkDELLA1/2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1159-1166. [PMID: 39718899 DOI: 10.1021/acs.jafc.4c09045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Texture is an important quality index reflecting a series of sensory evaluations of fruit, and softening is the main texture change of most postharvest fruit. Persimmon fruit (Diospyros kaki) shows a pattern of decreasing firmness after harvest, leading to a short duration of sale and excessive waste. We found that the treatment with gibberellin (GA) could effectively inhibit the postharvest softening of persimmon fruit, but the underlying mechanism is unclear. In the GA signal transduction pathway, DELLA protein is the key component and is involved in many growth and development processes regulated by GA, while whether DELLA is involved in GA-regulated fruit ripening is not yet known. In this research, two DELLA genes DkDELLA1/2 were found to enhance the transactivation effect of DkNAC9 on the DkEGase1 promoter, thus participating in persimmon fruit softening regulated by GA. The results may provide new findings for the regulatory network of GA and the DELLA protein family.
Collapse
Affiliation(s)
- Wei Wu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Zhe-Yang Bao
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo 36310, Spain
| | - Ceng-Xi Xiong
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Li-Yu Shi
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Wei Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Xue-Ren Yin
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhen-Feng Yang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| |
Collapse
|
11
|
Kuczyńska A, Michałek M, Ogrodowicz P, Kempa M, Witaszak N, Dziurka M, Gruszka D, Daszkowska-Golec A, Szarejko I, Krajewski P, Mikołajczak K. Drought-induced molecular changes in crown of various barley phytohormone mutants. PLANT SIGNALING & BEHAVIOR 2024; 19:2371693. [PMID: 38923879 PMCID: PMC11210921 DOI: 10.1080/15592324.2024.2371693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
One of the main signal transduction pathways that modulate plant growth and stress responses, including drought, is the action of phytohormones. Recent advances in omics approaches have facilitated the exploration of plant genomes. However, the molecular mechanisms underlying the response in the crown of barley, which plays an essential role in plant performance under stress conditions and regeneration after stress treatment, remain largely unclear. The objective of the present study was the elucidation of drought-induced molecular reactions in the crowns of different barley phytohormone mutants. We verified the hypothesis that defects of gibberellins, brassinosteroids, and strigolactones action affect the transcriptomic, proteomic, and hormonal response of barley crown to the transitory drought influencing plant development under stress. Moreover, we assumed that due to the strong connection between strigolactones and branching the hvdwarf14.d mutant, with dysfunctional receptor of strigolactones, manifests the most abundant alternations in crowns and phenotype under drought. Finally, we expected to identify components underlying the core response to drought which are independent of the genetic background. Large-scale analyses were conducted using gibberellins-biosynthesis, brassinosteroids-signaling, and strigolactones-signaling mutants, as well as reference genotypes. Detailed phenotypic evaluation was also conducted. The obtained results clearly demonstrated that hormonal disorders caused by mutations in the HvGA20ox2, HvBRI1, and HvD14 genes affected the multifaceted reaction of crowns to drought, although the expression of these genes was not induced by stress. The study further detected not only genes and proteins that were involved in the drought response and reacted specifically in mutants compared to the reaction of reference genotypes and vice versa, but also the candidates that may underlie the genotype-universal stress response. Furthermore, candidate genes involved in phytohormonal interactions during the drought response were identified. We also found that the interplay between hormones, especially gibberellins and auxins, as well as strigolactones and cytokinins may be associated with the regulation of branching in crowns exposed to drought. Overall, the present study provides novel insights into the molecular drought-induced responses that occur in barley crowns.
Collapse
Affiliation(s)
- Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Martyna Michałek
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Michał Kempa
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Natalia Witaszak
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Michał Dziurka
- Faculty of Natural Sciences, The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Krakow, Poland
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | | |
Collapse
|
12
|
Liang Y, Zhao J, Yang R, Bai J, Hu W, Gu L, Lian Z, Huo H, Guo J, Gong H. PROCERA interacts with JACKDAW in gibberellin-enhanced source-sink sucrose partitioning in tomato. PLANT PHYSIOLOGY 2024; 197:kiaf024. [PMID: 39823308 DOI: 10.1093/plphys/kiaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
Proper regulation of the source-sink relationship is an effective way to increase crop yield. Gibberellin (GA) is an important regulator of plant growth and development, and physiological evidence has demonstrated that GA can promote source-sink sucrose partitioning. However, the underlying molecular mechanism remains unclear. Here, we used a combination of physiological and molecular approaches to identify the components involved in GA-enhanced source-sink sucrose partitioning in tomato (Solanum lycopersicum). GA treatment increased the sucrose export rate from source leaves and the sucrose level in young leaves (sink organ). GA-mediated enhancement of source-sink sucrose partitioning depended on SlPROCERA (SlPRO), the DELLA protein in tomato. Sucrose transporter 1 (SlSUT1) was involved in phloem sucrose loading. SlJACKDAW (SlJKD) was identified as an interaction partner of SlPRO. SlJKD negatively regulated the sucrose export rate from source leaves and could directly bind to the promoter of SlSUT1 and repress its expression, while SlPRO enhanced the transcription repression function of SlJKD. This study reveals the molecular mechanism by which GA promotes source-sink sucrose partitioning in tomato and provides potential targets for source-sink relationship optimization.
Collapse
Affiliation(s)
- Yufei Liang
- Shaanxi Engineering Research Center for Vegetables/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingyi Zhao
- Shaanxi Engineering Research Center for Vegetables/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Yang
- Shaanxi Engineering Research Center for Vegetables/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiayu Bai
- Shaanxi Engineering Research Center for Vegetables/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wanxing Hu
- Shaanxi Engineering Research Center for Vegetables/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lixia Gu
- Shaanxi Engineering Research Center for Vegetables/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhaoyuan Lian
- Shaanxi Engineering Research Center for Vegetables/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Heqiang Huo
- Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL 32703, USA
| | - Jia Guo
- Shaanxi Engineering Research Center for Vegetables/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haijun Gong
- Shaanxi Engineering Research Center for Vegetables/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
13
|
Tian S, Zhang S, Xu F, Sun Q, Xu G, Ni M. The evening complex component ELF3 recruits H3K4me3 demethylases to repress PHYTOCHROME INTERACTING FACTOR4 and 5 in Arabidopsis. THE PLANT CELL 2024; 37:koaf014. [PMID: 39880018 PMCID: PMC11779311 DOI: 10.1093/plcell/koaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025]
Abstract
In Arabidopsis (Arabidopsis thaliana), light and circadian clock signaling converge on PHYTOCHROME-INTERACTING FACTORS (PIFs) 4 and 5 to produce a daily rhythm of hypocotyl elongation. PIF4 and PIF5 expression is repressed at dusk by the evening complex (EC), consisting of EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO (LUX). Here, we report that ELF3 recruits the JUMONJI (JMJ) H3K4me3 demethylases JMJ17 and JMJ18 to the PIF4 and PIF5 loci in the evening to remove their H3K4me3 marks. The association of JMJ17 and JMJ18 with the 2 genomic loci depends on the EC, and the H3K4me3 marks are enriched in the elf3 and jmj17 jmj18 mutants. Half of the globally differentially expressed genes are overlapping in elf3 and jmj17 jmj18. Cleavage Under Targets and Tagmentation sequencing analysis identified 976 H3K4me3-enriched loci in elf3. Aligning the H3K4me3-enriched loci in elf3 to genes with increased expression in elf3 and jmj17 jmj18 identified 179 and 176 target loci, respectively. Half of the loci are targeted by both ELF3 and JMJ17/JMJ18. This suggests a strong connection between the 2 JMJ proteins and EC function. Our studies reveal that an array of key genes in addition to PIF4 and PIF5 are repressed by the EC through the H3K4me3 demethylation pathway.
Collapse
Affiliation(s)
- Shiyu Tian
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Shen Zhang
- Department of Plant and Microbial Biology, University of Minnesota at Twin Cities, Saint Paul, MN 55108, USA
| | - Fan Xu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Qingbin Sun
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Gang Xu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Min Ni
- Department of Plant and Microbial Biology, University of Minnesota at Twin Cities, Saint Paul, MN 55108, USA
| |
Collapse
|
14
|
Li X, Xie Z, Qin T, Zhan C, Jin L, Huang J. The SLR1-OsMADS23-D14 module mediates the crosstalk between strigolactone and gibberellin signaling to control rice tillering. THE NEW PHYTOLOGIST 2024. [PMID: 39639554 DOI: 10.1111/nph.20331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Strigolactones (SLs) and gibberellins (GAs) have been found to inhibit plant branching or tillering, but molecular mechanisms underlying the interplay between SL and GA signaling to modulate tillering remain elusive. We found that the transcription factor OsMADS23 plays a crucial role in the crosslink between SL and GA signaling in rice tillering. Loss-of-function mutant osmads23 shows normal axillary bud formation but defective bud outgrowth, thus reducing the tiller number in rice, whereas overexpression of OsMADS23 significantly increases tillering by promoting tiller bud outgrowth. OsMADS23 physically interacts with DELLA protein SLENDER RICE1 (SLR1), and the interaction reciprocally stabilizes each other. Genetic evidence showed that SLR1 is required for OsMADS23 to control rice tillering. OsMADS23 acts as an upstream transcriptional repressor to inhibit the expression of SL receptor gene DWARF14 (D14), and addition of SLR1 further enhances OsMADS23-mediated transcriptional repression of D14, indicating that D14 is the downstream target gene of OsMADS23-SLR1 complex. Moreover, application of exogenous SL and GA reduces the protein stability of OsMADS23-SLR1 complex and promotes D14 expression. Our results revealed that SLs and GAs synergistically inhibit rice tillering by destabilizing OsMADS23-SLR1 complex, which provides important insights into the molecular networks of SL-GA synergistic interaction during rice tillering.
Collapse
Affiliation(s)
- Xingxing Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Tian Qin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Chenghang Zhan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
15
|
Xu J, Liu S, Hong J, Lin R, Xia X, Yu J, Zhou Y. SlBTB19 interacts with SlWRKY2 to suppress cold tolerance in tomato via the CBF pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1112-1124. [PMID: 39323012 DOI: 10.1111/tpj.17040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Cold stress restricts the metabolic and physiological activities of plants, thereby affecting their growth and development. Although broad-complex, tramtrack, and bric-à-brac (BTB) proteins are essential for diverse biological processes and stress responses, the mechanisms underlying BTB-mediated cold responses remain not fully understood. Here, we characterize the function of the cold-induced SlBTB19 protein in tomato (Solanum lycopersicum). Overexpression of SlBTB19 resulted in increased plant sensitivity to cold stress, whereas SlBTB19 knockout mutants exhibited a cold-tolerance phenotype. Further analyses, including protein-protein interaction studies and cell-free degradation assays, revealed that SlBTB19 interacts with and destabilizes the transcription factor SlWRKY2. Using virus-induced gene silencing (VIGS) to silence SlWRKY2 in both wild-type and slbtb19 mutants, we provided genetic evidence that SlWRKY2 acts downstream of SlBTB19 in regulating cold tolerance. Importantly, we demonstrated that SlWRKY2 positively regulates cold tolerance in a CRT/DRE binding factor (CBF)-dependent manner. Under cold stress, SlWRKY2 binds to the W-box in the CBF1 and CBF3 promoters, directly activating their expression. In summary, our findings identify a SlBTB19-SlWRKY2 module that negatively regulates the CBF-dependent cold tolerance pathway in tomato.
Collapse
Affiliation(s)
- Jin Xu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Sidi Liu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Jiachen Hong
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Rui Lin
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
- Hainan Institute, Zhejiang University, Sanya, 572025, People's Republic of China
- Key Laboratory of Horticultural Plant Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
16
|
Wu Y, Liu Y, Zhang Y, Dong G, Yan J, Zhang H. Functional analysis of TkWRKY33: A key regulator in drought-induced natural rubber synthesis in Taraxacum kok-saghyz. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109232. [PMID: 39467495 DOI: 10.1016/j.plaphy.2024.109232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
WRKY proteins, which form a transcription factor superfamily that responds to jasmonic acid (JA) signals, regulate various developmental processes and stress responses in plants, including Taraxacum kok-saghyz (TKS). TKS serves as an ideal model plant for studying rubber production and lays the foundation for a comprehensive understanding of JA-mediated regulation of natural rubber synthesis. In the present study, we screened and identified a valuable transcription factor, TkWRKY33, based on transcriptome data from TKS in response to JA. We investigated its role in the regulation of natural rubber synthesis within the JA signaling pathway and its function in response to drought stress. Through protein-protein interactions and transcriptional regulation analysis, we found that TkWRKY33 may regulate natural rubber synthesis through the JA-TkMPK3-TkWRKY33-(TkGGPS5/TkACAT8) cascade pathway, possibly by participating in JA-activated mitogen-activated protein kinase (MAPK) signaling. Overexpression of TkWRKY33 in tobacco, along with functional analysis of drought resistance and comparative analysis of natural rubber content after drought stress, revealed that TkWRKY33 not only enhances plant drought resistance by regulating the expression of genes related to reactive oxygen species (ROS) scavenging through the JA signaling pathway, but also has a close relationship with the signal transduction pathway mediated by the JA hormone in regulating natural rubber synthesis. The TkWRKY33 is recognized as a valuable transcription factor, which likely plays a role in regulating natural rubber biosynthesis through the JA-activated MAPK cascade signaling pathway JA-TkMPK3-TkWRKY33-(TkGGPS5/TkACAT8).
Collapse
Affiliation(s)
- Yulin Wu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Yaxin Liu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Yunchuan Zhang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Gaoquan Dong
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jie Yan
- College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Hao Zhang
- Institute of Gardening and Greening, Xinjiang Academy of Forestry Sciences, Urumqi, 830000, China.
| |
Collapse
|
17
|
Ahmad Z, Ramakrishnan M, Wang C, Rehman S, Shahzad A, Wei Q. Unravelling the role of WRKY transcription factors in leaf senescence: Genetic and molecular insights. J Adv Res 2024:S2090-1232(24)00428-4. [PMID: 39362333 DOI: 10.1016/j.jare.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Leaf senescence (LS), the final phase in leaf development, is an important and precisely regulated process crucial for plant well-being and the redistribution of nutrients. It is intricately controlled by various regulatory factors, including WRKY transcription factors (TFs). WRKYs are one of the most significant plant TF families, and several of them are differentially regulated and important during LS. Recent research has enhanced our understanding of the structural and functional characteristics of WRKY TFs, providing insights into their regulatory roles. AIM OF REVIEW This review aims to elucidate the genetic and molecular mechanisms underlying the intricate regulatory networks associated with LS by investigating the role of WRKY TFs. We seek to highlight the importance of WRKY-mediated signaling pathways in understanding LS, plant evolution, and response to varying environmental conditions. KEY SCIENTIFIC CONCEPTS OF REVIEW WRKY TFs exhibit specific DNA-binding activity at the N-terminus and dynamic interactions of the intrinsically disordered domain at the C-terminus with various proteins. These WRKY TFs not only control the activity of other WRKYs, but also interact with either WRKYs or other TFs, thereby fine- tuning the expression of target genes. By unraveling the complex interactions and regulatory mechanisms of WRKY TFs, this review broadens our knowledge of the genetic and molecular basis of LS. Understanding WRKY-mediated signalling pathways provides crucial insights into specific aspects of plant development, such as stress-induced senescence, and offers potential strategies for improving crop resilience to environmental stresses like drought and pathogen attacks. By targeting these pathways, it may be possible to enhance specific productivity traits, such as increased yield stability under adverse conditions, thereby contributing to more reliable agricultural outputs.
Collapse
Affiliation(s)
- Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Chunyue Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Shamsur Rehman
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| | - Anwar Shahzad
- Plant Biotechnology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Qiang Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
18
|
Peng X, Hu J, Duan X, Chai M, Wen J, Wang Z, Xie H. Genome-Wide Identification and Analysis of the WRKY Transcription Factor Family Associated with Leaf Senescence in Alfalfa. PLANTS (BASEL, SWITZERLAND) 2024; 13:2725. [PMID: 39409595 PMCID: PMC11478923 DOI: 10.3390/plants13192725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Leaves are the most significant parts of forage crops such as alfalfa. Senescence is the terminal stage of leaf development and is controlled by an integrated myriad of endogenous signals and environmental stimuli. WRKY transcription factors (TFs) play essential roles in regulating leaf senescence; however, only a few studies on the analysis and identification of the WRKY TF family in Medicago Sativa have been reported. In this study, we identified 198 WRKY family members from the alfalfa (M. sativa L.) cultivar 'XinjiangDaye' using phylogenetic analysis and categorized them into three subfamilies, Groups I, II, and III, based on their structural characteristics. Group II members were further divided into five subclasses. In addition, several hormone- and stress-related cis-acting elements were identified in the promoter regions of MsWRKYs. Furthermore, 14 aging-related MsWRKYs genes from a previous transcriptome in our laboratory were selected for RT-qPCR validation of their expression patterns, and subsequently cloned for overexpression examination. Finally, MsWRKY5, MsWRKY66, MsWRKY92, and MsWRKY141 were confirmed to cause leaf yellowing in Nicotiana benthaminana using a transient expression system. Our findings lay a groundwork for further studies on the mechanism of M. sativa leaf aging and for the creation of new germplasm resources.
Collapse
Affiliation(s)
- Xiaojing Peng
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinning Hu
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiangxue Duan
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Maofeng Chai
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Zengyu Wang
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongli Xie
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
19
|
Xing J, Wang J, Cao J, Li K, Meng X, Wen J, Mysore KS, Wang G, Zhou C, Yin P. Identification of a Novel Gene MtbZIP60 as a Negative Regulator of Leaf Senescence through Transcriptome Analysis in Medicago truncatula. Int J Mol Sci 2024; 25:10410. [PMID: 39408738 PMCID: PMC11477300 DOI: 10.3390/ijms251910410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Leaves are the primary harvest portion in forage crops such as alfalfa (Medicago sativa). Delaying leaf senescence is an effective strategy to improve forage biomass production and quality. In this study, we employed transcriptome sequencing to analyze the transcriptional changes and identify key senescence-associated genes under age-dependent leaf senescence in Medicago truncatula, a legume forage model plant. Through comparing the obtained expression data at different time points, we obtained 1057 differentially expressed genes, with 108 consistently up-regulated genes across leaf growth and senescence. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses showed that the 108 SAGs mainly related to protein processing, nitrogen metabolism, amino acid metabolism, RNA degradation and plant hormone signal transduction. Among the 108 SAGs, seven transcription factors were identified in which a novel bZIP transcription factor MtbZIP60 was proved to inhibit leaf senescence. MtbZIP60 encodes a nuclear-localized protein and possesses transactivation activity. Further study demonstrated MtbZIP60 could associate with MtWRKY40, both of which exhibited an up-regulated expression pattern during leaf senescence, indicating their crucial roles in the regulation of leaf senescence. Our findings help elucidate the molecular mechanisms of leaf senescence in M. truncatula and provide candidates for the genetic improvement of forage crops, with a focus on regulating leaf senescence.
Collapse
Affiliation(s)
- Jiayu Xing
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| | - Jialan Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| | - Jianuo Cao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| | - Ke Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| | - Xiao Meng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| | - Jiangqi Wen
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA;
| | - Kirankumar S. Mysore
- Department of Biochemistry and Molecular Biology, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA;
| | - Geng Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| | - Chunjiang Zhou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| | - Pengcheng Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (J.X.); (J.W.); (J.C.); (K.L.); (X.M.); (G.W.)
| |
Collapse
|
20
|
Li ZA, Fahad M, Li WC, Tariq L, Liu MM, Liu YN, Wang TX. Comparative Analysis of Phytohormone Biosynthesis Genes Responses to Long-Term High Light in Tolerant and Sensitive Wheat Cultivars. PLANTS (BASEL, SWITZERLAND) 2024; 13:2628. [PMID: 39339602 PMCID: PMC11435395 DOI: 10.3390/plants13182628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Phytohormones are vital for developmental processes, from organ initiation to senescence, and are key regulators of growth, development, and photosynthesis. In natural environments, plants often experience high light (HL) intensities coupled with elevated temperatures, which pose significant threats to agricultural production. However, the response of phytohormone-related genes to long-term HL exposure remains unclear. Here, we examined the expression levels of genes involved in the biosynthesis of ten phytohormones, including gibberellins, cytokinins, salicylic acid, jasmonic acid, abscisic acid, brassinosteroids, indole-3-acetic acid, strigolactones, nitric oxide, and ethylene, in two winter wheat cultivars, Xiaoyan 54 (XY54, HL tolerant) and Jing 411 (J411, HL sensitive), when transferred from low light to HL for 2-8 days. Under HL, most genes were markedly inhibited, while a few, such as TaGA2ox, TaAAO3, TaLOG1, and TaPAL2, were induced in both varieties. Interestingly, TaGA2ox2 and TaAAO3 expression positively correlated with sugar content but negatively with chlorophyll content and TaAGP expression. In addition, we observed that both varieties experienced a sharp decline in chlorophyll content and photosynthesis performance after prolonged HL exposure, with J411 showing significantly more sensitivity than XY54. Hierarchical clustering analysis classified the phytohormone genes into the following three groups: Group 1 included six genes highly expressed in J411; Group 2 contained 25 genes drastically suppressed by HL in both varieties; and Group 3 contained three genes highly expressed in XY54. Notably, abscisic acid (ABA), and jasmonic acid (JA) biosynthesis genes and their content were significantly higher, while gibberellins (GA) content was lower in XY54 than J411. Together, these results suggest that the differential expression and content of GA, ABA, and JA play crucial roles in the contrasting responses of tolerant and sensitive wheat cultivars to leaf senescence induced by long-term HL. This study enhances our understanding of the mechanisms underlying HL tolerance in wheat and can guide the development of more resilient wheat varieties.
Collapse
Affiliation(s)
- Zhi-Ang Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Muhammad Fahad
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wan-Chang Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Leeza Tariq
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Miao-Miao Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Ya-Nan Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Tai-Xia Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
21
|
He M, Li B, Hui Z, Liu J, Bian C, Li G, Jin L, Xu J. Comprehensive transcriptome profiling and transcription factor identification in early/late leaf senescence grafts in potato. PHYSIOLOGIA PLANTARUM 2024; 176:e14582. [PMID: 39420553 DOI: 10.1111/ppl.14582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
Potato (Solanum tuberosum L.) is recognized globally as the most significant non-cereal staple crop. Leaf senescence, which significantly impacts tuber yield, serves as a critical indicator of potato maturity. Despite its importance, the molecular mechanisms regulating this process remain largely unknown. In a previous study, we grafted the early-maturing variety 'Zhongshu 5' (Z5) onto the late-maturing variety 'Zhongshu 18' (Z18), and demonstrated that the rootstock's leaves displayed physiological characteristics suggestive of early senescence. Here, we analyzed the transcriptome data of the Z5 and Z18 grafts to conduct weighted gene co-expression network and gene expression clustering analysis. Differentially expressed genes in cluster 9, as well as the floralwhite module, exhibited markedly elevated expression levels during the onset of leaf senescence. These genes were found to be enriched in several senescence related processes, such as chloroplast organization, electron transport chain, and chlorophyll metabolic process. Furthermore, we constructed transcription factor correlation networks and hub gene co-expression networks. By monitoring the expression patterns of these genes throughout the whole growth period, we identified two candidate genes, StWRKY70 and StNAP, which may play pivotal roles in leaf senescence. This study contributes valuable genetic resources for further investigations into the regulatory mechanism governing potato leaf senescence, with implications for genetic improvements, particularly in terms of maturity and yield.
Collapse
Affiliation(s)
- Ming He
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Boshu Li
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shanxi Agricultural University, Jinzhong, China
| | - Zhiming Hui
- Laboratory of Plant Tissue Culture Technology of Haidian District, Beijing, China
| | - Jiangang Liu
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunsong Bian
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangcun Li
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liping Jin
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianfei Xu
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
Peng X, Li H, Xu W, Yang Q, Li D, Fan T, Li B, Ding J, Ku W, Deng D, Zhu F, Xiao L, Wang R. The AtMINPP Gene, Encoding a Multiple Inositol Polyphosphate Phosphatase, Coordinates a Novel Crosstalk between Phytic Acid Metabolism and Ethylene Signal Transduction in Leaf Senescence. Int J Mol Sci 2024; 25:8969. [PMID: 39201658 PMCID: PMC11354338 DOI: 10.3390/ijms25168969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Plant senescence is a highly coordinated process that is intricately regulated by numerous endogenous and environmental signals. The involvement of phytic acid in various cell signaling and plant processes has been recognized, but the specific roles of phytic acid metabolism in Arabidopsis leaf senescence remain unclear. Here, we demonstrate that in Arabidopsis thaliana the multiple inositol phosphate phosphatase (AtMINPP) gene, encoding an enzyme with phytase activity, plays a crucial role in regulating leaf senescence by coordinating the ethylene signal transduction pathway. Through overexpressing AtMINPP (AtMINPP-OE), we observed early leaf senescence and reduced chlorophyll contents. Conversely, a loss-of-function heterozygous mutant (atminpp/+) exhibited the opposite phenotype. Correspondingly, the expression of senescence-associated genes (SAGs) was significantly upregulated in AtMINPP-OE but markedly decreased in atminpp/+. Yeast one-hybrid and chromatin immunoprecipitation assays indicated that the EIN3 transcription factor directly binds to the promoter of AtMINPP. Genetic analysis further revealed that AtMINPP-OE could accelerate the senescence of ein3-1eil1-3 mutants. These findings elucidate the mechanism by which AtMINPP regulates ethylene-induced leaf senescence in Arabidopsis, providing insights into the genetic manipulation of leaf senescence and plant growth.
Collapse
Affiliation(s)
- Xiaoyun Peng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Haiou Li
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Wenzhong Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Qian Yang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Dongming Li
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China;
| | - Tingting Fan
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Bin Li
- Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Junhui Ding
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Wenzhen Ku
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Danyi Deng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Feiying Zhu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
- Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (X.P.); (Q.Y.); (T.F.); (J.D.); (W.K.); (F.Z.)
| |
Collapse
|
23
|
Luo X, Jiang X, Schmitt V, Kulkarni SR, Tran HC, Kacprzak SM, Van Breusegem F, Van Aken O, Vandepoele K, De Clercq I. Arabidopsis transcription factor ANAC102 predominantly expresses a nuclear protein and acts as a negative regulator of methyl viologen-induced oxidative stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4655-4670. [PMID: 38812358 PMCID: PMC7616362 DOI: 10.1093/jxb/erae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/29/2024] [Indexed: 05/31/2024]
Abstract
Plants, being sessile organisms, constantly need to respond to environmental stresses, often leading to the accumulation of reactive oxygen species (ROS). While ROS can be harmful, they also act as second messengers guiding plant growth and stress responses. Because chloroplasts are sensitive to environmental changes and are both a source and a target of ROS during stress conditions, they are important in conveying environmental changes to the nucleus, where acclimation responses are coordinated to maintain organellar and overall cellular homeostasis. ANAC102 has previously been established as a regulator of β-cyclocitral-mediated chloroplast-to-nucleus signaling, protecting plants against photooxidative stress. However, debates persist about where ANAC102 is located-in chloroplasts or in the nucleus. Our study, utilizing the genomic ANAC102 sequence driven by its native promoter, establishes ANAC102 primarily as a nuclear protein, lacking a complete N-terminal chloroplast-targeting peptide. Moreover, our research reveals the sensitivity of plants overexpressing ANAC102 to severe superoxide-induced chloroplast oxidative stress. Transcriptome analysis unraveled a dual role of ANAC102 in negatively and positively regulating genome-wide transcriptional responses to chloroplast oxidative stress. Through the integration of published data and our own study, we constructed a comprehensive transcriptional network, which suggests that ANAC102 exerts direct and indirect control over transcriptional responses through downstream transcription factor networks, providing deeper insights into the ANAC102-mediated regulatory landscape during oxidative stress.
Collapse
Affiliation(s)
- Xiaopeng Luo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052Ghent, Belgium
| | - Xinqiang Jiang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052Ghent, Belgium
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Vivian Schmitt
- Department of Biology, Lund University, Lund223 62, Sweden
| | - Shubhada R Kulkarni
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052Ghent, Belgium
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany; Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Huy Cuong Tran
- Department of Biology, Lund University, Lund223 62, Sweden
| | | | - Frank Van Breusegem
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052Ghent, Belgium
| | | | - Klaas Vandepoele
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052Ghent, Belgium
- VIB Center for AI & Computational Biology, VIB, Ghent, Belgium
| | - Inge De Clercq
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052Ghent, Belgium
| |
Collapse
|
24
|
Li HL, Xu RR, Guo XL, Liu YJ, You CX, Han Y, An JP. The MdNAC72-MdABI5 module acts as an interface integrating jasmonic acid and gibberellin signals and undergoes ubiquitination-dependent degradation regulated by MdSINA2 in apple. THE NEW PHYTOLOGIST 2024; 243:997-1016. [PMID: 38849319 DOI: 10.1111/nph.19888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024]
Abstract
Jasmonic acid (JA) and gibberellin (GA) coordinately regulate plant developmental programs and environmental cue responses. However, the fine regulatory network of the cross-interaction between JA and GA remains largely elusive. In this study, we demonstrate that MdNAC72 together with MdABI5 positively regulates anthocyanin biosynthesis through an exquisite MdNAC72-MdABI5-MdbHLH3 transcriptional cascade in apple. MdNAC72 interacts with MdABI5 to promote the transcriptional activation of MdABI5 on its target gene MdbHLH3 and directly activates the transcription of MdABI5. The MdNAC72-MdABI5 module regulates the integration of JA and GA signals in anthocyanin biosynthesis by combining with JA repressor MdJAZ2 and GA repressor MdRGL2a. MdJAZ2 disrupts the MdNAC72-MdABI5 interaction and attenuates the transcriptional activation of MdABI5 by MdNAC72. MdRGL2a sequesters MdJAZ2 from the MdJAZ2-MdNAC72 protein complex, leading to the release of MdNAC72. The E3 ubiquitin ligase MdSINA2 is responsive to JA and GA signals and promotes ubiquitination-dependent degradation of MdNAC72. The MdNAC72-MdABI5 interface fine-regulates the integration of JA and GA signals at the transcriptional and posttranslational levels by combining MdJAZ2, MdRGL2a, and MdSINA2. In summary, our findings elucidate the fine regulatory network connecting JA and GA signals with MdNAC72-MdABI5 as the core in apple.
Collapse
Affiliation(s)
- Hong-Liang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Rui-Rui Xu
- College of Biology and Oceanography, Weifang University, Weifang, 261061, Shandong, China
| | - Xin-Long Guo
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ya-Jing Liu
- School of Horticulture, Anhui Agricultural University, He-Fei, 230036, Anhui, China
| | - Chun-Xiang You
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| |
Collapse
|
25
|
Cui X, Fan X, Xu S, Wang S, Niu F, Zhao P, Yang B, Liu W, Guo X, Jiang YQ. WRKY47 transcription factor modulates leaf senescence through regulating PCD-associated genes in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108805. [PMID: 38861819 DOI: 10.1016/j.plaphy.2024.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Transcription factors play crucial roles in almost all physiological processes including leaf senescence. Cell death is a typical symptom appearing in senescing leaves, which is also classified as developmental programmed cell death (PCD). However, the link between PCD and leaf senescence still remains unclear. Here, we found a WRKY transcription factor WRKY47 positively modulates age-dependent leaf senescence in Arabidopsis (Arabidopsis thaliana). WRKY47 was expressed preferentially in senescing leaves. A subcellular localization assay indicated that WRKY47 was exclusively localized in nuclei. Overexpression of WRKY47 showed precocious leaf senescence, with less chlorophyll content and higher electrolyte leakage, but loss-of-function mutants of WRKY47 delayed this biological process. Through qRT-PCR and dual luciferase reporter assays, we found that WRKY47 could activate the expression of senescence-associated genes (SAGs) and PCD-associated genes to regulate leaf senescence. Furthermore, through electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP)-qPCR, WRKY47 was found to bind to W-box fragments in promoter regions of BFN1 (Bifunctional Nuclease 1) and MC6 (Metacaspase 6) directly. In general, our research revealed that WRKY47 regulates age-dependent leaf senescence by activating the transcription of two PCD-associated genes.
Collapse
Affiliation(s)
- Xing Cui
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaojiang Fan
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shutao Xu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuangshuang Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fangfang Niu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peiyu Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bo Yang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wuzhen Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaohua Guo
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
26
|
Zhang L, Xing L, Dai J, Li Z, Zhang A, Wang T, Liu W, Li X, Han D. Overexpression of a Grape WRKY Transcription Factor VhWRKY44 Improves the Resistance to Cold and Salt of Arabidopsis thaliana. Int J Mol Sci 2024; 25:7437. [PMID: 39000546 PMCID: PMC11242199 DOI: 10.3390/ijms25137437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Plants are often exposed to biotic or abiotic stress, which can seriously impede their growth and development. In recent years, researchers have focused especially on the study of plant responses to biotic and abiotic stress. As one of the most widely planted grapevine rootstocks, 'Beta' has been extensively proven to be highly resistant to stress. However, further research is needed to understand the mechanisms of abiotic stress in 'Beta' rootstocks. In this study, we isolated and cloned a novel WRKY transcription factor, VhWRKY44, from the 'Beta' rootstock. Subcellular localization analysis revealed that VhWRKY44 was a nuclear-localized protein. Tissue-specific expression analysis indicated that VhWRKY44 had higher expression levels in grape roots and mature leaves. Further research demonstrated that the expression level of VhWRKY44 in grape roots and mature leaves was highly induced by salt and cold treatment. Compared with the control, Arabidopsis plants overexpressing VhWRKY44 showed stronger resistance to salt and cold stress. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were significantly increased, and the contents of proline, malondialdehyde (MDA) and chlorophyll were changed considerably. In addition, significantly higher levels of stress-related genes were detected in the transgenic lines. The results indicated that VhWRKY44 was an important transcription factor in 'Beta' with excellent salt and cold tolerance, providing a new foundation for abiotic stress research.
Collapse
Affiliation(s)
- Lihua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Liwei Xing
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Jing Dai
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Zhenghao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Aoning Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Tianhe Wang
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China; (T.W.); (W.L.)
| | - Wanda Liu
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China; (T.W.); (W.L.)
| | - Xingguo Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Afairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.Z.); (L.X.); (J.D.); (Z.L.); (A.Z.)
| |
Collapse
|
27
|
Tan Q, Zhao M, Gao J, Li K, Zhang M, Li Y, Liu Z, Song Y, Lu X, Zhu Z, Lin R, Yin P, Zhou C, Wang G. AtVQ25 promotes salicylic acid-related leaf senescence by fine-tuning the self-repression of AtWRKY53. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1126-1147. [PMID: 38629459 DOI: 10.1111/jipb.13659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/14/2024] [Indexed: 06/21/2024]
Abstract
Most mechanistic details of chronologically ordered regulation of leaf senescence are unknown. Regulatory networks centered on AtWRKY53 are crucial for orchestrating and integrating various senescence-related signals. Notably, AtWRKY53 binds to its own promoter and represses transcription of AtWRKY53, but the biological significance and mechanism underlying this self-repression remain unclear. In this study, we identified the VQ motif-containing protein AtVQ25 as a cooperator of AtWRKY53. The expression level of AtVQ25 peaked at mature stage and was specifically repressed after the onset of leaf senescence. AtVQ25-overexpressing plants and atvq25 mutants displayed precocious and delayed leaf senescence, respectively. Importantly, we identified AtWRKY53 as an interacting partner of AtVQ25. We determined that interaction between AtVQ25 and AtWRKY53 prevented AtWRKY53 from binding to W-box elements on the AtWRKY53 promoter and thus counteracted the self-repression of AtWRKY53. In addition, our RNA-sequencing data revealed that the AtVQ25-AtWRKY53 module is related to the salicylic acid (SA) pathway. Precocious leaf senescence and SA-induced leaf senescence in AtVQ25-overexpressing lines were inhibited by an SA pathway mutant, atsid2, and NahG transgenic plants; AtVQ25-overexpressing/atwrky53 plants were also insensitive to SA-induced leaf senescence. Collectively, we demonstrated that AtVQ25 directly attenuates the self-repression of AtWRKY53 during the onset of leaf senescence, which is substantially helpful for understanding the timing of leaf senescence onset modulated by AtWRKY53.
Collapse
Affiliation(s)
- Qi Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Mingming Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, China
| | - Jingwei Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ke Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Mengwei Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yunjia Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zeting Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yujia Song
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoyue Lu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Rongcheng Lin
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Pengcheng Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Chunjiang Zhou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Geng Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| |
Collapse
|
28
|
Lu J, Zhang G, Ma C, Li Y, Jiang C, Wang Y, Zhang B, Wang R, Qiu Y, Ma Y, Jia Y, Jiang CZ, Sun X, Ma N, Jiang Y, Gao J. The F-box protein RhSAF destabilizes the gibberellic acid receptor RhGID1 to mediate ethylene-induced petal senescence in rose. THE PLANT CELL 2024; 36:1736-1754. [PMID: 38315889 PMCID: PMC11062431 DOI: 10.1093/plcell/koae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Roses are among the most popular ornamental plants cultivated worldwide for their great economic, symbolic, and cultural importance. Nevertheless, rapid petal senescence markedly reduces rose (Rosa hybrida) flower quality and value. Petal senescence is a developmental process tightly regulated by various phytohormones. Ethylene accelerates petal senescence, while gibberellic acid (GA) delays this process. However, the molecular mechanisms underlying the crosstalk between these phytohormones in the regulation of petal senescence remain largely unclear. Here, we identified SENESCENCE-ASSOCIATED F-BOX (RhSAF), an ethylene-induced F-box protein gene encoding a recognition subunit of the SCF-type E3 ligase. We demonstrated that RhSAF promotes degradation of the GA receptor GIBBERELLIN INSENSITIVE DWARF1 (RhGID1) to accelerate petal senescence. Silencing RhSAF expression delays petal senescence, while suppressing RhGID1 expression accelerates petal senescence. RhSAF physically interacts with RhGID1s and targets them for ubiquitin/26S proteasome-mediated degradation. Accordingly, ethylene-induced RhGID1C degradation and RhDELLA3 accumulation are compromised in RhSAF-RNAi lines. Our results demonstrate that ethylene antagonizes GA activity through RhGID1 degradation mediated by the E3 ligase RhSAF. These findings enhance our understanding of the phytohormone crosstalk regulating petal senescence and provide insights for improving flower longevity.
Collapse
Affiliation(s)
- Jingyun Lu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Guifang Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chao Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yao Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chuyan Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yaru Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Bingjie Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Rui Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yuexuan Qiu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yanxing Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yangchao Jia
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
29
|
Zhang Z, Chen C, Jiang C, Lin H, Zhao Y, Guo Y. VvWRKY5 positively regulates wounding-induced anthocyanin accumulation in grape by interplaying with VvMYBA1 and promoting jasmonic acid biosynthesis. HORTICULTURE RESEARCH 2024; 11:uhae083. [PMID: 38766531 PMCID: PMC11101322 DOI: 10.1093/hr/uhae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/10/2024] [Indexed: 05/22/2024]
Abstract
Wounding stress induces the biosynthesis of various secondary metabolites in plants, including anthocyanin. However, the underlying molecular mechanism remains elusive. Here, we reported that a transcription factor, VvWRKY5, promotes wounding-induced anthocyanin accumulation in grape (Vitis vinifera). Biochemical and molecular analyses demonstrated that wounding stress significantly increased anthocyanin content, and VvMYBA1 plays an essential role in this process. VvWRKY5 could interact with VvMYBA1 and amplify the activation effect of VvMYBA1 on its target gene VvUFGT. The transcript level of VvWRKY5 was notably induced by wounding treatment. Moreover, our data demonstrated that VvWRKY5 could promote the synthesis of jasmonic acid (JA), a phytohormone that acts as a positive modulator in anthocyanin accumulation, by directly binding to the W-box element in the promoter of the JA biosynthesis-related gene VvLOX and enhancing its activities, and this activation was greatly enhanced by the VvWRKY5-VvMYBA1 protein complex. Collectively, our findings show that VvWRKY5 plays crucial roles in wounding-induced anthocyanin synthesis in grape and elucidates the transcriptional regulatory mechanism of wounding-induced anthocyanin accumulation.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Cui Chen
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Changyue Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuhui Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang 110866, China
| |
Collapse
|
30
|
Kołodziejczyk I, Kaźmierczak A. Melatonin - This is important to know. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170871. [PMID: 38340815 DOI: 10.1016/j.scitotenv.2024.170871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
MEL (N-acetyl-5-methoxytryptamine) is a well-known natural compound that controls cellular processes in both plants and animals and is primarily found in plants as a neurohormone. Its roles have been described very broadly, from its antioxidant function related to the photoperiod and determination of seasonal rhythms to its role as a signalling molecule, imitating the action of plant hormones (or even being classified as a prohormone). MEL positively affects the yield and survival of plants by increasing their tolerance to unfavourable biotic and abiotic conditions, which makes MEL widely applicable in ecological farming as a stimulant of growth and development. Thus, it is called a phytobiostimulator. In this review, we discuss the genesis of MEL functions, the presence of MEL at the cellular level and its effects on gene expression and plant development, which can ensure the survival of plants under the conditions they encounter. Moreover, we consider the future application possibilities of MEL in agriculture.
Collapse
Affiliation(s)
- Izabela Kołodziejczyk
- Department of Geobotany and Plant Ecology, Institute of Ecology and Environmental Protection, University of Lodz, Lodz 90-236, Banacha 12/16, 90-237, Poland
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Institute of Experimental Biology Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| |
Collapse
|
31
|
Zhang X, Sun Y, Wu H, Zhu Y, Liu X, Lu S. Tobacco Transcription Factor NtWRKY70b Facilitates Leaf Senescence via Inducing ROS Accumulation and Impairing Hydrogen Sulfide Biosynthesis. Int J Mol Sci 2024; 25:3686. [PMID: 38612502 PMCID: PMC11012213 DOI: 10.3390/ijms25073686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Leaf senescence is the terminal stage of leaf development, and its initiation and progression are closely controlled by the integration of a myriad of endogenous signals and environmental stimuli. It has been documented that WRKY transcription factors (TFs) play essential roles in regulating leaf senescence, yet the molecular mechanism of WRKY-mediated leaf senescence still lacks detailed elucidation in crop plants. In this study, we cloned and identified a tobacco WRKY TF gene, designated NtWRKY70b, acting as a positive regulator of natural leaf senescence. The expression profile analysis showed that NtWRKY70b transcript levels were induced by aging and hydrogen peroxide (H2O2) and downregulated upon hydrogen sulfide (H2S) treatment. The physiological and biochemical assays revealed that overexpression of NtWRKY70b (OE) clearly promoted leaf senescence, triggering increased levels of reactive oxygen species (ROS) and decreased H2S content, while disruption of NtWRKY70b by chimeric repressor silencing technology (SRDX) significantly delayed the onset of leaf senescence, leading to a decreased accumulation of ROS and elevated concentration of H2S. The quantitative real-time PCR analysis showed that the expression levels of various senescence-associated genes and ROS biosynthesis-related genes (NtRbohD and NtRbohE) were upregulated in OE lines, while the expression of H2S biosynthesis-related genes (NtDCD and NtCYSC1) were inhibited in OE lines. Furthermore, the Yeast one-hybrid analysis (Y1H) and dual luciferase assays showed that NtWRKY70b could directly upregulate the expression of an ROS biosynthesis-related gene (NtRbohD) and a chlorophyll degradation-related gene (NtPPH) by binding to their promoter sequences. Accordingly, these results indicated that NtWYKY70b directly activated the transcript levels of NtRbohD and NtPPH and repressed the expression of NtDCD and NtCYCS1, thereby promoting ROS accumulation and impairing the endogenous H2S production, and subsequently accelerating leaf aging. These observations improve our knowledge of the regulatory mechanisms of WRKY TFs controlling leaf senescence and provide a novel method for ensuring high agricultural crop productivity via genetic manipulation of leaf senescence in crops.
Collapse
Affiliation(s)
| | | | | | | | - Xin Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Songchong Lu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
32
|
Keller-Przybylkowicz S, Oskiera M, Liu X, Song L, Zhao L, Du X, Kruczynska D, Walencik A, Kowara N, Bartoszewski G. Transcriptome Analysis of White- and Red-Fleshed Apple Fruits Uncovered Novel Genes Related to the Regulation of Anthocyanin Biosynthesis. Int J Mol Sci 2024; 25:1778. [PMID: 38339057 PMCID: PMC10855924 DOI: 10.3390/ijms25031778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The red flesh coloration of apples is a result of a biochemical pathway involved in the biosynthesis of anthocyanins and anthocyanidins. Based on apple genome analysis, a high number of regulatory genes, mainly transcription factors such as MYB, which are components of regulatory complex MYB-bHLH-WD40, and several structural genes (PAL, 4CL, CHS, CHI, F3H, DFR, ANS, UFGT) involved in anthocyanin biosynthesis, have been identified. In this study, we investigated novel genes related to the red-flesh apple phenotype. These genes could be deemed molecular markers for the early selection of new apple cultivars. Based on a comparative transcriptome analysis of apples with different fruit-flesh coloration, we successfully identified and characterized ten potential genes from the plant hormone transduction pathway of auxin (GH3); cytokinins (B-ARR); gibberellins (DELLA); abscisic acid (SnRK2 and ABF); brassinosteroids (BRI1, BZR1 and TCH4); jasmonic acid (MYC2); and salicylic acid (NPR1). An analysis of expression profiles was performed in immature and ripe fruits of red-fleshed cultivars. We have uncovered genes mediating the regulation of abscisic acid, salicylic acid, cytokinin, and jasmonic acid signaling and described their role in anthocyanin biosynthesis, accumulation, and degradation. The presented results underline the relationship between genes from the hormone signal transduction pathway and UFGT genes, which are directly responsible for anthocyanin color transformation as well as anthocyanin accumulation during apple-fruit ripening.
Collapse
Affiliation(s)
- Sylwia Keller-Przybylkowicz
- The National Institute of Horticultural Research, Konstytucji 3-go Maja, 96-100 Skierniewice, Poland; (M.O.); (A.W.); (N.K.)
| | - Michal Oskiera
- The National Institute of Horticultural Research, Konstytucji 3-go Maja, 96-100 Skierniewice, Poland; (M.O.); (A.W.); (N.K.)
| | - Xueqing Liu
- Yantai Academy of Agricultural Science, Gangechengxida Street No 26, Fushan District, Yantai 265500, China; (X.L.); (L.Z.); (X.D.)
| | - Laiqing Song
- Yantai Academy of Agricultural Science, Gangechengxida Street No 26, Fushan District, Yantai 265500, China; (X.L.); (L.Z.); (X.D.)
| | - Lingling Zhao
- Yantai Academy of Agricultural Science, Gangechengxida Street No 26, Fushan District, Yantai 265500, China; (X.L.); (L.Z.); (X.D.)
| | - Xiaoyun Du
- Yantai Academy of Agricultural Science, Gangechengxida Street No 26, Fushan District, Yantai 265500, China; (X.L.); (L.Z.); (X.D.)
| | - Dorota Kruczynska
- The National Institute of Horticultural Research, Konstytucji 3-go Maja, 96-100 Skierniewice, Poland; (M.O.); (A.W.); (N.K.)
| | - Agnieszka Walencik
- The National Institute of Horticultural Research, Konstytucji 3-go Maja, 96-100 Skierniewice, Poland; (M.O.); (A.W.); (N.K.)
| | - Norbert Kowara
- The National Institute of Horticultural Research, Konstytucji 3-go Maja, 96-100 Skierniewice, Poland; (M.O.); (A.W.); (N.K.)
| | - Grzegorz Bartoszewski
- Department of Plant Genetics Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland;
| |
Collapse
|
33
|
Li Z, Lyu X, Li H, Tu Q, Zhao T, Liu J, Liu B. The mechanism of low blue light-induced leaf senescence mediated by GmCRY1s in soybean. Nat Commun 2024; 15:798. [PMID: 38280892 PMCID: PMC10821915 DOI: 10.1038/s41467-024-45086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024] Open
Abstract
Leaf senescence is a crucial trait that has a significant impact on crop quality and yield. Previous studies have demonstrated that light is a key factor in modulating the senescence process. However, the precise mechanism by which plants sense light and control senescence remains largely unknown, particularly in crop species. In this study, we reveal that the reduction in blue light under shading conditions can efficiently induce leaf senescence in soybean. The blue light receptors GmCRY1s rather than GmCRY2s, primarily regulate leaf senescence in response to blue light signals. Our results show that GmCRY1s interact with DELLA proteins under light-activated conditions, stabilizing them and consequently suppressing the transcription of GmWRKY100 to delay senescence. Conversely, LBL reduces the interaction between GmCRY1s and the DELLA proteins, leading to their degradation and premature senescence of leaves. Our findings suggest a GmCRY1s-GmDELLAs-GmWRKY100 regulatory cascade that is involved in mediating LBL-induced leaf senescence in soybean, providing insight into the mechanism of how light signals regulate leaf senescence. Additionally, we generate GmWRKY100 knockout soybeans that show delayed leaf senescence and improved yield under natural field conditions, indicating potential applications in enhancing soybean production by manipulating the leaf senescence trait.
Collapse
Affiliation(s)
- Zhuang Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangguang Lyu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyu Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qichao Tu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
34
|
Song H, Guo Z, Duan Z, Li M, Zhang J. WRKY transcription factors in Arachis hypogaea and its donors: From identification to function prediction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108131. [PMID: 37897893 DOI: 10.1016/j.plaphy.2023.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
WRKY transcription factors (TFs) play important roles in plant growth and development and responses to abiotic and biotic stresses. Since the initial isolation of a WRKY TF in Ipomoea batatas in 1994, WRKY TFs have been identified in plants, protozoa, and fungi. Peanut (Arachis hypogaea) is a key oil and protein crop for humans and a forage source for animal consumption. Several Arachis genomes have been sequenced and genome-wide WRKY TFs have been identified. In this review, we summarized WRKY TFs and their functions in A. hypogaea and its donors. We also standardized the nomenclature for Arachis WRKY TFs to ensure uniformity. We determined the evolutionary relationships between Arachis and Arabidopsis thaliana WRKY (AtWRKY) TFs using a phylogenetic analysis. Biological functions and regulatory networks of Arachis WRKY TFs were predicted using AtWRKY TFs. Thus, this review paves the way for studies of Arachis WRKY TFs.
Collapse
Affiliation(s)
- Hui Song
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Zhonglong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenquan Duan
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Meiran Li
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | | |
Collapse
|
35
|
Li F, Deng Y, Liu Y, Mai C, Xu Y, Wu J, Zheng X, Liang C, Wang J. Arabidopsis transcription factor WRKY45 confers cadmium tolerance via activating PCS1 and PCS2 expression. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132496. [PMID: 37703737 DOI: 10.1016/j.jhazmat.2023.132496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Cadmium (Cd) has long been recognized as toxic pollutant to crops worldwide. The biosynthesis of glutathione-dependent phytochelatin (PC) plays crucial roles in the detoxification of Cd in plants. However, its regulatory mechanism remains elusive. Here, we revealed that Arabidopsis transcription factor WRKY45 confers Cd tolerance via promoting the expression of PC synthesis-related genes PCS1 and PCS2, respectively. Firstly, we found that Cd stress induces the transcript levels of WRKY45 and its protein abundance. Accordingly, in contrast to wild type Col-0, the increased sensitivity to Cd is observed in wrky45 mutant, while overexpressing WRKY45 plants are more tolerant to Cd. Secondly, quantitative real-time PCR revealed that the expression of AtPCS1 and AtPCS2 is stimulated in overexpressing WRKY45 plants, but decreased in wrky45 mutant. Thirdly, WRKY45 promotes the expression of PCS1 and PCS2, electrophoresis mobility shift assay analysis uncovered that WRKY45 directly binds to the W-box cis-element of PCS2 promoter. Lastly, the overexpression of WRKY45 in Col-0 leads to more accumulation of PCs in Arabidopsis, and the overexpression of PCS1 or PCS2 in wrky45 mutant plants rescues the phenotypes induced by Cd stress. In conclusion, our results show that AtWRKY45 positively regulates Cd tolerance in Arabidopsis via activating PCS1 and PCS2 expression.
Collapse
Affiliation(s)
- Fangjian Li
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yaru Deng
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan Liu
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Cuishan Mai
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yun Xu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiarui Wu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xinni Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Cuiyue Liang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agricultural and Rural pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
36
|
Lei P, Yu F, Liu X. Recent advances in cellular degradation and nuclear control of leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5472-5486. [PMID: 37453102 DOI: 10.1093/jxb/erad273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Senescence is the final stage of plant growth and development, and is a highly regulated process at the molecular, cellular, and organismal levels. When triggered by age, hormonal, or environmental cues, plants actively adjust their metabolism and gene expression to execute the progression of senescence. Regulation of senescence is vital for the reallocation of nutrients to sink organs, to ensure reproductive success and adaptations to stresses. Identification and characterization of hallmarks of leaf senescence are of great importance for understanding the molecular regulatory mechanisms of plant senescence, and breeding future crops with more desirable senescence traits. Tremendous progress has been made in elucidating the genetic network underpinning the metabolic and cellular changes in leaf senescence. In this review, we focus on three hallmarks of leaf senescence - chlorophyll and chloroplast degradation, loss of proteostasis, and activation of senescence-associated genes (SAGs), and discuss recent findings of the molecular players and the crosstalk of senescence pathways.
Collapse
Affiliation(s)
- Pei Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
37
|
Yuan S, Wang Y, Hu D, Zhu W, Xiao D, Liu T, Hou X, Li Y. BcNAC056 Interacts with BcWRKY1 to Regulate Leaf Senescence in Pak Choi. PLANT & CELL PHYSIOLOGY 2023; 64:1091-1105. [PMID: 37566556 DOI: 10.1093/pcp/pcad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 08/13/2023]
Abstract
Senescence is the final stage of leaf development. For leafy vegetables such as pak choi, leaf senescence is adverse to yield due to the harvest period shortening. However, the regulatory mechanisms of leaf senescence are largely unknown in leafy vegetables. Here, we isolated and characterized a NAC gene, BcNAC056, in pak choi [Brassica campestris (syn. Brassica rapa) ssp. chinensis cv. 49caixin]. BcNAC056-GFP was located in the nucleus at the subcellular level, and BcNAC056 was responsive to leaf senescence and different hormones at the transcriptional level. Heterologous overexpression of BcNAC056 in Arabidopsis promoted leaf senescence, accompanied by the increased expression of senescence-associated genes (SAGs), whereas virus-induced gene silencing-based silencing in pak choi delayed leaf senescence. The following transcriptome analysis showed that heterologous overexpression of BcNAC056 enhanced some AtSAG transcripts in Arabidopsis. Electrophoretic mobility shift assay (EMSA) and dual-luciferase (LUC) reporter assay revealed that BcNAC056 activated SAG12 by directly binding to the promoter. In addition, with the LUC reporter and transient overexpression assays, we proposed that BcNAC056-BcWRKY1 interaction promoted the activation of BcSAG12. Taken together, our findings revealed a new regulatory mechanism of leaf senescence in pak choi.
Collapse
Affiliation(s)
- Shuilin Yuan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Yuan Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Die Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province 510640, China
| | - Weitong Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Dong Xiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| |
Collapse
|
38
|
Wang Q, Li X, Guo C, Wen L, Deng Z, Zhang Z, Li W, Liu T, Guo Y. Senescence-related receptor kinase 1 functions downstream of WRKY53 in regulating leaf senescence in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5140-5152. [PMID: 37351601 DOI: 10.1093/jxb/erad240] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 06/22/2023] [Indexed: 06/24/2023]
Abstract
Receptor-like kinases (RLKs) are the most important class of cell surface receptors, and play crucial roles in plant development and stress responses. However, few studies have been reported about the biofunctions of RLKs in leaf senescence. Here, we characterized a novel Arabidopsis RLK-encoding gene, SENESCENCE-RELATED RECEPTOR KINASE 1 (SENRK1), which was significantly down-regulated during leaf senescence. Notably, the loss-of-function senrk1 mutants displayed an early leaf senescence phenotype, while overexpression of SENRK1 significantly delayed leaf senescence, indicating that SENRK1 negatively regulates age-dependent leaf senescence in Arabidopsis. Furthermore, the senescence-promoting transcription factor WRKY53 repressed the expression of SENRK1. While the wrky53 mutant showed a delayed senescence phenotype as previously reported, the wrky53 senrk1-1 double mutant exhibited precocious leaf senescence, suggesting that SENRK1 functions downstream of WRKY53 in regulating age-dependent leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Qi Wang
- Shandong Peanut Research Institute, Qingdao, China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiaoxu Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Cun Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lichao Wen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhichao Deng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wei Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Tao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
39
|
Zhang XW, Xu RR, Liu Y, You CX, An JP. MdVQ10 promotes wound-triggered leaf senescence in association with MdWRKY75 and undergoes antagonistic modulation of MdCML15 and MdJAZs in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1599-1618. [PMID: 37277961 DOI: 10.1111/tpj.16341] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
Wounding stress leads to leaf senescence. However, the underlying molecular mechanism has not been elucidated. In this study, we investigated the role of the MdVQ10-MdWRKY75 module in wound-induced leaf senescence. MdWRKY75 was identified as a key positive modulator of wound-induced leaf senescence by activating the expression of the senescence-associated genes MdSAG12 and MdSAG18. MdVQ10 interacted with MdWRKY75 to enhance MdWRKY75-activated transcription of MdSAG12 and MdSAG18, thereby promoting leaf senescence triggered by wounding. In addition, the calmodulin-like protein MdCML15 promoted MdVQ10-mediated leaf senescence by stimulating the interaction between MdVQ10 and MdWRKY75. Moreover, the jasmonic acid signaling repressors MdJAZ12 and MdJAZ14 antagonized MdVQ10-mediated leaf senescence by weakening the MdVQ10-MdWRKY75 interaction. Our results demonstrate that the MdVQ10-MdWRKY75 module is a key modulator of wound-induced leaf senescence and provides insights into the mechanism of leaf senescence caused by wounding.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Rui-Rui Xu
- College of Biology and Oceanography, Weifang University, Weifang, 261061, Shandong, China
| | - Yankai Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Jian-Ping An
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
40
|
Fehér A. A Common Molecular Signature Indicates the Pre-Meristematic State of Plant Calli. Int J Mol Sci 2023; 24:13122. [PMID: 37685925 PMCID: PMC10488067 DOI: 10.3390/ijms241713122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
In response to different degrees of mechanical injury, certain plant cells re-enter the division cycle to provide cells for tissue replenishment, tissue rejoining, de novo organ formation, and/or wound healing. The intermediate tissue formed by the dividing cells is called a callus. Callus formation can also be induced artificially in vitro by wounding and/or hormone (auxin and cytokinin) treatments. The callus tissue can be maintained in culture, providing starting material for de novo organ or embryo regeneration and thus serving as the basis for many plant biotechnology applications. Due to the biotechnological importance of callus cultures and the scientific interest in the developmental flexibility of somatic plant cells, the initial molecular steps of callus formation have been studied in detail. It was revealed that callus initiation can follow various ways, depending on the organ from which it develops and the inducer, but they converge on a seemingly identical tissue. It is not known, however, if callus is indeed a special tissue with a defined gene expression signature, whether it is a malformed meristem, or a mass of so-called "undifferentiated" cells, as is mostly believed. In this paper, I review the various mechanisms of plant regeneration that may converge on callus initiation. I discuss the role of plant hormones in the detour of callus formation from normal development. Finally, I compare various Arabidopsis gene expression datasets obtained a few days, two weeks, or several years after callus induction and identify 21 genes, including genes of key transcription factors controlling cell division and differentiation in meristematic regions, which were upregulated in all investigated callus samples. I summarize the information available on all 21 genes that point to the pre-meristematic nature of callus tissues underlying their wide regeneration potential.
Collapse
Affiliation(s)
- Attila Fehér
- Institute of Plant Biology, Biological Research Centre, 62 Temesvári Körút, 6726 Szeged, Hungary; or
- Department of Plant Biology, University of Szeged, 52 Közép Fasor, 6726 Szeged, Hungary
| |
Collapse
|
41
|
Peng M, Chen Z, Zhang L, Wang Y, Zhu S, Wang G. Preharvest Application of Sodium Nitroprusside Alleviates Yellowing of Chinese Flowering Cabbage via Modulating Chlorophyll Metabolism and Suppressing ROS Accumulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37290404 DOI: 10.1021/acs.jafc.3c00630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chinese flowering cabbage is prone to senescence and yellowing after harvest, leading to a huge postharvest loss. Nitric oxide (NO) is a multifunctional plant growth regulator, but the effect of preharvest application of NO on the storage quality of Chinese flowering cabbage remains unclear. Preharvest application of 50 mg L-1 sodium nitroprusside (SNP, a NO donor) to the roots obviously reduced leaf yellowing in Chinese flowering cabbage during storage. Proteomic analysis reveals 198 differentially expressed proteins (DEPs) in SNP-treated plants compared to the control. The main DEPs were significantly enriched in chlorophyll metabolisms, phenylpropanoid synthesis, and antioxidant pathways. SNP treatment enhanced chlorophyll biosynthesis and suppressed chlorophyll-degradation-related proteins and genes. It also modulated flavonoid-biosynthesis-related genes, and 21 significantly regulated flavonoids were identified in SNP-treated plants. The enhanced antioxidant capacity in SNP-treated plants was able to decrease chlorophyll catabolism by inhibiting peroxidase-mediated chlorophyll bleaching. Collectively, preharvest SNP treatment modulated chlorophyll metabolism and preserved chlorophyll content in leaves during storage. Moreover, SNP treatment enhanced flavonoid synthesis, suppressed reactive oxygen species accumulation, and delayed the senescence process, thereby maintaining leaf greening in Chinese flowering cabbage. These findings highlight the role of exogenous NO in alleviating yellowing of leafy vegetables.
Collapse
Affiliation(s)
- Miaomiao Peng
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhuosheng Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ling Zhang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yanjing Wang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shijiang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Guang Wang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
42
|
An JP, Zhang XW, Li HL, Wang DR, You CX, Han Y. The E3 ubiquitin ligases SINA1 and SINA2 integrate with the protein kinase CIPK20 to regulate the stability of RGL2a, a positive regulator of anthocyanin biosynthesis. THE NEW PHYTOLOGIST 2023. [PMID: 37235698 DOI: 10.1111/nph.18997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Although DELLA protein destabilization mediated by post-translational modifications is essential for gibberellin (GA) signal transduction and GA-regulated anthocyanin biosynthesis, the related mechanisms remain largely unknown. In this study, we report the ubiquitination and phosphorylation of an apple DELLA protein MdRGL2a in response to GA signaling and its regulatory role in anthocyanin biosynthesis. MdRGL2a could interact with MdWRKY75 to enhance the MdWRKY75-activated transcription of anthocyanin activator MdMYB1 and interfere with the interaction between anthocyanin repressor MdMYB308 and MdbHLH3 or MdbHLH33, thereby promoting anthocyanin accumulation. A protein kinase MdCIPK20 was found to phosphorylate and protect MdRGL2a from degradation, and it was essential for MdRGL2a-promoting anthocyanin accumulation. However, MdRGL2a and MdCIPK20 were ubiquitinated and degraded by E3 ubiquitin ligases MdSINA1 and MdSINA2, respectively, both of which were activated in the presence of GA. Our results display the integration of SINA1/2 with CIPK20 to dynamically regulate GA signaling and will be helpful toward understanding the mechanism of GA signal transduction and GA-inhibited anthocyanin biosynthesis. The discovery of extensive interactions between DELLA and SINA and CIPK proteins in apple will provide reference for the study of ubiquitination and phosphorylation of DELLA proteins in other species.
Collapse
Affiliation(s)
- Jian-Ping An
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Wei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hong-Liang Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Da-Ru Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
43
|
Cao J, Liu H, Tan S, Li Z. Transcription Factors-Regulated Leaf Senescence: Current Knowledge, Challenges and Approaches. Int J Mol Sci 2023; 24:9245. [PMID: 37298196 PMCID: PMC10253112 DOI: 10.3390/ijms24119245] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 06/12/2023] Open
Abstract
Leaf senescence is a complex biological process regulated at multiple levels, including chromatin remodeling, transcription, post-transcription, translation, and post-translational modifications. Transcription factors (TFs) are crucial regulators of leaf senescence, with NAC and WRKY families being the most studied. This review summarizes the progress made in understanding the regulatory roles of these families in leaf senescence in Arabidopsis and various crops such as wheat, maize, sorghum, and rice. Additionally, we review the regulatory functions of other families, such as ERF, bHLH, bZIP, and MYB. Unraveling the mechanisms of leaf senescence regulated by TFs has the potential to improve crop yield and quality through molecular breeding. While significant progress has been made in leaf senescence research in recent years, our understanding of the molecular regulatory mechanisms underlying this process is still incomplete. This review also discusses the challenges and opportunities in leaf senescence research, with suggestions for possible strategies to address them.
Collapse
Affiliation(s)
| | | | | | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (J.C.); (H.L.); (S.T.)
| |
Collapse
|
44
|
He S, Zhi F, Min Y, Ma R, Ge A, Wang S, Wang J, Liu Z, Guo Y, Chen M. The MYB59 transcription factor negatively regulates salicylic acid- and jasmonic acid-mediated leaf senescence. PLANT PHYSIOLOGY 2023; 192:488-503. [PMID: 36542529 PMCID: PMC10152657 DOI: 10.1093/plphys/kiac589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 05/03/2023]
Abstract
Leaf senescence is the final stage of leaf development and is affected by various exogenous and endogenous factors. Transcriptional regulation is essential for leaf senescence, however, the underlying molecular mechanisms remain largely unclear. In this study, we report that the transcription factor MYB59, which was predominantly expressed in early senescent rosette leaves, negatively regulates leaf senescence in Arabidopsis (Arabidopsis thaliana). RNA sequencing revealed a large number of differentially expressed genes involved in several senescence-related biological processes in myb59-1 rosette leaves. Chromatin immunoprecipitation and transient dual-luciferase reporter assays demonstrated that MYB59 directly repressed the expression of SENESCENCE ASSOCIATED GENE 18 and indirectly inhibited the expression of several other senescence-associated genes to delay leaf senescence. Moreover, MYB59 was induced by salicylic acid (SA) and jasmonic acid (JA). MYB59 inhibited SA production by directly repressing the expression of ISOCHORISMATE SYNTHASE 1 and PHENYLALANINE AMMONIA-LYASE 2 and restrained JA biosynthesis by directly suppressing the expression of LIPOXYGENASE 2, thus forming two negative feedback regulatory loops with SA and JA and ultimately delaying leaf senescence. These results help us understand the novel function of MYB59 and provide insights into the regulatory network controlling leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Shuangcheng He
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fang Zhi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanchang Min
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rong Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ankang Ge
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shixiang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianjun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zijin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingxun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
45
|
Chen L, Liu C, Hao J, Fan S, Han Y. GA signaling protein LsRGL1 interacts with the abscisic acid signaling-related gene LsWRKY70 to affect the bolting of leaf lettuce. HORTICULTURE RESEARCH 2023; 10:uhad054. [PMID: 37213687 PMCID: PMC10199715 DOI: 10.1093/hr/uhad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/18/2023] [Indexed: 05/23/2023]
Abstract
A variety of endogenous hormone signals, developmental cues, and environmental stressors can trigger and promote leaf lettuce bolting. One such factor is gibberellin (GA), which has been linked to bolting. However, the signaling pathways and the mechanisms that regulate the process have not been discussed in full detail. To clarify the potential role of GAs in leaf lettuce, significant enrichment of GA pathway genes was found by RNA-seq, among which the LsRGL1 gene was considered significant. Upon overexpression of LsRGL1, a noticeable inhibition of leaf lettuce bolting was observed, whereas its knockdown by RNA interference led to an increase in bolting. In situ hybridization analysis indicated a significant accumulation of LsRGL1 in the stem tip cells of overexpressing plants. Leaf lettuce plants stably expressing LsRGL1 were examined concerning differentially expressed genes through RNA-seq analysis, and the data indicated enhanced enrichment of these genes in the 'plant hormone signal transduction' and 'phenylpropanoid biosynthesis' pathways. Additionally, significant changes in LsWRKY70 gene expression were identified in COG (Clusters of Orthologous Groups) functional classification. The results of yeast one-hybrid, β-glucuronidase (GUS), and biolayer interferometry (BLI) experiments showed that LsRGL1 proteins directly bind to the LsWRKY70 promoter. Silencing LsWRKY70 by virus-induced gene silencing (VIGS) can delay bolting, regulate the expression of endogenous hormones, abscisic acid (ABA)-linked genes, and flowering genes, and improve the nutritional quality of leaf lettuce. These results strongly associate the positive regulation of bolting with LsWRKY70 by identifying its vital functions in the GA-mediated signaling pathway. The data obtained in this research are invaluable for further experiments concerning the development and growth of leaf lettuce.
Collapse
Affiliation(s)
- Li Chen
- Department of Plant Science and Technology, Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China
| | - Chaojie Liu
- Department of Plant Science and Technology, Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China
| | - Jinghong Hao
- Department of Plant Science and Technology, Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China
| | | | | |
Collapse
|
46
|
Ji Y, Mou M, Zhang H, Wang R, Wu S, Jing Y, Zhang H, Li L, Li Z, Chen L. GhWRKY33 negatively regulates jasmonate-mediated plant defense to Verticillium dahliae. PLANT DIVERSITY 2023; 45:337-346. [PMID: 37397600 PMCID: PMC10311097 DOI: 10.1016/j.pld.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 07/04/2023]
Abstract
Verticillium wilt, caused by Verticillium dahliae, seriously restricts the yield and quality improvement of cotton. Previous studies have revealed the involvement of WRKY members in plant defense against V. dahliae, but the underlying mechanisms involved need to be further elucidated. Here, we demonstrated that Gossypium hirsutum WRKY DNA-binding protein 33 (GhWRKY33) functions as a negative regulator in plant defense against V. dahliae. GhWRKY33 expression is induced rapidly by V. dahliae and methyl jasmonate, and overexpression of GhWRKY33 reduces plant tolerance to V. dahliae in Arabidopsis. Quantitative RT-PCR analysis revealed that expression of several JA-associated genes was significantly repressed in GhWRKY33 overexpressing transgenic plants. Yeast one-hybrid analysis revealed that GhWRKY33 may repress the transcription of both AtERF1 and GhERF2 through its binding to their promoters. Protein-protein interaction analysis suggested that GhWRKY33 interacts with G. hirsutum JASMONATE ZIM-domain protein 3 (GhJAZ3). Similarly, overexpression of GhJAZ3 also decreases plant tolerance to V. dahliae. Furthermore, GhJAZ3 acts synergistically with GhWRKY33 to suppress both AtERF1 and GhERF2 expression. Our results imply that GhWRKY33 may negatively regulate plant tolerance to V. dahliae via the JA-mediated signaling pathway.
Collapse
Affiliation(s)
- Yunrui Ji
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Mou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Ruling Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Songguo Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Yifen Jing
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanxin Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifang Li
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ligang Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| |
Collapse
|
47
|
Chen W, Zheng Y, Wang J, Wang Z, Yang Z, Chi X, Dai L, Lu G, Yang Y, Sun B. Ethylene-responsive SbWRKY50 suppresses leaf senescence by inhibition of chlorophyll degradation in sorghum. THE NEW PHYTOLOGIST 2023; 238:1129-1145. [PMID: 36683397 DOI: 10.1111/nph.18757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The onset of leaf de-greening and senescence is governed by a complex regulatory network including environmental cues and internal factors such as transcription factors (TFs) and phytohormones, in which ethylene (ET) is one key inducer. However, the detailed mechanism of ET signalling for senescence regulation is still largely unknown. Here, we found that the WRKY TF SbWRKY50 from Sorghum bicolor L., a direct target of the key component ETHYLENE INSENSITIVE 3 in ET signalling, functioned for leaf senescence repression. The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein9-edited SbWRKY50 mutant (SbWRKY5O-KO) of sorghum displayed precocious senescent phenotypes, while SbWRKY50 overexpression delayed age-dependent and dark-induced senescence in sorghum. SbWRKY50 negatively regulated chlorophyll degradation through direct binding to the promoters of several chlorophyll catabolic genes. In addition, SbWRKY50 recruited the Polycomb repressive complex 1 through direct interaction with SbBMI1A, to induce histone 2A mono-ubiquitination accumulation on the chlorophyll catabolic genes for epigenetic silencing and thus delayed leaf senescence. Especially, SbWRKY50 can suppress early steps of chlorophyll catabolic pathway via directly repressing SbNYC1 (NON-YELLOW COLORING 1). Other senescence-related hormones could also influence leaf senescence through repression of SbWRKY50. Hence, our work shows that SbWRKY50 is an essential regulator downstream of ET and SbWRKY50 also responds to other phytohormones for senescence regulation in sorghum.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuchen Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jingyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zijing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhen Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiaoyu Chi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Lingyan Dai
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Guihua Lu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, 223300, China
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Bo Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
48
|
Chen B, Bian X, Tu M, Yu T, Jiang L, Lu Y, Chen X. Moderate Salinity Stress Increases the Seedling Biomass in Oilseed Rape ( Brassica napus L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1650. [PMID: 37111872 PMCID: PMC10144440 DOI: 10.3390/plants12081650] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Oilseed rape (Brassica napus L.), an important oil crop of the world, suffers various abiotic stresses including salinity stress during the growth stage. While most of the previous studies paid attention to the adverse effects of high salinity stress on plant growth and development, as well as their underlying physiological and molecular mechanisms, less attention was paid to the effects of moderate or low salinity stress. In this study, we first tested the effects of different concentrations of NaCl solution on the seedling growth performance of two oilseed rape varieties (CH336, a semi-winter type, and Bruttor, a spring type) in pot cultures. We found that moderate salt concentrations (25 and 50 mmol L-1 NaCl) can stimulate seedling growth by a significant increase (10~20%, compared to controls) in both above- and underground biomasses, as estimated at the early flowering stage. We then performed RNA-seq analyses of shoot apical meristems (SAMs) from six-leaf-aged seedlings under control (CK), low (LS, 25 mmol L-1), and high (HS, 180 mmol L-1) salinity treatments in the two varieties. The GO and KEGG enrichment analyses of differentially expressed genes (DEGs) demonstrated that such a stimulating effect on seedling growth by low salinity stress may be caused by a more efficient capacity for photosynthesis as compensation, accompanied by a reduced energy loss for the biosynthesis of secondary metabolites and redirecting of energy to biomass formation. Our study provides a new perspective on the cultivation of oilseed rape in saline regions and new insights into the molecular mechanisms of salt tolerance in Brassica crops. The candidate genes identified in this study can serve as targets for molecular breeding selection and genetic engineering toward enhancing salt tolerance in B. napus.
Collapse
Affiliation(s)
- Beini Chen
- Institute of Crop Science, Jinhua Academy of Agricultural Sciences, Zhihe Road 1158, Jinhua 321017, China (T.Y.)
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou 310058, China
| | - Xiaobo Bian
- Institute of Crop Science, Jinhua Academy of Agricultural Sciences, Zhihe Road 1158, Jinhua 321017, China (T.Y.)
| | - Mengxin Tu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou 310058, China
| | - Tao Yu
- Institute of Crop Science, Jinhua Academy of Agricultural Sciences, Zhihe Road 1158, Jinhua 321017, China (T.Y.)
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou 310058, China
| | - Yunhai Lu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou 310058, China
| | - Xiaoyang Chen
- Institute of Crop Science, Jinhua Academy of Agricultural Sciences, Zhihe Road 1158, Jinhua 321017, China (T.Y.)
| |
Collapse
|
49
|
Li Z, Zhao T, Liu J, Li H, Liu B. Shade-Induced Leaf Senescence in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1550. [PMID: 37050176 PMCID: PMC10097262 DOI: 10.3390/plants12071550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Leaf senescence is a vital developmental process that involves the orderly breakdown of macromolecules to transfer nutrients from mature leaves to emerging and reproductive organs. This process is essential for a plant's overall fitness. Multiple internal and external factors, such as leaf age, plant hormones, stresses, and light environment, regulate the onset and progression of leaf senescence. When plants grow close to each other or are shaded, it results in significant alterations in light quantity and quality, such as a decrease in photosynthetically active radiation (PAR), a drop in red/far-red light ratios, and a reduction in blue light fluence rate, which triggers premature leaf senescence. Recently, studies have identified various components involved in light, phytohormone, and other signaling pathways that regulate the leaf senescence process in response to shade. This review summarizes the current knowledge on the molecular mechanisms that control leaf senescence induced by shade.
Collapse
Affiliation(s)
| | | | | | - Hongyu Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
50
|
Chen Q, Yan J, Tong T, Zhao P, Wang S, Zhou N, Cui X, Dai M, Jiang YQ, Yang B. ANAC087 transcription factor positively regulates age-dependent leaf senescence through modulating the expression of multiple target genes in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:967-984. [PMID: 36519581 DOI: 10.1111/jipb.13434] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Leaf senescence is the final stage of leaf development and appropriate onset and progression of leaf senescence are critical for reproductive success and fitness. Although great progress has been made in identifying key genes regulating leaf senescence and elucidating the underlining mechanisms in the model plant Arabidopsis, there is still a gap to understanding the complex regulatory network. In this study, we discovered that Arabidopsis ANAC087 transcription factor (TF) positively modulated leaf senescence. Expression of ANAC087 was induced in senescing leaves and the encoded protein acted as a transcriptional activator. Both constitutive and inducible overexpression lines of ANAC087 showed earlier senescence than control plants, whereas T-DNA insertion mutation and dominant repression of the ANAC087 delayed senescence rate. A quantitative reverse transcription-polymerase chain reaction (qRT-PCR) profiling showed that the expression of an array of senescence-associated genes was upregulated in inducible ANAC087 overexpression plants including BFN1, NYE1, CEP1, RbohD, SAG13, SAG15, and VPEs, which are involved in programmed cell death (PCD), chlorophyll degradation and reactive oxygen species (ROS) accumulation. In addition, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) assays demonstrated that ANAC087 directly bound to the canonical NAC recognition sequence (NACRS) motif in promoters of its target genes. Moreover, mutation of two representative target genes, BFN1 or NYE1 alleviated the senescence rate of ANAC087-overexpression plants, suggesting their genetic regulatory relationship. Taken together, this study indicates that ANAC087 serves as an important regulator linking PCD, ROS, and chlorophyll degradation to leaf senescence.
Collapse
Affiliation(s)
- Qinqin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Jingli Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tiantian Tong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Peiyu Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Shuangshuang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Na Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Xing Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Moyu Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Bo Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| |
Collapse
|