1
|
Xu Y, Ding H, Zhang T, Wang Z, Wang H, Zhou L, Dai Y, Liu Z. Small-Sample Authenticity Identification and Variety Classification of Anoectochilus roxburghii (Wall.) Lindl. Using Hyperspectral Imaging and Machine Learning. PLANTS (BASEL, SWITZERLAND) 2025; 14:1177. [PMID: 40284066 PMCID: PMC12030607 DOI: 10.3390/plants14081177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
This study aims to utilize hyperspectral imaging technology combined with machine learning methods for the authenticity identification and classification of Anoectochilus roxburghii and its counterfeit species. Hyperspectral data were collected from the front and back leaves of nine species of Goldthread and two counterfeit species (Bloodleaf and Spotted-leaf), followed by classification using a variety of machine learning models, including Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest (RF), Linear Discriminant Analysis (LDA), and Convolutional Neural Networks (CNN). The experimental results demonstrated that the SVM model achieved 100% classification accuracy for distinguishing Goldthread from its counterfeit species, effectively capturing the spectral differences between the front and back leaves. In contrast, traditional machine learning models showed varied performance, with SVM proving superior due to its ability to handle high-dimensional feature spaces. The introduction of a multi-view spectral fusion CNN model, which integrates spectral data from both the front and back leaves, further enhanced classification accuracy, achieving a perfect classification rate of 100%. This approach highlights the potential of hyperspectral imaging and machine learning in plant authenticity identification and provides a new perspective for the detection of counterfeit species.
Collapse
Affiliation(s)
- Yiqing Xu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.X.); (H.D.); (T.Z.); (Z.W.); (L.Z.); (Y.D.)
| | - Haoyuan Ding
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.X.); (H.D.); (T.Z.); (Z.W.); (L.Z.); (Y.D.)
| | - Tingsong Zhang
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.X.); (H.D.); (T.Z.); (Z.W.); (L.Z.); (Y.D.)
| | - Zhangting Wang
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.X.); (H.D.); (T.Z.); (Z.W.); (L.Z.); (Y.D.)
| | - Hongzhen Wang
- State Key Laboratory of Subtropical Silviculture, Department of Chinese Herbal Medicine Zhejiang A&F University, Hangzhou 311300, China;
| | - Lu Zhou
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.X.); (H.D.); (T.Z.); (Z.W.); (L.Z.); (Y.D.)
| | - Yujia Dai
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.X.); (H.D.); (T.Z.); (Z.W.); (L.Z.); (Y.D.)
| | - Ziyuan Liu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.X.); (H.D.); (T.Z.); (Z.W.); (L.Z.); (Y.D.)
| |
Collapse
|
2
|
Yin Q, Xiang L, Han X, Zhang Y, Lyu R, Yuan L, Chen S. The evolutionary advantage of artemisinin production by Artemisia annua. TRENDS IN PLANT SCIENCE 2025; 30:213-226. [PMID: 39362811 DOI: 10.1016/j.tplants.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024]
Abstract
Artemisinin, a potent antimalarial compound, is predominantly derived from Artemisia annua. The uniqueness of artemisinin production in A. annua lies in its complex biochemical pathways and genetic composition, distinguishing it from other plant species, even within the Asteraceae family. In this review, we investigate the potential of A. annua for artemisinin production, drawing evidence from natural populations and mutants. Leveraging high-quality whole-genome sequence analyses, we offer insights into the evolution of artemisinin biosynthesis. We also highlight current understanding of the protective functions of artemisinin in A. annua in response to both biotic and abiotic stresses. In addition, we explore the mechanisms used by A. annua to mitigate the phytotoxicity generated by artemisinin catabolism.
Collapse
Affiliation(s)
- Qinggang Yin
- Artemisinin Research Center, Institute of Chinese Materia Medica, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA; The Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Li Xiang
- Artemisinin Research Center, Institute of Chinese Materia Medica, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoyan Han
- China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yujun Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruiqing Lyu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA; The Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA; The Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Liu D, Luo C, Dai R, Huang X, Chen X, He L, Mao H, Li J, Zhang L, Yang QY, Mei Z. AMIR: a multi-omics data platform for Asteraceae plants genetics and breeding research. Nucleic Acids Res 2025; 53:D1563-D1575. [PMID: 39377391 PMCID: PMC11701549 DOI: 10.1093/nar/gkae833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
As the largest family of dicotyledon, the Asteraceae family comprises a variety of economically important crops, ornamental plants and numerous medicinal herbs. Advancements in genomics and transcriptomic have revolutionized research in Asteraceae species, generating extensive omics data that necessitate an efficient platform for data integration and analysis. However, existing databases face challenges in mining genes with specific functions and supporting cross-species studies. To address these gaps, we introduce the Asteraceae Multi-omics Information Resource (AMIR; https://yanglab.hzau.edu.cn/AMIR/), a multi-omics hub for the Asteraceae plant community. AMIR integrates diverse omics data from 74 species, encompassing 132 genomes, 4 408 432 genes annotated across seven different perspectives, 3897 transcriptome sequencing samples spanning 131 organs, tissues and stimuli, 42 765 290 unique variants and 15 662 metabolites genes. Leveraging these data, AMIR establishes the first pan-genome, comparative genomics and transcriptome system for the Asteraceae family. Furthermore, AMIR offers user-friendly tools designed to facilitate extensive customized bioinformatics analyses. Two case studies demonstrate AMIR's capability to provide rapid, reproducible and reliable analysis results. In summary, by integrating multi-omics data of Asteraceae species and developing powerful analytical tools, AMIR significantly advances functional genomics research and contributes to breeding practices of Asteraceae.
Collapse
Affiliation(s)
- Dongxu Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengfang Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Dai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyan Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongxia Mao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawei Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Linna Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing-Yong Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Zhinan Mei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Zhang N, Zhao P, Zhang W, Wang H, Wang K, Wang X, Zhang Z, Tan N, Chen L. A chromosome-level genome of Lobelia seguinii provides insights into the evolution of Campanulaceae and the lobeline biosynthesis. Genomics 2025; 117:110979. [PMID: 39675685 DOI: 10.1016/j.ygeno.2024.110979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Lobelia seguinii is a plant with great ecological and medicinal value and belongs to Campanulaceae. Lobelia contains lobeline, a well-known compound used to treat respiratory diseases. Nevertheless, lobeline biosynthesis needs further exploration. Moreover, whole-genome duplication (WGD) and karyotype evolution within Campanulaceae still need to be better understood. In this study, we obtained a chromosome-level genome of L. seguinii with a size of 1.4 Gb and 38253 protein-coding genes. Analyses revealed two WGDs within Campanulaceae, one at the most recent common ancestor (MRCA) of Campanula and Adenophora, and another at the MRCA of Lobelioideae. Analyses further revealed that the karyotype of Platycodon grandiflorus represents the ancient type within Asterales. We proposed eight enzymes involved in the lobeline biosynthesis pathway of L. seguinii. Molecular cloning and heterologous expression of phenylalanine ammonia-lyase (PAL), a candidate enzyme involved in the first step of lobeline biosynthesis, verified its function to catalyze the deamination of phenylalanine to cinnamic acid. This study sheds light on the evolution of Campanulaceae and lobeline biosynthesis.
Collapse
Affiliation(s)
- Na Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Puguang Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wenda Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huiying Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Kaixuan Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiangyu Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhanjiang Zhang
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, 530023 Nanning, China.
| | - Ninghua Tan
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Lingyun Chen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Medical Botanical Garden, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
5
|
Zhang T, Li H, Jiang M, Hou H, Gao Y, Li Y, Wang F, Wang J, Peng K, Liu YX. Nanopore sequencing: flourishing in its teenage years. J Genet Genomics 2024; 51:1361-1374. [PMID: 39293510 DOI: 10.1016/j.jgg.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Over the past decade, nanopore sequencing has experienced significant advancements and changes, transitioning from an initially emerging technology to a significant instrument in the field of genomic sequencing. However, as advancements in next-generation sequencing technology persist, nanopore sequencing also improves. This paper reviews the developments, applications, and outlook on nanopore sequencing technology. Currently, nanopore sequencing supports both DNA and RNA sequencing, making it widely applicable in areas such as telomere-to-telomere (T2T) genome assembly, direct RNA sequencing (DRS), and metagenomics. The openness and versatility of nanopore sequencing have established it as a preferred option for an increasing number of research teams, signaling a transformative influence on life science research. As the nanopore sequencing technology advances, it provides a faster, more cost-effective approach with extended read lengths, demonstrating the significant potential for complex genome assembly, pathogen detection, environmental monitoring, and human disease research, offering a fresh perspective in sequencing technologies.
Collapse
Affiliation(s)
- Tianyuan Zhang
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Hanzhou Li
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Mian Jiang
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Huiyu Hou
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yunyun Gao
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yali Li
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Fuhao Wang
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Jun Wang
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei 430000, China
| | - Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Yong-Xin Liu
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China.
| |
Collapse
|
6
|
Masand M, Sharma S, Kumari S, Pal P, Majeed A, Singh G, Sharma RK. High-quality haplotype-resolved chromosome assembly provides evolutionary insights and targeted steviol glycosides (SGs) biosynthesis in Stevia rebaudiana Bertoni. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3262-3277. [PMID: 39283816 PMCID: PMC11606428 DOI: 10.1111/pbi.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 05/28/2024] [Accepted: 07/26/2024] [Indexed: 11/27/2024]
Abstract
Stevia rebaudiana Bertoni is popular source of plant-derived low/no-calorie natural sweeteners (LNCSs), collectively known as steviol glycosides (SGs). Nevertheless, genetic predisposition for targeted biosynthesis of SGs is complex due to multi-substrate functionality of key uridine diphosphate glycosyltransferases (UGTs). Here, we created a high-quality monoploid assembly of 1.34 Gb with N50 value of 110 Mb, 55 551 predicted protein-coding genes, and ~80% repetitive regions in Rebaudioside-A (Reb-A) enriched cultivar of S. rebaudiana. Additionally, a haplotype-based chromosome assembly consisting of haplotype A and haplotype B with an overall genome size of 2.33Gb was resolved, harbouring 639 634 variants including single nucleotide polymorphisms (SNPs), indels and structural variants (SVs). Furthermore, a lineage-specific whole genome duplication analysis revealed that gene families encoding UGTs and Cytochrome-P450 (CYPs) were tandemly duplicated. Additionally, expression analysis revealed five tandemly duplicated gene copies of UGT76G1 having significant correlations with Reb-A content, and identified key residue (leu200val) in the glycosylation of Reb-A. Furthermore, missense variations identified in the acceptor region of UGT76G1 in haplotype resolve genome, transcriptional and molecular docking analysis were confirmed with resequencing of 10 diverse stevia genotypes (~25X). Gene regulatory network analysis identified key transcription factors (MYB, bHLH, bZIP and AP2-ERF) as potential regulators of SG biosynthesis. Overall, this study provides haplotype-resolved chromosome-level genome assembly for genome editing and enhancing breeding efforts for targeted biosynthesis of SGs in S. rebaudiana.
Collapse
Affiliation(s)
- Mamta Masand
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Shikha Sharma
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Sangeeta Kumari
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
| | - Poonam Pal
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Aasim Majeed
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
| | - Gopal Singh
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Ram Kumar Sharma
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
7
|
Chen M, Jiang C, Huang D, Zheng Z, Yang W, Li G, Fu C, Liao H, Long W, Yang Z, Yang Y. ND-FISH with New Oligo Probes for Chromosome Identification of Cichorium intybus Revealing Karyotypic Variation and Divergence of Asteraceae Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:3135. [PMID: 39599344 PMCID: PMC11598091 DOI: 10.3390/plants13223135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
Chicory (Cichorium intybus L., 2n = 18), belonging to the Asteraceae family, exhibits significant edible, medicinal, and pasture values. Moderate research has been performed on identifying Chicory species' chromosomes using fluorescence in situ hybridization (FISH) and C-banding. Detailed karyotype comparisons with chromosome nomenclature have not yet been performed for Chicory and similar species. In this study, the tandem repeats (TRs) were predicted and mapped to chromosomal regions based on released C. intybus L. ASM2352571 genome assembly v1, and then compared to the genome of Lettuce (Lactuca sativa L.). Nine new oligo probes were then developed and employed for karyotypic investigation of endive, Lettuce, and Chicory mitotic metaphase using non-denaturing FISH (ND-FISH). By combining the conserved oligo probes for 5S rDNA and 18S rDNA with the unique ND-FISH signals of new TR-oligo probes, we can develop a high-resolution standard karyotype for the cultivars of Lettuce and Chicory. The occurrence of chromosome structure variations from the natural population of Chicory and Lettuce was also revealed by ND-FISH with multiple oligo probes. The current observation of the karyotype differences and divergences of Lactuca and Cichorium and the genomic research offers crucial information about the Asteraceae family's genetic diversity, chromosomal dynamics, and evolutionary routes.
Collapse
Affiliation(s)
- Meiling Chen
- Forestry and Bamboo Technology Innovation Industry Research Institute, Leshan Normal University, Leshan 614000, China; (M.C.); (C.F.); (H.L.); (W.L.)
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.J.); (D.H.); (Z.Z.); (W.Y.); (G.L.)
| | - Chengzhi Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.J.); (D.H.); (Z.Z.); (W.Y.); (G.L.)
| | - Doudou Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.J.); (D.H.); (Z.Z.); (W.Y.); (G.L.)
| | - Zhiqiang Zheng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.J.); (D.H.); (Z.Z.); (W.Y.); (G.L.)
| | - Wenzhuo Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.J.); (D.H.); (Z.Z.); (W.Y.); (G.L.)
| | - Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.J.); (D.H.); (Z.Z.); (W.Y.); (G.L.)
| | - Chun Fu
- Forestry and Bamboo Technology Innovation Industry Research Institute, Leshan Normal University, Leshan 614000, China; (M.C.); (C.F.); (H.L.); (W.L.)
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, Leshan 614000, China
| | - Hong Liao
- Forestry and Bamboo Technology Innovation Industry Research Institute, Leshan Normal University, Leshan 614000, China; (M.C.); (C.F.); (H.L.); (W.L.)
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, Leshan 614000, China
| | - Wencong Long
- Forestry and Bamboo Technology Innovation Industry Research Institute, Leshan Normal University, Leshan 614000, China; (M.C.); (C.F.); (H.L.); (W.L.)
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, Leshan 614000, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.J.); (D.H.); (Z.Z.); (W.Y.); (G.L.)
| | - Yaojun Yang
- Forestry and Bamboo Technology Innovation Industry Research Institute, Leshan Normal University, Leshan 614000, China; (M.C.); (C.F.); (H.L.); (W.L.)
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, Leshan 614000, China
| |
Collapse
|
8
|
Ye J, Wang C, Liu Y, Chen S, Jin J, Zhang L, Liu P, Tang J, Zhang J, Wang Z, Jiang J, Chen S, Chen F, Song A. CGD: a multi-omics database for Chrysanthemum genomic and biological research. HORTICULTURE RESEARCH 2024; 11:uhae238. [PMID: 39512782 PMCID: PMC11541226 DOI: 10.1093/hr/uhae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/12/2024] [Indexed: 11/15/2024]
Abstract
Asteraceae is the largest family of dicotyledons and includes Chrysanthemum and Helianthus, two important genera of ornamental plants. The genus Chrysanthemum consists of more than 30 species and contains many economically important ornamental, medicinal, and industrial plants. To more effectively promote Chrysanthemum research, we constructed the CGD, a Chrysanthemum genome database containing a large amount of data and useful tools. The CGD hosts well-assembled reference genome data for six Chrysanthemum species. These genomic data were fully annotated by comparison with various protein and domain data. Transcriptome data for nine different tissues, five flower developmental stages, and five treatments were subsequently added to the CGD. A fully functional 'RNA data' module was designed to provide complete and visual expression profile data. In addition, the CGD also provides many of the latest bioinformatics analysis tools, such as the efficient sgRNA search tool for Chrysanthemum. In conclusion, the CGD provides the latest, richest, and most complete multi-omics resources and powerful tools for Chrysanthemum. Collectively, the CGD will become the central gateway for Chrysanthemum genomics and genetic breeding research and will aid in the study of polyploid evolution.
Collapse
Affiliation(s)
- Jingxuan Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Chun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Shaocong Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Jinyu Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Lingling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Peixue Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Jing Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Jing Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Zhenxing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| |
Collapse
|
9
|
Lu Z, Su J, Fan H, Zhang X, Wang H, Guan Z, Fang W, Chen F, Zhang F. Insights into the genetic architecture of the reciprocal interspecific hybrids derived from Chrysanthemum dichrum and C. nankingense. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:75. [PMID: 39507485 PMCID: PMC11534950 DOI: 10.1007/s11032-024-01518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Chrysanthemums are versatile ornamental plants, and improving leaf and flower traits is an important breeding objective. Distant hybridization is a powerful method for plant breeding and genetic improvement, whereas the genetic basis in interspecific F1 progeny of chrysanthemums needs to be better understood for breeding purposes. In this study, the leaf and floral traits of the 273 reciprocal interspecific F1 hybrids of diploid C. dichrum (YSJ) and C. nankingense (JHN) were analyzed along with their SNP-derived genetic structure to elucidate the influence of differences in genetic background between the parents on the hybrid performance. We then performed a genome-wide association analysis (GWAS) to reveal the investigated traits' genomic loci and candidate genes. Considerable phenotypic variation (8.81% ~ 55.78%) and heterosis with transgressive segregation in both directions were observed in the reciprocal progenies. We observed a higher level of phenotypic variation in JHN × YSJ rather than in YSJ × JHN. Also, a significant reciprocal effect was observed for most examined traits. Based on the SNP data, we separated the hybrid progenies into three groups (I, II, and III), albeit imperfectly dependent on the cross directions, except for some reciprocal hybrids clustering into group II. Group I from YSJ × JHN and Group III from YSJ × JHN differed with contrasting F ST and π ratios, indicating the genetic changes in the reciprocal populations. The outcome of GWAS via the IIIVmrMLM method detected 339 significant quantitative trait nucleotides (QTNs) and 40 suggestive QTNs, and the phenotypic variation explained by a single QTN ranged from 0.26% to 7.42%. Within 100 kb upstream and downstream of the important QTNs, we discovered 49 known genes and 39 new candidate genes for the investigated leaf and floral traits. Our study provides profound insights into the genetic architecture of reciprocal hybrid progenies of chrysanthemum species, facilitating future breeding activities. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01518-0.
Collapse
Affiliation(s)
- Zhaowen Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Honghong Fan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xuefeng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Haibin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014 China
| |
Collapse
|
10
|
Zhang M, Wang T, Guo Q, Su Y, Yang F. Systematic Identification and Characterization of O-Methyltransferase Gene Family Members Involved in Flavonoid Biosynthesis in Chrysanthemum indicum L. Int J Mol Sci 2024; 25:10037. [PMID: 39337522 PMCID: PMC11432614 DOI: 10.3390/ijms251810037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Chrysanthemum indicum L. capitulum is an enriched source of flavonoids with broad-ranging biological activities, mainly due to their anti-inflammatory, anti-cancer, immune regulation, anti-microbial activity, hepatoprotective, and neuroprotective effects. The O-methylation of various secondary metabolites has previously been demonstrated to be mainly catalyzed by S-adenosyl-L-methionine-dependent O-methyltransferase (OMT) proteins encoded by the OMT gene family. However, limited comprehensive study was published on the OMT gene family, especially the CCoAOMT subfamily, involved in the O-methylation of flavonoids in Chrysanthemum. Here, we analyzed the spatiotemporal expression patterns of C. indicum OMT genes in leaf and flower at different developmental stages. Transcriptome sequencing and qRT-PCR analysis showed that COMTs were mainly highly expressed in capitulum, especially in full bloom, while CCoAOMTs were mainly highly expressed in leaves. Correlation analysis of OMT gene expression and flavonoids accumulation revealed that four OMTs (CHR00029120, CHR00029783, CHR00077404, and CHR00078333) were putatively involved in most methylated flavonoids biosynthesis in the capitulum. Furthermore, we identified a true CCoAOMT enzyme, CiCCoAOMT1, and found that it catalyzed O-methylation of quercetin and luteolin at the 3'-OH position. In summary, this work provides an important theoretical basis for further research on the biological functions of OMTs in C. indicum.
Collapse
Affiliation(s)
| | | | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China; (M.Z.); (T.W.); (Y.S.); (F.Y.)
| | | | | |
Collapse
|
11
|
Han T, Khan MA, Wang Y, Tan W, Li C, Ai P, Zhao W, Li Z, Wang Z. Identification of SDG gene family members and exploration of flowering related genes in different cultivars of chrysanthemums and their wild ancestors. BMC PLANT BIOLOGY 2024; 24:813. [PMID: 39210253 PMCID: PMC11360836 DOI: 10.1186/s12870-024-05465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The SET domain genes (SDGs) are significant contributors to various aspects of plant growth and development, mainly includes flowering, pollen development, root growth, regulation of the biological clock and branching patterns. To clarify the biological functions of the chrysanthemum SDG family, the SDG family members of four chrysanthemum cultivars and three related wild species were identified; their physical and chemical properties, protein domains and conserved motifs were predicted and analyzed. The results showed that 59, 67, 67, 102, 106, 114, and 123 SDGs were identified from Chrysanthemum nankingense, Chrysanthemum lavandulifolium, Chrysanthemum seticuspe, Chrysanthemum × morifolium cv. 'Hechengxinghuo', 'Zhongshanzigui', 'Quanxiangshuichang' and 'Jinbeidahong', respectively. The SDGs were divided into 5-7 subfamilies by cluster analysis; different conserved motifs were observed in particular families. The SDGs of C. lavandulifolium and C. seticuspe were distributed unevenly on 9 chromosomes. SDG promoters of different species include growth and development, photo-response, stress response and hormone responsive elements, among them, the cis-acting elements related to MeJA response had the largest proportion. The expression of chrysanthemum SDG genes was observed for most variable selected genes which has close association with important Arabidopsis thaliana genes related to flowering regulation. The qPCR results showed that the expression trend of SDG genes varied in different tissues at different growth stages with high expression in the flowering period. The ClSDG29 showed higher expression in the flower and bud tissues, which indicate that ClSDG29 might be associated with flowering regulation in chrysanthemum. In summary, the results of this study can provide a basis for subsequent research on chrysanthemum flowering time regulation.
Collapse
Affiliation(s)
- Ting Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Muhammad Ayoub Khan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Yiming Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Wenchao Tan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Chenran Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Penghui Ai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Zhongai Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China
| | - Zicheng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, Henan, 475004, China.
| |
Collapse
|
12
|
Wang L, Yang H, Xu G, Liu Z, Meng F, Shi L, Liu X, Zheng Y, Zhang G, Yang X, Chen W, Song C, Zhang B. Asteraceae genome database: a comprehensive platform for Asteraceae genomics. FRONTIERS IN PLANT SCIENCE 2024; 15:1445365. [PMID: 39224843 PMCID: PMC11366637 DOI: 10.3389/fpls.2024.1445365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Asteraceae, the largest family of angiosperms, has attracted widespread attention for its exceptional medicinal, horticultural, and ornamental value. However, researches on Asteraceae plants face challenges due to their intricate genetic background. With the continuous advancement of sequencing technology, a vast number of genomes and genetic resources from Asteraceae species have been accumulated. This has spurred a demand for comprehensive genomic analysis within this diverse plant group. To meet this need, we developed the Asteraceae Genomics Database (AGD; http://cbcb.cdutcm.edu.cn/AGD/). The AGD serves as a centralized and systematic resource, empowering researchers in various fields such as gene annotation, gene family analysis, evolutionary biology, and genetic breeding. AGD not only encompasses high-quality genomic sequences, and organelle genome data, but also provides a wide range of analytical tools, including BLAST, JBrowse, SSR Finder, HmmSearch, Heatmap, Primer3, PlantiSMASH, and CRISPRCasFinder. These tools enable users to conveniently query, analyze, and compare genomic information across various Asteraceae species. The establishment of AGD holds great significance in advancing Asteraceae genomics, promoting genetic breeding, and safeguarding biodiversity by providing researchers with a comprehensive and user-friendly genomics resource platform.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
| | - Hanting Yang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guoqing Xu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaoyu Liu
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fanbo Meng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - LiangRui Shi
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiongfeng Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yixuan Zheng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guichun Zhang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Yang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Boli Zhang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
13
|
Liu Y, Lu C, Zhou J, Zhou F, Gui A, Chu H, Shao Q. Chrysanthemum morifolium as a traditional herb: A review of historical development, classification, phytochemistry, pharmacology and application. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118198. [PMID: 38621465 DOI: 10.1016/j.jep.2024.118198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In recent years, Chinese herbal medicine has gained more and more recognition in disease prevention and control due to its low toxicity and comprehensive treatment. C. morifolium (Chrysanthemum morifolium Ramat.), as the medicine food homology plant with the bioactivity of anti-oxidation, anti-inflammatory, neuroprotection and cardiovascular protection, has important therapeutic effects and health benefits for colds, inflammation, cardiovascular diseases and various chronic diseases. AIM OF THE STUDY By reviewing the historical development, classification and distribution of germplasm resources, phytochemistry, pharmacology, and modern application of C. morifolium, the paper provides a reliable basis for the further research and application of chrysanthemum as therapeutic agents and functional additives. MATERIALS AND METHODS The literature and information about C. morifolium published in the last ten years were collected from various platforms, including Google Scholar, PubMed, ScienceDirect, Web of Science and China Knowledge Network. RESULTS A comprehensive analysis confirmed that C. morifolium originated in China, and it went through the development process from food and tea to medicine for more than 3000 years. During this period, different cultivars emerged through several breeding techniques and were distributed throughout the world. Moreover, A variety of chemical components such as flavonoids, phenolic acids, volatile oils, and terpenes in chrysanthemum have been proven they possess various pharmacology of anti-inflammatory, anti-oxidant, and prevention of chronic diseases by regulating inflammatory cytokines, oxidative stress responses and signaling pathways, which are the essential conditions to play a role in TCM, nutraceuticals and diet. CONCLUSION This paper provides a comprehensive review of historical development, classification, phytochemistry, pharmacology, and modern application of C. morifolium. However, future studies should continue to focus on the bioactive compounds and the synergistic mechanism of the "multi-component, multi-target, and multi-pathway" of chrysanthemum, and it is necessary to develop more innovative products with therapeutic effects.
Collapse
Affiliation(s)
- Yuchen Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China; College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Chenfei Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China; College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Jing Zhou
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Fenfen Zhou
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China; Wenzhou Forestry Extension and Wildlife Conservation Station, Wenzhou, 325027, China
| | - Aijun Gui
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Hongli Chu
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China; College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
14
|
Gao X, Ma Q, Zhang X, Wang X, Wang N, Cui Y, Li S, Ma S, Wang H, Zhang K. The reference genome sequence of Artemisia argyi provides insights into secondary metabolism biosynthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1406592. [PMID: 39006964 PMCID: PMC11239399 DOI: 10.3389/fpls.2024.1406592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Abstract
Artemisia argyi, a perennial herb of the genus Artemisia in the family Asteraceae, holds significant importance in Chinese traditional medicine, referred to as "Aicao". Here, we report a high-quality reference genome of Artemisia argyi L. cv. beiai, with a genome size up to 4.15 Gb and a contig N50 of 508.96 Kb, produced with third-generation Nanopore sequencing technology. We predicted 147,248 protein-coding genes, with approximately 68.86% of the assembled sequences comprising repetitive elements, primarily long terminal repeat retrotransposons(LTRs). Comparative genomics analysis shows that A. argyi has the highest number of specific gene families with 5121, and much more families with four or more members than the other 6 plant species, which is consistent with its more expanded gene families and fewer contracted gene families. Furthermore, through transcriptome sequencing of A. argyi in response to exogenous MeJA treatment, we have elucidated acquired regulatory insights into MeJA's impact on the phenylpropanoid, flavonoid, and terpenoid biosynthesis pathways of A. argyi. The whole-genome information obtained in this study serves as a valuable resource for delving deeper into the cultivation and molecular breeding of A. argyi. Moreover, it holds promise for enhancing genome assemblies across other members of the Asteraceae family. The identification of key genes establishes a solid groundwork for developing new varieties of Artemisia with elevated concentrations of active compounds.
Collapse
Affiliation(s)
- Xinqiang Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Qiang Ma
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Xiaomeng Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Xingyun Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Nuohan Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yupeng Cui
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Shuyan Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Shengming Ma
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Hong Wang
- Henan Artemisia Argyi Medical Research Center, Anyang, China
| | - Kunpeng Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| |
Collapse
|
15
|
Hou Z, Yang S, He W, Lu T, Feng X, Zang L, Bai W, Chen X, Nie B, Li C, Wei M, Ma L, Han Z, Zou Q, Li W, Wang L. The haplotype-resolved genome of diploid Chrysanthemum indicum unveils new acacetin synthases genes and their evolutionary history. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38864745 DOI: 10.1111/tpj.16854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/31/2024] [Accepted: 05/03/2024] [Indexed: 06/13/2024]
Abstract
Acacetin, a flavonoid compound, possesses a wide range of pharmacological effects, including antimicrobial, immune regulation, and anticancer effects. Some key steps in its biosynthetic pathway were largely unknown in flowering plants. Here, we present the first haplotype-resolved genome of Chrysanthemum indicum, whose dried flowers contain abundant flavonoids and have been utilized as traditional Chinese medicine. Various phylogenetic analyses revealed almost equal proportion of three tree topologies among three Chrysanthemum species (C. indicum, C. nankingense, and C. lavandulifolium), indicating that frequent gene flow among Chrysanthemum species or incomplete lineage sorting due to rapid speciation might contribute to conflict topologies. The expanded gene families in C. indicum were associated with oxidative functions. Through comprehensive candidate gene screening, we identified five flavonoid O-methyltransferase (FOMT) candidates, which were highly expressed in flowers and whose expressional levels were significantly correlated with the content of acacetin. Further experiments validated two FOMTs (CI02A009970 and CI03A006662) were capable of catalyzing the conversion of apigenin into acacetin, and these two genes are possibly responsible acacetin accumulation in disc florets and young leaves, respectively. Furthermore, combined analyses of ancestral chromosome reconstruction and phylogenetic trees revealed the distinct evolutionary fates of the two validated FOMT genes. Our study provides new insights into the biosynthetic pathway of flavonoid compounds in the Asteraceae family and offers a model for tracing the origin and evolutionary routes of single genes. These findings will facilitate in vitro biosynthetic production of flavonoid compounds through cellular and metabolic engineering and expedite molecular breeding of C. indicum cultivars.
Collapse
Affiliation(s)
- Zhuangwei Hou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Song Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Weijun He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Tingting Lu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Xunmeng Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Lanlan Zang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Wenhui Bai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Xueqing Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Bao Nie
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Cheng Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Min Wei
- China Resources Sanjiu Medical and Pharmaceutical Co., Ltd, Shenzhen, 518110, China
| | - Liangju Ma
- China Resources Sanjiu Medical and Pharmaceutical Co., Ltd, Shenzhen, 518110, China
| | - Zhengzhou Han
- China Resources Sanjiu Medical and Pharmaceutical Co., Ltd, Shenzhen, 518110, China
| | - Qingjun Zou
- China Resources Sanjiu Medical and Pharmaceutical Co., Ltd, Shenzhen, 518110, China
- National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China
| |
Collapse
|
16
|
Jiang L, Chen S, Wang X, Sen L, Dong G, Song C, Liu Y. An improved genome assembly of Chrysanthemum nankingense reveals expansion and functional diversification of terpene synthase gene family. BMC Genomics 2024; 25:593. [PMID: 38867153 PMCID: PMC11170872 DOI: 10.1186/s12864-024-10498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Terpenes are important components of plant aromas, and terpene synthases (TPSs) are the key enzymes driving terpene diversification. In this study, we characterized the volatile terpenes in five different Chrysanthemum nankingense tissues. In addition, genome-wide identification and expression analysis of TPS genes was conducted utilizing an improved chromosome-scale genome assembly and tissue-specific transcriptomes. The biochemical functions of three representative TPSs were also investigated. RESULTS We identified tissue-specific volatile organic compound (VOC) and volatile terpene profiles. The improved Chrysanthemum nankingense genome assembly was high-quality, including a larger assembled size (3.26 Gb) and a better contig N50 length (3.18 Mb) compared to the old version. A total of 140 CnTPS genes were identified, with the majority representing the TPS-a and TPS-b subfamilies. The chromosomal distribution of these TPS genes was uneven, and 26 genes were included in biosynthetic gene clusters. Closely-related Chrysanthemum taxa were also found to contain diverse TPS genes, and the expression profiles of most CnTPSs were tissue-specific. The three investigated CnTPS enzymes exhibited versatile activities, suggesting multifunctionality. CONCLUSIONS We systematically characterized the structure and diversity of TPS genes across the Chrysanthemum nankingense genome, as well as the potential biochemical functions of representative genes. Our results provide a basis for future studies of terpene biosynthesis in chrysanthemums, as well as for the breeding of improved chrysanthemum varieties.
Collapse
Affiliation(s)
- Liping Jiang
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Hospital of Traditional and Western Medicine), Wuhan, 430022, People's Republic of China
| | - Shi Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Xu Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Lin Sen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Gangqiang Dong
- Amway (China) Botanical R&D Center, Wuxi, 214115, P.R. China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, People's Republic of China.
| | - Yifei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, People's Republic of China.
- Hubei Provincial Key Laboratory of Chinese Medicine Resource and Chemistry, Hubei University of Chinese Medicine, Hubei, 430065, People's Republic of China.
| |
Collapse
|
17
|
Zhang T, Elomaa P. Development and evolution of the Asteraceae capitulum. THE NEW PHYTOLOGIST 2024; 242:33-48. [PMID: 38361269 DOI: 10.1111/nph.19590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/28/2024] [Indexed: 02/17/2024]
Abstract
Asteraceae represent one of the largest and most diverse families of plants. The evolutionary success of this family has largely been contributed to their unique inflorescences, capitula that mimic solitary flowers but are typically aggregates of multiple florets. Here, we summarize the recent molecular and genetic level studies that have promoted our understanding of the development and evolution of capitula. We focus on new results on patterning of the enlarged meristem resulting in the iconic phyllotactic arrangement of florets in Fibonacci numbers of spirals. We also summarize the current understanding of the genetic networks regulating the characteristic reproductive traits in the family such as floral dimorphism and differentiation of highly specialized floral organs. So far, developmental studies in Asteraceae are still limited to a very narrow selection of model species. Along with the recent advancements in genomics and phylogenomics, Asteraceae and its relatives provide an outstanding model clade for extended evo-devo studies to exploit the morphological diversity and the underlying molecular networks and to translate this knowledge to the breeding of the key crops in the family.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, 00014, Helsinki, Finland
| | - Paula Elomaa
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, 00014, Helsinki, Finland
| |
Collapse
|
18
|
Zhou M, Sun Y, Luo L, Pan H, Zhang Q, Yu C. Comparative metabolomic analysis reveals nutritional properties and pigmentation mechanism of tea-scented rosehips. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3392-3404. [PMID: 38105397 DOI: 10.1002/jsfa.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/01/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND The fruits of the genus Rosa, commonly known as rosehips, have attracted significant attention owing to their rich content of various bioactive compounds. However, their utility is generally secondary to the ornamental appeal of their flowers. This study aimed to explore the quality differences among tea-scented rosehips found in Yunnan, China, including those of Rosa odorata var. odorata (RO), Rosa odorata var. gigantea (RG), and Rosa yangii (RY). Morphological characteristics, chemical composition, and antioxidant activity of their fruits were evaluated. RESULTS The study revealed significant variability in composition and biological activities based on fruit color. RO exhibited the highest levels of polyphenols, flavonoids, anthocyanins, carotenoids, and vitamin C, with the strongest antioxidant activity (10.99 μmol Trolox·g-1 ), followed by RG (7.91 μmol Trolox·g-1 ) and RY (6.52 μmol Trolox·g-1 ). This supports RO's potential as a functional food source. Untargeted metabolomics identified and quantified 502 metabolites, with flavonoids (171) and phenolic acids (147) as the main metabolites. The differential metabolites among the fruits are primarily enriched for flavonoid biosynthesis and phenylpropanoid biosynthesis pathways. Insights into color formation supported the role of anthocyanins, flavones, and flavonols in fruit color variation. CONCLUSION Tea-scented rosehips offer vibrant colors and high nutritional value with potent biological activities. Rosa odorata var. odorata stands out as a functional food source owing to its rich bioactive compounds. These findings lay the groundwork for utilizing rosehips in functional foods, health supplements, and food additives, emphasizing the practical and beneficial applications of Rosa spp. independent of their ornamental value. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meichun Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yanlin Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Le Luo
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Huitang Pan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Chao Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
19
|
Li J, Wen X, Zhang Q, Tian Y, Pu Y, Wang J, Liu B, Du Y, Dai S. cla-miR164- NO APICAL MERISTEM ( ClNAM) regulates the inflorescence architecture development of Chrysanthemum lavandulifolium. HORTICULTURE RESEARCH 2024; 11:uhae039. [PMID: 38623074 PMCID: PMC11017518 DOI: 10.1093/hr/uhae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/28/2024] [Indexed: 04/17/2024]
Abstract
Chrysanthemum × morifolium has great ornamental and economic value on account of its exquisite capitulum. However, previous studies have mainly focused on the corolla morphology of the capitulum. Such an approach cannot explain the variable inflorescence architecture of the chrysanthemum. Previous research from our group has shown that NO APICAL MERISTEM (ClNAM) is likely to function as a hub gene in capitulum architecture in the early development stage. In the present study, ClNAM was used to investigate the function of these boundary genes in the capitulum architecture of Chrysanthemum lavandulifolium, a closely related species of C. × morifolium in the genus. Modification of ClNAM in C. lavandulifolium resulted in an advanced initiation of the floral primordium at the capitulum. As a result, the receptacle morphology was altered and the number of florets decreased. The ray floret corolla was shortened, but the disc floret was elongated. The number of capitula increased significantly, arranged in more densely compounded corymbose synflorescences. The yeast and luciferase reporter system revealed that ClAP1, ClRCD2, and ClLBD18 target and activate ClNAM. Subsequently, ClNAM targets and activates ClCUC2a/c, which regulates the initiation of floral and inflorescence in C. lavandulifolium. ClNAM was also targeted and cleaved by cla-miR164 in this process. In conclusion, this study established a boundary gene regulatory network with cla-miR164-ClNAM as the hub. This network not only influences the architecture of capitulum, but also affects compound corymbose synflorescences of the C. lavandulifolium. These results provide new insights into the mechanisms regulating inflorescence architecture in chrysanthemum.
Collapse
Affiliation(s)
- Junzhuo Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083, China
| | - Xiaohui Wen
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083, China
- Flower Research and Development Center, Zhejiang Academy of Agricultural Sciences, Hangzhou 311202, China
| | - Qiuling Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083, China
| | - Yuankai Tian
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083, China
| | - Ya Pu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083, China
| | - Jiaying Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083, China
| | - Bo Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083, China
| | - Yihan Du
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, School of Landscape Architecture, Beijing Forestry University, 35 East Qinghua Road, Beijing, 100083, China
| |
Collapse
|
20
|
Wang H, Xu D, Jiang F, Wang S, Wang A, Liu H, Lei L, Qian W, Fan W. The genomes of Dahlia pinnata, Cosmos bipinnatus, and Bidens alba in tribe Coreopsideae provide insights into polyploid evolution and inulin biosynthesis. Gigascience 2024; 13:giae032. [PMID: 38869151 PMCID: PMC11170221 DOI: 10.1093/gigascience/giae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The Coreopsideae tribe, a subset of the Asteraceae family, encompasses economically vital genera like Dahlia, Cosmos, and Bidens, which are widely employed in medicine, horticulture, ecology, and food applications. Nevertheless, the lack of reference genomes hinders evolutionary and biological investigations in this tribe. RESULTS Here, we present 3 haplotype-resolved chromosome-level reference genomes of the tribe Coreopsideae, including 2 popular flowering plants (Dahlia pinnata and Cosmos bipinnatus) and 1 invasive weed plant (Bidens alba), with assembled genome sizes 3.93 G, 1.02 G, and 1.87 G, respectively. We found that Gypsy transposable elements contribute mostly to the larger genome size of D. pinnata, and multiple chromosome rearrangements have occurred in tribe Coreopsideae. Besides the shared whole-genome duplication (WGD-2) in the Heliantheae alliance, our analyses showed that D. pinnata and B. alba each underwent an independent recent WGD-3 event: in D. pinnata, it is more likely to be a self-WGD, while in B. alba, it is from the hybridization of 2 ancestor species. Further, we identified key genes in the inulin metabolic pathway and found that the pseudogenization of 1-FEH1 and 1-FEH2 genes in D. pinnata and the deletion of 3 key residues of 1-FFT proteins in C. bipinnatus and B. alba may probably explain why D. pinnata produces much more inulin than the other 2 plants. CONCLUSIONS Collectively, the genomic resources for the Coreopsideae tribe will promote phylogenomics in Asteraceae plants, facilitate ornamental molecular breeding improvements and inulin production, and help prevent invasive weeds.
Collapse
Affiliation(s)
- Hengchao Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Dong Xu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Fan Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Sen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Anqi Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Hangwei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Lihong Lei
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Wanqiang Qian
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Wei Fan
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| |
Collapse
|
21
|
Zhu Y, Liu Y, Wang W, Li H, Liu C, Dou L, Wei L, Cheng W, Bao M, Yi Q, He Y. Identification and characterization of CYC2-like genes related to floral symmetric development in Tagetes erecta (Asteraceae). Gene 2023; 889:147804. [PMID: 37716585 DOI: 10.1016/j.gene.2023.147804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Marigold (Tagetes erecta) is an annual herbaceous flower belonging to Asteraceae, whose capitulum is composed of bilateral symmetry ray florets on the outer periphery and radial symmetry disk florets on the inside. The flower symmetry evolution from radial symmetry to bilateral symmetry has changed the morphology, inflorescence architecture and function of florets among several lineages in Asteraceae. Several studies have identified that CYC2 genes in TCP transcription factor family are the key genes regulating the flower morphogenesis, such as corolla symmetry and stamen development. Here, seven TeCYC2 genes were cloned and phylogenetically grouped into the CYC2 branch of TCP transcription family. TeCYC2c and TeCYC2d were found to be expressed specifically in ray florets, TeCYC2b was strongly expressed in both ray and disk florets, TeCYC2g was significantly higher expressed in ray florets than in disk florets, while TeCYC2a, TeCYC2e1 and TeCYC2e2 were significantly expressed in disk florets, according to an examination of the expression profile. Among the ectopic expression lines of seven TeCYC2 genes in Arabidopsis thaliana, the flower symmetry of all transgenic lines was changed from radial symmetry to bilateral symmetry, and only the reproductive growth of TeCYC2c lines was affected. In TeCYC2c transgenic Arabidopsis, the pollen sac was difficult to crack, and the filaments were shorter than the pistils, resulting in a significant decrease in the seed setting rate. All TeCYC2 proteins were localized in the nucleus. Eight pairs of interactions between TeCYC2 proteins were validated by Y2H and BiFC assays, indicating the possibility of TeCYC2 proteins forming homodimers or heterodimers to improve functional specificity. Our findings verified the main regulatory role of TeCYC2c on the development of corollas and stamen in marigold, and analyzed the interaction network of the formation mechanism of floral symmetry in two florets, which provided more insights into the expansion of CYC2 genes in the evolution of Asteraceae inflorescence and contributed to elucidate the complex regulatory network, as well as the molecular breeding concerning flower form diversity in marigold.
Collapse
Affiliation(s)
- Yu Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhan Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjing Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Hang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuicui Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Linlin Dou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ludan Wei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhan Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingping Yi
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding, Jingchu University of Technology, Jingmen 448000, Hubei, China.
| | - Yanhong He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
22
|
Partap M, Verma V, Thakur M, Bhargava B. Designing of future ornamental crops: a biotechnological driven perspective. HORTICULTURE RESEARCH 2023; 10:uhad192. [PMID: 38023473 PMCID: PMC10681008 DOI: 10.1093/hr/uhad192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023]
Abstract
With a basis in human appreciation of beauty and aesthetic values, the new era of ornamental crops is based on implementing innovative technologies and transforming symbols into tangible assets. Recent advances in plant biotechnology have attracted considerable scientific and industrial interest, particularly in terms of modifying desired plant traits and developing future ornamental crops. By utilizing omics approaches, genomic data, genetic engineering, and gene editing tools, scientists have successively explored the underlying molecular mechanism and potential gene(s) behind trait regulation such as floral induction, plant architecture, stress resistance, plasticity, adaptation, and phytoremediation in ornamental crop species. These signs of progress lay a theoretical and practical foundation for designing and enhancing the efficiency of ornamental plants for a wide range of applications. In this review, we briefly summarized the existing literature and advances in biotechnological approaches for the improvement of vital traits in ornamental plants. The future ornamental plants, such as light-emitting plants, biotic/abiotic stress detectors, and pollution abatement, and the introduction of new ornamental varieties via domestication of wild species are also discussed.
Collapse
Affiliation(s)
- Mahinder Partap
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vipasha Verma
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
| | - Meenakshi Thakur
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
23
|
Shelake RM, Jadhav AM, Bhosale PB, Kim JY. Unlocking secrets of nature's chemists: Potential of CRISPR/Cas-based tools in plant metabolic engineering for customized nutraceutical and medicinal profiles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108070. [PMID: 37816270 DOI: 10.1016/j.plaphy.2023.108070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Plant species have evolved diverse metabolic pathways to effectively respond to internal and external signals throughout their life cycle, allowing adaptation to their sessile and phototropic nature. These pathways selectively activate specific metabolic processes, producing plant secondary metabolites (PSMs) governed by genetic and environmental factors. Humans have utilized PSM-enriched plant sources for millennia in medicine and nutraceuticals. Recent technological advances have significantly contributed to discovering metabolic pathways and related genes involved in the biosynthesis of specific PSM in different food crops and medicinal plants. Consequently, there is a growing demand for plant materials rich in nutrients and bioactive compounds, marketed as "superfoods". To meet the industrial demand for superfoods and therapeutic PSMs, modern methods such as system biology, omics, synthetic biology, and genome editing (GE) play a crucial role in identifying the molecular players, limiting steps, and regulatory circuitry involved in PSM production. Among these methods, clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR/Cas) is the most widely used system for plant GE due to its simple design, flexibility, precision, and multiplexing capabilities. Utilizing the CRISPR-based toolbox for metabolic engineering (ME) offers an ideal solution for developing plants with tailored preventive (nutraceuticals) and curative (therapeutic) metabolic profiles in an ecofriendly way. This review discusses recent advances in understanding the multifactorial regulation of metabolic pathways, the application of CRISPR-based tools for plant ME, and the potential research areas for enhancing plant metabolic profiles.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Amol Maruti Jadhav
- Research Institute of Green Energy Convergence Technology (RIGET), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea; Nulla Bio Inc, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
24
|
Teng K, Guo Q, Liu L, Guo Y, Xu Y, Hou X, Teng W, Zhang H, Zhao C, Yue Y, Wen H, Wu J, Fan X. Chromosome-level reference genome assembly provides insights into the evolution of Pennisetum alopecuroides. FRONTIERS IN PLANT SCIENCE 2023; 14:1195479. [PMID: 37680353 PMCID: PMC10481962 DOI: 10.3389/fpls.2023.1195479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023]
Abstract
Pennisetum alopecuroides is an important forage grass resource, which plays a vital role in ecological environment improvement. Therefore, the acquisition of P. alopecuroides genome resources is conducive to the study of the adaptability of Pennisetum species in ecological remediation and forage breeding development. Here we assembled a P. alopecuroides cv. 'Liqiu' genome at the chromosome level with a size of approximately 845.71 Mb, contig N50 of 84.83Mb, and genome integrity of 99.13% as assessed by CEGMA. A total of 833.41-Mb sequences were mounted on nine chromosomes by Hi-C technology. In total, 60.66% of the repetitive sequences and 34,312 genes were predicted. The genomic evolution analysis showed that P. alopecuroides cv. 'Liqiu' was isolated from Setaria 7.53-13.80 million years ago and from Cenchrus 5.33-8.99 million years ago, respectively. The whole-genome event analysis showed that P. alopecuroides cv. 'Liqiu' underwent two whole-genome duplication (WGD) events in the evolution process, and the duplication events occurred at a similar time to that of Oryza sativa and Setaria viridis. The completion of the genome sequencing of P. alopecuroides cv. 'Liqiu' provides data support for mining high-quality genetic resources of P. alopecuroides and provides a theoretical basis for the origin and evolutionary characteristics of Pennisetum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuesen Yue
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | | | | | - Xifeng Fan
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
25
|
Kong X, Zhang Y, Wang Z, Bao S, Feng Y, Wang J, Yu Z, Long F, Xiao Z, Hao Y, Gao X, Li Y, Ding Y, Wang J, Lei T, Xu C, Wang J. Two-step model of paleohexaploidy, ancestral genome reshuffling and plasticity of heat shock response in Asteraceae. HORTICULTURE RESEARCH 2023; 10:uhad073. [PMID: 37303613 PMCID: PMC10251138 DOI: 10.1093/hr/uhad073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/10/2023] [Indexed: 06/13/2023]
Abstract
An ancient hexaploidization event in the most but not all Asteraceae plants, may have been responsible for shaping the genomes of many horticultural, ornamental, and medicinal plants that promoting the prosperity of the largest angiosperm family on the earth. However, the duplication process of this hexaploidy, as well as the genomic and phenotypic diversity of extant Asteraceae plants caused by paleogenome reorganization, are still poorly understood. We analyzed 11 genomes from 10 genera in Asteraceae, and redated the Asteraceae common hexaploidization (ACH) event ~70.7-78.6 million years ago (Mya) and the Asteroideae specific tetraploidization (AST) event ~41.6-46.2 Mya. Moreover, we identified the genomic homologies generated from the ACH, AST and speciation events, and constructed a multiple genome alignment framework for Asteraceae. Subsequently, we revealed biased fractionations between the paleopolyploidization produced subgenomes, suggesting the ACH and AST both are allopolyplodization events. Interestingly, the paleochromosome reshuffling traces provided clear evidence for the two-step duplications of ACH event in Asteraceae. Furthermore, we reconstructed ancestral Asteraceae karyotype (AAK) that has 9 paleochromosomes, and revealed a highly flexible reshuffling of Asteraceae paleogenome. Of specific significance, we explored the genetic diversity of Heat Shock Transcription Factors (Hsfs) associated with recursive whole-genome polyploidizations, gene duplications, and paleogenome reshuffling, and revealed that the expansion of Hsfs gene families enable heat shock plasticity during the genome evolution of Asteraceae. Our study provides insights on polyploidy and paleogenome remodeling for the successful establishment of Asteraceae, and is helpful for further communication and exploration of the diversification of plant families and phenotypes.
Collapse
Affiliation(s)
| | | | | | | | - Yishan Feng
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Jiaqi Wang
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Zijian Yu
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Feng Long
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Zejia Xiao
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Yanan Hao
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Xintong Gao
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Yinfeng Li
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Yue Ding
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Jianyu Wang
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | | | | | | |
Collapse
|
26
|
Zhang Y, Zhang Q, Yang X, Gu X, Chen J, Shi T. 6mA DNA Methylation on Genes in Plants Is Associated with Gene Complexity, Expression and Duplication. PLANTS (BASEL, SWITZERLAND) 2023; 12:1949. [PMID: 37653866 PMCID: PMC10221889 DOI: 10.3390/plants12101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 09/02/2023]
Abstract
N6-methyladenine (6mA) DNA methylation has emerged as an important epigenetic modification in eukaryotes. Nevertheless, the evolution of the 6mA methylation of homologous genes after species and after gene duplications remains unclear in plants. To understand the evolution of 6mA methylation, we detected the genome-wide 6mA methylation patterns of four lotus plants (Nelumbo nucifera) from different geographic origins by nanopore sequencing and compared them to patterns in Arabidopsis and rice. Within lotus, the genomic distributions of 6mA sites are different from the widely studied 5mC methylation sites. Consistently, in lotus, Arabidopsis and rice, 6mA sites are enriched around transcriptional start sites, positively correlated with gene expression levels, and preferentially retained in highly and broadly expressed orthologs with longer gene lengths and more exons. Among different duplicate genes, 6mA methylation is significantly more enriched and conserved in whole-genome duplicates than in local duplicates. Overall, our study reveals the convergent patterns of 6mA methylation evolution based on both lineage and duplicate gene divergence, which underpin their potential role in gene regulatory evolution in plants.
Collapse
Affiliation(s)
- Yue Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qian Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China
- Hubei Ecology Polytechnic College, Wuhan 430200, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinming Chen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tao Shi
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
27
|
Song A, Su J, Wang H, Zhang Z, Zhang X, Van de Peer Y, Chen F, Fang W, Guan Z, Zhang F, Wang Z, Wang L, Ding B, Zhao S, Ding L, Liu Y, Zhou L, He J, Jia D, Zhang J, Chen C, Yu Z, Sun D, Jiang J, Chen S, Chen F. Analyses of a chromosome-scale genome assembly reveal the origin and evolution of cultivated chrysanthemum. Nat Commun 2023; 14:2021. [PMID: 37037808 PMCID: PMC10085997 DOI: 10.1038/s41467-023-37730-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
Chrysanthemum (Chrysanthemum morifolium Ramat.) is a globally important ornamental plant with great economic, cultural, and symbolic value. However, research on chrysanthemum is challenging due to its complex genetic background. Here, we report a near-complete assembly and annotation for C. morifolium comprising 27 pseudochromosomes (8.15 Gb; scaffold N50 of 303.69 Mb). Comparative and evolutionary analyses reveal a whole-genome triplication (WGT) event shared by Chrysanthemum species approximately 6 million years ago (Mya) and the possible lineage-specific polyploidization of C. morifolium approximately 3 Mya. Multilevel evidence suggests that C. morifolium is likely a segmental allopolyploid. Furthermore, a combination of genomics and transcriptomics approaches demonstrate the C. morifolium genome can be used to identify genes underlying key ornamental traits. Phylogenetic analysis of CmCCD4a traces the flower colour breeding history of cultivated chrysanthemum. Genomic resources generated from this study could help to accelerate chrysanthemum genetic improvement.
Collapse
Affiliation(s)
- Aiping Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Haibin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhongren Zhang
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
| | - Yves Van de Peer
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
| | - Fei Chen
- College of tropical crops, Sanya Nanfan Research Institute, Hainan University & Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhenxing Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Baoqing Ding
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shuang Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lijie Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jun He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Diwen Jia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jiali Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Chuwen Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhongyu Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Daojin Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation (South), Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
28
|
Li J, Zhang Q, Kong D, Pu Y, Wen X, Dai S. Genome-wide identification of the MIKCc-type MADS-box gene family in Chrysanthemum lavandulifolium reveals their roles in the capitulum development. FRONTIERS IN PLANT SCIENCE 2023; 14:1153490. [PMID: 37035079 PMCID: PMC10076714 DOI: 10.3389/fpls.2023.1153490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Chrysanthemum ×morifolium is well known throughout the world for its diverse and exquisite flower types. However, due to the complicated genetic background of C. ×morifolium, it is difficult to understand the molecular mechanism of its flower development. And it limits the molecular breeding of improving chrysanthemum flower types. C. ×morifolium has the typical radial capitulum, and many researches showed that the members of the MIKCc-type MADS box gene family play a key role in the formation and development of the capitulum. However, it has been difficult to isolate the important MIKCc and investigate their roles in this process due to the lack of genomic information in chrysanthemum. Here, we identified MIKCc-type MADS box genes at whole genome-wide level in C. lavandulifolium, a diploid species closely related to C. ×morifolium, and investigated their roles in capitulum development by gene expression pattern analysis and protein interaction analysis. A total of 40 ClMIKCc were identified and were phylogenetically grouped into 12 clades. Members of all clades showed different enriched expression patterns during capitulum formation. We speculate that the E-class genes in C. lavandulifolium underwent subfunctionalization because they have a significantly expanded, more diverse expression patterns, and specifically tissue expression than AtSEPs. Meanwhile, we detected the C-class expressed in disc floret corolla, which could be the clue to explore the morphological differences between disc and ray floret corolla. In addition, the potential roles of some MIKCcs in complex inflorescence formation were explored by comparing the number and phylogenetic relationship of MIKCc subfamily members in Asteraceae with different capitulum types. Members of the FLC branch in Asteraceae were found to be possibly related to the differentiation and development of the ray floret.
Collapse
|
29
|
Ai P, Xue J, Shi Z, Liu Y, Li Z, Li T, Zhao W, Khan MA, Kang D, Wang K, Wang Z. Genome-wide characterization and expression analysis of MYB transcription factors in Chrysanthemum nankingense. BMC PLANT BIOLOGY 2023; 23:140. [PMID: 36915063 PMCID: PMC10012607 DOI: 10.1186/s12870-023-04137-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chrysanthemum is a popular ornamental plant worldwide. MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factors play an important role in everything from stress resistance to plant growth and development. However, the MYB family of chrysanthemums has not been the subject of a detailed bioinformatics and expression investigation. RESULTS In this study, we examined 324 CnMYB transcription factors from Chrysanthemum nankingense genome data, which contained 122 Cn1R-MYB, 183 CnR2R3-MYB, 12 Cn3R-MYB, 2 Cn4R-MYB, and 5 atypical CnMYB. The protein motifs and classification of CnMYB transcription factors were analyzed. Among them, motifs 1, 2, 3, and 4 were found to encode the MYB DNA-binding domain in R2R3-MYB proteins, while in other-MYB proteins, the motifs 1, 2, 3, 4, 5, 6, 7, and 8 encode the MYB DNA-binding domain. Among all CnMYBs, 44 genes were selected due to the presence of CpG islands, while methylation is detected in three genes, including CnMYB9, CnMYB152, and CnMYB219. We analyzed the expression levels of each CnMYB gene in ray floret, disc floret, flower bud, leaf, stem, and root tissues. Based on phylogenetic analysis and gene expression analysis, three genes appeared likely to control cellulose and lignin synthesis in stem tissue, and 16 genes appeared likely to regulate flowering time, anther, pollen development, and flower color. Fifty-one candidate genes that may be involved in stress response were identified through phylogenetic, stress-responseve motif of promoter, and qRT-PCR analyses. According to genes expression levels under stress conditions, six CnMYB genes (CnMYB9, CnMYB172, CnMYB186, CnMYB199, CnMYB219, and CnMYB152) were identified as key stress-responsive genes. CONCLUSIONS This research provides useful information for further functional analysis of the CnMYB gene family in chrysanthemums, as well as offers candidate genes for further study of cellulose and lignin synthesis, flowering traits, salt and drought stress mechanism.
Collapse
Affiliation(s)
- Penghui Ai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Jundong Xue
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Zhongya Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Yuru Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Zhongai Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Tong Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Muhammad Ayoub Khan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Dongru Kang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Kangxiang Wang
- Technology&Media University of Henan Kaifeng, Jinming Road, Kaifeng, 475004, Henan, China
| | - Zicheng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China.
| |
Collapse
|
30
|
Ye YN, Liang DF, Yi JH, Jin S, Zeng Z. IGTCM: An integrative genome database of traditional Chinese medicine plants. THE PLANT GENOME 2023:e20317. [PMID: 36896476 DOI: 10.1002/tpg2.20317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Fully understanding traditional Chinese medicines (TCMs) is still challenging because of the extreme complexity of their chemical components and mechanisms of action. The TCM Plant Genome Project aimed to obtain genetic information, determine gene functions, discover regulatory networks of herbal species, and elucidate the molecular mechanisms involved in the disease prevention and treatment, thereby accelerating the modernization of TCMs. A comprehensive database that contains TCM-related information will provide a vital resource. Here, we present an integrative genome database of TCM plants (IGTCM) that contains 14,711,220 records of 83 annotated TCM-related herb genomes, including 3,610,350 genes, 3,534,314 proteins and corresponding coding sequences, and 4,032,242 RNAs, as well as 1033 non-redundant component records for 68 herbs, downloaded and integrated from the GenBank and RefSeq databases. For minimal interconnectivity, each gene, protein, and component was annotated using the eggNOG-mapper tool and Kyoto Encyclopedia of Genes and Genomes database to acquire pathway information and enzyme classifications. These features can be linked across several species and different components. The IGTCM database also provides visualization and sequence similarity search tools for data analyses. These annotated herb genome sequences in IGTCM database are a necessary resource for systematically exploring genes related to the biosynthesis of compounds that have significant medicinal activities and excellent agronomic traits that can be used to improve TCM-related varieties through molecular breeding. It also provides valuable data and tools for future research on drug discovery and the protection and rational use of TCM plant resources. The IGTCM database is freely available at http://yeyn.group:96/.
Collapse
Affiliation(s)
- Yuan-Nong Ye
- Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Bioinformatics and Biomedical Big Data Mining Laboratory, Department of Medical Informatics, School of Big Health, Guizhou Medical University, Guiyang, China
| | - Ding-Fa Liang
- Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Jia-Hao Yi
- Bioinformatics and Biomedical Big Data Mining Laboratory, Department of Medical Informatics, School of Big Health, Guizhou Medical University, Guiyang, China
| | - Shuai Jin
- Bioinformatics and Biomedical Big Data Mining Laboratory, Department of Medical Informatics, School of Big Health, Guizhou Medical University, Guiyang, China
| | - Zhu Zeng
- Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| |
Collapse
|
31
|
Gao L, Xu W, Xin T, Song J. Application of third-generation sequencing to herbal genomics. FRONTIERS IN PLANT SCIENCE 2023; 14:1124536. [PMID: 36959935 PMCID: PMC10027759 DOI: 10.3389/fpls.2023.1124536] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
There is a long history of traditional medicine use. However, little genetic information is available for the plants used in traditional medicine, which limits the exploitation of these natural resources. Third-generation sequencing (TGS) techniques have made it possible to gather invaluable genetic information and develop herbal genomics. In this review, we introduce two main TGS techniques, PacBio SMRT technology and Oxford Nanopore technology, and compare the two techniques against Illumina, the predominant next-generation sequencing technique. In addition, we summarize the nuclear and organelle genome assemblies of commonly used medicinal plants, choose several examples from genomics, transcriptomics, and molecular identification studies to dissect the specific processes and summarize the advantages and disadvantages of the two TGS techniques when applied to medicinal organisms. Finally, we describe how we expect that TGS techniques will be widely utilized to assemble telomere-to-telomere (T2T) genomes and in epigenomics research involving medicinal plants.
Collapse
|
32
|
Hu Y, Song A, Guan Z, Zhang X, Sun H, Wang Y, Yu Q, Fu X, Fang W, Chen F. CmWRKY41 activates CmHMGR2 and CmFPPS2 to positively regulate sesquiterpenes synthesis in Chrysanthemum morifolium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:821-829. [PMID: 36868130 DOI: 10.1016/j.plaphy.2023.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Chrysanthemum morifolium is one of the most significant multipurpose crops with ornamental, medicinal, and edible value. Terpenoids, an essentials component of volatile oils, are abundant in chrysanthemum. However, the transcriptional regulation of terpenoid biosynthesis in chrysanthemums remains unclear. In the present investigation, we identified CmWRKY41, whose expression pattern is similar to that of terpenoid content in chrysanthemum floral scent, as a candidate gene that may promote terpenoid biosynthesis in chrysanthemum. Two structural genes 3-hydroxy-3-methylglutaryl-CoA reductase 2 (CmHMGR2) and farnesyl pyrophosphate synthase 2 (CmFPPS2), play key role in terpene biosynthesis in chrysanthemum. CmWRKY41 can directly bind to the promoters of CmHMGR2 or CmFPPS2 through GTGACA or CTGACG elements and activate its expression to promote sesquiterpene biosynthesis. In summary, these results indicate that CmWRKY41 targets CmHMGR2 and CmFPPS2 to positively regulate sesquiterpene biosynthesis in chrysanthemums. This study preliminarily revealed the molecular mechanism of terpenoid biosynthesis in chrysanthemum while enriching the secondary metabolism regulatory network.
Collapse
Affiliation(s)
- Yueheng Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hainan Sun
- Jiangsu Academy of Forestry, Nanjing, 211153, China.
| | - Yuxi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qi Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xianrong Fu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
33
|
Wu Y, Yu H, Yu X, Zhu L, Yu Z. Comparison of volatile compounds in Chrysanthemum nankingense during storage based on HS-SPME-GC-MS and E-nose. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
34
|
Zhang F, Chen F, Schwarzacher T, Heslop-Harrison JS, Teng N. The nature and genomic landscape of repetitive DNA classes in Chrysanthemum nankingense shows recent genomic changes. ANNALS OF BOTANY 2023; 131:215-228. [PMID: 35639931 PMCID: PMC9904347 DOI: 10.1093/aob/mcac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Tandemly repeated DNA and transposable elements represent most of the DNA in higher plant genomes. High-throughput sequencing allows a survey of the DNA in a genome, but whole-genome assembly can miss a substantial fraction of highly repeated sequence motifs. Chrysanthemum nankingense (2n = 2x = 18; genome size = 3.07 Gb; Asteraceae), a diploid reference for the many auto- and allopolyploids in the genus, was considered as an ancestral species and serves as an ornamental plant and high-value food. We aimed to characterize the major repetitive DNA motifs, understand their structure and identify key features that are shaped by genome and sequence evolution. METHODS Graph-based clustering with RepeatExplorer was used to identify and classify repetitive motifs in 2.14 millions of 250-bp paired-end Illumina reads from total genomic DNA of C. nankingense. Independently, the frequency of all canonical motifs k-bases long was counted in the raw read data and abundant k-mers (16, 21, 32, 64 and 128) were extracted and assembled to generate longer contigs for repetitive motif identification. For comparison, long terminal repeat retrotransposons were checked in the published C. nankingense reference genome. Fluorescent in situ hybridization was performed to show the chromosomal distribution of the main types of repetitive motifs. KEY RESULTS Apart from rDNA (0.86 % of the total genome), a few microsatellites (0.16 %), and telomeric sequences, no highly abundant tandem repeats were identified. There were many transposable elements: 40 % of the genome had sequences with recognizable domains related to transposable elements. Long terminal repeat retrotransposons showed widespread distribution over chromosomes, although different sequence families had characteristic features such as abundance at or exclusion from centromeric or subtelomeric regions. Another group of very abundant repetitive motifs, including those most identified as low-complexity sequences (9.07 %) in the genome, showed no similarity to known sequence motifs or tandemly repeated elements. CONCLUSIONS The Chrysanthemum genome has an unusual structure with a very low proportion of tandemly repeated sequences (~1.02 %) in the genome, and a high proportion of low-complexity sequences, most likely degenerated remains of transposable elements. Identifying the presence, nature and genomic organization of major genome fractions enables inference of the evolutionary history of sequences, including degeneration and loss, critical to understanding biodiversity and diversification processes in the genomes of diploid and polyploid Chrysanthemum, Asteraceae and plants more widely.
Collapse
Affiliation(s)
- Fengjiao Zhang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Fadi Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | | |
Collapse
|
35
|
Luo D, Zeng Z, Wu Z, Chen C, Zhao T, Du H, Miao Y, Liu D. Intraspecific variation in genome size in Artemisia argyi determined using flow cytometry and a genome survey. 3 Biotech 2023; 13:57. [PMID: 36698769 PMCID: PMC9868218 DOI: 10.1007/s13205-022-03412-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/26/2022] [Indexed: 01/23/2023] Open
Abstract
Different collections and accessions of Artemisia argyi (Chinese mugwort) harbour considerable diversity in morphology and bioactive compounds, but no mechanisms have been reported that explain these variations. We studied genome size in A. argyi accessions from different regions of China by flow cytometry. Genome size was significantly distinct among origins of these 42 Chinese mugwort accessions, ranging from 8.428 to 11.717 pg. There were no significant intraspecific differences among the 42 accessions from the five regions of China. The clustering analysis showed that these 42 A. argyi accessions could be divided into three groups, which had no significant relationship with geographical location. In a genome survey, the total genome size of A. argyi (A15) was estimated to be 7.852 Gb (or 8.029 pg) by K-mer analysis. This indicated that the results from the two independent methods are consistent, and that the genome survey can be used as an adjunct to flow cytometry to compensate for its deficiencies. In addition, genome survey can provide the information about heterozygosity, repeat sequences, GC content and ploidy of A. argyi genome. The nuclear DNA contents determined here provide a new reference for intraspecific variation in genome size in A. argyi, and may also be a potential resource for the study of genetic diversity and for breeding new cultivar.
Collapse
Affiliation(s)
- Dandan Luo
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Zeyi Zeng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Zongqi Wu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Changjie Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Tingting Zhao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Hongzhi Du
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Yuhuan Miao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Dahui Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| |
Collapse
|
36
|
Biosynthesis of α-Bisabolol by Farnesyl Diphosphate Synthase and α-Bisabolol Synthase and Their Related Transcription Factors in Matricaria recutita L. Int J Mol Sci 2023; 24:ijms24021730. [PMID: 36675248 PMCID: PMC9864331 DOI: 10.3390/ijms24021730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The essential oil of German chamomile (Matricaria recutita L.) is widely used in food, cosmetics, and the pharmaceutical industry. α-Bisabolol is the main active substance in German chamomile. Farnesyl diphosphate synthase (FPS) and α-bisabolol synthase (BBS) are key enzymes related to the α-bisabolol biosynthesis pathway. However, little is known about the α-bisabolol biosynthesis pathway in German chamomile, especially the transcription factors (TFs) related to the regulation of α-bisabolol synthesis. In this study, we identified MrFPS and MrBBS and investigated their functions by prokaryotic expression and expression in hairy root cells of German chamomile. The results suggest that MrFPS is the key enzyme in the production of sesquiterpenoids, and MrBBS catalyzes the reaction that produces α-bisabolol. Subcellular localization analysis showed that both MrFPS and MrBBS proteins were located in the cytosol. The expression levels of both MrFPS and MrBBS were highest in the extension period of ray florets. Furthermore, we cloned and analyzed the promoters of MrFPS and MrBBS. A large number of cis-acting elements related to light responsiveness, hormone response elements, and cis-regulatory elements that serve as putative binding sites for specific TFs in response to various biotic and abiotic stresses were identified. We identified and studied TFs related to MrFPS and MrBBS, including WRKY, AP2, and MYB. Our findings reveal the biosynthesis and regulation of α-bisabolol in German chamomile and provide novel insights for the production of α-bisabolol using synthetic biology methods.
Collapse
|
37
|
Jin C, Dong L, Wei C, Wani MA, Yang C, Li S, Li F. Creating novel ornamentals via new strategies in the era of genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1142866. [PMID: 37123857 PMCID: PMC10140431 DOI: 10.3389/fpls.2023.1142866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Ornamental breeding has traditionally focused on improving novelty, yield, quality, and resistance to biotic or abiotic stress. However, achieving these goals has often required laborious crossbreeding, while precise breeding techniques have been underutilized. Fortunately, recent advancements in plant genome sequencing and editing technology have opened up exciting new frontiers for revolutionizing ornamental breeding. In this review, we provide an overview of the current state of ornamental transgenic breeding and propose four promising breeding strategies that have already proven successful in crop breeding and could be adapted for ornamental breeding with the help of genome editing. These strategies include recombination manipulation, haploid inducer creation, clonal seed production, and reverse breeding. We also discuss in detail the research progress, application status, and feasibility of each of these tactics.
Collapse
Affiliation(s)
- Chunlian Jin
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Liqing Dong
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Chang Wei
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Muneeb Ahmad Wani
- Department of Floriculture and Landscape Architecture, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Chunmei Yang
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Shenchong Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| | - Fan Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| |
Collapse
|
38
|
Li X, Ma L, Wang Y, Ye C, Guo C, Li Y, Mei X, Du F, Huang H. PlantNLRatlas: a comprehensive dataset of full- and partial-length NLR resistance genes across 100 chromosome-level plant genomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1178069. [PMID: 37123823 PMCID: PMC10146310 DOI: 10.3389/fpls.2023.1178069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Plants have evolved two layers of protection against biotic stress: PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). The primary mechanism of ETI involves nucleotide-binding leucine-rich repeat immune receptors (NLRs). Although NLR genes have been studied in several plant species, a comprehensive database of NLRs across a diverse array of species is still lacking. Here, we present a thorough analysis of NLR genes across 100 high-quality plant genomes (PlantNLRatlas). The PlantNLRatlas includes a total of 68,452 NLRs, of which 3,689 are full-length and 64,763 are partial-length NLRs. The majority of NLR groups were phyletically clustered. In addition, the domain sequences were found to be highly conserved within each NLR group. Our PlantNLRatlas dataset is complementary to RefPlantNLR, a collection of NLR genes which have been experimentally confirmed. The PlantNLRatlas should prove helpful for comparative investigations of NLRs across a range of plant groups, including understudied taxa. Finally, the PlantNLRatlas resource is intended to help the field move past a monolithic understanding of NLR structure and function.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Linna Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yingmin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Chen Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Cunwu Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yingbin Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Xinyue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Fei Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
- *Correspondence: Huichuan Huang,
| |
Collapse
|
39
|
Wang S, Wang A, Wang H, Jiang F, Xu D, Fan W. Chromosome-level genome of a leaf vegetable Glebionis coronaria provides insights into the biosynthesis of monoterpenoids contributing to its special aroma. DNA Res 2022; 29:dsac036. [PMID: 36197084 PMCID: PMC9724771 DOI: 10.1093/dnares/dsac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
Glebionis coronaria is a popular vegetable with special aroma and a medical plant in East Asia and Mediterranean, but its biological studies and breeding have been hindered by the lack of reference genome. Here, we present a chromosome-level reference genome of G. coronaria, with assembled genome size of 6.8 Gb, which is the largest among all the published genomes of diploid Asteraceae species. The large genome size of G. coronaria is mainly caused by the recent widespread explosions of long-terminal-repeat retrotransposons. Analyses of macro-synteny and synonymous mutation rate distribution indicate that the G. coronaria genome experienced a whole-genome triplication at 40-45 million years ago, shared with all Asteraceae species. In subtribe Artemisiinae, Glebionis arose before the divergence of Chrysanthemum from Artemisia, and Glebionis species evolved much faster than Chrysanthemum and Artemisia species. In G. coronaria, the synthesis genes of monoterpenoids 8-oxocitronellyl enol and isopiperitenone were expanded, and the higher expressions of these expanded genes in leaves and stems may contribute to its special aroma. The G. coronaria genomic resources will promote the evolution studies of Asteraceae, the metabolism mechanism studies of bioactive compounds, and the breeding improvement of agronomic traits in G. coronaria.
Collapse
Affiliation(s)
- Sen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Anqi Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Hengchao Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Fan Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Dong Xu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Wei Fan
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
40
|
Wu QW, Wei M, Feng LF, Ding L, Wei WK, Yang JF, Lin XJ, Liang HL, Zhan RT, Ma DM. Rhamnosyltransferases involved in the biosynthesis of flavone rutinosides in Chrysanthemum species. PLANT PHYSIOLOGY 2022; 190:2122-2136. [PMID: 35947689 PMCID: PMC9706480 DOI: 10.1093/plphys/kiac371] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/14/2022] [Indexed: 05/06/2023]
Abstract
Linarin (acacetin-7-O-rutinoside), isorhoifolin (apigenin-7-O-rutinoside), and diosmin (diosmetin-7-O-rutinoside) are chemically and structurally similar flavone rutinoside (FR) compounds found in Chrysanthemum L. (Anthemideae, Asteraceae) plants. However, their biosynthetic pathways remain largely unknown. In this study, we cloned and compared FRs and genes encoding rhamnosyltransferases (RhaTs) among eight accessions of Chrysanthemum polyploids. We also biochemically characterized RhaTs of Chrysanthemum plants and Citrus (Citrus sinensis and Citrus maxima). RhaTs from these two genera are substrate-promiscuous enzymes catalyzing the rhamnosylation of flavones, flavanones, and flavonols. Substrate specificity analysis revealed that Chrysanthemum 1,6RhaTs preferred flavone glucosides (e.g. acacetin-7-O-glucoside), whereas Cs1,6RhaT preferred flavanone glucosides. The nonsynonymous substitutions of RhaTs found in some cytotypes of diploids resulted in the loss of catalytic function. Phylogenetic analysis and specialized pathways responsible for the biosynthesis of major flavonoids in Chrysanthemum and Citrus revealed that rhamnosylation activity might share a common evolutionary origin. Overexpression of RhaT in hairy roots resulted in 13-, 2-, and 5-fold increases in linarin, isorhoifolin, and diosmin contents, respectively, indicating that RhaT is mainly involved in the biosynthesis of linarin. Our findings not only suggest that the substrate promiscuity of RhaTs contributes to the diversity of FRs in Chrysanthemum species but also shed light on the evolution of flavone and flavanone rutinosides in distant taxa.
Collapse
Affiliation(s)
- Qing-Wen Wu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Min Wei
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen 518110, China
| | - Ling-Fang Feng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Li Ding
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wu-Ke Wei
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jin-Fen Yang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiao-Jing Lin
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hui-Lin Liang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | | | - Dong-Ming Ma
- Authors for correspondence: (D.-M.M.), (R.-T.Z.)
| |
Collapse
|
41
|
Zhu L, Ding Y, Wang S, Wang Z, Dai L. Genome-Wide Identification, Characterization, and Expression Analysis of CHS Gene Family Members in Chrysanthemum nankingense. Genes (Basel) 2022; 13:2145. [PMID: 36421820 PMCID: PMC9690667 DOI: 10.3390/genes13112145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 09/10/2023] Open
Abstract
The chalcone synthase (CHS) gene family catalyzes the first committed step in the biosynthesis of flavonoids and plays key roles in various biological processes in plants. However, systematic studies of the CHS gene family in chrysanthemum remain unknown to date. In this study, 16 CnCHS genes were identified by searching the complete genome sequence of Chrysanthemum nankingense. Most contained two exons and one intron with Chal-sti-synt_N and Chal-sti-synt_C domains. A phylogenetic tree of CnCHSs indicated divergence into three major groups, including I, II, and III. Analyses of the genes and promoters of these genes indicated that there are many cis-acting elements that respond to light, phytohormones, stress, and developmental stages. The CnCHS genes have extensive patterns of expression in various tissues and stages of flower development. Tandemly repeated and segmental repeat genes were expressed at higher levels in different tissues than most of the CnCHS genes that have been identified. CnCHS10 is expressed at higher levels in various flower organs than in vegetative tissues, particularly in disc floret petals and pistils. Our study provides valuable information for the systematic analysis of the CnCHS gene family, which also contributes to further research on flavonoid synthesis and petal colors of chrysanthemum.
Collapse
Affiliation(s)
- Lili Zhu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou 450046, China
| | - Yuqing Ding
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shunxiang Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhimin Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou 450046, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liping Dai
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou 450046, China
| |
Collapse
|
42
|
Sun D, Zhang J, He J, Geng Z, Li S, Zhang J, Li P, Zhang L, Wang Z, Wang L, Chen F, Song A. Whole-transcriptome profiles of Chrysanthemum seticuspe improve genome annotation and shed new light on mRNA-miRNA-lncRNA networks in ray florets and disc florets. BMC PLANT BIOLOGY 2022; 22:515. [PMID: 36333790 PMCID: PMC9636758 DOI: 10.1186/s12870-022-03889-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/19/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Chrysanthemum seticuspe has emerged as a model plant species of cultivated chrysanthemums, especially for studies involving diploid and self-compatible pure lines (Gojo-0). Its genome was sequenced and assembled into chromosomes. However, the genome annotation of C. seticuspe still needs to be improved to elucidate the complex regulatory networks in this species. RESULTS In addition to the 74,259 mRNAs annotated in the C. seticuspe genome, we identified 18,265 novel mRNAs, 51,425 novel lncRNAs, 501 novel miRNAs and 22,065 novel siRNAs. Two C-class genes and YABBY family genes were highly expressed in disc florets, while B-class genes were highly expressed in ray florets. A WGCNA was performed to identify the hub lncRNAs and mRNAs in ray floret- and disc floret-specific modules, and CDM19, BBX22, HTH, HSP70 and several lncRNAs were identified. ceRNA and lncNAT networks related to flower development were also constructed, and we found a latent functional lncNAT-mRNA combination, LXLOC_026470 and MIF2. CONCLUSIONS The annotations of mRNAs, lncRNAs and small RNAs in the C. seticuspe genome have been improved. The expression profiles of flower development-related genes, ceRNA networks and lncNAT networks were identified, laying a foundation for elucidating the regulatory mechanisms underlying disc floret and ray floret formation.
Collapse
Affiliation(s)
- Daojin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiqiang Geng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Song Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peiling Li
- Henan Key Laboratory of Tea Comprehensive utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Lingling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenxing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
43
|
Zhang CJ, Rong YL, Jiang CK, Guo YP, Rao GY. Co-option of a carotenoid cleavage dioxygenase gene (CCD4a) into the floral symmetry gene regulatory network contributes to the polymorphic floral shape-color combinations in Chrysanthemum sensu lato. THE NEW PHYTOLOGIST 2022; 236:1197-1211. [PMID: 35719106 DOI: 10.1111/nph.18325] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Morphological novelties, including formation of trait combinations, may result from de novo gene origination and/or co-option of existing genes into other developmental contexts. A variety of shape-color combinations of capitular florets occur in Chrysanthemum and its allies. We hypothesized that co-option of a carotenoid cleavage dioxygenase gene into the floral symmetry gene network would generate a white zygomorphic ray floret. We tested this hypothesis in an evolutionary context using species in Chrysanthemum sensu lato, a monophyletic group with diverse floral shape-color combinations, based on morphological investigation, interspecific crossing, molecular interaction and transgenic experiments. Our results showed that white color was significantly associated with floret zygomorphy. Specific expression of the carotenoid cleavage dioxygenase gene CCD4a in marginal florets resulted in white color. Crossing experiments between Chrysanthemum lavandulifolium and Ajania pacifica indicated that expression of CCD4a is trans-regulated. The floral symmetry regulator CYC2g can activate expression of CCD4a with a dependence on TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING (TCP) binding element 8 on the CCD4a promoter. Based on all experimental findings, we propose that gene co-option of carotenoid degradation into floral symmetry regulation, and the subsequent dysfunction or loss of either CYC2g or CCD4a, may have led to evolution of capitular shape-color patterning in Chrysanthemum sensu lato.
Collapse
Affiliation(s)
- Chu-Jie Zhang
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yu-Lin Rong
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Chen-Kun Jiang
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yan-Ping Guo
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, and College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Guang-Yuan Rao
- School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
44
|
Fan W, Wang S, Wang H, Wang A, Jiang F, Liu H, Zhao H, Xu D, Zhang Y. The genomes of chicory, endive, great burdock and yacon provide insights into Asteraceae palaeo-polyploidization history and plant inulin production. Mol Ecol Resour 2022; 22:3124-3140. [PMID: 35751596 DOI: 10.1111/1755-0998.13675] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Inulin is an important reserve polysaccharide in Asteraceae plants, and is also widely used as a sweetener, a source of dietary fibre and prebiotic. Nevertheless, a lack of genomic resources for inulin-producing plants has hindered extensive studies on inulin metabolism and regulation. Here, we present chromosome-level reference genomes for four inulin-producing plants: chicory (Cichorium intybus), endive (Cichorium endivia), great burdock (Arctium lappa) and yacon (Smallanthus sonchifolius), with assembled genome sizes of 1.28, 0.89, 1.73 and 2.72 Gb, respectively. We found that the chicory, endive and great burdock genomes were shaped by whole genome triplication (WGT-1), and the yacon genome was shaped by WGT-1 and two subsequent whole genome duplications (WGD-2 and WGD-3). A yacon unique whole genome duplication (WGD-3) occurred 5.6-5.8 million years ago. Our results also showed the genome size difference between chicory and endive is largely due to LTR retrotransposons, and rejected a previous hypothesis that chicory is an ancestor of endive. Furthermore, we identified fructan-active-enzyme and transcription-factor genes, and found there is one copy in chicory, endive and great burdock but two copies in yacon for most of these genes, except for the 1-FEH II gene which is significantly expanded in chicory. Interestingly, inulin synthesis genes 1-SST and 1-FFT are located close to each other, as are the degradation genes 1-FEH I and 1-FEH II. Finally, we predicted protein structures for 1-FFT genes to explore the mechanism determining inulin chain length.
Collapse
Affiliation(s)
- Wei Fan
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Sen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Hengchao Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Anqi Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Fan Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Hangwei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Hanbo Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Dong Xu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Yan Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
45
|
Li Z, Yang Y, Chen B, Xia B, Li H, Zhou Y, He M. Genome-wide identification and expression analysis of SBP-box gene family reveal their involvement in hormone response and abiotic stresses in Chrysanthemum nankingense. PeerJ 2022; 10:e14241. [PMID: 36320567 PMCID: PMC9618261 DOI: 10.7717/peerj.14241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023] Open
Abstract
SQUAMOSA promoter-binding-protein (SBP)-box family proteins are a class of plant-specific transcription factors, and widely regulate the development of floral and leaf morphology in plant growth and involve in environment and hormone signal response. In this study, we isolated and identified 21 non-redundant SBP-box genes in Chrysanthemum nankingense with bioinformatics analysis. Sequence alignments of 21 CnSBP proteins discovered a highly conserved SBP domain including two zinc finger-like structures and a nuclear localization signal region. According to the amino acid sequence alignments, 67 SBP-box genes from Arabidopsis thaliana, rice, Artemisia annua and C. nankingense were clustered into eight groups, and the motif and gene structure analysis also sustained this classification. The gene evolution analysis indicated the CnSBP genes experienced a duplication event about 10 million years ago (Mya), and the CnSBP and AtSPL genes occurred a divergence at 24 Mya. Transcriptome data provided valuable information for tissue-specific expression profiles of the CnSBPs, which highly expressed in floral tissues and differentially expressed in leaf, root and stem organs. Quantitative Real-time Polymerase Chain Reaction data showed expression patterns of the CnSBPs under exogenous hormone and abiotic stress treatments, separately abscisic acid, salicylic acid, gibberellin A3, methyl jasmonate and ethylene spraying as well as salt and drought stresses, indicating that the candidate CnSBP genes showed differentiated spatiotemporal expression patterns in response to hormone and abiotic stresses. Our study provides a systematic genome-wide analysis of the SBP-box gene family in C. nankingense. In general, it provides a fundamental theoretical basis that SBP-box genes may regulate the resistance of stress physiology in chrysanthemum via exogenous hormone pathways.
Collapse
Affiliation(s)
- Ziwei Li
- College of Landscape Architecture, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yujia Yang
- College of Landscape Architecture, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Bin Chen
- College of Landscape Architecture, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Bin Xia
- College of Landscape Architecture, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Hongyao Li
- College of Landscape Architecture, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yunwei Zhou
- College of Horticulture, Jilin Agricultural University, Jilin, China
| | - Miao He
- College of Landscape Architecture, Northeast Forestry University, Harbin, Heilongjiang, China
| |
Collapse
|
46
|
Zhu X, Liang H, Jiang H, Kang M, Wei X, Deng L, Shi Y. Phylogeographic structure of Heteroplexis (Asteraceae), an endangered endemic genus in the limestone karst regions of southern China. FRONTIERS IN PLANT SCIENCE 2022; 13:999964. [PMID: 36388513 PMCID: PMC9647136 DOI: 10.3389/fpls.2022.999964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Though the karst regions in south and southwest China are plant diversity hotspots, our understanding of the phylogeography and evolutionary history of the plants there remains limited. The genus Heteroplexis (Asteraceae) is one of the typical representative plants isolated by karst habitat islands, and is also an endangered and endemic plant to China. In this study, species-level phylogeographic analysis of the genus Heteroplexis was conducted using restriction site-associated DNA sequencing (RADseq). The genetic structure showed a clear phylogeographic structure consistent with the current species boundaries in the H. microcephala, H. incana, H. vernonioides, H. sericophylla, and H. impressinervia. The significant global (R = 0.37, P < 0.01) and regional (R = 0.650.95, P < 0.05) isolation by distance (IBD) signals among species indicate strong geographic isolation in the karst mountains, which may result in chronically restricted gene flow and increased genetic drift and differentiation. Furthermore, the phylogeographic structure of Heteroplexis suggested a southward migration since the last glacial period. Demographic analysis revealed the karst mountains as a refuge for Heteroplexis species. Finally, both Treemix and ABBA-BABA statistic detected significant historical gene flow between species. Significant historical gene flow and long-term stability of effective population size (Ne) together explain the high genome-wide genetic diversity among species (π = 0.05370.0838). However, the recent collapse of Ne, widespread inbreeding within populations, and restricted contemporary gene flow suggest that Heteroplexis species are probably facing a high risk of genetic diversity loss. Our results help to understand the evolutionary history of karst plants and guide conservation.
Collapse
Affiliation(s)
- Xianliang Zhu
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Hui Liang
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Haolong Jiang
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Ming Kang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xiao Wei
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Lili Deng
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Yancai Shi
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| |
Collapse
|
47
|
Kishi-Kaboshi M, Tanaka T, Sasaki K, Noda N, Aida R. Combination of long-read and short-read sequencing provides comprehensive transcriptome and new insight for Chrysanthemum morifolium ray-floret colorization. Sci Rep 2022; 12:17874. [PMID: 36284128 PMCID: PMC9596691 DOI: 10.1038/s41598-022-22589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/17/2022] [Indexed: 01/20/2023] Open
Abstract
Chrysanthemum morifolium is one of the most popular ornamental plants globally. Owing to its large and complex genome (around 10 Gb, segmental hexaploid), it has been difficult to obtain comprehensive transcriptome, which will promote to perform new breeding technique, such as genome editing, in C. morifolium. In this study, we used single-molecule real-time (SMRT) sequencing and RNA-seq technologies, combined them with an error-correcting process, and obtained high-coverage ray-floret transcriptome. The SMRT-seq data increased the ratio of long mRNAs containing complete open-reading frames, and the combined dataset provided a more complete transcriptomic data than those produced from either SMRT-seq or RNA-seq-derived transcripts. We finally obtained 'Sei Arabella' transcripts containing 928,645 non-redundant mRNA, which showed 96.6% Benchmarking Universal Single-Copy Orthologs (BUSCO) score. We also validated the reliability of the dataset by analyzing a mapping rate, annotation and transcript expression. Using the dataset, we searched anthocyanin biosynthesis gene orthologs and performed a qRT-PCR experiment to assess the usability of the dataset. The assessment of the dataset and the following analysis indicated that our dataset is reliable and useful for molecular biology. The combination of sequencing methods provided genetic information and a way to analyze the complicated C. morifolium transcriptome.
Collapse
Affiliation(s)
- Mitsuko Kishi-Kaboshi
- grid.416835.d0000 0001 2222 0432Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki 305-0852 Japan ,grid.416835.d0000 0001 2222 0432Present Address: Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8518 Japan
| | - Tsuyoshi Tanaka
- grid.416835.d0000 0001 2222 0432Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8518 Japan
| | - Katsutomo Sasaki
- grid.416835.d0000 0001 2222 0432Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki 305-0852 Japan
| | - Naonobu Noda
- grid.416835.d0000 0001 2222 0432Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki 305-0852 Japan
| | - Ryutaro Aida
- grid.416835.d0000 0001 2222 0432Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki 305-0852 Japan
| |
Collapse
|
48
|
Qi X, Wang H, Chen S, Feng J, Chen H, Qin Z, Blilou I, Deng Y. The genome of single-petal jasmine ( Jasminum sambac) provides insights into heat stress tolerance and aroma compound biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:1045194. [PMID: 36340389 PMCID: PMC9627619 DOI: 10.3389/fpls.2022.1045194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Jasmine [Jasminum sambac (L.) Aiton] is a commercially important cultivated plant species known for its fragrant flowers used in the perfume industry, medicine and cosmetics. In the present study, we obtained a draft genome for the J. sambac cultivar 'Danbanmoli' (JSDB, a single-petal phenotype). We showed that the final genome of J. sambac was 520.80 Mb in size (contig N50 = 145.43 kb; scaffold N50 = 145.53 kb) and comprised 35,363 genes. Our analyses revealed that the J. sambac genome has undergone only an ancient whole-genome duplication (WGD) event. We estimated that the lineage that has given rise to J. sambac diverged from the lineage leading to Osmanthus fragrans and Olea europaea approximately 31.1 million years ago (Mya). On the basis of a combination of genomic and transcriptomic analyses, we identified 92 transcription factors (TFs) and 206 genes related to heat stress response. Base on a combination of genomic, transcriptomic and metabolomic analyses, a range of aroma compounds and genes involved in the benzenoid/phenylpropanoid and terpenoid biosynthesis pathways were identified. In the newly assembled J. sambac genome, we identified a total of 122 MYB, 122 bHLH and 69 WRKY genes. Our assembled J. sambac JSDB genome provides fundamental knowledge to study the molecular mechanism of heat stress tolerance, and improve jasmine flowers and dissect its fragrance.
Collapse
Affiliation(s)
- Xiangyu Qi
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huadi Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shuangshuang Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jing Feng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huijie Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ziyi Qin
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ikram Blilou
- Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Yanming Deng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
49
|
Mekapogu M, Kwon OK, Song HY, Jung JA. Towards the Improvement of Ornamental Attributes in Chrysanthemum: Recent Progress in Biotechnological Advances. Int J Mol Sci 2022; 23:ijms232012284. [PMID: 36293140 PMCID: PMC9603847 DOI: 10.3390/ijms232012284] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022] Open
Abstract
Incessant development and introduction of novel cultivars with improved floral attributes are vital in the dynamic ornamental industry. Chrysanthemum (Chrysanthemum morifolium) is a highly favored ornamental plant, ranking second globally in the cut flower trade, after rose. Development of new chrysanthemum cultivars with improved and innovative modifications in ornamental attributes, including floral color, shape, plant architecture, flowering time, enhanced shelf life, and biotic and abiotic stress tolerance, is a major goal in chrysanthemum breeding. Despite being an economically important ornamental plant, the application of conventional and molecular breeding approaches to various key traits of chrysanthemum is hindered owing to its genomic complexity, heterozygosity, and limited gene pool availability. Although classical breeding of chrysanthemum has resulted in the development of several hundreds of cultivars with various morphological variations, the genetic and transcriptional control of various important ornamental traits remains unclear. The coveted blue colored flowers of chrysanthemums cannot be achieved through conventional breeding and mutation breeding due to technical limitations. However, blue-hued flower has been developed by genetic engineering, and transgenic molecular breeding has been successfully employed, leading to substantial progress in improving various traits. The recent availability of whole-genome sequences of chrysanthemum offers a platform to extensively employ MAS to identify a large number of markers for QTL mapping, and GWAS to dissect the genetic control of complex traits. The combination of NGS, multi-omic platforms, and genome editing technologies has provided a tremendous scope to decipher the molecular and regulatory mechanisms. However, the application and integration of these technologies remain inadequate for chrysanthemum. This review, therefore, details the significance of floral attributes, describes the efforts of recent advancements, and highlights the possibilities for future application towards the improvement of crucial ornamental traits in the globally popular chrysanthemum plant.
Collapse
|
50
|
Miao Y, Luo D, Zhao T, Du H, Liu Z, Xu Z, Guo L, Chen C, Peng S, Li JX, Ma L, Ning G, Liu D, Huang L. Genome sequencing reveals chromosome fusion and extensive expansion of genes related to secondary metabolism in Artemisia argyi. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1902-1915. [PMID: 35689517 PMCID: PMC9491451 DOI: 10.1111/pbi.13870] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 05/25/2023]
Abstract
Artemisia argyi, as famous as Artemisia annua, is a medicinal plant with huge economic value in the genus of Artemisia and has been widely used in the world for about 3000 years. However, a lack of the reference genome severely hinders the understanding of genetic basis for the active ingredient synthesis of A. argyi. Here, we firstly report a complex chromosome-level genome assembly of A. argyi with a large size of 8.03 Gb, with features of high heterozygosity (2.36%), high repetitive sequences (73.59%) and a huge number of protein-coding genes (279 294 in total). The assembly reveals at least three rounds of whole-genome duplication (WGD) events, including a recent WGD event in the A. argyi genome, and a recent burst of transposable element, which may contribute to its large genome size. The genomic data and karyotype analyses confirmed that A. argyi is an allotetraploid with 34 chromosomes. Intragenome synteny analysis revealed that chromosomes fusion event occurred in the A. argyi genome, which elucidates the changes in basic chromosome numbers in Artemisia genus. Significant expansion of genes related to photosynthesis, DNA replication, stress responses and secondary metabolism were identified in A. argyi, explaining the extensive environmental adaptability and rapid growth characteristics. In addition, we analysed genes involved in the biosynthesis pathways of flavonoids and terpenoids, and found that extensive gene amplification and tandem duplication contributed to the high contents of metabolites in A. argyi. Overall, the reference genome assembly provides scientific support for evolutionary biology, functional genomics and breeding in A. argyi and other Artemisia species.
Collapse
Affiliation(s)
- Yuhuan Miao
- College of PharmacyHubei University of Chinese MedicineWuhanChina
| | - Dandan Luo
- College of PharmacyHubei University of Chinese MedicineWuhanChina
| | - Tingting Zhao
- College of PharmacyHubei University of Chinese MedicineWuhanChina
| | - Hongzhi Du
- College of PharmacyHubei University of Chinese MedicineWuhanChina
| | | | - Zhongping Xu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Lanping Guo
- China Academy of Chinese Medical SciencesBeijingChina
| | - Changjie Chen
- College of PharmacyHubei University of Chinese MedicineWuhanChina
| | - Sainan Peng
- College of PharmacyHubei University of Chinese MedicineWuhanChina
| | - Jin Xin Li
- College of PharmacyHubei University of Chinese MedicineWuhanChina
| | - Lin Ma
- College of PharmacyHubei University of Chinese MedicineWuhanChina
| | - Guogui Ning
- Key laboratory of Horticultural Plant Biology, Ministry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Dahui Liu
- College of PharmacyHubei University of Chinese MedicineWuhanChina
| | - Luqi Huang
- China Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|