1
|
Zhang C, Lan HJ, Liao LN, Huang MJ, Xu W, Zhang H, Ma Q, Li F, Cheng N, Nakata PA, Whitham SA, Liu JZ. GmHSP40.1, a nuclear-localized soybean J domain protein, participates in regulation of flowering time through interacting with EMF1 and JMJ14. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112342. [PMID: 39622386 DOI: 10.1016/j.plantsci.2024.112342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
Heat shock protein 40s (HSP40s) are a group of J domain proteins (JDPs), which serve as co-chaperones for heat shock protein 70s. We previously reported that over-expression of a soybean class C JDP, GmHSP40.1, in Arabidopsis activated defense responses. Surprisingly, a significantly delayed flowering phenotype was also observed for the GmHSP40.1-overexpressing (OE) lines. We provided evidence that the late-flowering phenotype observed in the GmHSP40.1-OE lines was not due to impaired pri-miRNA processing and pre-mRNA splicing. Instead, we found that GmHSP40.1 interacted and co-localized with both EMF1 and JMJ14, two major components in the EMF1 complex (EMF1c), which plays a key role in depositing and maintaining the H3K27me3 modification in the FT locus. Consistent with these interactions, the H3K27me3 modification at FT chromatin was significantly increased, whereas the H3K27me3 modification at FLC locus was significantly decreased in the GmHSP40.1-OE line compared with the wde-type Col-0. Interestingly, the H3K4me3 modification was just opposite to H3K27me3 modification at FT and FLC loci, suggesting an antagonistic relationship between these two modifications. Accordingly, the expression of FT and FLC was significantly reduced and increased, respectively, in the GmHSP40.1-OE line compared with that of Col-0. Lastly, we showed that both EMF1 and JMJ14 are genetically epistatic to GmHSP40.1-overexpression. Together, our results revealed that GmHSP40.1 negatively regulates flowering time through promoting the function of EMF1c via interacting with both EMF1 and JMJ14.
Collapse
Affiliation(s)
- Chi Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Hu-Jiao Lan
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China; Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Li-Na Liao
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Min-Jun Huang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Wei Xu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Hui Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Ma
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Feng Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ninghui Cheng
- US. Department of Agriculture-Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, United States
| | - Paul A Nakata
- US. Department of Agriculture-Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, United States
| | - Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, United States
| | - Jian-Zhong Liu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China; Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
2
|
Zhang D, Gan Y, Le L, Pu L. Epigenetic variation in maize agronomical traits for breeding and trait improvement. J Genet Genomics 2025; 52:307-318. [PMID: 38310944 DOI: 10.1016/j.jgg.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
Epigenetics-mediated breeding (epibreeding) involves engineering crop traits and stress responses through the targeted manipulation of key epigenetic features to enhance agricultural productivity. While conventional breeding methods raise concerns about reduced genetic diversity, epibreeding propels crop improvement through epigenetic variations that regulate gene expression, ultimately impacting crop yield. Epigenetic regulation in crops encompasses various modes, including histone modification, DNA modification, RNA modification, non-coding RNA, and chromatin remodeling. This review summarizes the epigenetic mechanisms underlying major agronomic traits in maize and identifies candidate epigenetic landmarks in the maize breeding process. We propose a valuable strategy for improving maize yield through epibreeding, combining CRISPR/Cas-based epigenome editing technology and Synthetic Epigenetics (SynEpi). Finally, we discuss the challenges and opportunities associated with maize trait improvement through epibreeding.
Collapse
Affiliation(s)
- Daolei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Yujun Gan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Shao Z, Chen CY, Qiao H. How chromatin senses plant hormones. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102592. [PMID: 38941723 PMCID: PMC11790310 DOI: 10.1016/j.pbi.2024.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
Plant hormones activate receptors, initiating intracellular signaling pathways. Eventually, hormone-specific transcription factors become active in the nucleus, facilitating hormone-induced transcriptional regulation. Chromatin plays a fundamental role in the regulation of transcription, the process by which genetic information encoded in DNA is converted into RNA. The structure of chromatin, a complex of DNA and proteins, directly influences the accessibility of genes to the transcriptional machinery. The different signaling pathways and transcription factors involved in the transmission of information from the receptors to the nucleus have been readily explored, but not so much for the specific mechanisms employed by the cell to ultimately instruct the chromatin changes necessary for a fast and robust transcription activation, specifically for plant hormone responses. In this review, we will focus on the advancements in understanding how chromatin receives plant hormones, facilitating the changes necessary for fast, robust, and specific transcriptional regulation.
Collapse
Affiliation(s)
- Zhengyao Shao
- Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX, 78712, USA; Department of Molecular Biosciences, The University of Texas, Austin, TX, 78712, USA
| | - Chia-Yang Chen
- Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX, 78712, USA; Department of Molecular Biosciences, The University of Texas, Austin, TX, 78712, USA
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX, 78712, USA; Department of Molecular Biosciences, The University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
4
|
Go D, Lu B, Alizadeh M, Gazzarrini S, Song L. Voice from both sides: a molecular dialogue between transcriptional activators and repressors in seed-to-seedling transition and crop adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1416216. [PMID: 39166233 PMCID: PMC11333834 DOI: 10.3389/fpls.2024.1416216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/20/2024] [Indexed: 08/22/2024]
Abstract
High-quality seeds provide valuable nutrients to human society and ensure successful seedling establishment. During maturation, seeds accumulate storage compounds that are required to sustain seedling growth during germination. This review focuses on the epigenetic repression of the embryonic and seed maturation programs in seedlings. We begin with an extensive overview of mutants affecting these processes, illustrating the roles of core proteins and accessory components in the epigenetic machinery by comparing mutants at both phenotypic and molecular levels. We highlight how omics assays help uncover target-specific functional specialization and coordination among various epigenetic mechanisms. Furthermore, we provide an in-depth discussion on the Seed dormancy 4 (Sdr4) transcriptional corepressor family, comparing and contrasting their regulation of seed germination in the dicotyledonous species Arabidopsis and two monocotyledonous crops, rice and wheat. Finally, we compare the similarities in the activation and repression of the embryonic and seed maturation programs through a shared set of cis-regulatory elements and discuss the challenges in applying knowledge largely gained in model species to crops.
Collapse
Affiliation(s)
- Dongeun Go
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Bailan Lu
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Sonia Gazzarrini
- Department of Biological Science, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Gazzarrini S, Song L. LAFL Factors in Seed Development and Phase Transitions. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:459-488. [PMID: 38657282 DOI: 10.1146/annurev-arplant-070623-111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Development is a chain reaction in which one event leads to another until the completion of a life cycle. Phase transitions are milestone events in the cycle of life. LEAFY COTYLEDON1 (LEC1), ABA INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 proteins, collectively known as LAFL, are master transcription factors (TFs) regulating seed and other developmental processes. Since the initial characterization of the LAFL genes, more than three decades of active research has generated tremendous amounts of knowledge about these TFs, whose roles in seed development and germination have been comprehensively reviewed. Recent advances in cell biology with genetic and genomic tools have allowed the characterization of the LAFL regulatory networks in previously challenging tissues at a higher throughput and resolution in reference species and crops. In this review, we provide a holistic perspective by integrating advances at the epigenetic, transcriptional, posttranscriptional, and protein levels to exemplify the spatiotemporal regulation of the LAFL networks in Arabidopsis seed development and phase transitions, and we briefly discuss the evolution of these TF networks.
Collapse
Affiliation(s)
- Sonia Gazzarrini
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada;
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
6
|
Xu F, Zhang D, Le L, Pu L. Polycomb and trithorax: Their yin-yang dynamics in plants. MOLECULAR PLANT 2024; 17:845-847. [PMID: 38783605 DOI: 10.1016/j.molp.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Affiliation(s)
- Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Daolei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
7
|
Xu F, Dong H, Guo W, Le L, Jing Y, Fletcher JC, Sun J, Pu L. The trxG protein ULT1 regulates Arabidopsis organ size by interacting with TCP14/15 to antagonize the LIM peptidase DA1 for H3K4me3 on target genes. PLANT COMMUNICATIONS 2024; 5:100819. [PMID: 38217289 PMCID: PMC11009162 DOI: 10.1016/j.xplc.2024.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Plant organ size is an important agronomic trait that makes a significant contribution to plant yield. Despite its central importance, the genetic and molecular mechanisms underlying organ size control remain to be fully clarified. Here, we report that the trithorax group protein ULTRAPETALA1 (ULT1) interacts with the TEOSINTE BRANCHED1/CYCLOIDEA/PCF14/15 (TCP14/15) transcription factors by antagonizing the LIN-11, ISL-1, and MEC-3 (LIM) peptidase DA1, thereby regulating organ size in Arabidopsis. Loss of ULT1 function significantly increases rosette leaf, petal, silique, and seed size, whereas overexpression of ULT1 results in reduced organ size. ULT1 associates with TCP14 and TCP15 to co-regulate cell size by affecting cellular endoreduplication. Transcriptome analysis revealed that ULT1 and TCP14/15 regulate common target genes involved in endoreduplication and leaf development. ULT1 can be recruited by TCP14/15 to promote lysine 4 of histone H3 trimethylation at target genes, activating their expression to determine final cell size. Furthermore, we found that ULT1 influences the interaction of DA1 and TCP14/15 and antagonizes the effect of DA1 on TCP14/15 degradation. Collectively, our findings reveal a novel epigenetic mechanism underlying the regulation of organ size in Arabidopsis.
Collapse
Affiliation(s)
- Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huixue Dong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yexing Jing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jennifer C Fletcher
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Plant Gene Expression Center, United States Department of Agriculture - Agricultural Research Service, Albany, CA 94710, USA
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Wang H, Yin C, Zhang G, Yang M, Zhu B, Jiang J, Zeng Z. Cold-induced deposition of bivalent H3K4me3-H3K27me3 modification and nucleosome depletion in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:549-564. [PMID: 38184780 DOI: 10.1111/tpj.16624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Epigenetic regulation of gene expression plays a crucial role in plant development and environmental adaptation. The H3K4me3 and H3K27me3 have not only been discovered in the regulation of gene expression in multiple biological processes but also in responses to abiotic stresses in plants. However, evidence for the presence of both H3K4me3 and H3K27me3 on the same nucleosome is sporadic. Cold-induced deposition of bivalent H3K4me3-H3K27me3 modifications and nucleosome depletion over a considerable number of active genes is documented in potato tubers and provides clues on an additional role of the bivalent modifications. Limited by the available information of genes encoding PcG/TrxG proteins as well as their corresponding mutants in potatoes, the molecular mechanism underlying the cold-induced deposition of the bivalent mark remains elusive. In this study, we found a similar deposition of the bivalent H3K4me3-H3K27me3 mark over 2129 active genes in cold-treated Arabidopsis Col-0 seedlings. The expression levels of the bivalent mark-associated genes tend to be independent of bivalent modification levels. However, these genes were associated with greater chromatin accessibility, presumably to provide a distinct chromatin environment for gene expression. In mutants clf28 and lhp1, failure to deposit H3K27me3 in active genes upon cold treatment implies that the CLF is potentially involved in cold-induced deposition of H3K27me3, with assistance from LHP1. Failure to deposit H3K4me3 during cold treatment in atx1-2 suggests a regulatory role of ATX1 in the deposition of H3K4me3. In addition, we observed a cold-induced global reduction in nucleosome occupancy, which is potentially mediated by LHP1 in an H3K27me3-dependent manner.
Collapse
Affiliation(s)
- Hao Wang
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Chang Yin
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Guoyan Zhang
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Miao Yang
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Jiming Jiang
- Department of Plant Biology, Department of Horticulture, Michigan State University AgBioResearch, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Zixian Zeng
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| |
Collapse
|
9
|
Ornelas-Ayala D, Cortés-Quiñones C, Arciniega-González JA, Garay-Arroyo A, García-Ponce B, R Alvarez-Buylla E, Sanchez MDLP. ULTRAPETALAs in action: Unraveling their role in root development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111975. [PMID: 38181854 DOI: 10.1016/j.plantsci.2024.111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/19/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
The epigenetic complex Trithorax (TrxG) regulates gene transcription through post-translational histone modifications and is involved in a wide range of developmental processes. ULTRAPETALA1 (ULT1) is a SAND domain plant-exclusive TrxG protein that regulates the H3K4me3 active mark to counteract PcG repression. ULT1 has been identified to be involved in multiple tissue-specific processes. In the Arabidopsis root, ULT1 is required to maintain the stem cell niche, a role that is independent of the histone methyltransferase ATX1. Here we show the contribution of ULT2 in the maintenance of root stem cell niche. We also analyzed the gene expression in the ult1, ult2, and ult1ult2 mutants, evidencing three ways in which ULT1 and ULT2 regulate gene expression, one of them, where ULT1 or ULT2 regulate specific genes each, another where ULT1 and ULT2 act redundantly, as well as a regulation that requires of ULT1 and ULT2 together, supporting a coregulation, never reported. Furthermore, we also evidenced the participation of ULT1 in transcriptional repression synergically with CLF, a key histone methyltransferase of PcG.
Collapse
Affiliation(s)
- Diego Ornelas-Ayala
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, Mexico.
| | - Carlos Cortés-Quiñones
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, Mexico.
| | - J Arturo Arciniega-González
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, Mexico.
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, Mexico.
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, Mexico.
| | - Elena R Alvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, Mexico.
| | - Maria De La Paz Sanchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, Mexico.
| |
Collapse
|
10
|
Yu J, Song G, Guo W, Le L, Xu F, Wang T, Wang F, Wu Y, Gu X, Pu L. ZmBELL10 interacts with other ZmBELLs and recognizes specific motifs for transcriptional activation to modulate internode patterning in maize. THE NEW PHYTOLOGIST 2023; 240:577-596. [PMID: 37583092 DOI: 10.1111/nph.19192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/15/2023] [Indexed: 08/17/2023]
Abstract
Plant height is an important agronomic trait that affects crop yield. Elucidating the molecular mechanism underlying plant height regulation is also an important question in developmental biology. Here, we report that a BELL transcription factor, ZmBELL10, positively regulates plant height in maize (Zea mays). Loss of ZmBELL10 function resulted in shorter internodes, fewer nodes, and smaller kernels, while ZmBELL10 overexpression increased plant height and hundred-kernel weight. Transcriptome analysis and chromatin immunoprecipitation followed by sequencing showed that ZmBELL10 recognizes specific sequences in the promoter of its target genes and activates cell division- and cell elongation-related gene expression, thereby influencing node number and internode length in maize. ZmBELL10 interacted with several other ZmBELL proteins via a spatial structure in its POX domain to form protein complexes involving ZmBELL10. All interacting proteins recognized the same DNA sequences, and their interaction with ZmBELL10 increased target gene expression. We identified the key residues in the POX domain of ZmBELL10 responsible for its protein-protein interactions, but these residues did not affect its transactivation activity. Collectively, our findings shed light on the functions of ZmBELL10 protein complexes and provide potential targets for improving plant architecture and yield in maize.
Collapse
Affiliation(s)
- Jia Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guangshu Song
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ting Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Shangrao Normal University, Shangrao, 334001, China
| | - Fanhua Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yue Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
11
|
Yang Y, Wen X, Wu Z, Wang K, Zhu Y. Large-scale long terminal repeat insertions produced a significant set of novel transcripts in cotton. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1711-1724. [PMID: 37079218 DOI: 10.1007/s11427-022-2341-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023]
Abstract
Genomic analysis has revealed that the 1,637-Mb Gossypium arboreum genome contains approximately 81% transposable elements (TEs), while only 57% of the 735-Mb G. raimondii genome is occupied by TEs. In this study, we investigated whether there were unknown transcripts associated with TE or TE fragments and, if so, how these new transcripts were evolved and regulated. As sequence depths increased from 4 to 100 G, a total of 10,284 novel intergenic transcripts (intergenic genes) were discovered. On average, approximately 84% of these intergenic transcripts possibly overlapped with the long terminal repeat (LTR) insertions in the otherwise untranscribed intergenic regions and were expressed at relatively low levels. Most of these intergenic transcripts possessed no transcription activation markers, while the majority of the regular genic genes possessed at least one such marker. Genes without transcription activation markers formed their+1 and -1 nucleosomes more closely (only (117±1.4)bp apart), while twice as big spaces (approximately (403.5±46.0) bp apart) were detected for genes with the activation markers. The analysis of 183 previously assembled genomes across three different kingdoms demonstrated systematically that intergenic transcript numbers in a given genome correlated positively with its LTR content. Evolutionary analysis revealed that genic genes originated during one of the whole-genome duplication events around 137.7 million years ago (MYA) for all eudicot genomes or 13.7 MYA for the Gossypium family, respectively, while the intergenic transcripts evolved around 1.6 MYA, resultant of the last LTR insertion. The characterization of these low-transcribed intergenic transcripts can facilitate our understanding of the potential biological roles played by LTRs during speciation and diversifications.
Collapse
Affiliation(s)
- Yan Yang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Xingpeng Wen
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiguo Wu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuxian Zhu
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- Hubei Hongshan Laboratory, Wuhan, 430072, China.
- TaiKang Center for Life and Medical Sciences, RNA Institute, Remin Hospital, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
12
|
Han Y, Kang C. The trithorax group factor ULTRAPETALA1 controls flower and leaf development in woodland strawberry. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 333:111729. [PMID: 37178733 DOI: 10.1016/j.plantsci.2023.111729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The trithorax group (TrxG) factors play a critical role in the regulation of gene transcription by modulating histone methylation. However, the biological functions of the TrxG components are poorly characterized in different plant species. In this work, we identified three allelic ethyl methane-sulfonate-induced mutants P7, R67 and M3 in the woodland strawberry Fragaria vesca. These mutants show an increased number of floral organs, a lower pollination rate, raised achenes on the surface of the receptacle and increased leaf complexity. The causative gene is FvH4_6g44900, which contains severe mutations leading to premature stop codons or alternative splicing in each mutant. This gene encodes a protein with high similarity to ULTRAPETALA1, a component of the TrxG complex, and is therefore named as FveULT1. Yeast-two-hybrid and split-luciferase assays revealed that FveULT1 can physically interact with the TrxG factor FveATX1 and the PcG repressive complex 2 (PRC2) accessory protein FveEMF1. Transcriptome analysis revealed that several MADS-box genes, FveLFY and FveUFO were significantly up-regulated in fveult1 flower buds. The leaf development genes FveKNOXs, FveLFYa and SIMPLE LEAF1 were strongly induced in fveult1 leaves, and their promoter regions showed increased H3K4me3 levels and decreased H3K27me3 levels in fveult1 compared to WT. Taken together, our results demonstrate that FveULT1 is important for flower, fruit and leaf development and highlight the potential regulatory functions of histone methylation in strawberry.
Collapse
Affiliation(s)
- Yafan Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chunying Kang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
13
|
Hagelthorn L, Monfared MM, Talo A, Harmon FG, Fletcher JC. Unique and overlapping functions for the transcriptional regulators KANADI1 and ULTRAPETALA1 in Arabidopsis gynoecium and stamen gene regulation. PLANT DIRECT 2023; 7:e496. [PMID: 37168319 PMCID: PMC10165739 DOI: 10.1002/pld3.496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023]
Abstract
Plants generate their reproductive organs, the stamens and the carpels, de novo within the flowers that form when the plant reaches maturity. The carpels comprise the female reproductive organ, the gynoecium, a complex organ that develops along several axes of polarity and is crucial for plant reproduction, fruit formation, and seed dispersal. The epigenetic trithorax group (trxG) protein ULTRAPETALA1 (ULT1) and the GARP domain transcription factor KANADI1 (KAN1) act cooperatively to regulate Arabidopsis thaliana gynoecium patterning along the apical-basal polarity axis; however, the molecular pathways through which this patterning activity is achieved remain to be explored. In this study, we used transcriptomics to identify genome-wide ULT1 and KAN1 target genes during reproductive development. We discovered 278 genes in developing flowers that are regulated by ULT1, KAN1, or both factors together. Genes involved in developmental and reproductive processes are overrepresented among ULT1 and/or KAN1 target genes, along with genes involved in biotic or abiotic stress responses. Consistent with their function in regulating gynoecium patterning, a number of the downstream target genes are expressed in the developing gynoecium, including a unique subset restricted to the stigmatic tissue. Further, we also uncovered a number of KAN1- and ULT1-induced genes that are transcribed predominantly or exclusively in developing stamens. These findings reveal a potential cooperative role for ULT1 and KAN1 in male as well as female reproductive development that can be investigated with future genetic and molecular experiments.
Collapse
Affiliation(s)
- Lynne Hagelthorn
- Plant Gene Expression CenterUnited States Department of Agriculture‐Agricultural Research ServiceAlbanyCaliforniaUSA
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Mona M. Monfared
- Present address:
Department of Molecular and Cellular BiologyUniversity of California, DavisDavisCaliforniaUSA
| | - Anthony Talo
- Biology DepartmentSt. Mary's College of CaliforniaMoragaCaliforniaUSA
| | - Frank G. Harmon
- Plant Gene Expression CenterUnited States Department of Agriculture‐Agricultural Research ServiceAlbanyCaliforniaUSA
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Jennifer C. Fletcher
- Plant Gene Expression CenterUnited States Department of Agriculture‐Agricultural Research ServiceAlbanyCaliforniaUSA
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| |
Collapse
|
14
|
Xie SS, Zhang YZ, Peng L, Yu DT, Zhu G, Zhao Q, Wang CH, Xie Q, Duan CG. JMJ28 guides sequence-specific targeting of ATX1/2-containing COMPASS-like complex in Arabidopsis. Cell Rep 2023; 42:112163. [PMID: 36827182 DOI: 10.1016/j.celrep.2023.112163] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/21/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Despite extensive investigations in mammals and yeasts, the importance and specificity of COMPASS-like complex, which catalyzes histone 3 lysine 4 methylation (H3K4me), are not fully understood in plants. Here, we report that JMJ28, a Jumonji C domain-containing protein in Arabidopsis, recognizes specific DNA motifs through a plant-specific WRC domain and acts as an interacting factor to guide the chromatin targeting of ATX1/2-containing COMPASS-like complex. JMJ28 associates with COMPASS-like complex in vivo via direct interaction with RBL. The DNA-binding activity of JMJ28 is essential for both the targeting specificity of ATX1/2-COMPASS and the deposition of H3K4me at specific loci but exhibit functional redundancy with alternative COMPASS-like complexes at other loci. Finally, we demonstrate that JMJ28 is a negative regulator of plant immunity. In summary, our findings reveal a plant-specific recruitment mechanism of COMPASS-like complex. These findings help to gain deeper insights into the regulatory mechanism of COMPASS-like complex in plants.
Collapse
Affiliation(s)
- Si-Si Xie
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Zhe Zhang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Peng
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ding-Tian Yu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guohui Zhu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qingzhen Zhao
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China
| | - Chun-Han Wang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Cheng K, Lei C, Zhang S, Zheng Q, Wei C, Huang W, Xing M, Zhang J, Zhang X, Zhang X. Genome-wide identification and characterization of polycomb repressive complex 2 core components in upland cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2023; 23:66. [PMID: 36721081 PMCID: PMC9890721 DOI: 10.1186/s12870-023-04075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The evolutionarily conserved Polycomb Repressive Complex 2 (PRC2) plays a vital role in epigenetic gene repression by depositing tri-methylation on lysine residue K27 of histone H3 (H3K27me3) at the target loci, thus participating in diverse biological processes. However, few reports about PRC2 are available in plant species with large and complicated genomes, like cotton. RESULTS Here, we performed a genome-wide identification and comprehensive analysis of cotton PRC2 core components, especially in upland cotton (Gossypium hirsutum). Firstly, a total of 8 and 16 PRC2 core components were identified in diploid and tetraploid cotton species, respectively. These components were classified into four groups, E(z), Su(z)12, ESC and p55, and the members in the same group displayed good collinearity, similar gene structure and domain organization. Next, we cloned G. hirsutum PRC2 (GhPRC2) core components, and found that most of GhPRC2 proteins were localized in the nucleus, and interacted with each other to form multi-subunit complexes. Moreover, we analyzed the expression profile of GhPRC2 genes. The transcriptome data and quantitative real-time PCR (qRT-PCR) assays indicated that GhPRC2 genes were ubiquitously but differentially expressed in various tissues, with high expression levels in reproductive organs like petals, stamens and pistils. And the expressions of several GhPRC2 genes, especially E(z) group genes, were responsive to various abiotic and biotic stresses, including drought, salinity, extreme temperature, and Verticillium dahliae (Vd) infection. CONCLUSION We identified PRC2 core components in upland cotton, and systematically investigated their classifications, phylogenetic and synteny relationships, gene structures, domain organizations, subcellular localizations, protein interactions, tissue-specific and stresses-responsive expression patterns. Our results will provide insights into the evolution and composition of cotton PRC2, and lay the foundation for further investigation of their biological functions and regulatory mechanisms.
Collapse
Affiliation(s)
- Kai Cheng
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Cangbao Lei
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Siyuan Zhang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Qiao Zheng
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Chunyan Wei
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Weiyi Huang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Minghui Xing
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Junli Zhang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Xiangyu Zhang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Xiao Zhang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China.
| |
Collapse
|
16
|
Tian J, Xing Q, Jing T, Fan X, Zhang Q, Müller-Xing R. The epigenetic regulator ULTRAPETALA1 suppresses de novo root regeneration from Arabidopsis leaf explants. PLANT SIGNALING & BEHAVIOR 2022; 17:2031784. [PMID: 35164655 PMCID: PMC9746478 DOI: 10.1080/15592324.2022.2031784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plants have the potency to regenerate adventitious roots from aerial organs after detachment. In Arabidopsis thaliana, de novo root regeneration (DNRR) from leaf explants is triggered by wounding signaling that rapidly induces the expression of the ETHYLENE RESPONSE FACTOR (ERF) transcription factors ERF109 and ABR1 (ERF111). In turn, the ERFs promote the expression of ASA1, an essential enzyme of auxin biosynthesis, which contributes to rooting by providing high levels of auxin near the wounding side of the leaf. Here, we show that the loss of the epigenetic regulator ULTRAPETALA1 (ULT1), which interacts with Polycomb and Trithorax Group proteins, accelerates and reinforces adventitious root formation. Expression of ERF109 and ASA1 was increased in ult1 mutants, whereas ABR1 was not significantly changed. Cultivation of explants on media with exogenous auxin equates adventitious root formation in wild-type with ult1 mutants, suggesting that ULT1 negatively regulates DNRR by suppressing auxin biosynthesis. Based on these findings, we propose that ULT1 is involved in a novel mechanism that prevents overproliferation of adventitious roots during DNRR.
Collapse
Affiliation(s)
- Jingjing Tian
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration Ministry of Education, Northeast Forestry University, Harbin, China
- College of Life Science, Institute of Genetics, Northeast Forestry University, Harbin, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Qian Xing
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Tingting Jing
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration Ministry of Education, Northeast Forestry University, Harbin, China
- College of Life Science, Institute of Genetics, Northeast Forestry University, Harbin, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Xing Fan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration Ministry of Education, Northeast Forestry University, Harbin, China
- College of Life Science, Institute of Genetics, Northeast Forestry University, Harbin, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Qingzhu Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration Ministry of Education, Northeast Forestry University, Harbin, China
- College of Life Science, Institute of Genetics, Northeast Forestry University, Harbin, China
| | - Ralf Müller-Xing
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
- CONTACT Ralf Müller-Xing Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| |
Collapse
|
17
|
Ornelas-Ayala D, Cortés-Quiñones C, Olvera-Herrera J, García-Ponce B, Garay-Arroyo A, Álvarez-Buylla ER, Sanchez MDLP. A Green Light to Switch on Genes: Revisiting Trithorax on Plants. PLANTS (BASEL, SWITZERLAND) 2022; 12:75. [PMID: 36616203 PMCID: PMC9824250 DOI: 10.3390/plants12010075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The Trithorax Group (TrxG) is a highly conserved multiprotein activation complex, initially defined by its antagonistic activity with the PcG repressor complex. TrxG regulates transcriptional activation by the deposition of H3K4me3 and H3K36me3 marks. According to the function and evolutionary origin, several proteins have been defined as TrxG in plants; nevertheless, little is known about their interactions and if they can form TrxG complexes. Recent evidence suggests the existence of new TrxG components as well as new interactions of some TrxG complexes that may be acting in specific tissues in plants. In this review, we bring together the latest research on the topic, exploring the interactions and roles of TrxG proteins at different developmental stages, required for the fine-tuned transcriptional activation of genes at the right time and place. Shedding light on the molecular mechanism by which TrxG is recruited and regulates transcription.
Collapse
|
18
|
Fambrini M, Usai G, Pugliesi C. Induction of Somatic Embryogenesis in Plants: Different Players and Focus on WUSCHEL and WUS-RELATED HOMEOBOX (WOX) Transcription Factors. Int J Mol Sci 2022; 23:15950. [PMID: 36555594 PMCID: PMC9781121 DOI: 10.3390/ijms232415950] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
In plants, other cells can express totipotency in addition to the zygote, thus resulting in embryo differentiation; this appears evident in apomictic and epiphyllous plants. According to Haberlandt's theory, all plant cells can regenerate a complete plant if the nucleus and the membrane system are intact. In fact, under in vitro conditions, ectopic embryos and adventitious shoots can develop from many organs of the mature plant body. We are beginning to understand how determination processes are regulated and how cell specialization occurs. However, we still need to unravel the mechanisms whereby a cell interprets its position, decides its fate, and communicates it to others. The induction of somatic embryogenesis might be based on a plant growth regulator signal (auxin) to determine an appropriate cellular environment and other factors, including stress and ectopic expression of embryo or meristem identity transcription factors (TFs). Still, we are far from having a complete view of the regulatory genes, their target genes, and their action hierarchy. As in animals, epigenetic reprogramming also plays an essential role in re-establishing the competence of differentiated cells to undergo somatic embryogenesis. Herein, we describe the functions of WUSCHEL-RELATED HOMEOBOX (WOX) transcription factors in regulating the differentiation-dedifferentiation cell process and in the developmental phase of in vitro regenerated adventitious structures.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
19
|
Zhang D, Guo W, Wang T, Wang Y, Le L, Xu F, Wu Y, Wuriyanghan H, Sung ZR, Pu L. RNA 5-Methylcytosine Modification Regulates Vegetative Development Associated with H3K27 Trimethylation in Arabidopsis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204885. [PMID: 36382558 PMCID: PMC9811455 DOI: 10.1002/advs.202204885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Methylating RNA post-transcriptionally is emerging as a significant mechanism of gene regulation in eukaryotes. The crosstalk between RNA methylation and histone modification is critical for chromatin state and gene expression in mammals. However, it is not well understood mechanistically in plants. Here, the authors report a genome-wide correlation between RNA 5-cytosine methylation (m5 C) and histone 3 lysine27 trimethylation (H3K27me3) in Arabidopsis. The plant-specific Polycomb group (PcG) protein EMBRYONIC FLOWER1 (EMF1) plays dual roles as activators or repressors. Transcriptome-wide RNA m5 C profiling revealed that m5 C peaks are mostly enriched in chromatin regions that lacked H3K27me3 in both wild type and emf1 mutants. EMF1 repressed the expression of m5 C methyltransferase tRNA specific methyltransferase 4B (TRM4B) through H3K4me3, independent of PcG-mediated H3K27me3 mechanism. The 5-Cytosine methylation on targets is increased in emf1 mutants, thereby decreased the mRNA transcripts of photosynthesis and chloroplast genes. In addition, impairing EMF1 activity reduced H3K27me3 levels of PcG targets, such as starch genes, which are de-repressed in emf1 mutants. Both EMF1-mediated promotion and repression of gene activities via m5 C and H3K27me3 are required for normal vegetative growth. Collectively, t study reveals a previously undescribed epigenetic mechanism of RNA m5 C modifications and histone modifications to regulate gene expression in eukaryotes.
Collapse
Affiliation(s)
- Daolei Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
- School of Life ScienceInner Mongolia UniversityHohhot010021P. R. China
| | - Weijun Guo
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Ting Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
- Shangrao Normal UniversityShangrao334001P. R. China
| | - Yifan Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Liang Le
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Fan Xu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Yue Wu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Hada Wuriyanghan
- School of Life ScienceInner Mongolia UniversityHohhot010021P. R. China
| | - Zinmay Renee Sung
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720USA
| | - Li Pu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081P. R. China
| |
Collapse
|
20
|
Müller-Xing R, Xing Q. The plant stem-cell niche and pluripotency: 15 years of an epigenetic perspective. FRONTIERS IN PLANT SCIENCE 2022; 13:1018559. [PMID: 36388540 PMCID: PMC9659954 DOI: 10.3389/fpls.2022.1018559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Pluripotent stem-cells are slowly dividing cells giving rise to daughter cells that can either differentiate to new tissues and organs, or remain stem-cells. In plants, stem-cells are located in specific niches of the shoot and root apical meristems (SAMs and RAMs). After ablation of stem-cell niches, pluripotent meristematic cells can establish new stem-cells, whereas the removal of the whole meristem destructs the regeneration process. In tissue cultures, after detached plant organs are transferred to rooting or callus induction medium (G5 or CIM), vasculature-associated pluripotent cells (VPCs) immediately start proliferation to form adventitious roots or callus, respectively, while other cell types of the organ explants basically play no part in the process. Hence, in contrast to the widely-held assumption that all plant cells have the ability to reproduce a complete organism, only few cell types are pluripotent in practice, raising the question how pluripotent stem-cells differ from differentiated cells. It is now clear that, in addition to gene regulatory networks of pluripotency factors and phytohormone signaling, epigenetics play a crucial role in initiation, maintenance and determination of plant stem-cells. Although, more and more epigenetic regulators have been shown to control plant stem-cell fate, only a few studies demonstrate how they are recruited and how they change the chromatin structure and transcriptional regulation of pluripotency factors. Here, we highlight recent breakthroughs but also revisited classical studies of epigenetic regulation and chromatin dynamics of plant stem-cells and their pluripotent precursor-cells, and point out open questions and future directions.
Collapse
|
21
|
Aflaki F, Gutzat R, Mozgová I. Chromatin during plant regeneration: Opening towards root identity? CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102265. [PMID: 35988353 DOI: 10.1016/j.pbi.2022.102265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/01/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Plants show exceptional developmental plasticity and the ability to reprogram cell identities during regeneration. Although regeneration has been used in plant propagation for decades, we only recently gained detailed cellular and molecular insights into this process. Evidently, not all cell types have the same regeneration potential, and only a subset of regeneration-competent cells reach pluripotency. Pluripotent cells exhibit transcriptional similarity to root stem cells. In different plant regeneration systems, transcriptional reprogramming involves transient release of chromatin repression during pluripotency establishment and its restoration during organ or embryo differentiation. Incomplete resetting of the epigenome leads to somaclonal variation in regenerated plants. As single-cell technologies advance, we expect novel, exciting insights into epigenome dynamics during the establishment of pluripotency.
Collapse
Affiliation(s)
- Fatemeh Aflaki
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Ruben Gutzat
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, 1030, Austria
| | - Iva Mozgová
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic.
| |
Collapse
|
22
|
Xiao M, Wang J, Xu F. Methylation hallmarks on the histone tail as a linker of osmotic stress and gene transcription. FRONTIERS IN PLANT SCIENCE 2022; 13:967607. [PMID: 36035677 PMCID: PMC9399788 DOI: 10.3389/fpls.2022.967607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 06/12/2023]
Abstract
Plants dynamically manipulate their gene expression in acclimation to the challenging environment. Hereinto, the histone methylation tunes the gene transcription via modulation of the chromatin accessibility to transcription machinery. Osmotic stress, which is caused by water deprivation or high concentration of ions, can trigger remarkable changes in histone methylation landscape and genome-wide reprogramming of transcription. However, the dynamic regulation of genes, especially how stress-inducible genes are timely epi-regulated by histone methylation remains largely unclear. In this review, recent findings on the interaction between histone (de)methylation and osmotic stress were summarized, with emphasis on the effects on histone methylation profiles imposed by stress and how histone methylation works to optimize the performance of plants under stress.
Collapse
|
23
|
Nemati I, Sedghi M, Hosseini Salekdeh G, Tavakkol Afshari R, Naghavi MR, Gholizadeh S. DELAY OF GERMINATION 1 ( DOG1) regulates dormancy in dimorphic seeds of Xanthium strumarium. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:742-758. [PMID: 35569923 DOI: 10.1071/fp21315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Seed dormancy ensures plant survival but many mechanisms remain unclear. A high-throughput RNA-seq analysis investigated the mechanisms involved in the establishment of dormancy in dimorphic seeds of Xanthium strumarium (L.) developing in one single burr. Results showed that DOG1 , the main dormancy gene in Arabidopsis thaliana L., was over-represented in the dormant seed leading to the formation of two seeds with different cell wall properties. Less expression of DME /EMB1649 , UBP26 , EMF2, MOM, SNL2, and AGO4 in the non-dormant seed was observed, which function in the chromatin remodelling of dormancy-associated genes through DNA methylation. However, higher levels of ATXR7 /SDG25, ELF6 , and JMJ16/PKDM7D in the non-dormant seed that act at the level of histone demethylation and activate germination were found. Dramatically lower expression in the splicing factors SUA, PWI , and FY in non-dormant seed may indicate that variation in RNA splicing for ABA sensitivity and transcriptional elongation control of DOG1 is of importance for inducing seed dormancy. Seed size and germination may be influenced by respiratory factors, and alterations in ABA content and auxin distribution and responses. TOR (a serine/threonine-protein kinase) is likely at the centre of a regulatory hub controlling seed metabolism, maturation, and germination. Over-representation of the respiration-associated genes (ACO3 , PEPC3 , and D2HGDH ) was detected in non-dormant seed, suggesting differential energy supplies in the two seeds. Degradation of ABA biosynthesis and/or proper auxin signalling in the large seed may control germinability, and suppression of endoreduplication in the small seed may be a mechanism for cell differentiation and cell size determination.
Collapse
Affiliation(s)
- Iman Nemati
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mohammad Sedghi
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; and Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Reza Tavakkol Afshari
- Department of Agronomy, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Somayeh Gholizadeh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
24
|
Ramakrishnan M, Papolu PK, Satish L, Vinod KK, Wei Q, Sharma A, Emamverdian A, Zou LH, Zhou M. Redox status of the plant cell determines epigenetic modifications under abiotic stress conditions and during developmental processes. J Adv Res 2022; 42:99-116. [PMID: 35690579 PMCID: PMC9788946 DOI: 10.1016/j.jare.2022.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The oxidation-reduction (redox) status of the cell influences or regulates transcription factors and enzymes involved in epigenetic changes, such as DNA methylation, histone protein modifications, and chromatin structure and remodeling. These changes are crucial regulators of chromatin architecture, leading to differential gene expression in eukaryotes. But the cell's redox homeostasis is difficult to sustain since the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is not equal in plants at different developmental stages and under abiotic stress conditions. Exceeding optimum ROS and RNS levels leads to oxidative stress and thus alters the redox status of the cell. Consequently, this alteration modulates intracellular epigenetic modifications that either mitigate or mediate the plant growth and stress response. AIM OF REVIEW Recent studies suggest that the altered redox status of the cell reform the cellular functions and epigenetic changes. Recent high-throughput techniques have also greatly advanced redox-mediated gene expression discovery, but the integrated view of the redox status, and its associations with epigenetic changes and subsequent gene expression in plants are still scarce. In this review, we accordingly focus on how the redox status of the cell affects epigenetic modifications in plants under abiotic stress conditions and during developmental processes. This is a first comprehensive review on the redox status of the cell covering the redox components and signaling, redox status alters the post-translational modification of proteins, intracellular epigenetic modifications, redox interplay during DNA methylation, redox regulation of histone acetylation and methylation, redox regulation of miRNA biogenesis, redox regulation of chromatin structure and remodeling and conclusion, future perspectives and biotechnological opportunities for the future development of the plants. KEY SCIENTIFIC CONCEPTS OF REVIEW The interaction of redox mediators such as ROS, RNS and antioxidants regulates redox homeostasis and redox-mediated epigenetic changes. We discuss how redox mediators modulate epigenetic changes and show the opportunities for smart use of the redox status of the cell in plant development and abiotic stress adaptation. However, how a redox mediator triggers epigenetic modification without activating other redox mediators remains yet unknown.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Pradeep K Papolu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Lakkakula Satish
- Department of Biotechnology Engineering, & The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva - 84105, Israel; Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR - Central Salt and Marine Chemicals Research Institute, Mandapam 623519, Tamil Nadu, India
| | | | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
25
|
Chen Q, Zhang J, Li G. Dynamic epigenetic modifications in plant sugar signal transduction. TRENDS IN PLANT SCIENCE 2022; 27:379-390. [PMID: 34865981 DOI: 10.1016/j.tplants.2021.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 05/21/2023]
Abstract
In eukaryotes, dynamic chromatin states are closely related to changes in gene expression. Epigenetic modifications help plants adapt to their ever-changing environment by modulating gene expression via covalent modification at specific sites on DNA or histones. Sugars provide energy, but also function as signaling molecules to control plant growth and development. Various epigenetic modifications participate in sensing and transmitting sugar signals. Here we summarize recent progress in uncovering the epigenetic mechanisms involved in sugar signal transduction, including histone acetylation and deacetylation, histone methylation and demethylation, and DNA methylation. We also highlight changes in chromatin marks when crosstalk occurs between sugar signaling and the light, temperature, and phytohormone signaling pathways, and describe potential questions and approaches for future research.
Collapse
Affiliation(s)
- Qingshuai Chen
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
26
|
Lopez L, Perrella G, Calderini O, Porceddu A, Panara F. Genome-Wide Identification of Histone Modification Gene Families in the Model Legume Medicago truncatula and Their Expression Analysis in Nodules. PLANTS 2022; 11:plants11030322. [PMID: 35161303 PMCID: PMC8838541 DOI: 10.3390/plants11030322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 01/22/2023]
Abstract
Histone methylation and acetylation are key processes in the epigenetic regulation of plant growth, development, and responses to environmental stimuli. The genes encoding for the enzymes that are responsible for these chromatin post-translational modifications, referred to as histone modification genes (HMGs), have been poorly investigated in Leguminosae species, despite their importance for establishment and activity of nitrogen-fixing nodules. In silico analysis of Medicago truncatula HMGs identified 81 histone methyltransferases, 46 histone demethylases, 64 histone acetyltransferases, and 15 histone deacetylases. MtHMGs were analyzed for their structure and domain composition, and some combinations that were not yet reported in other plant species were identified. Genes have been retrieved from M. truncatula A17 and R108 genotypes as well as M. sativa CADL and Zhongmu No.1; the gene number and distribution were compared with Arabidopsis thaliana. Furthermore, by analyzing the expression data that were obtained at various developmental stages and in different zones of nitrogen-fixing nodules, we identified MtHMG loci that could be involved in nodule development and function. This work sets a reference for HMG genomic organization in legumes which will be useful for functional investigation that is aimed at elucidating HMGs involvement in nodule development and symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Loredana Lopez
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), 75026 Rotondella, Italy; (L.L.); (G.P.)
| | - Giorgio Perrella
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), 75026 Rotondella, Italy; (L.L.); (G.P.)
| | - Ornella Calderini
- Institute of Biosciences and Bioresources, Consiglio Nazionale delle Ricerche, 06128 Perugia, Italy
- Correspondence: (O.C.); (F.P.); Tel.: +39-075-501-4858 (O.C.); +39-0835-974-523 (F.P.)
| | - Andrea Porceddu
- Department of Agriculture, University of Sassari, Viale Italia, 39a, 07100 Sassari, Italy;
| | - Francesco Panara
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), 75026 Rotondella, Italy; (L.L.); (G.P.)
- Correspondence: (O.C.); (F.P.); Tel.: +39-075-501-4858 (O.C.); +39-0835-974-523 (F.P.)
| |
Collapse
|
27
|
Ding X, Jia X, Xiang Y, Jiang W. Histone Modification and Chromatin Remodeling During the Seed Life Cycle. FRONTIERS IN PLANT SCIENCE 2022; 13:865361. [PMID: 35548305 PMCID: PMC9083068 DOI: 10.3389/fpls.2022.865361] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/21/2022] [Indexed: 05/16/2023]
Abstract
Seeds are essential for the reproduction and dispersion of spermatophytes. The seed life cycle from seed development to seedling establishment proceeds through a series of defined stages regulated by distinctive physiological and biochemical mechanisms. The role of histone modification and chromatin remodeling in seed behavior has been intensively studied in recent years. In this review, we summarize progress in elucidating the regulatory network of these two kinds of epigenetic regulation during the seed life cycle, especially in two model plants, rice and Arabidopsis. Particular emphasis is placed on epigenetic effects on primary tissue formation (e.g., the organized development of embryo and endosperm), pivotal downstream gene expression (e.g., transcription of DOG1 in seed dormancy and repression of seed maturation genes in seed-to-seedling transition), and environmental responses (e.g., seed germination in response to different environmental cues). Future prospects for understanding of intricate interplay of epigenetic pathways and the epigenetic mechanisms in other commercial species are also proposed.
Collapse
Affiliation(s)
- Xiali Ding
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Xuhui Jia
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yong Xiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Wenhui Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
- *Correspondence: Wenhui Jiang,
| |
Collapse
|
28
|
Current understanding of plant Polycomb group proteins and the repressive histone H3 Lysine 27 trimethylation. Biochem Soc Trans 2021; 48:1697-1706. [PMID: 32725200 DOI: 10.1042/bst20200192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/27/2022]
Abstract
Polycomb group (PcG) proteins are highly conserved chromatin-modifying complexes that implement gene silencing in higher eukaryotes. Thousands of genes and multiple developmental processes are regulated by PcG proteins. As the first chromatin modifier been identified in model plant Arabidopsis thaliana, the methyltransferase CURLY LEAF (CLF) and its catalyzed histone H3 Lysine 27 trimethylation (H3K27me3) have already become well-established paradigm in plant epigenetic study. Like in animals, PcG proteins mediate plant development and repress homeotic gene expression by antagonizing with trithorax group proteins. Recent researches have advanced our understanding on plant PcG proteins, including the plant-specific components of these well-conserved protein complexes, the close association with transcription factors and noncoding RNA for the spatial and temporal specificity, the dynamic regulation of the repressive mark H3K27me3 and the PcG-mediated chromatin conformation alterations in gene expression. In this review, we will summarize the molecular mechanisms of PcG-implemented gene repression and the relationship between H3K27me3 and another repressive mark histone H2A Lysine 121 mono-ubiquitination (H2A121ub) will also be discussed.
Collapse
|
29
|
Ornelas-Ayala D, Garay-Arroyo A, García-Ponce B, R. Álvarez-Buylla E, Sanchez MDLP. The Epigenetic Faces of ULTRAPETALA1. FRONTIERS IN PLANT SCIENCE 2021; 12:637244. [PMID: 33719312 PMCID: PMC7947857 DOI: 10.3389/fpls.2021.637244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/21/2021] [Indexed: 05/27/2023]
Abstract
ULTRAPETALA1 (ULT1) is a versatile plant-exclusive protein, initially described as a trithorax group (TrxG) factor that regulates transcriptional activation and counteracts polycomb group (PcG) repressor function. As part of TrxG, ULT1 interacts with ARABIDOPSIS TRITHORAX1 (ATX1) to regulate H3K4me3 activation mark deposition. However, our recent studies indicate that ULT1 can also act independently of ATX1. Moreover, the ULT1 ability to interact with transcription factors (TFs) and PcG proteins indicates that it is a versatile protein with other roles. Therefore, in this work we revised recent information about the function of Arabidopsis ULT1 to understand the roles of ULT1 in plant development. Furthermore, we discuss the molecular mechanisms of ULT1, highlighting its epigenetic role, in which ULT1 seems to have characteristics of an epigenetic molecular switch that regulates repression and activation processes via TrxG and PcG complexes.
Collapse
Affiliation(s)
- Diego Ornelas-Ayala
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, Mexico City, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, Mexico City, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, Mexico City, Mexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, Mexico City, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María de la Paz Sanchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, Mexico City, Mexico
| |
Collapse
|
30
|
Liu Z, Zheng L, Pu L, Ma X, Wang X, Wu Y, Ming H, Wang Q, Zhang G. ENO2 Affects the Seed Size and Weight by Adjusting Cytokinin Content and Forming ENO2-bZIP75 Complex in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:574316. [PMID: 32983222 PMCID: PMC7479207 DOI: 10.3389/fpls.2020.574316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Arabidopsis thaliana ENO2 (AtENO2) encodes two proteins AtENO2 (enolase) and AtMBP-1 (c-Myc binding protein 1-like). The loss of AtENO2 function causes the constitutive developmental defects which are correlated with reduced enolase activity, but not AtMBP-1 transcript abundance. However, the regulation mechanism of AtENO2 on the seed properties is still not clear. In this study, we found that the mutation of AtENO2 reduced the seed size and weight. The level of glucose in seed was significantly elevated but that of starch was decreased in AtENO2 mutants compared to WT plants. We also found that AtENO2 mutation reduced the content of cytokinin which resulted in smaller cotyledons. The RNA-seq data showed that there were 1892 differentially expressed genes and secondary metabolic pathways were significantly enriched. Instead of AtMBP-1, AtENO2 protein interacted with AtbZIP75 which may mediate the secondary metabolism. Therefore, ENO2 alters the size and weight of seeds which is not only regulated by the content of cytokinin and secondary metabolism, but may be affected by the interaction of ENO2 and bZIP57. These results are helpful to understand the novel function of AtENO2 which provide a foundation for further exploration of the key candidate genes for crop breeding.
Collapse
Affiliation(s)
- Zijin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lamei Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Xiaofeng Ma
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xing Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yu Wu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hainan Ming
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qing Wang
- Institute of Radiation Botany, Beijing Radiation Center, Beijing, China
| | - Genfa Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
31
|
Wójcikowska B, Wójcik AM, Gaj MD. Epigenetic Regulation of Auxin-Induced Somatic Embryogenesis in Plants. Int J Mol Sci 2020; 21:ijms21072307. [PMID: 32225116 PMCID: PMC7177879 DOI: 10.3390/ijms21072307] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
Somatic embryogenesis (SE) that is induced in plant explants in response to auxin treatment is closely associated with an extensive genetic reprogramming of the cell transcriptome. The significant modulation of the gene transcription profiles during SE induction results from the epigenetic factors that fine-tune the gene expression towards embryogenic development. Among these factors, microRNA molecules (miRNAs) contribute to the post-transcriptional regulation of gene expression. In the past few years, several miRNAs that regulate the SE-involved transcription factors (TFs) have been identified, and most of them were involved in the auxin-related processes, including auxin metabolism and signaling. In addition to miRNAs, chemical modifications of DNA and chromatin, in particular the methylation of DNA and histones and histone acetylation, have been shown to shape the SE transcriptomes. In response to auxin, these epigenetic modifications regulate the chromatin structure, and hence essentially contribute to the control of gene expression during SE induction. In this paper, we describe the current state of knowledge with regard to the SE epigenome. The complex interactions within and between the epigenetic factors, the key SE TFs that have been revealed, and the relationships between the SE epigenome and auxin-related processes such as auxin perception, metabolism, and signaling are highlighted.
Collapse
|
32
|
Ornelas-Ayala D, Vega-León R, Petrone-Mendoza E, Garay-Arroyo A, García-Ponce B, Álvarez-Buylla ER, Sanchez MDLP. ULTRAPETALA1 maintains Arabidopsis root stem cell niche independently of ARABIDOPSIS TRITHORAX1. THE NEW PHYTOLOGIST 2020; 225:1261-1272. [PMID: 31545512 DOI: 10.1111/nph.16213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/14/2019] [Indexed: 05/26/2023]
Abstract
During plant development, morphogenetic processes rely on the activity of meristems. Meristem homeostasis depends on a complex regulatory network constituted by different factors and hormone signaling that regulate gene expression to coordinate the correct balance between cell proliferation and differentiation. ULTRAPETALA1, a transcriptional regulatory protein described as an Arabidopsis Trithorax group factor, has been characterized as a regulator of the shoot and floral meristems activity. Here, we highlight the role of ULTRAPETALA1 in root stem cell niche maintenance. We found that ULTRAPETALA1 is required to regulate both the quiescent center cell division rate and auxin signaling at the root tip. Furthermore, ULTRAPETALA1 regulates columella stem cell differentiation. These roles are independent of the ARABIDOPSIS TRITHORAX1, suggesting a different mechanism by which ULTRAPETALA1 can act in the root apical meristem of Arabidopsis. This work introduces a new component of the regulatory network needed for the root stem cell niche maintenance.
Collapse
Affiliation(s)
- Diego Ornelas-Ayala
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, Mexico City, CdMex, 04510, Mexico
| | - Rosario Vega-León
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, Mexico City, CdMex, 04510, Mexico
| | - Emilio Petrone-Mendoza
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, Mexico City, CdMex, 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, Mexico City, CdMex, 04510, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Mexico City, CdMex, 04510, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, Mexico City, CdMex, 04510, Mexico
| | - Elena R Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, Mexico City, CdMex, 04510, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Mexico City, CdMex, 04510, Mexico
| | - María de la Paz Sanchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, Mexico City, CdMex, 04510, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Mexico City, CdMex, 04510, Mexico
| |
Collapse
|
33
|
Cheng K, Xu Y, Yang C, Ouellette L, Niu L, Zhou X, Chu L, Zhuang F, Liu J, Wu H, Charron JB, Luo M. Histone tales: lysine methylation, a protagonist in Arabidopsis development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:793-807. [PMID: 31560751 DOI: 10.1093/jxb/erz435] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/17/2019] [Indexed: 05/20/2023]
Abstract
Histone methylation plays a fundamental role in the epigenetic regulation of gene expression driven by developmental and environmental cues in plants, including Arabidopsis. Histone methyltransferases and demethylases act as 'writers' and 'erasers' of methylation at lysine and/or arginine residues of core histones, respectively. A third group of proteins, the 'readers', recognize and interpret the methylation marks. Emerging evidence confirms the crucial roles of histone methylation in multiple biological processes throughout the plant life cycle. In this review, we summarize the regulatory mechanisms of lysine methylation, especially at histone H3 tails, and focus on the recent advances regarding the roles of lysine methylation in Arabidopsis development, from seed performance to reproductive development, and in callus formation.
Collapse
Affiliation(s)
- Kai Cheng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yingchao Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Luc Ouellette
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Longjian Niu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xiaochen Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liutian Chu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Zhuang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin Liu
- Institute for Food and Bioresource Engineering, Department of Energy and Resources Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, China
| | - Hualing Wu
- Tea Research Institute, Guangdong Academy of Agricultural Sciences; Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou, Guangdong, China
| | - Jean-Benoit Charron
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Ming Luo
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
34
|
The Trithorax Group Factor ULTRAPETALA1 Regulates Developmental as Well as Biotic and Abiotic Stress Response Genes in Arabidopsis. G3-GENES GENOMES GENETICS 2019; 9:4029-4043. [PMID: 31604825 PMCID: PMC6893208 DOI: 10.1534/g3.119.400559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In eukaryotes, Polycomb group (PcG) and trithorax group (trxG) factors oppositely regulate gene transcription during development through histone modifications, with PcG factors repressing and trxG factors activating the expression of their target genes. Although plant trxG factors regulate many developmental and physiological processes, their downstream targets are poorly characterized. Here we use transcriptomics to identify genome-wide targets of the Arabidopsis thaliana trxG factor ULTRAPETALA1 (ULT1) during vegetative and reproductive development and compare them with those of the PcG factor CURLY LEAF (CLF). We find that genes involved in development and transcription regulation are over-represented among ULT1 target genes. In addition, stress response genes and defense response genes such as those in glucosinolate metabolic pathways are enriched, revealing a previously unknown role for ULT1 in controlling biotic and abiotic response pathways. Finally, we show that many ULT1 target genes can be oppositely regulated by CLF, suggesting that ULT1 and CLF may have antagonistic effects on plant growth and development in response to various endogenous and environmental cues.
Collapse
|
35
|
Zhao T, Zhan Z, Jiang D. Histone modifications and their regulatory roles in plant development and environmental memory. J Genet Genomics 2019; 46:467-476. [PMID: 31813758 DOI: 10.1016/j.jgg.2019.09.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/23/2019] [Accepted: 09/29/2019] [Indexed: 11/24/2022]
Abstract
Plants grow in dynamic environments where they receive diverse environmental signals. Swift and precise control of gene expression is essential for plants to align their development and metabolism with fluctuating surroundings. Modifications on histones serve as "histone code" to specify chromatin and gene activities. Different modifications execute distinct functions on the chromatin, promoting either active transcription or gene silencing. Histone writers, erasers, and readers mediate the regulation of histone modifications by catalyzing, removing, and recognizing modifications, respectively. Growing evidence indicates the important function of histone modifications in plant development and environmental responses. Histone modifications also serve as environmental memory for plants to adapt to environmental changes. Here we review recent progress on the regulation of histone modifications in plants, the impact of histone modifications on environment-controlled developmental transitions including germination and flowering, and the role of histone modifications in environmental memory.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenping Zhan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
36
|
Ruta V, Longo C, Boccaccini A, Madia VN, Saccoliti F, Tudino V, Di Santo R, Lorrai R, Dello Ioio R, Sabatini S, Costi R, Costantino P, Vittorioso P. Inhibition of Polycomb Repressive Complex 2 activity reduces trimethylation of H3K27 and affects development in Arabidopsis seedlings. BMC PLANT BIOLOGY 2019; 19:429. [PMID: 31619182 PMCID: PMC6796367 DOI: 10.1186/s12870-019-2057-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/26/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Polycomb repressive complex 2 (PRC2) is an epigenetic transcriptional repression system, whose catalytic subunit (ENHANCER OF ZESTE HOMOLOG 2, EZH2 in animals) is responsible for trimethylating histone H3 at lysine 27 (H3K27me3). In mammals, gain-of-function mutations as well as overexpression of EZH2 have been associated with several tumors, therefore making this subunit a suitable target for the development of selective inhibitors. Indeed, highly specific small-molecule inhibitors of EZH2 have been reported. In plants, mutations in some PRC2 components lead to embryonic lethality, but no trial with any inhibitor has ever been reported. RESULTS We show here that the 1,5-bis (3-bromo-4-methoxyphenyl)penta-1,4-dien-3-one compound (RDS 3434), previously reported as an EZH2 inhibitor in human leukemia cells, is active on the Arabidopsis catalytic subunit of PRC2, since treatment with the drug reduces the total amount of H3K27me3 in a dose-dependent fashion. Consistently, we show that the expression level of two PRC2 targets is significantly increased following treatment with the RDS 3434 compound. Finally, we show that impairment of H3K27 trimethylation in Arabidopsis seeds and seedlings affects both seed germination and root growth. CONCLUSIONS Our results provide a useful tool for the plant community in investigating how PRC2 affects transcriptional control in plant development.
Collapse
Affiliation(s)
- Veronica Ruta
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Longo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessandra Boccaccini
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Valentina Noemi Madia
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Chimica e Tecnologie del Farmaco, Dipartimento di Eccellenza 2018-2022, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Saccoliti
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Chimica e Tecnologie del Farmaco, Dipartimento di Eccellenza 2018-2022, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Valeria Tudino
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Chimica e Tecnologie del Farmaco, Dipartimento di Eccellenza 2018-2022, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Roberto Di Santo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Chimica e Tecnologie del Farmaco, Dipartimento di Eccellenza 2018-2022, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Riccardo Lorrai
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sabrina Sabatini
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Roberta Costi
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Chimica e Tecnologie del Farmaco, Dipartimento di Eccellenza 2018-2022, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Paolo Costantino
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Paola Vittorioso
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
37
|
Huang Y, Jiang L, Liu BY, Tan CF, Chen DH, Shen WH, Ruan Y. Evolution and conservation of polycomb repressive complex 1 core components and putative associated factors in the green lineage. BMC Genomics 2019; 20:533. [PMID: 31253095 PMCID: PMC6599366 DOI: 10.1186/s12864-019-5905-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/13/2019] [Indexed: 01/14/2023] Open
Abstract
Background Polycomb group (PcG) proteins play important roles in animal and plant development and stress response. Polycomb repressive complex 1 (PRC1) and PRC2 are the key epigenetic regulators of gene expression, and are involved in almost all developmental stages. PRC1 catalyzes H2A monoubiquitination resulting in transcriptional silencing or activation. The PRC1 components in the green lineage were identified and evolution and conservation was analyzed by bioinformatics techniques. RING Finger Protein 1 (RING1), B lymphoma Mo-MLV insertion region 1 homolog (BMI1), Like Heterochromatin Protein 1 (LHP1) and Embryonic Flower 1 (EMF1) are the PRC1 core components and Vernalization 1 (VRN1), VP1/ABI3-Like 1/2/3 (VAL1/2/3), Alfin-like 1–7 (AL1–7), Inhibitor of growth 1/2 (ING1/2), and Early Bolting in Short Days (EBS) / Short Life (SHL) are the associated factors. Results Each PRC1 subunit possesses special domain organizations, such as RING and the ring finger and WD40-associated ubiquitin-like (RAWUL) domains for RING1 and BMI1, chromatin organization modifier (CHROMO) and chromo shadow (ChSh) domains for LHP1, one or two B3 DNA binding domain(s) for VRN1, B3 and zf-CW domains for VAL1/2/3, Alfin and Plant HomeoDomain (PHD) domains for AL1–7, ING and PHD domains for ING1/2, Bromoadjacent homology (BAT) and PHD domains for EBS/SHL. Six new motifs are uncovered in EMF1. The PRC1 core components RING1 and BMI1, and the associated factors VAL1/2/3, AL1–7, ING1/2, and EBS/SHL exist from alga to higher plants, whereas LHP1 only occurs in higher plants. EMF1 and VRN1 are present only in eudicots. PRC1 components undergo duplication in the plant evolution. Most of plants carry the homologous core component LHP1, the associated factor EMF1, and several homologs in RING1, BMI1, VRN1, AL1–7, ING1/2/3, and EBS/SHL. Cabbage, cotton, poplar, orange and maize often exhibit more gene copies than other species. Domain organization analysis shows that duplicated gene functions may be of diverse. Conclusions The PRC1 core components RING1 and BMI1, and the associated factors VAL1/2/3, AL1–7, ING1/2, and EBS/SHL originate from algae. The core component LHP1 is from moss and the associated factors EMF1 and VRN1 are from dicotyledon. PRC1 components are of functional redundancy and diversity in evolution. Electronic supplementary material The online version of this article (10.1186/s12864-019-5905-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Huang
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Ling Jiang
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Bo-Yu Liu
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Cheng-Fang Tan
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Dong-Hong Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, 311300, China
| | - Wen-Hui Shen
- International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Institut de Biologie Mole'culaire des Plantes du CNRS, Universite' de Strasbourg, 12 rue du Ge'ne'ralZimmer, 67084, Strasbourg Cedex, France
| | - Ying Ruan
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China. .,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China. .,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
38
|
Roy D, Chakrabarty J, Mallik R, Chaudhuri S. Rice Trithorax factor ULTRAPETALA 1 (OsULT1) specifically binds to “GAGAG” sequence motif present in Polycomb response elements. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:582-597. [DOI: 10.1016/j.bbagrm.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023]
|
39
|
Marler TE. Temperature and Imbibition Influence Serianthes Seed Germination Behavior. PLANTS 2019; 8:plants8040107. [PMID: 31010091 PMCID: PMC6524026 DOI: 10.3390/plants8040107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 11/25/2022]
Abstract
The direct role of physical dormancy in delaying germination of Serianthes grandiflora Bentham, Serianthes kanehirae Fosberg, and Serianthes nelsonii Merrill seeds has not been adequately studied, nor has the role of temperature on germination behaviors. Imbibition testing indicated seeds with scarified testa absorbed water for the duration of a 24 h imbibition period, but seeds with an intact testa stopped absorbing water after 1 h. The behavior of S. nelsonii seeds most closely matched those of S. kanehirae, with the pattern of water absorption for S. grandiflora seeds deviating from that for the other species. Scarified seeds germinated readily, with initial germination occurring by 50 h for S. nelsonii and 90 hr for the other species, and maximum germination of 80% to 90% occurring by 60 h for S. nelsonii and 100 h for the other species. Predicted optimum temperature based on a fitted quadratic model was 26 °C for S. nelsonii, 23 °C for S. grandiflora, and 22 °C for S. kanehirae. Seed respiration increased within 3 h of imbibition for scarified seeds and continued to increase in a linear pattern. The linear slope was greatest for S. nelsonii, intermediate for S. grandiflora, and least for S. kanehirae, but ultimate respiration was greatest for S. kanehirae seeds. Seed respiration was so limited for un-scarified seeds that the instrument was unable to quantify any carbon dioxide efflux. Physical dormancy in seeds of these Serianthes species is a powerful trait that spreads out the timing of seedling emergence in natural settings and controls imbibition and germination speed in managed nurseries.
Collapse
Affiliation(s)
- Thomas E Marler
- College of Natural and Applied Sciences, University of Guam, UOG Station, Mangilao, Guam 96923, USA.
| |
Collapse
|
40
|
Sun L, Song G, Guo W, Wang W, Zhao H, Gao T, Lv Q, Yang X, Xu F, Dong Y, Pu L. Dynamic Changes in Genome-Wide Histone3 Lysine27 Trimethylation and Gene Expression of Soybean Roots in Response to Salt Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1031. [PMID: 31552061 PMCID: PMC6746917 DOI: 10.3389/fpls.2019.01031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/23/2019] [Indexed: 05/14/2023]
Abstract
Soybean is an important economic crop for human diet, animal feeds and biodiesel due to high protein and oil content. Its productivity is significantly hampered by salt stress, which impairs plant growth and development by affecting gene expression, in part, through epigenetic modification of chromatin status. However, little is known about epigenetic regulation of stress response in soybean roots. Here, we used RNA-seq and ChIP-seq technologies to study the dynamics of genome-wide transcription and histone methylation patterns in soybean roots under salt stress. Eight thousand seven hundred ninety eight soybean genes changed their expression under salt stress treatment. Whole-genome ChIP-seq study of an epigenetic repressive mark, histone H3 lysine 27 trimethylation (H3K27me3), revealed the changes in H3K27me3 deposition during the response to salt stress. Unexpectedly, we found that most of the inactivation of genes under salt stress is strongly correlated with the de novo establishment of H3K27me3 in various parts of the promoter or coding regions where there is no H3K27me3 in control plants. In addition, the soybean histone modifiers were identified which may contribute to de novo histone methylation and gene silencing under salt stress. Thus, dynamic chromatin regulation, switch between active and inactive modes, occur at target loci in order to respond to salt stress in soybean. Our analysis demonstrates histone methylation modifications are correlated with the activation or inactivation of salt-inducible genes in soybean roots.
Collapse
Affiliation(s)
- Lei Sun
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Guangshu Song
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weixuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongkun Zhao
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Tingting Gao
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Qingxue Lv
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Xue Yang
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingshan Dong
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Yingshan Dong, ; Li Pu,
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yingshan Dong, ; Li Pu,
| |
Collapse
|
41
|
Duan CG, Zhu JK, Cao X. Retrospective and perspective of plant epigenetics in China. J Genet Genomics 2018; 45:621-638. [PMID: 30455036 DOI: 10.1016/j.jgg.2018.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/25/2018] [Accepted: 09/30/2018] [Indexed: 01/21/2023]
Abstract
Epigenetics refers to the study of heritable changes in gene function that do not involve changes in the DNA sequence. Such effects on cellular and physiological phenotypic traits may result from external or environmental factors or be part of normal developmental program. In eukaryotes, DNA wraps on a histone octamer (two copies of H2A, H2B, H3 and H4) to form nucleosome, the fundamental unit of chromatin. The structure of chromatin is subjected to a dynamic regulation through multiple epigenetic mechanisms, including DNA methylation, histone posttranslational modifications (PTMs), chromatin remodeling and noncoding RNAs. As conserved regulatory mechanisms in gene expression, epigenetic mechanisms participate in almost all the important biological processes ranging from basal development to environmental response. Importantly, all of the major epigenetic mechanisms in mammalians also occur in plants. Plant studies have provided numerous important contributions to the epigenetic research. For example, gene imprinting, a mechanism of parental allele-specific gene expression, was firstly observed in maize; evidence of paramutation, an epigenetic phenomenon that one allele acts in a single locus to induce a heritable change in the other allele, was firstly reported in maize and tomato. Moreover, some unique epigenetic mechanisms have been evolved in plants. For example, the 24-nt siRNA-involved RNA-directed DNA methylation (RdDM) pathway is plant-specific because of the involvements of two plant-specific DNA-dependent RNA polymerases, Pol IV and Pol V. A thorough study of epigenetic mechanisms is of great significance to improve crop agronomic traits and environmental adaptability. In this review, we make a brief summary of important progress achieved in plant epigenetics field in China over the past several decades and give a brief outlook on future research prospects. We focus our review on DNA methylation and histone PTMs, the two most important aspects of epigenetic mechanisms.
Collapse
Affiliation(s)
- Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
42
|
Lepiniec L, Devic M, Roscoe TJ, Bouyer D, Zhou DX, Boulard C, Baud S, Dubreucq B. Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. PLANT REPRODUCTION 2018; 31:291-307. [PMID: 29797091 DOI: 10.1007/s00497-018-0337-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/10/2018] [Indexed: 05/20/2023]
Abstract
The LAFL (i.e. LEC1, ABI3, FUS3, and LEC2) master transcriptional regulators interact to form different complexes that induce embryo development and maturation, and inhibit seed germination and vegetative growth in Arabidopsis. Orthologous genes involved in similar regulatory processes have been described in various angiosperms including important crop species. Consistent with a prominent role of the LAFL regulators in triggering and maintaining embryonic cell fate, their expression appears finely tuned in different tissues during seed development and tightly repressed in vegetative tissues by a surprisingly high number of genetic and epigenetic factors. Partial functional redundancies and intricate feedback regulations of the LAFL have hampered the elucidation of the underpinning molecular mechanisms. Nevertheless, genetic, genomic, cellular, molecular, and biochemical analyses implemented during the last years have greatly improved our knowledge of the LALF network. Here we summarize and discuss recent progress, together with current issues required to gain a comprehensive insight into the network, including the emerging function of LEC1 and possibly LEC2 as pioneer transcription factors.
Collapse
Affiliation(s)
- L Lepiniec
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France.
| | - M Devic
- Régulations Epigénétiques et Développement de la Graine, ERL 5300 CNRS-IRD UMR DIADE, IRD centre de Montpellier, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre et Marie Curie (Paris 06) & Centre National pour la Recherche Scientifique CNRS UMR 7621, 66650, Banyuls-sur-Mer, France
| | - T J Roscoe
- Régulations Epigénétiques et Développement de la Graine, ERL 5300 CNRS-IRD UMR DIADE, IRD centre de Montpellier, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre et Marie Curie (Paris 06) & Centre National pour la Recherche Scientifique CNRS UMR 7621, 66650, Banyuls-sur-Mer, France
| | - D Bouyer
- Institut de Biologie de l'ENS, CNRS UMR8197, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris Cedex 05, France
| | - D-X Zhou
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Sud 11, Université Paris-Saclay, 91405, Orsay, France
| | - C Boulard
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| | - S Baud
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| | - B Dubreucq
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| |
Collapse
|
43
|
EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis. Nat Genet 2018; 50:1247-1253. [PMID: 30082787 DOI: 10.1038/s41588-018-0187-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/06/2018] [Indexed: 12/11/2022]
Abstract
The ability of cells to perceive and translate versatile cues into differential chromatin and transcriptional states is critical for many biological processes1-5. In plants, timely transition to a flowering state is crucial for successful reproduction6-9. EARLY BOLTING IN SHORT DAY (EBS) is a negative transcriptional regulator that prevents premature flowering in Arabidopsis thaliana10,11. We found that EBS contains bivalent bromo-adjacent homology (BAH)-plant homeodomain (PHD) reader modules that bind H3K27me3 and H3K4me3, respectively. We observed co-enrichment of a subset of EBS-associated genes with H3K4me3, H3K27me3, and Polycomb repressor complex 2 (PRC2). Notably, EBS adopted an autoinhibition mode to mediate its switch in binding preference between H3K27me3 and H3K4me3. This binding balance was critical because disruption of either EBS-H3K27me3 or EBS-H3K4me3 interaction induced early floral transition. Our results identify a bivalent chromatin reader capable of recognizing two antagonistic histone marks, and we propose a distinct mechanism of interaction between active and repressive chromatin states.
Collapse
|
44
|
Chromatin modulation and gene regulation in plants: insight about PRC1 function. Biochem Soc Trans 2018; 46:957-966. [DOI: 10.1042/bst20170576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023]
Abstract
In plant and metazoan, Polycomb Group (PcG) proteins play key roles in regulating developmental processes by repression of gene expression. PcG proteins function as multi-protein complexes; among them the best characterized ones are Polycomb Repressive Complex 1 (PRC1) and PRC2. PRC2 catalyzes histone H3 lysine 27 trimethylation (H3K27me3), and PRC1 can bind H3K27me3 and catalyzes H2A monoubiquitination. While the PRC2 components and molecular functions are evolutionarily conserved, varied PRC1 complexes are found and they show high divergences between animals and plants. In addition to the core subunits, an exponentially increasing number of PRC1-associated factors have been identified in Arabidopsis thaliana. Recent studies have also unraveled cross-component interactions and intertwined roles of PRC1 and PRC2 in chromatin modulation. In addition, complexities of interactions and functions between PcG and Trithorax Group proteins have been observed. This short review summarizes up current knowledge to provide insight about repressive functional mechanism of PRC1 and its interplay with other factors.
Collapse
|