1
|
Wang L, O'Conner S, Tanvir R, Zheng W, Cothron S, Towery K, Bi H, Ellison EE, Yang B, Voytas DF, Li L. CRISPR/Cas9-based editing of NF-YC4 promoters yields high-protein rice and soybean. THE NEW PHYTOLOGIST 2025; 245:2103-2116. [PMID: 39307530 PMCID: PMC11798907 DOI: 10.1111/nph.20141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/28/2024] [Indexed: 02/07/2025]
Abstract
Genome editing is a revolution in biotechnology for crop improvement with the final product lacking transgenes. However, most derived traits have been generated through edits that create gene knockouts. Our study pioneers a novel approach, utilizing gene editing to enhance gene expression by eliminating transcriptional repressor binding motifs. Building upon our prior research demonstrating the protein-boosting effects of the transcription factor NF-YC4, we identified conserved motifs targeted by RAV and WRKY repressors in the NF-YC4 promoters from rice (Oryza sativa) and soybean (Glycine max). Leveraging CRISPR/Cas9 technology, we deleted these motifs, resulting in reduced repressor binding and increased NF-YC4 expression. This strategy led to increased protein content and reduced carbohydrate levels in the edited rice and soybean plants, with rice exhibiting up to a 68% increase in leaf protein and a 17% increase in seed protein, and soybean showing up to a 25% increase in leaf protein and an 11% increase in seed protein. Our findings provide a blueprint for enhancing gene expression through precise genomic deletions in noncoding sequences, promising improved agricultural productivity and nutritional quality.
Collapse
Affiliation(s)
- Lei Wang
- Department of Biological SciencesMississippi State UniversityMississippi StateMS39762USA
- College of Life SciencesShihezi UniversityShiheziXinjiang832003China
| | - Seth O'Conner
- Department of Biological SciencesMississippi State UniversityMississippi StateMS39762USA
| | - Rezwan Tanvir
- Department of Biological SciencesMississippi State UniversityMississippi StateMS39762USA
| | - Wenguang Zheng
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Samuel Cothron
- Department of Biological SciencesMississippi State UniversityMississippi StateMS39762USA
| | - Katherine Towery
- Department of Biological SciencesMississippi State UniversityMississippi StateMS39762USA
| | - Honghao Bi
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Evan E. Ellison
- Department of Genetics, Cell Biology and Development, Center for Genome EngineeringUniversity of MinnesotaMinneapolisMN55108USA
| | - Bing Yang
- Division of Plant Science and Technology, Bond Life Sciences CenterUniversity of MissouriColumbiaMO65211USA
- Donald Danforth Plant Science CenterSt LouisMO63132USA
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology and Development, Center for Genome EngineeringUniversity of MinnesotaMinneapolisMN55108USA
| | - Ling Li
- Department of Biological SciencesMississippi State UniversityMississippi StateMS39762USA
| |
Collapse
|
2
|
Wen Y, Zhou Z, Guo X, Li J, Wang G, Sun X. Metabolome and Transcriptome Analyses Reveal the Correlation Between Fructan Changes and Phytohormone Regulation During Tuber Sprouting of Helianthus tuberosus L. Int J Mol Sci 2025; 26:1864. [PMID: 40076491 PMCID: PMC11899686 DOI: 10.3390/ijms26051864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Jerusalem artichoke (Helianthus tuberosus L.) reproduces asexually through tubers, which are rich in fructan-type carbohydrates and serve as the primary processing organ. Plant hormones may regulate the sprouting process of tubers, but the changes in fructans and their regulatory mechanisms in relation to hormones remain unclear. This study utilized two varieties of Jerusalem artichoke, "Qingyu No.1" and "Qingyu No.3", to analyze the changes in the proportion of carbohydrates (especially fructans) in total sugars during the sprouting process. Metabolomic and transcriptomic analyses were conducted at three selected sprouting stages. The results indicated that during tuber sprouting, carbohydrates such as fructans play a regulatory role through conversion activities. Multi-omics analysis revealed that jasmonic acid and salicylic acid promote Jerusalem artichoke sprouting through metabolism and are involved in the plant hormone signal transduction process. Differentially expressed genes related to hormone signaling were screened and divided into three groups based on expression levels. It was found that the proportion of carbohydrates is highly correlated with the expression of hormone-related genes in the sprouts, suggesting that plant hormones may regulate carbohydrate metabolism during the sprouting of Jerusalem artichoke tubers. In conclusion, these results preliminarily elucidate the regulatory mechanisms of plant hormones in Jerusalem artichoke tuber sprouting, aiming to provide a theoretical basis for the production and processing of Jerusalem artichoke.
Collapse
Affiliation(s)
- Ya Wen
- Academy of Agriculture & Forestry, Qinghai University, Xining 810016, China; (Y.W.); (Z.Z.); (X.G.); (J.L.); (G.W.)
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Qinghai University, Xining 810003, China
| | - Zhenjie Zhou
- Academy of Agriculture & Forestry, Qinghai University, Xining 810016, China; (Y.W.); (Z.Z.); (X.G.); (J.L.); (G.W.)
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Qinghai University, Xining 810003, China
| | - Xiaozhu Guo
- Academy of Agriculture & Forestry, Qinghai University, Xining 810016, China; (Y.W.); (Z.Z.); (X.G.); (J.L.); (G.W.)
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Qinghai University, Xining 810003, China
| | - Juan Li
- Academy of Agriculture & Forestry, Qinghai University, Xining 810016, China; (Y.W.); (Z.Z.); (X.G.); (J.L.); (G.W.)
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Qinghai University, Xining 810003, China
| | - Gui Wang
- Academy of Agriculture & Forestry, Qinghai University, Xining 810016, China; (Y.W.); (Z.Z.); (X.G.); (J.L.); (G.W.)
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Qinghai University, Xining 810003, China
| | - Xuemei Sun
- Academy of Agriculture & Forestry, Qinghai University, Xining 810016, China; (Y.W.); (Z.Z.); (X.G.); (J.L.); (G.W.)
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Qinghai University, Xining 810003, China
| |
Collapse
|
3
|
Jin Y, Liu T, Hu J, Sun K, Xue L, Bettembourg M, Bedada G, Hou P, Hao P, Tang J, Ye Z, Liu C, Li P, Pan A, Weng L, Xiao G, Moazzami AA, Yu X, Wu J, Schnürer A, Sun C. Reducing methane emissions by developing low-fumarate high-ethanol eco-friendly rice. MOLECULAR PLANT 2025; 18:333-349. [PMID: 39904305 DOI: 10.1016/j.molp.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/26/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025]
Abstract
Methane in rice paddies is mainly produced by methanogenic communities feeding on carbon from root exudates and debris. However, the dominant root secretion governing methane emissions is not yet identified after decades of studies, even though secreted carbohydrates and organic acids have been shown to contribute to methane emissions. In this study, we discovered that fumarate and ethanol are two major rice-orchestrated secretions and play a key role in regulating methane emissions. Fumarate released in the rhizosphere is metabolized by microorganisms, supporting the growth of methanogenic archaea that produce methane as an end carbon product, while ethanol mitigates methane emissions through inhibition of methanogenic activity and growth as well as reducing fumarate synthesis in the rice root. Furthermore, we elucidated the route of fumarate metabolism in the anoxic rhizospheric zone. We found that fumarate in the rice root is produced from acetate via propionate and succinate, and when released into soil directly is oxidized to propionate before conversion via acetate into methane as the end product. The knowledge on fumarate and ethanol metabolism in rice was then used for hybrid breeding of new rice varieties with the property of low methane emission. Cultivation of these novel rice lines or employing our findings for rice cultivation managements showed up to 70% reductions in methane production from seven paddy field sites during 3 years of cultivation trials. Taken together, these findings offer great possibilities for effective mitigation of the global climatic impact of rice cultivation.
Collapse
Affiliation(s)
- Yunkai Jin
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China; Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences (SLU), PO Box 7080, 75007 Uppsala, Sweden
| | - Tong Liu
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU), PO Box 7015, 75007 Uppsala, Sweden
| | - Jia Hu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China; Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences (SLU), PO Box 7080, 75007 Uppsala, Sweden
| | - Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzou 310018, China
| | - Lihong Xue
- Key Laboratory of Agro-environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Mathilde Bettembourg
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences (SLU), PO Box 7080, 75007 Uppsala, Sweden
| | - Girma Bedada
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences (SLU), PO Box 7080, 75007 Uppsala, Sweden
| | - Pengfu Hou
- Key Laboratory of Agro-environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Peiying Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzou 310018, China
| | - Jintian Tang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzou 310018, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzou 310018, China
| | - Chunlin Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Peng Li
- Biotechnology Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201106, China
| | - Aihu Pan
- Biotechnology Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201106, China
| | - Lushui Weng
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Guoying Xiao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Ali A Moazzami
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU), PO Box 7015, 75007 Uppsala, Sweden
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzou 310018, China
| | - Jun Wu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Anna Schnürer
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU), PO Box 7015, 75007 Uppsala, Sweden.
| | - Chuanxin Sun
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences (SLU), PO Box 7080, 75007 Uppsala, Sweden.
| |
Collapse
|
4
|
Li Q, Pan Z, Zhang Z, Tang H, Cai J, Zeng X, Li Z. β-Glucan content increase in Waxy-mutated barley is closely associated with positive stress responses and is regulated by ASR1. Carbohydr Polym 2025; 347:122536. [PMID: 39486912 DOI: 10.1016/j.carbpol.2024.122536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/30/2024] [Accepted: 07/22/2024] [Indexed: 11/04/2024]
Abstract
Mixed-linkage (1,3; 1,4)-β-D-glucan (MLG) impacts the food and industrial end-uses of barley, but the molecular mechanism of variations in MLG content remains unclear. MLG content usually increases in Waxy-mutated barley. This study applied transcriptomic, proteomic, and metabolomic analyses to Waxy-mutated recombinant inbred lines with higher MLG content and wild-type lines with lower MLG content, and identified candidate genes and pathways regulating MLG content through combining preliminary gene function analysis. MLG biosynthesis differed significantly during late grain development in the Waxy-mutated and wild-type barley lines. The MLG increase was closely associated with strongly active sugar and starch metabolism and stress-responsive plant hormones, particularly abscisic acid (ABA) signaling process. Stress-responsive transcript factors ILR3, BTF3, RGGA, and PR13 protein bind to CslF6, which is critical for barley MLG biosynthesis, and the stress-responsive gene ASR1 also had a positive effect on MLG increase. Waxy mutation enhances barley stress responses by activating ABA- or other stress-responsive plant hormones signaling processes, which facilitates MLG biosynthesis. This study provides a new approach for elucidating the variations in MLG content of barley grains.
Collapse
Affiliation(s)
- Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China.
| | - Zhihui Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | - Hongmei Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | - Jingchi Cai
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China; University of the Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100039, People's Republic of China
| | - Xingquan Zeng
- Tibet Academy of Agriculture and Animal Sciences, No. 130 Jinzhu West Road, Lhasa 850032, People's Republic of China
| | - Zhongyi Li
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
5
|
Zhu W, Li G, Shi H, Ruan Y, Liu C. Transcriptome and Metabolome Analyses Reveal the Regulatory Mechanism of TC1a in the Sucrose and Starch Synthesis Pathways in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:3402. [PMID: 39683196 DOI: 10.3390/plants13233402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins, originally identified in mammals, have since been found in most plants. TRAF proteins in plants have been shown to be involved in cellular autophagy, immunity, drought resistance, and ABA induction. However, the role in regulating sucrose and starch metabolism has not been reported. In this study, we confirmed that TC1a can regulate sucrose and starch metabolism through gene editing, phenotypic observation, transcriptomics and metabolomics analyses. Initially, 200 and 81 TRAF proteins were identified in rapeseed (Brassica napus L.) and Arabidopsis thaliana, respectively, and divided into five classes. We found that overexpression of TC1a inhibited root length, plant height, flowering, and leaf development in A. thaliana. Additionally, 12 differentially expressed genes (DEGs) related to sucrose and starch metabolism pathways were identified in overexpressing and knockout plants, respectively. Six differentially accumulated metabolites (DAMs)-fructose, sucrose, glucose, trehalose, maltose, and 6-phosphate fructose-were identified using widely targeted metabolomics analysis. The results show that TC1a affects the growth and development of Arabidopsis, and induces the expression of sucrose and starch synthase and hydrolases, providing a foundation for further research into its molecular mechanisms.
Collapse
Affiliation(s)
- Wenjun Zhu
- Yuelushan Laboratory, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| | - Guangze Li
- Yuelushan Laboratory, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| | - Han Shi
- Yuelushan Laboratory, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| | - Ying Ruan
- Yuelushan Laboratory, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| | - Chunlin Liu
- Yuelushan Laboratory, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
6
|
Wen R, Zhu M, Yu J, Kou L, Ahmad S, Wei X, Jiao G, Hu S, Sheng Z, Zhao F, Tang S, Shao G, Yu H, Hu P. Photosynthesis regulates tillering bud elongation and nitrogen-use efficiency via sugar-induced NGR5 in rice. THE NEW PHYTOLOGIST 2024; 243:1440-1454. [PMID: 38923565 DOI: 10.1111/nph.19921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Rice tillering is one of the most important agronomical traits largely determining grain yield. Photosynthesis and nitrogen availability are two important factors affecting rice tiller bud elongation; however, underlying mechanism and their cross-talk is poorly understood. Here, we used map-based cloning, transcriptome profiling, phenotypic analysis, and molecular genetics to understand the roles of the Decreased Tiller Number 1 (DTN1) gene that encodes the fructose-1,6-bisphosphate aldolase and involves in photosynthesis required for light-induced axillary bud elongation in rice. Deficiency of DTN1 results in the reduced photosynthetic rate and decreased contents of sucrose and other sugars in both leaves and axillary buds, and the reduced tiller number in dtn1 mutant could be partially rescued by exogenous sucrose treatment. Furthermore, we found that the expression of nitrogen-mediated tiller growth response 5 (NGR5) was remarkably decreased in shoot base of dtn1-2, which can be activated by sucrose treatment. Overexpression of NGR5 in the dtn1-2 could partially rescue the reduced tiller number, and the tiller number of dtn1-2 was insensitive to nitrogen supply. This work demonstrated that the sugar level regulated by photosynthesis and DTN1 could positively regulate NGR5 expression, which coordinates the cross-talk between carbon and nitrate to control tiller bud outgrowth in rice.
Collapse
Affiliation(s)
- Rui Wen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Maodi Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Junming Yu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shakeel Ahmad
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Fengli Zhao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
7
|
Hu J, Bettembourg M, Xue L, Hu R, Schnürer A, Sun C, Jin Y, Sundström JF. A low-methane rice with high-yield potential realized via optimized carbon partitioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170980. [PMID: 38373456 DOI: 10.1016/j.scitotenv.2024.170980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/25/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Global rice cultivation significantly contributes to anthropogenic methane emissions. The methane emissions are caused by methane-producing microorganisms (methanogenic archaea) that are favoured by the anoxic conditions of paddy soils and small carbon molecules released from rice roots. However, different rice cultivars are associated with differences in methane emission rates suggesting that there is a considerable natural variation in this trait. Starting from the hypothesis that sugar allocation within a plant is an important factor influencing both yields and methane emissions, the aim of this study was to produce high-yielding rice lines associated with low methane emissions. In this study, the offspring (here termed progeny lines) of crosses between a newly characterized low-methane rice variety, Heijing 5, and three high-yielding elite varieties, Xiushui, Huayu and Jiahua, were selected for combined low-methane and high-yield properties. Analyses of total organic carbon and carbohydrates showed that the progeny lines stored more carbon in above-ground tissues than the maternal elite varieties. Also, metabolomic analysis of rhizospheric soil surrounding the progeny lines showed reduced levels of glucose and other carbohydrates. The carbon allocation, from roots to shoots, was further supported by a transcriptome analysis using massively parallel sequencing of mRNAs that demonstrated elevated expression of the sugar transporters SUT-C and SWEET in the progeny lines as compared to the parental varieties. Furthermore, measurement of methane emissions from plants, grown in greenhouse as well as outdoor rice paddies, showed a reduction in methane emissions by approximately 70 % in the progeny lines compared to the maternal elite varieties. Taken together, we report here on three independent low-methane-emission rice lines with high yield potential. We also provide a first molecular characterisation of the progeny lines that can serve as a foundation for further studies of candidate genes involved in sugar allocation and reduced methane emissions from rice cultivation.
Collapse
Affiliation(s)
- Jia Hu
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007 Uppsala, Sweden
| | - Mathilde Bettembourg
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007 Uppsala, Sweden
| | - Lihong Xue
- Key Laboratory of Agro-environment in Downstream of Yangtze plain, Ministry of Agriculture and Rural Affairs of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ronggui Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 43070, China
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-750 07 Uppsala, Sweden
| | - Chuanxin Sun
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007 Uppsala, Sweden
| | - Yunkai Jin
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007 Uppsala, Sweden
| | - Jens F Sundström
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007 Uppsala, Sweden.
| |
Collapse
|
8
|
Shi Y, Si D, Zhang X, Chen D, Han Z. Plant fructans: Recent advances in metabolism, evolution aspects and applications for human health. Curr Res Food Sci 2023; 7:100595. [PMID: 37744554 PMCID: PMC10517269 DOI: 10.1016/j.crfs.2023.100595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/26/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023] Open
Abstract
Fructans, fructose polymers, are one of the three major reserve carbohydrate in plants. The nutritional and therapeutic benefits of natural fructans in plants have attracted increasing interest by consumers and food industry. In the course of evolution, many plants have developed the ability of regulating plant fructans metabolism to produce fructans with different structures and chain lengths, which are strongly correlated with their survival in harsh environments. Exploring these evolution-related genes in fructans biosynthesis and de novo domestication of fructans-rich plants based on genome editing is a viable and promising approach to improve human dietary quality and reduce the risk of chronic disease. These advances will greatly facilitate breeding and production of tailor-made fructans as a healthy food ingredient from wild plants such as huangjing (Polygonatum cyrtonema). The purpose of this review is to broaden our knowledge on plant fructans biosynthesis, evolution and benefits to human health.
Collapse
Affiliation(s)
| | | | - Xinfeng Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhigang Han
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| |
Collapse
|
9
|
Jayarathna S, Jin Y, Dotsenko G, Fei M, Andersson M, Andersson AAM, Sun C, Andersson R. High fructan barley lines produced by selective breeding may alter β-glucan and amylopectin molecular structure. Carbohydr Polym 2023; 316:121030. [PMID: 37321727 DOI: 10.1016/j.carbpol.2023.121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023]
Abstract
Six cross-bred barley lines developed by a breeding strategy with the target to enhance the fructan synthesis activity and reduce the fructan hydrolysis activity were analyzed together with their parental lines, and a reference line (Gustav) to determine whether the breeding strategy also affected the content and molecular structure of amylopectin and β-glucan. The highest fructan and β-glucan content achieved in the novel barley lines was 8.6 % and 12 %, respectively (12.3-fold and 3.2-fold higher than in Gustav). The lines with low fructan synthesis activity had higher starch content, smaller building blocks in amylopectin, and smaller structural units of β-glucans than the lines with high-fructan synthesis activity. Correlation analysis confirmed that low starch content was associated with high amylose, fructan, and β-glucan content, and larger building blocks in amylopectin.
Collapse
Affiliation(s)
- Shishanthi Jayarathna
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Yunkai Jin
- Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-750 07 Uppsala, Sweden.
| | - Gleb Dotsenko
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Mingliang Fei
- Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-750 07 Uppsala, Sweden; Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden.
| | - Annica A M Andersson
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Chuanxin Sun
- Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-750 07 Uppsala, Sweden.
| | - Roger Andersson
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
10
|
Jin Y, Hu J, Su J, Aslan S, Lin Y, Jin L, Isaksson S, Liu C, Wang F, Schnürer A, Sitbon F, Hofvander P, Sun C. Improved bioenergy value of residual rice straw by increased lipid levels from upregulation of fatty acid biosynthesis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:90. [PMID: 37245032 DOI: 10.1186/s13068-023-02342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/13/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Rice (Oryza sativa) straw is a common waste product that represents a considerable amount of bound energy. This energy can be used for biogas production, but the rate and level of methane produced from rice straw is still low. To investigate the potential for an increased biogas production from rice straw, we have here utilized WRINKLED1 (WRI1), a plant AP2/ERF transcription factor, to increase triacylglycerol (TAG) biosynthesis in rice plants. Two forms of Arabidopsis thaliana WRI1 were evaluated by transient expression and stable transformation of rice plants, and transgenic plants were analyzed both for TAG levels and biogas production from straw. RESULTS Both full-length AtWRI1, and a truncated form lacking the initial 141 amino acids (including the N-terminal AP2 domain), increased fatty acid and TAG levels in vegetative and reproductive tissues of Indica rice. The stimulatory effect of the truncated AtWRI1 was significantly lower than that of the full-length protein, suggesting a role for the deleted AP2 domain in WRI1 activity. Full-length AtWRI1 increased TAG levels also in Japonica rice, indicating a conserved effect of WRI1 in rice lipid biosynthesis. The bio-methane production from rice straw was 20% higher in transformants than in the wild type. Moreover, a higher producing rate and final yield of methane was obtained for rice straw compared with rice husks, suggesting positive links between methane production and a high amount of fatty acids. CONCLUSIONS Our results suggest that heterologous WRI1 expression in transgenic plants can be used to improve the metabolic potential for bioenergy purposes, in particular methane production.
Collapse
Affiliation(s)
- Yunkai Jin
- Department of Plant Biology, The Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P. O. Box 7080, 75007, Uppsala, Sweden
| | - Jia Hu
- Department of Plant Biology, The Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P. O. Box 7080, 75007, Uppsala, Sweden
| | - Jun Su
- Department of Plant Biology, The Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P. O. Box 7080, 75007, Uppsala, Sweden
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Selcuk Aslan
- Department of Plant Biology, The Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P. O. Box 7080, 75007, Uppsala, Sweden
| | - Yan Lin
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Lu Jin
- Department of Plant Biology, The Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P. O. Box 7080, 75007, Uppsala, Sweden
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Simon Isaksson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P. O. Box 7015, 750 07, Uppsala, Sweden
| | - Chunlin Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Feng Wang
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P. O. Box 7015, 750 07, Uppsala, Sweden
| | - Folke Sitbon
- Department of Plant Biology, The Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P. O. Box 7080, 75007, Uppsala, Sweden.
| | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 23422, Lomma, Sweden
| | - Chuanxin Sun
- Department of Plant Biology, The Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P. O. Box 7080, 75007, Uppsala, Sweden.
| |
Collapse
|
11
|
Tiozon RJN, Fettke J, Sreenivasulu N, Fernie AR. More than the main structural genes: Regulation of resistant starch formation in rice endosperm and its potential application. JOURNAL OF PLANT PHYSIOLOGY 2023; 285:153980. [PMID: 37086697 DOI: 10.1016/j.jplph.2023.153980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
In the past decade, research on resistant starch has evoked interest due to the prevention and inhibition of chronic human diseases, such as diabetes, cancer, and obesity. Increasing the amylose content (AC) and resistant starch (RS) has been pivotal in improving the nutritional benefit of rice. However, the exact mechanism of RS formation is complex due to interconnected genetic factors regulating amylose-amylopectin variation. In this review, we discussed the regulatory factors influencing the RS formation centered on the transcription, post-transcriptional, and post-translational processes. Furthermore, we described the developments in RS and AC levels in rice compared with other high RS cereals. Briefly, we enumerated potential applications of high RS mutants in health, medical, and other industries. We contest that the information captured herein can be deployed for marker-assisted breeding and precision breeding techniques through genome editing to improve rice varieties with enhanced RS content.
Collapse
Affiliation(s)
- Rhowell Jr N Tiozon
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines; Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Nese Sreenivasulu
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
12
|
Fei M, Jin Y, Hu J, Dotsenko G, Ruan Y, Liu C, Seisenbaeva G, Andersson AAM, Andersson R, Sun C. Achieving of high-diet-fiber barley via managing fructan hydrolysis. Sci Rep 2022; 12:19151. [PMID: 36351972 PMCID: PMC9646770 DOI: 10.1038/s41598-022-21955-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022] Open
Abstract
High fructan content in the grain of cereals is an important trait in agriculture such as environmental resilience and dietary fiber food production. To understand the mechanism in determining final grain fructan content and achieve high fructan cereal, a cross breeding strategy based on fructan synthesis and hydrolysis activities was set up and have achieved barley lines with 11.8% storage fructan in the harvested grain. Our study discovered that high activity of fructan hydrolysis at later grain developmental stage leads to the low fructan content in mature seeds, simultaneously increasing fructan synthesis at early stage and decreasing fructan hydrolysis at later stage through crossing breeding is an efficient way to elevate grain diet-fiber content. A good correlation between fructan and beta glucans was also discovered with obvious interest. Field trials showed that the achieved high fructan barley produced over seven folds higher fructan content than control barley and pull carbon-flux to fructan through decreasing fructan hydrolysis without disruption starch synthesis will probably not bring yield deficiency.
Collapse
Affiliation(s)
- Mingliang Fei
- grid.257160.70000 0004 1761 0331Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128 China ,grid.6341.00000 0000 8578 2742Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7080, 750 07 Uppsala, Sweden ,grid.257160.70000 0004 1761 0331Key Laboratory of Education Department of Hunan Province On Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| | - Yunkai Jin
- grid.6341.00000 0000 8578 2742Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7080, 750 07 Uppsala, Sweden
| | - Jia Hu
- grid.6341.00000 0000 8578 2742Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7080, 750 07 Uppsala, Sweden
| | - Gleb Dotsenko
- grid.6341.00000 0000 8578 2742Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Ying Ruan
- grid.257160.70000 0004 1761 0331Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128 China ,grid.257160.70000 0004 1761 0331Key Laboratory of Education Department of Hunan Province On Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| | - Chunlin Liu
- grid.257160.70000 0004 1761 0331Key Laboratory of Education Department of Hunan Province On Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China ,grid.257160.70000 0004 1761 0331College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Gulaim Seisenbaeva
- grid.6341.00000 0000 8578 2742Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Annica A. M. Andersson
- grid.6341.00000 0000 8578 2742Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Roger Andersson
- grid.6341.00000 0000 8578 2742Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Chuanxin Sun
- grid.6341.00000 0000 8578 2742Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences (SLU), P.O. Box 7080, 750 07 Uppsala, Sweden
| |
Collapse
|
13
|
Márquez-López RE, Loyola-Vargas VM, Santiago-García PA. Interaction between fructan metabolism and plant growth regulators. PLANTA 2022; 255:49. [PMID: 35084581 DOI: 10.1007/s00425-022-03826-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The relationship of fructan to plant growth regulators is clearly more complicated than it looks and is likely related to differences between fructan molecules in size and structure as well as localization. Fructans are a complex group of carbohydrates composed mainly of fructose units linked to a sucrose molecule. Fructans are present in plants as heterogeneous mixtures with diverse molecular structures and mass, different polymerization degrees, and linkage types between fructosyl residues. Like sucrose, they are frequently stored in leaves and other organs, acting as carbohydrate reserves. Fructans are synthesized in the cell vacuole by fructosyltransferase enzymes and catabolized by fructan exohydrolase enzymes. Several publications have shown that fructan metabolism varies with the stage of plant development and in response to the environment. Recent studies have shown a correlation between plant growth regulators (PGR), fructan metabolism, and tolerance to drought and cold. PGR are compounds that profoundly influence the growth and differentiation of plant cells, tissues, and organs. They play a fundamental role in regulating plant responses to developmental and environmental signals. In this review, we summarize the most up-to-date knowledge on the metabolism of fructans and their crosstalk with PGR signaling pathways. We identify areas that require more research to complete our understanding of the role of fructans in plants.
Collapse
Affiliation(s)
- Ruth E Márquez-López
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación Para el Desarrollo Integral Regional - Unidad Oaxaca, C.P. 71230, Santa Cruz Xoxocotlán, Oaxaca, Mexico
| | - Víctor M Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Patricia Araceli Santiago-García
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación Para el Desarrollo Integral Regional - Unidad Oaxaca, C.P. 71230, Santa Cruz Xoxocotlán, Oaxaca, Mexico.
| |
Collapse
|
14
|
Barros KA, Inaba M, Martins AO, Sulpice R. High-Throughput Extraction and Enzymatic Determination of Sugars and Fructans in Fructan-Accumulating Plants. Methods Mol Biol 2022; 2398:107-119. [PMID: 34674172 DOI: 10.1007/978-1-0716-1912-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fructans are carbohydrates present in more than 15% of flowering plants. They represent the major pool of carbohydrates in some species, especially when facing cold or drought. However, the functions of fructans with high or low degrees of polymerization (DP), their diurnal use, and the regulation of their synthesis and degradation in response to stresses still remain unclear. Here we present an enzymatic protocol adapted to 96-well microplates that simultaneously allows the determination of fructans and glucose, fructose, and sucrose. Moreover, the protocol allows to estimate the average DP of the fructans in the samples. The protocol is based on the enzymatic degradation of fructans into glucose and fructose and their subsequent conversion into gluconate 6-phosphate concomitant with the formation of NADH in the presence of ATP.
Collapse
Affiliation(s)
- Kallyne A Barros
- NUI Galway, Plant Systems Biology Laboratory, Ryan Institute, School of Natural Sciences, Galway, Ireland
| | - Masami Inaba
- NUI Galway, Plant Systems Biology Laboratory, Ryan Institute, School of Natural Sciences, Galway, Ireland
| | - Auxiliadora Oliveira Martins
- NUI Galway, Plant Systems Biology Laboratory, Ryan Institute, School of Natural Sciences, Galway, Ireland
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ronan Sulpice
- NUI Galway, Plant Systems Biology Laboratory, Ryan Institute, School of Natural Sciences, Galway, Ireland.
| |
Collapse
|
15
|
Wdowikowska A, Janicka M. Antisense oligonucleotide technology as a research tool in plant biology. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 49:1-12. [PMID: 34794541 DOI: 10.1071/fp21194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
An antisense oligonucleotide (ASO) is a short single-stranded deoxyribonucleotide complementary to the sense strand of a selected nucleic acid. As a result, an ASO can modulate gene expression through several mechanisms. The technology based on ASO has already been applied in studies on gene function in mammalian cells and selective therapeutic strategies for many diseases. The conceptual simplicity and low cost of this method, and the developments in the field of plant genome sequencing observed in the last decades, have paved the way for the ASO method also in plant biology. It is applied in gene function analysis as well as the development of non-invasive plant production technology involving gene modifications without transgenesis. Therefore, the first part of this review provides a comprehensive overview of the structure, mechanism of action and delivery methods of ASOs in plants and shows the most important features essential for the proper design of individual experiments. We also discuss potential issues and difficulties that may arise during practical ASO implementation. The second part of this article contains an analysis of ASO applications in various studies in the field of plant biology. We presented for the first time that ASOs were also successfully applied in cucumber.
Collapse
Affiliation(s)
- Anna Wdowikowska
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Malgorzata Janicka
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
| |
Collapse
|
16
|
Matros A, Houston K, Tucker MR, Schreiber M, Berger B, Aubert MK, Wilkinson LG, Witzel K, Waugh R, Seiffert U, Burton RA. Genome-wide association study reveals the genetic complexity of fructan accumulation patterns in barley grain. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2383-2402. [PMID: 33421064 DOI: 10.1093/jxb/erab002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/08/2021] [Indexed: 05/27/2023]
Abstract
We profiled the grain oligosaccharide content of 154 two-row spring barley genotypes and quantified 27 compounds, mainly inulin- and neoseries-type fructans, showing differential abundance. Clustering revealed two profile groups where the 'high' set contained greater amounts of sugar monomers, sucrose, and overall fructans, but lower fructosylraffinose. A genome-wide association study (GWAS) identified a significant association for the variability of two fructan types: neoseries-DP7 and inulin-DP9, which showed increased strength when applying a novel compound ratio-GWAS approach. Gene models within this region included three known fructan biosynthesis genes (fructan:fructan 1-fructosyltransferase, sucrose:sucrose 1-fructosyltransferase, and sucrose:fructan 6-fructosyltransferase). Two other genes in this region, 6(G)-fructosyltransferase and vacuolar invertase1, have not previously been linked to fructan biosynthesis and showed expression patterns distinct from those of the other three genes, including exclusive expression of 6(G)-fructosyltransferase in outer grain tissues at the storage phase. From exome capture data, several single nucleotide polymorphisms related to inulin- and neoseries-type fructan variability were identified in fructan:fructan 1-fructosyltransferase and 6(G)-fructosyltransferase genes. Co-expression analyses uncovered potential regulators of fructan biosynthesis including transcription factors. Our results provide the first scientific evidence for the distinct biosynthesis of neoseries-type fructans during barley grain maturation and reveal novel gene candidates likely to be involved in the differential biosynthesis of various types of fructan in barley.
Collapse
Affiliation(s)
- Andrea Matros
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - Kelly Houston
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Miriam Schreiber
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
| | - Bettina Berger
- Australian Plant Phenomics Facility, The Plant Accelerator, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew K Aubert
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Laura G Wilkinson
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Katja Witzel
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Brandenburg, Germany
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Udo Seiffert
- Australian Plant Phenomics Facility, The Plant Accelerator, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
- Biosystems Engineering, Fraunhofer IFF, Magdeburg, Saxony-Anhalt, Germany
| | - Rachel A Burton
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Barros KA, Esteves-Ferreira AA, Inaba M, Meally H, Finnan J, Barth S, Davis SJ, Sulpice R. Diurnal patterns of growth and transient reserves of sink and source tissues are affected by cold nights in barley. PLANT, CELL & ENVIRONMENT 2020; 43:1404-1420. [PMID: 32012288 DOI: 10.1111/pce.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/18/2019] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
Barley is described to mostly use sucrose for night carbon requirements. To understand how the transient carbon is accumulated and utilized in response to cold, barley plants were grown in a combination of cold days and/or nights. Both daytime and night cold reduced growth. Sucrose was the main carbohydrate supplying growth at night, representing 50-60% of the carbon consumed. Under warm days and nights, starch was the second contributor with 26% and malate the third with 15%. Under cold nights, the contribution of starch was severely reduced, due to an inhibition of its synthesis, including under warm days, and malate was the second contributor to C requirements with 24-28% of the total amount of carbon consumed. We propose that malate plays a critical role as an alternative carbon source to sucrose and starch in barley. Hexoses, malate, and sucrose mobilization and starch accumulation were affected in barley elf3 clock mutants, suggesting a clock regulation of their metabolism, without affecting growth and photosynthesis however. Altogether, our data suggest that the mobilization of sucrose and malate and/or barley growth machinery are sensitive to cold.
Collapse
Affiliation(s)
- Kallyne A Barros
- Plant Systems Biology Lab, School of Natural Sciences, Ryan Institute, National University of Ireland, Galway H91 TK33, Ireland
| | - Alberto A Esteves-Ferreira
- Plant Systems Biology Lab, School of Natural Sciences, Ryan Institute, National University of Ireland, Galway H91 TK33, Ireland
| | - Masami Inaba
- Plant Systems Biology Lab, School of Natural Sciences, Ryan Institute, National University of Ireland, Galway H91 TK33, Ireland
| | - Helena Meally
- Crop Science Department, Teagasc, Carlow R93 XE12, Ireland
| | - John Finnan
- Crop Science Department, Teagasc, Carlow R93 XE12, Ireland
| | - Susanne Barth
- Crop Science Department, Teagasc, Carlow R93 XE12, Ireland
| | - Seth J Davis
- Department of Biology Heslington, University of York, York YO10 5NG, UK
- State Key Laboratory of Crop Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Ronan Sulpice
- Plant Systems Biology Lab, School of Natural Sciences, Ryan Institute, National University of Ireland, Galway H91 TK33, Ireland
| |
Collapse
|
18
|
Fei M, Jin Y, Jin L, Su J, Ruan Y, Wang F, Liu C, Sun C. Adaptation of Rice to the Nordic Climate Yields Potential for Rice Cultivation at Most Northerly Site and the Organic Production of Low-Arsenic and High-Protein Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:329. [PMID: 32425956 PMCID: PMC7212348 DOI: 10.3389/fpls.2020.00329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/05/2020] [Indexed: 06/11/2023]
Abstract
There is an urgent demand for low-arsenic rice in the global market, particularly for consumption by small children. Soils in Uppsala, Sweden, contain low concentrations of arsenic (As). We hypothesize that if certain japonica paddy rice varieties can adapt to the cold climate and long day length in Uppsala and produce normal grains, such a variety could be used for organic production of low-arsenic rice for safe rice consumption. A japonica paddy rice variety, "Heijing 5," can be cultivated in Uppsala, Sweden, after several years' adaptation, provided that the rice plants are kept under a simple plastic cover when the temperature is below 10°C. Uppsala-adapted "Heijing 5" has a low concentration of 0.1 mg per kg and high protein content of 12.6% per dry weight in brown rice grain, meaning that it thus complies with all dietary requirements determined by the EU and other countries for small children. The high protein content is particularly good for small children in terms of nutrition. Theoretically, Uppsala-adapted "Heijing 5" can produce a yield of around 5100 kg per ha, and it has a potential for organic production. In addition, we speculate that cultivation of paddy rice can remove nitrogen and phosphorus from Swedish river water and reduce nutrient loads to the Baltic Sea and associated algae blooms.
Collapse
Affiliation(s)
- Mingliang Fei
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, China
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yunkai Jin
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lu Jin
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, China
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jun Su
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Ying Ruan
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, China
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Feng Wang
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Chunlin Liu
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Chuanxin Sun
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
19
|
Atif MJ, Ahanger MA, Amin B, Ghani MI, Ali M, Cheng Z. Mechanism of Allium Crops Bulb Enlargement in Response to Photoperiod: A Review. Int J Mol Sci 2020; 21:E1325. [PMID: 32079095 PMCID: PMC7072895 DOI: 10.3390/ijms21041325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
The photoperiod marks a varied set of behaviors in plants, including bulbing. Bulbing is controlled by inner signals, which can be stimulated or subdued by the ecological environment. It had been broadly stated that phytohormones control the plant development, and they are considered to play a significant part in the bulb formation. The past decade has witnessed significant progress in understanding and advancement about the photoperiodic initiation of bulbing in plants. A noticeable query is to what degree the mechanisms discovered in bulb crops are also shared by other species and what other qualities are also dependent on photoperiod. The FLOWERING LOCUS T (FT) protein has a role in flowering; however, the FT genes were afterward reported to play further functions in other biological developments (e.g., bulbing). This is predominantly applicable in photoperiodic regulation, where the FT genes seem to have experienced significant development at the practical level and play a novel part in the switch of bulb formation in Alliums. The neofunctionalization of FT homologs in the photoperiodic environments detects these proteins as a new class of primary signaling mechanisms that control the growth and organogenesis in these agronomic-related species. In the present review, we report the underlying mechanisms regulating the photoperiodic-mediated bulb enlargement in Allium species. Therefore, the present review aims to systematically review the published literature on the bulbing mechanism of Allium crops in response to photoperiod. We also provide evidence showing that the bulbing transitions are controlled by phytohormones signaling and FT-like paralogues that respond to independent environmental cues (photoperiod), and we also show that an autorelay mechanism involving FT modulates the expression of the bulbing-control gene. Although a large number of studies have been conducted, several limitations and research gaps have been identified that need to be addressed in future studies.
Collapse
Affiliation(s)
- Muhammad Jawaad Atif
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
- Vegetable Crops Program, National Agricultural Research Centre, Islamabad 44000, Pakistan
| | | | - Bakht Amin
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
| | - Muhammad Imran Ghani
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
- College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, China
| | - Muhammad Ali
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
| | - Zhihui Cheng
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
| |
Collapse
|
20
|
Rose AB. Introns as Gene Regulators: A Brick on the Accelerator. Front Genet 2019; 9:672. [PMID: 30792737 PMCID: PMC6374622 DOI: 10.3389/fgene.2018.00672] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 01/25/2023] Open
Abstract
A picture is beginning to emerge from a variety of organisms that for a subset of genes, the most important sequences that regulate expression are situated not in the promoter but rather are located within introns in the first kilobase of transcribed sequences. The actual sequences involved are difficult to identify either by sequence comparisons or by deletion analysis because they are dispersed, additive, and poorly conserved. However, expression-controlling introns can be identified computationally in species with relatively small introns, based on genome-wide differences in oligomer composition between promoter-proximal and distal introns. The genes regulated by introns are often expressed in most tissues and are among the most highly expressed in the genome. The ability of some introns to strongly stimulate mRNA accumulation from several hundred nucleotides downstream of the transcription start site, even when the promoter has been deleted, reveals that our understanding of gene expression remains incomplete. It is unlikely that any diseases are caused by point mutations or small deletions that reduce the expression of an intron-regulated gene unless splicing is also affected. However, introns may be particularly useful in practical applications such as gene therapy because they strongly activate expression but only affect the transcription unit in which they are located.
Collapse
Affiliation(s)
- Alan B Rose
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
21
|
Scheben A, Edwards D. Towards a more predictable plant breeding pipeline with CRISPR/Cas-induced allelic series to optimize quantitative and qualitative traits. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:218-225. [PMID: 29752075 DOI: 10.1016/j.pbi.2018.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 05/20/2023]
Abstract
The rate of crop improvement must increase to meet rising global demand for food. Crop breeding pipelines can be hampered by the imprecision and multi-generational timeframe of methods such as intercrossing and stochastic mutagenesis used to generate variation. Genome editing can generate targeted allelic series of trait-related genes and regulatory elements, creating a series of variable phenotypes for breeding within a single generation. Disrupting genic and regulatory regions is particularly effective for engineering quantitative traits. Although qualitative traits can be more difficult to engineer using disruption, precise base editing may allow an efficient path to rationally improve qualitative traits if protein function can be accurately modelled. As functional understanding of genes and regulatory elements increases, genome editing can enhance the predictability of plant breeding outcomes and will ensure food security.
Collapse
Affiliation(s)
- Armin Scheben
- School of Plant Biology and Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - David Edwards
- School of Plant Biology and Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
22
|
Kırtel O, Versluys M, Van den Ende W, Toksoy Öner E. Fructans of the saline world. Biotechnol Adv 2018; 36:1524-1539. [DOI: 10.1016/j.biotechadv.2018.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
|
23
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 19:ijms19092506. [PMID: 30149541 PMCID: PMC6165531 DOI: 10.3390/ijms19092506] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
24
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 57:2367-2379. [PMID: 30149541 DOI: 10.1093/pcp/pcw157] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/07/2018] [Accepted: 09/05/2016] [Indexed: 05/25/2023] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
25
|
Wang L, Patrick JW, Ruan YL. Live Long and Prosper: Roles of Sugar and Sugar Polymers in Seed Vigor. MOLECULAR PLANT 2018; 11:1-3. [PMID: 29274385 DOI: 10.1016/j.molp.2017.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Lu Wang
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| | - John W Patrick
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, NSW, Australia
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|