1
|
Li N, Zhang Y, Huo X, Xing L, Ge M, Suo N. Genome-Wide Identification, Plasma Membrane Localization, and Functional Validation of the SUT Gene Family in Yam ( Dioscorea cayennensis subsp. rotundata). Int J Mol Sci 2025; 26:5756. [PMID: 40565219 DOI: 10.3390/ijms26125756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 06/08/2025] [Accepted: 06/09/2025] [Indexed: 06/28/2025] Open
Abstract
Yam (Dioscorea cayennensis subsp. rotundata,hereafter referred to as Dioscorea rotundata) is a staple tropical tuber crop with notable nutritional and economic value. Its development and yield depend on efficient sucrose allocation from source tissues. Sucrose transporters (SUTs), a conserved family of membrane proteins, mediate sucrose loading, translocation, and unloading. Although well-studied in model plants and cereals, SUTs in yam remain largely uncharacterized. This study aims to identify and characterize the SUT gene family in yam and explore their roles in sucrose transport and tuber development. We conducted a genome-wide analysis of yam SUT genes, including gene structure, subcellular localization, and phylogeny. Molecular docking was used to predict sucrose-binding residues, and qRT-PCR assessed gene expression across tissues and tuber developmental stages. Eight SUT genes were identified and classified based on sequence similarity and domain structure. Docking analysis revealed key residues involved in sucrose binding and possible conformational shifts influencing transport. Expression profiling showed that most SUT genes, especially in the tuber apex, were progressively upregulated during development, suggesting roles in sucrose unloading and cell expansion. Additionally, functional validation of DrSUT1 in Arabidopsis thaliana confirmed its involvement in sucrose transport, supporting its role in yam sucrose partitioning. Yam SUT genes, especially those highly expressed in sink tissues, are involved in sucrose partitioning and tuber development. These findings provide structural and functional insights into SUT-mediated sugar transport and lay a foundation for improving sucrose utilization and yield in yam and other tuber crops.
Collapse
Affiliation(s)
- Na Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanfang Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiuwen Huo
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Linan Xing
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Mingran Ge
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ningning Suo
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
2
|
Chen F, Lin W, Xu Y, Wang Z, Wu Y, Wang J, Yang D, Lin S, Li L. Specific transcription of sodium-dependent pyruvate transporter 2 increases carbon allocation into plastid glycolysis and fatty acid synthesis with high oil production in Lindera glauca seeds. Int J Biol Macromol 2025; 313:144173. [PMID: 40379167 DOI: 10.1016/j.ijbiomac.2025.144173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 05/04/2025] [Accepted: 05/11/2025] [Indexed: 05/19/2025]
Abstract
BASS (Bile acid/sodium symporter) contribute greatly to pyruvate transport for oil biosynthesis. This work focused on determining critical BASS and revealing function in controlling oil biosynthesis in Lindera glauca seeds. A combination of global analysis of oil biosynthesis-related plastidial transporters and quantitative-comparison of transcription of BASS family members with oil content was conducted in L. glauca seeds across 9 differential accessions or developmental stages to determine BASS2 specific for seed oil accumulation, with BASS2-directed regulation model constructed for partitioning carbon into plastid glycolysis. BASS2 gene and its own promoter were isolated, and heterologous expression in Arabidopsis was driven respectively by the constitutive 35S and self-specific promoters. LgBASS2 overexpression, particularly controlled by native promoter, enhanced seed biomass and oil production, facilitated uptake of glycolytic metabolites into plastid, increased the amounts of plastid glycolytic metabolites and FA synthetic precursors, and upregulated transcription of key regulatory enzymes or proteins (involving sucrose cleavage, plastid transporter, glycolysis, FA biosynthesis, triacylglycerol assembly and lipid droplet budding). Our findings highlighted a significance of own promoter-controlled transcriptional expression of LgBASS2 to promoting seed development with high oil production, and provided new molecular regulation target of LgBASS2 and its own promoter to future bioengineering seed oil production.
Collapse
Affiliation(s)
- Feng Chen
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Wei Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Yanpeng Xu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Zirui Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Yuhang Wu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Jing Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Di Yang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Shanzhi Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Linkun Li
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
3
|
Yasuike M, Hasegawa N, Nakamura Y, Hongo Y, Fukui Y, Abe M, Murase N. Transcriptome Analysis of Genes Responsive to Nutrient Level Changes in the Marine Red Alga Pyropia yezoensis (Nori). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:83. [PMID: 40343632 DOI: 10.1007/s10126-025-10461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025]
Abstract
The cultivation of the red alga Pyropia (nori) is among the most significant aquaculture industries in East Asia. Nutrient deficiency-induced "discoloration" poses a serious threat to the industry, substantially impacting both harvest quality and production levels. In this study, we conducted transcriptome analysis (RNA-Seq) of P. yezoensis to gain deeper insights into the molecular mechanisms underlying physiological responses to nutrient limitation that lead to discoloration. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis estimated that under nutrient-rich conditions, pathways involved in photosynthesis (carbon fixation) and respiration (tricarboxylic acid [TCA] cycle and glycolysis) are more activated. In contrast, under nutrient-deficient conditions, upregulation of genes related to the uptake of external substances and stress response was observed. Additionally, seven genes (ant1-2, pup, drg2, ankrd, bckdha, lhcb, and an unknown gene) identified from the RNA-Seq results as potential discoloration markers were successfully validated through RT-qPCR analysis. The fundamental molecular insights into discoloration in P. yezoensis provided by this study will aid in developing future discoloration prediction methods and breeding discoloration-resistant Pyropia varieties.
Collapse
Affiliation(s)
- Motoshige Yasuike
- Bioinformatics and Biosciences Division, Fisheries Stock Assessment Center, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fuku-Ura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| | - Natsuki Hasegawa
- Kushiro Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 116 Katsurakoi, Kushiro, Hokkaido, 085-0802, Japan
| | - Yoji Nakamura
- Bioinformatics and Biosciences Division, Fisheries Stock Assessment Center, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fuku-Ura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Yuki Hongo
- Bioinformatics and Biosciences Division, Fisheries Stock Assessment Center, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fuku-Ura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Youhei Fukui
- Nansei Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 422-1 Nakatsuhamaura, Minamiise-Cho, Watarai-Gun, Mie, 516-0193, Japan
| | - Mahiko Abe
- National Fisheries University, Japan Fisheries Research and Education Agency, 2-7-1 Nagata-Honmachi, Shimonoseki, Yamaguchi, 759-6595, Japan
| | - Noboru Murase
- National Fisheries University, Japan Fisheries Research and Education Agency, 2-7-1 Nagata-Honmachi, Shimonoseki, Yamaguchi, 759-6595, Japan
| |
Collapse
|
4
|
Yang X, Yang W, Li J, Chen C, Chen S, Wang H, Wu J, Xue H, Liu Y, Lu J, Wang Y, Du M, Li Y, Fang W, Liu R, Peng Y, Xu Q, Zhou Y, Wang L, Cao K. Major Facilitator Superfamily transporters balance sugar metabolism in peach. PLANT PHYSIOLOGY 2025; 198:kiaf192. [PMID: 40350268 DOI: 10.1093/plphys/kiaf192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025]
Abstract
Sugar content is a key determinant of peach (Prunus persica) fruit quality, influencing taste, consumer preferences, and market value. However, the roles of Major Facilitator Superfamily (MFS) transporters in sugar metabolism and regulation remain largely unexplored. This study employed a combination of spatial metabolomics, quantitative genetics, transcriptomics, comparative genomics, and functional genomics to investigate the role of 67 MFS members in balancing sugar metabolism during peach fruit development. Spatial metabolomics revealed dynamic sugar distribution patterns, with ERD6-like transporters (PpERDL16-1) and tonoplastic sugar transporters 1 (PpTST1) promoting sucrose accumulation and polyol/monosaccharide transporters 5 (PpPMT5-1) and sucrose transporters 4 (PpSUT4) reducing sucrose transport during fruit ripening. Functional studies confirmed these roles: PpERDL16-1 overexpression enhanced sucrose transport, and PpPMT5-1 or PpSUT4 silencing reduced sugar levels in peach fruit. Quantitative trait locus (QTL) mapping identified a major locus on chromosome 5, upstream of PpTST1, forming distinct haplotypes (Hap1 and Hap2). Hap1 was associated with lower PpTST1 expression and higher sugar and soluble solids content (SSC), while Hap2 was linked to higher PpTST1 expression and lower sugar content. This inverse relationship suggests that upstream genetic variants fine-tune PpTST1 expression in a context-dependent manner, potentially through interactions with transcription factors or epigenetic modifiers. Notably, PpTST1 overexpression increased sugar content but did not alter SSC, indicating compensatory mechanisms such as changes in organic acid metabolism or water content. These results illuminate the molecular mechanisms regulating sugar homeostasis in peach fruits, providing valuable targets for the genetic improvement of fruit quality through breeding programs.
Collapse
Affiliation(s)
- Xuanwen Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Coconut Research Institute, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wenhua Yang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jiacui Li
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Changwen Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Siyu Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Huan Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Jinlong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Hui Xue
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yuting Liu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jianzhong Lu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yiwen Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mengrui Du
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yong Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Weichao Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Ruirui Liu
- Gansu Key Laboratory of Conservation and Utilization of Biological Resources and Ecological Restoration in Longdong, School of Agriculture and Bioengineering, Longdong University, Qingyang 745000, China
| | - Yanling Peng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qiang Xu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Coconut Research Institute, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lirong Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Ke Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| |
Collapse
|
5
|
Andersen CG, Bavnhøj L, Brag S, Bohush A, Chrenková A, Driller JH, Pedersen BP. Comparative analysis of STP6 and STP10 unravels molecular selectivity in sugar transport proteins. Proc Natl Acad Sci U S A 2025; 122:e2417370122. [PMID: 40279393 PMCID: PMC12054785 DOI: 10.1073/pnas.2417370122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/20/2025] [Indexed: 04/27/2025] Open
Abstract
The distribution of sugars is crucial for plant energy, signaling, and defense mechanisms. Sugar Transport Proteins (STPs) are Sugar Porters (SPs) that mediate proton-driven cellular uptake of glucose. Some STPs also transport fructose, while others remain highly selective for only glucose. What determines this selectivity, allowing STPs to distinguish between compounds with highly similar chemical composition, remains unknown. Here, we present the structure of Arabidopsis thaliana STP6 in an inward-occluded conformational state with glucose bound and demonstrate its role as both a glucose and fructose transporter. We perform a comparative analysis of STP6 with the glucose-selective STP10 using in vivo and in vitro systems, demonstrating how different experimental setups strongly influence kinetic transport properties. We analyze the properties of the monosaccharide binding site and show that the position of a single methyl group in the binding site is sufficient to shuffle glucose and fructose specificity, providing detailed insights into the fine-tuned dynamics of affinity-induced specificity for sugar uptake. Altogether, these findings enhance our understanding of sugar selectivity in STPs and more broadly SP proteins.
Collapse
Affiliation(s)
| | - Laust Bavnhøj
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus CDK-8000, Denmark
| | - Søren Brag
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus CDK-8000, Denmark
| | - Anastasiia Bohush
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus CDK-8000, Denmark
| | - Adriana Chrenková
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus CDK-8000, Denmark
| | - Jan Heiner Driller
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus CDK-8000, Denmark
| | | |
Collapse
|
6
|
Dinsa GF, Russell J, Steffenson B, Halpin C, Waugh R. Variation at the major facilitator superfamily ZIFL1 gene influences zinc concentration of barley grain. FRONTIERS IN PLANT SCIENCE 2025; 16:1539029. [PMID: 40343130 PMCID: PMC12058730 DOI: 10.3389/fpls.2025.1539029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/28/2025] [Indexed: 05/11/2025]
Abstract
Food and nutritional security are global challenges exacerbated by an increasing human population and impacted by climate change. Barley is among the top cereal crops grown worldwide and is a strategic crop for food and nutrition security in several geographical domains. However, barley grains are generally limited in iron and zinc, two major micronutrient deficiencies affecting billions of people around the world, but particularly women and children in developing countries. One promising strategy to enhance crop micronutrient status is via biofortification, the identification and use of nutrient-rich natural variants in crop genetic improvement. Germplasm assessed as being rich in essential nutrients are used as parental materials in traditional breeding strategies. While simple in theory, directly assessing grain nutrient concentration as a phenotype in a crop breeding program is not trivial, particularly in lesser developed geographies. As an alternative, genetic diagnostics can simplify the identification of desirable progenies and accelerate the breeding process. Here we explored natural variation for grain zinc concentration within 296 Ethiopian and Eritrean barley landraces using a genome-wide association study. We found strong associations with two SNPs, both of which were located within the barley ortholog of a tonoplast-associated major facilitator superfamily (MFS) transporter gene, Zinc induced facilitator-like 1 (ZIFL1) of Arabidopsis thaliana (AtZIFL1). Sequence-based haplotype analysis of the barley gene (HvZIFL1) extended this association to a 153-162 bp deletion in a non-coding region. The favourable haplotype, associated with higher grain Zn concentration, was found in ~20% of Ethiopian and Eritrean barley germplasm. Markers are designed to the diagnostic SNPs for use as molecular diagnostics in breeding for genotypes with enhanced grain Zn.
Collapse
Affiliation(s)
- Girma Fana Dinsa
- University of Dundee, Division of Plant Sciences at the James Hutton
Institute, Dundee, United Kingdom
| | - Joanne Russell
- The James Hutton Institute, Cell and Molecular Science Department, Dundee, United Kingdom
| | - Brian Steffenson
- Department of Plant Pathology, University of Minnesota, St.
Paul, MN, United States
| | - Claire Halpin
- University of Dundee, Division of Plant Sciences at the James Hutton
Institute, Dundee, United Kingdom
| | - Robbie Waugh
- University of Dundee, Division of Plant Sciences at the James Hutton
Institute, Dundee, United Kingdom
- The James Hutton Institute, Cell and Molecular Science Department, Dundee, United Kingdom
| |
Collapse
|
7
|
Lei M, Wang X, Chen K, Wei Q, Zhou M, Chen G, Su S, Tai Y, Zhuang K, Li D, Liu M, Zhang S, Wang Y. Sugar transporters: mediators of carbon flow between plants and microbes. FRONTIERS IN PLANT SCIENCE 2025; 16:1536969. [PMID: 40308299 PMCID: PMC12042665 DOI: 10.3389/fpls.2025.1536969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025]
Abstract
Pathogens and symbiotic microorganisms significantly influence plant growth and crop productivity. Enhancing crop disease resistance and maximizing the beneficial role of symbiotic microorganisms in agriculture constitute critical areas of scientific investigation. A fundamental aspect of plant-microorganisms interactions revolves around nutritional dynamics, characterized by either "food shortage" or "food supply" scenarios. Notably, pathogenic and symbiotic microorganisms predominantly utilize photosynthetic sugars as their primary carbon source during host colonization. This phenomenon has generated substantial interest in the regulatory mechanisms governing sugar transport and redistribution at the plant-microorganism interface. Sugar transporters, which primarily mediate the allocation of sugars to various sink organs, have emerged as crucial players in plant-pathogen interactions and the establishment of beneficial symbiotic associations. This review systematically categorized plant sugar transporters and highlighted their functional significance in mediating plant interactions with pathogenic and beneficial microorganisms. Furthermore, we synthesized recent advancements in understanding the molecular regulatory mechanisms of these transporters and identified key scientific questions warranting further investigation. Elucidating the roles of sugar transporters offers novel strategies for enhancing crop health and productivity, thereby contributing to agricultural sustainability and global food security.
Collapse
Affiliation(s)
- Mengyu Lei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaodi Wang
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kuan Chen
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qianqian Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Miaomiao Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Gong Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Shuai Su
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Yuying Tai
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kexin Zhuang
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dexiao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Mengjuan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Senlei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Youning Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Faz-Cortez OA, Sánchez-López AY, Hernández-Vásquez CI, Segura-Ruiz A, Pereyra-Alférez B, García-García JH. Computational analysis of polymorphic residues in maltose and maltotriose transporters of a wild Saccharomyces cerevisiae strain. Open Life Sci 2025; 20:20251080. [PMID: 40291777 PMCID: PMC12032978 DOI: 10.1515/biol-2025-1080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/29/2025] [Accepted: 02/13/2025] [Indexed: 04/30/2025] Open
Abstract
The metabolism of maltose and maltotriose, the primary sugars in brewing wort, depends on an efficient transport system. However, most Saccharomyces cerevisiae strains transport maltotriose inefficiently, leaving residual α-glucosides in the final product. Proteins involved in maltotriose transport exhibit diverse polymorphic sequences linked to sugar transport efficiency. In this study, a wild S. cerevisiae strain was placed under adaptive selection, resulting in a strain with a 65 and 44% increase in maltose and maltotriose transport rates, respectively. Genes encoding maltose and maltotriose transporters, including MALx1, MPHx, and AGT1, were detected in both the native and adapted strains. One variant of Mal31p, carrying a polymorphism at position 371 in transmembrane helix 7, was identified. This helix has been reported to have a high likelihood of undergoing polymorphisms. Bioinformatics analysis revealed structural changes affecting substrate interactions and channel dynamics, with the polymorphism conferring greater protein flexibility and reducing electrostatic interactions. These results suggest that the residue at position 371 in maltose and maltotriose transporters is a key element distinct from those previously reported. Additionally, we propose a significant set of polymorphic residues within these transporters potentially resulting from the evolution of these proteins.
Collapse
Affiliation(s)
- Oscar A. Faz-Cortez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico
| | - Alma Y. Sánchez-López
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico
| | - César I. Hernández-Vásquez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico
| | - Andre Segura-Ruiz
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico
| | - Benito Pereyra-Alférez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico
| | - Jorge H. García-García
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Instituto de Biotecnología, Nuevo León, Mexico
| |
Collapse
|
9
|
Krämer U. Changing paradigms for the micronutrient zinc, a known protein cofactor, as a signal relaying also cellular redox state. QUANTITATIVE PLANT BIOLOGY 2025; 6:e7. [PMID: 40297241 PMCID: PMC12035779 DOI: 10.1017/qpb.2025.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 04/30/2025]
Abstract
The micronutrient zinc (Zn) is often poorly available but toxic when present in excess, so a tightly controlled Zn homoeostasis network operates in all organisms. This review summarizes our present understanding of plant Zn homoeostasis. In Arabidopsis, about 1,900 Zn-binding metalloproteins require Zn as a cofactor. Abundant Zn metalloproteins reside in plastids, mitochondria and peroxisomes, emphasizing the need to address how Zn reaches these proteins. Apo-Zn metalloproteins do not acquire Zn2+ from a cytosolic pool of free cations, but instead through associative ligand exchange from Zn-buffering molecules. The importance of cytosolic thiols in Zn buffering suggests that, besides elevated Zn influx, a more oxidized redox state is also predicted to cause elevated labile-bound Zn levels, consistent with the suppression of a Zn deficiency marker under oxidative stress. Therefore, we consider a broadened physiological scope in plants for a possible signalling role of Zn2+, experimentally supported only in animals to date.
Collapse
Affiliation(s)
- Ute Krämer
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Liu W, Jiang H, Zeng F. The sugar transporter proteins in plants: An elaborate and widespread regulation network-A review. Int J Biol Macromol 2025; 294:139252. [PMID: 39755309 DOI: 10.1016/j.ijbiomac.2024.139252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
In higher plants, sugars are the primary products of photosynthesis, where CO2 is converted into organic carbon within the mesophyll cells of leaves. These sugars serve as a critical source of carbon skeletons for the biosynthesis of essential cellular compounds, energy production, and as osmotic and signaling molecules. Plant sugar transporter proteins play a key role in facilitating the long-distance translocation of sugars from source to sink organs, thereby controlling their distribution and accumulation across the plant. Over the past decade, substantial progress has been achieved in identifying the functions of individual genes linked to sugar transporters; however, the diverse regulatory mechanisms influencing these transporters remain insufficiently explored. This review consolidates current and previous research on the functions of sugar transporter proteins, focusing on their involvement in phloem transport pathways their impact on crop yield, cross-talk with other signals, and plant-microbe interactions. Furthermore, we propose future directions for studying the mechanisms of sugar transporter proteins and their potential applications in agriculture, with the goal of improving sugar utilization efficiency in crops and ultimately increasing crop yield.
Collapse
Affiliation(s)
- Weigang Liu
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Hong Jiang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Fankui Zeng
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 262306, China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, China.
| |
Collapse
|
11
|
Zhang Q, Wang Z, Gao R, Jiang Y. Sugars, Lipids and More: New Insights Into Plant Carbon Sources During Plant-Microbe Interactions. PLANT, CELL & ENVIRONMENT 2025; 48:1656-1673. [PMID: 39465686 PMCID: PMC11695786 DOI: 10.1111/pce.15242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/14/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Heterotrophic microbes rely on host-derived carbon sources for their growth and survival. Depriving pathogens of plant carbon is therefore a promising strategy for protecting plants from disease and reducing yield losses. Importantly, this carbon starvation-mediated resistance is expected to be more broad-spectrum and durable than race-specific R-gene-mediated resistance. Although sugars are well characterized as major carbon sources for bacteria, emerging evidence suggests that plant-derived lipids are likely to be an essential carbon source for some fungal microbes, particularly biotrophs. Here, we comprehensively discuss the dual roles of carbon sources (mainly sugars and lipids) and their transport processes in immune signalling and microbial nutrition. We summarize recent findings revealing the crucial roles of lipids as susceptibility factors at all stages of pathogen infection. In particular, we discuss the potential pathways by which lipids and other plant carbon sources are delivered to biotrophs, including protein-mediated transport, vesicle trafficking and autophagy. Finally, we highlight knowledge gaps and offer suggestions for clarifying the mechanisms that underlie nutrient uptake by biotrophs, providing guidance for future research on the application of carbon starvation-mediated resistance.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Zongqi Wang
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Runjie Gao
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Yina Jiang
- School of Life SciencesEast China Normal UniversityShanghaiChina
| |
Collapse
|
12
|
Fan W, Gao H, Zhang L, Mao D, Li Y, Zhang L, Li J, Zhao X, Hou H. Genome-wide identification and expression profiling of MST, SUT and SWEET transporters in Dendrobium catenatum. BMC Genomics 2024; 25:1213. [PMID: 39695392 DOI: 10.1186/s12864-024-11121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Sugar transporters (STs) play a critical role in the transportation of sugar, participating in plant growth and development, stress/defense responses, and signal transduction processes. Dendrobium catenatum (also known as Dendrobium officinale, hereinafter referred to as D. catenatum) is an important traditional Chinese medicinal herb with remarkable medicinal properties and possessing high economic value. Polysaccharides are the primary active components in D. catenatum, exhibiting diverse pharmacological activities. Sugar transporters function as material supplier and may play the essential roles in the polysaccharide biosynthesis, as well as the key reulators in the signaling and responses to abiotic stresses in Dendrobium plants. However, a comprehensive analysis of sugar transporters in D. catenatum remains elusive, thereby hindering our understanding of sugar partitioning within this species. RESULTS In this work, the members belonging to MST, SUT, and SWEET gene families were identified in four Dendrobium plants. A comprehensive study of sugar transporters was conducted in D. catenatum, including phylogenetic relationship, structural arrangement, regulatory networks, expression profiles, and potential functions analysis. Seven sugar transporters were found to be involved in the process of polysaccharide biosynthesis in D. catenatum. Red-blue light is an effective way to enhance the accumulation of polysaccharides, and exerts an influence on the expression of polysaccharide biosynthesis related genes. CONCLUSIONS This study provide insight into the evolution and functional annotation of sugar transporters in Dendrobium, and establishing a foundation for future functional research of sugar transporters involved in polysaccharide biosynthesis and stress response.
Collapse
Affiliation(s)
- Weiwei Fan
- College of Medicine, Pingdingshan University, Pingdingshan, 467000, China
| | - Huashan Gao
- College of Medicine, Pingdingshan University, Pingdingshan, 467000, China
| | - Lei Zhang
- College of Medicine, Pingdingshan University, Pingdingshan, 467000, China
| | - Dongdong Mao
- College of Medicine, Pingdingshan University, Pingdingshan, 467000, China
| | - Yanyan Li
- College of Medicine, Pingdingshan University, Pingdingshan, 467000, China
| | - Lifang Zhang
- College of Medicine, Pingdingshan University, Pingdingshan, 467000, China
| | - Jingting Li
- School of Chemical and Biological Engineering, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Xuyao Zhao
- College of Medicine, Pingdingshan University, Pingdingshan, 467000, China.
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| |
Collapse
|
13
|
Khan M, Dahro B, Wang Y, Wang M, Xiao W, Qu J, Zeng Y, Fang T, Xiao P, Xu X, Li C, Liu JH. The transcription factor ERF110 promotes cold tolerance by directly regulating sugar and sterol biosynthesis in citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2385-2401. [PMID: 38985498 DOI: 10.1111/tpj.16925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
ERFs (ethylene-responsive factors) are known to play a key role in orchestrating cold stress signal transduction. However, the regulatory mechanisms and target genes of most ERFs are far from being well deciphered. In this study, we identified a cold-induced ERF, designated as PtrERF110, from trifoliate orange (Poncirus trifoliata L. Raf., also known as Citrus trifoliata L.), an elite cold-hardy plant. PtrERF110 is a nuclear protein with transcriptional activation activity. Overexpression of PtrERF110 remarkably enhanced cold tolerance in lemon (Citrus limon) and tobacco (Nicotiana tabacum), whereas VIGS (virus-induced gene silencing)-mediated knockdown of PtrERF110 drastically impaired the cold tolerance. RNA sequence analysis revealed that PtrERF110 overexpression resulted in global transcriptional reprogramming of a range of stress-responsive genes. Three of the genes, including PtrERD6L16 (early responsive dehydration 6-like transporters), PtrSPS4 (sucrose phosphate synthase 4), and PtrUGT80B1 (UDP-glucose: sterol glycosyltransferases 80B1), were confirmed as direct targets of PtrERF110. Consistently, PtrERF110-overexpressing plants exhibited higher levels of sugars and sterols compared to their wild type counterparts, whereas the VIGS plants had an opposite trend. Exogenous supply of sucrose restored the cold tolerance of PtrERF110-silencing plants. In addition, knockdown of PtrSPS4, PtrERD6L16, and PtrUGT80B1 substantially impaired the cold tolerance of P. trifoliata. Taken together, our findings indicate that PtrERF110 positively modulates cold tolerance by directly regulating sugar and sterol synthesis through transcriptionally activating PtrERD6L16, PtrSPS4, and PtrUGT80B1. The regulatory modules (ERF110-ERD6L16/SPS4/UGT80B1) unraveled in this study advance our understanding of the molecular mechanisms underlying sugar and sterol accumulation in plants subjected to cold stress.
Collapse
Affiliation(s)
- Madiha Khan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bachar Dahro
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Wei Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yike Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tian Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyong Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Chunlong Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
14
|
Singh S, Viswanath A, Chakraborty A, Narayanan N, Malipatil R, Jacob J, Mittal S, Satyavathi TC, Thirunavukkarasu N. Identification of key genes and molecular pathways regulating heat stress tolerance in pearl millet to sustain productivity in challenging ecologies. FRONTIERS IN PLANT SCIENCE 2024; 15:1443681. [PMID: 39239194 PMCID: PMC11374647 DOI: 10.3389/fpls.2024.1443681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Pearl millet is a nutri-cereal that is mostly grown in harsh environments, making it an ideal crop to study heat tolerance mechanisms at the molecular level. Despite having a better-inbuilt tolerance to high temperatures than other crops, heat stress negatively affects the crop, posing a threat to productivity gain. Hence, to understand the heat-responsive genes, the leaf and root samples of two contrasting pearl millet inbreds, EGTB 1034 (heat tolerant) and EGTB 1091 (heat sensitive), were subjected to heat-treated conditions and generated genome-wide transcriptomes. We discovered 13,464 differentially expressed genes (DEGs), of which 6932 were down-regulated and 6532 up-regulated in leaf and root tissues. The pairwise analysis of the tissue-based transcriptome data of the two genotypes demonstrated distinctive genotype and tissue-specific expression of genes. The root exhibited a higher number of DEGs compared to the leaf, emphasizing different adaptive strategies of pearl millet. A large number of genes encoding ROS scavenging enzymes, WRKY, NAC, enzymes involved in nutrient uptake, protein kinases, photosynthetic enzymes, and heat shock proteins (HSPs) and several transcription factors (TFs) involved in cross-talking of temperature stress responsive mechanisms were activated in the stress conditions. Ribosomal proteins emerged as pivotal hub genes, highly interactive with key genes expressed and involved in heat stress response. The synthesis of secondary metabolites and metabolic pathways of pearl millet were significantly enriched under heat stress. Comparative synteny analysis of HSPs and TFs in the foxtail millet genome demonstrated greater collinearity with pearl millet compared to proso millet, rice, sorghum, and maize. In this study, 1906 unannotated DEGs were identified, providing insight into novel participants in the molecular response to heat stress. The identified genes hold promise for expediting varietal development for heat tolerance in pearl millet and similar crops, fostering resilience and enhancing grain yield in heat-prone environments.
Collapse
Affiliation(s)
- Swati Singh
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Aswini Viswanath
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Animikha Chakraborty
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Neha Narayanan
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Renuka Malipatil
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Jinu Jacob
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Shikha Mittal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, India
| | - Tara C Satyavathi
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Nepolean Thirunavukkarasu
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| |
Collapse
|
15
|
Xia P, Zhou S, Zhao X, Zhao C. Characterization and Expression Analysis of Sugar Transporters through Partial Least Square Structural Equation Model (PLS-SEM) Revealed Their Role in Pepper ( Capsicum annuum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1825. [PMID: 38999665 PMCID: PMC11243835 DOI: 10.3390/plants13131825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Pepper (Capsicum annuum L.) is one of the most important economic crops in the world. By controlling the transport and distribution of photosynthetic products between cells and organs, sugar transporters are widely involved in growth and development, environmental adaptation, and microbial interactions. The present study was carried out at the genome-wide level to systematically characterize sugar transporters. As a result, 50 MST, 3 SUT, and 29 SWEET genes were identified and classified. The expression pattern of sugar transporters in pepper was analyzed by transcriptomic data. The expression properties of sugar transporters were further explored in pepper varieties with significant differences in weight, shape, and pungency. It was shown that the pepper sugar transporter genes had obvious spatiotemporal specific expression characteristics and exhibited variety-specific expression preferences. We focus on analyzing candidate genes that may be involved in fruit development and expansion. We further explore the response of pepper sugar transporters to adversity stress using a structural equation model. Finally, we found that the MST, SUT, and SWEET families are collectively involved in balancing pepper resistance to abiotic stress by coordinating the expression strengths of different family members. Our study may contribute to the functional study of pepper sugar transporter genes and create the prospect of utilizing sugar transporter gene resources to improve pepper variety.
Collapse
Affiliation(s)
- Pan Xia
- Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Shiyong Zhou
- Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoxue Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changling Zhao
- Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
16
|
Lu L, Delrot S, Liang Z. From acidity to sweetness: a comprehensive review of carbon accumulation in grape berries. MOLECULAR HORTICULTURE 2024; 4:22. [PMID: 38835095 DOI: 10.1186/s43897-024-00100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Most of the carbon found in fruits at harvest is imported by the phloem. Imported carbon provide the material needed for the accumulation of sugars, organic acids, secondary compounds, in addition to the material needed for the synthesis of cell walls. The accumulation of sugars during fruit development influences not only sweetness but also various parameters controlling fruit composition (fruit "quality"). The accumulation of organic acids and sugar in grape berry flesh cells is a key process for berry development and ripening. The present review presents an update of the research on grape berry development, anatomical structure, sugar and acid metabolism, sugar transporters, and regulatory factors.
Collapse
Affiliation(s)
- Lizhen Lu
- State Key Laboratory of Plant Diversity and Prominent Crop, Beijing Key Laboratory of Grape Science and Oenology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Serge Delrot
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, Villenave d'Ornon, 33882, France
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Prominent Crop, Beijing Key Laboratory of Grape Science and Oenology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
17
|
van den Herik B, Bergonzi S, Li Y, Bachem CW, ten Tusscher KH. A coordinated switch in sucrose and callose metabolism enables enhanced symplastic unloading in potato tubers. QUANTITATIVE PLANT BIOLOGY 2024; 5:e4. [PMID: 38689753 PMCID: PMC11058582 DOI: 10.1017/qpb.2024.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 05/02/2024]
Abstract
One of the early changes upon tuber induction is the switch from apoplastic to symplastic unloading. Whether and how this change in unloading mode contributes to sink strength has remained unclear. In addition, developing tubers also change from energy to storage-based sucrose metabolism. Here, we investigated the coordination between changes in unloading mode and sucrose metabolism and their relative role in tuber sink strength by looking into callose and sucrose metabolism gene expression combined with a model of apoplastic and symplastic unloading. Gene expression analysis suggests that callose deposition in tubers is decreased by lower callose synthase expression. Furthermore, changes in callose and sucrose metabolism are strongly correlated, indicating a well-coordinated developmental switch. Modelling indicates that symplastic unloading is not the most efficient unloading mode per se. Instead, it is the concurrent metabolic switch that provides the physiological conditions necessary to potentiate symplastic transport and thereby enhance tuber sink strength .
Collapse
Affiliation(s)
- Bas van den Herik
- Computational Developmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Sara Bergonzi
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Yingji Li
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Christian W. Bachem
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
18
|
Li M, Li H, Zhu Q, Liu D, Li Z, Chen H, Luo J, Gong P, Ismail AM, Zhang Z. Knockout of the sugar transporter OsSTP15 enhances grain yield by improving tiller number due to increased sugar content in the shoot base of rice (Oryza sativa L.). THE NEW PHYTOLOGIST 2024; 241:1250-1265. [PMID: 38009305 DOI: 10.1111/nph.19411] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/27/2023] [Indexed: 11/28/2023]
Abstract
Sugar transporter proteins (STPs) play critical roles in regulating plant stress tolerance, growth, and development. However, the role of STPs in regulating crop yield is poorly understood. This study elucidates the mechanism by which knockout of the sugar transporter OsSTP15 enhances grain yield via increasing the tiller number in rice. We found that OsSTP15 is specifically expressed in the shoot base and vascular bundle sheath of seedlings and encodes a plasma membrane-localized high-affinity glucose efflux transporter. OsSTP15 knockout enhanced sucrose and trehalose-6-phosphate (Tre6P) synthesis in leaves and improved sucrose transport to the shoot base by inducing the expression of sucrose transporters. Higher glucose, sucrose, and Tre6P contents were observed at the shoot base of stp15 plants. Transcriptome and metabolome analyses of the shoot base demonstrated that OsSTP15 knockout upregulated the expression of cytokinin (CK) synthesis- and signaling pathway-related genes and increased CK levels. These findings suggest that OsSTP15 knockout represses glucose export from the cytoplasm and simultaneously enhances sugar transport from source leaves to the shoot base by promoting the synthesis of sucrose and Tre6P in leaves. Subsequent accumulation of glucose, sucrose, and Tre6P in the shoot base promotes tillering by stimulating the CK signaling pathway.
Collapse
Affiliation(s)
- Mingjuan Li
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Hongye Li
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Qidong Zhu
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Dong Liu
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Zhen Li
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Haifei Chen
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Jinsong Luo
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Pan Gong
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Abdelbagi M Ismail
- Crop and Environmental Sciences Division, International Rice Research Institute, Metro Manila, 1301, Philippines
| | - Zhenhua Zhang
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Hongqi Road, Changsha, Hunan, 410128, China
| |
Collapse
|
19
|
Sharma D, Kumari A, Sharma P, Singh A, Sharma A, Mir ZA, Kumar U, Jan S, Parthiban M, Mir RR, Bhati P, Pradhan AK, Yadav A, Mishra DC, Budhlakoti N, Yadav MC, Gaikwad KB, Singh AK, Singh GP, Kumar S. Meta-QTL analysis in wheat: progress, challenges and opportunities. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:247. [PMID: 37975911 DOI: 10.1007/s00122-023-04490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
Wheat, an important cereal crop globally, faces major challenges due to increasing global population and changing climates. The production and productivity are challenged by several biotic and abiotic stresses. There is also a pressing demand to enhance grain yield and quality/nutrition to ensure global food and nutritional security. To address these multifaceted concerns, researchers have conducted numerous meta-QTL (MQTL) studies in wheat, resulting in the identification of candidate genes that govern these complex quantitative traits. MQTL analysis has successfully unraveled the complex genetic architecture of polygenic quantitative traits in wheat. Candidate genes associated with stress adaptation have been pinpointed for abiotic and biotic traits, facilitating targeted breeding efforts to enhance stress tolerance. Furthermore, high-confidence candidate genes (CGs) and flanking markers to MQTLs will help in marker-assisted breeding programs aimed at enhancing stress tolerance, yield, quality and nutrition. Functional analysis of these CGs can enhance our understanding of intricate trait-related genetics. The discovery of orthologous MQTLs shared between wheat and other crops sheds light on common evolutionary pathways governing these traits. Breeders can leverage the most promising MQTLs and CGs associated with multiple traits to develop superior next-generation wheat cultivars with improved trait performance. This review provides a comprehensive overview of MQTL analysis in wheat, highlighting progress, challenges, validation methods and future opportunities in wheat genetics and breeding, contributing to global food security and sustainable agriculture.
Collapse
Affiliation(s)
- Divya Sharma
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Anita Kumari
- Department of Botany, University of Delhi, Delhi, India
| | - Priya Sharma
- Department of Botany, University of Delhi, Delhi, India
| | - Anupma Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Anshu Sharma
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Zahoor Ahmad Mir
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Uttam Kumar
- Borlaug Institute for South Asia (BISA), Ludhiana, India
| | - Sofora Jan
- Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Kashmir, India
| | - M Parthiban
- Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Kashmir, India
| | - Reyazul Rouf Mir
- Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Kashmir, India
| | - Pradeep Bhati
- Borlaug Institute for South Asia (BISA), Ludhiana, India
| | - Anjan Kumar Pradhan
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Aakash Yadav
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | | | - Neeraj Budhlakoti
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mahesh C Yadav
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Kiran B Gaikwad
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | | | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India.
| |
Collapse
|
20
|
Almeida-Silva F, Pedrosa-Silva F, Venancio TM. The Soybean Expression Atlas v2: A comprehensive database of over 5000 RNA-seq samples. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1041-1051. [PMID: 37681739 DOI: 10.1111/tpj.16459] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/04/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Soybean is a crucial crop worldwide, used as a source of food, feed, and industrial products due to its high protein and oil content. Previously, the rapid accumulation of soybean RNA-seq data in public databases and the computational challenges of processing raw RNA-seq data motivated us to develop the Soybean Expression Atlas, a gene expression database of over a thousand RNA-seq samples. Over the past few years, our database has allowed researchers to explore the expression profiles of important gene families, discover genes associated with agronomic traits, and understand the transcriptional dynamics of cellular processes. Here, we present the Soybean Expression Atlas v2, an updated version of our database with a fourfold increase in the number of samples, featuring transcript- and gene-level transcript abundance matrices for 5481 publicly available RNA-seq samples. New features in our database include the availability of transcript-level abundance estimates and equivalence classes to explore differential transcript usage, abundance estimates in bias-corrected counts to increase the accuracy of differential gene expression analyses, a new web interface with improved data visualization and user experience, and a reproducible and scalable pipeline available as an R package. The Soybean Expression Atlas v2 is available at https://soyatlas.venanciogroup.uenf.br/, and it will accelerate soybean research, empowering researchers with high-quality and easily accessible gene expression data.
Collapse
Affiliation(s)
- Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Francisnei Pedrosa-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
21
|
Fox H, Ben-Dor S, Doron-Faigenboim A, Goldsmith M, Klein T, David-Schwartz R. Carbohydrate dynamics in Populus trees under drought: An expression atlas of genes related to sensing, translocation, and metabolism across organs. PHYSIOLOGIA PLANTARUM 2023; 175:e14001. [PMID: 37882295 DOI: 10.1111/ppl.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 10/27/2023]
Abstract
In trees, nonstructural carbohydrates (NSCs) serve as long-term carbon storage and long-distance carbon transport from source to sink. NSC management in response to drought stress is key to our understanding of drought acclimation. However, the molecular mechanisms underlying these processes remain unclear. By combining a transcriptomic approach with NSC quantification in the leaves, stems, and roots of Populus alba under drought stress, we analyzed genes from 29 gene families related to NSC signaling, translocation, and metabolism. We found starch depletion across organs and accumulation of soluble sugars (SS) in the leaves. Activation of the trehalose-6-phosphate/SNF1-related protein kinase (SnRK1) signaling pathway across organs via the suppression of class I TREHALOSE-PHOSPHATE SYNTHASE (TPS) and the expression of class II TPS genes suggested an active response to drought. The expression of SnRK1α and β subunits, and SUCROSE SYNTHASE6 supported SS accumulation in leaves. The upregulation of active transporters and the downregulation of most passive transporters implied a shift toward active sugar transport and enhanced regulation over partitioning. SS accumulation in vacuoles supports osmoregulation in leaves. The increased expression of sucrose synthesis genes and reduced expression of sucrose degradation genes in the roots did not coincide with sucrose levels, implying local sucrose production for energy. Moreover, the downregulation of invertases in the roots suggests limited sucrose allocation from the aboveground organs. This study provides an expression atlas of NSC-related genes that respond to drought in poplar trees, and can be tested in tree improvement programs for adaptation to drought conditions.
Collapse
Affiliation(s)
- Hagar Fox
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Shifra Ben-Dor
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Doron-Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Moshe Goldsmith
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
22
|
Nie X, Hong C, Wang Q, Lu M, An H. Sugar composition and transcriptome analysis in developing 'Fengtang' plum (Prunus salicina Lindl.) reveal candidate genes regulating sugar accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107955. [PMID: 37603969 DOI: 10.1016/j.plaphy.2023.107955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
Sweetness is an important attribute of fruit quality, which directly affects consumers' preference for fresh fruit and is mostly determined by carbohydrate composition. 'Fengtang' plum (Prunus salicina Lindl.) is recognized for its high soluble sugar content, but the sugar composition and the molecular mechanisms underlying sugar overproduction are not fully understood. In this work, the sugar components were analyzed using gas chromatography-mass spectrometry combined with transcription profiles from RNA-sequencing and Quantitative Real-time PCR during fruit development. The target metabolic group showed that sucrose was the dominant sugar component in mature fruit, followed by glucose, fructose, and sorbitol. Based on the transcriptome data and qRT-PCR validation, we identified 12 key structural genes that significantly responded to corresponding component accumulation: sucrose synthase (PsSUS4), sucrose phosphate synthase (PsSPS2), neutral invertase (PsNINV1/3/4), phosphoglucomutase (PsPGM1), UTP-glucose-1-phosphate uridylyl transferase (PsUGP1/2), hexose kinase (PsHXK1/3), sugar transport protein (PsSTP1), and Sugars Will Eventually be Exported Transporter (PsSWEET4). In which PsSUS4 and PsSPS2, whose encoding proteins immediately catalyze sucrose synthesis, were selected to be silenced using the virus-induced gene silencing technology. Silencing of PsSUS4 or PsSPS2 resulted in decreased sucrose content by 27.6% and 8%, respectively, compared with the control, verifying their important roles in sucrose accumulation. Subsequently, sugar metabolism networks in this high-sugar plum were constructed with 12 key structural genes, 72 putative transcription factors, and 4 major sugar components. These results might facilitate a better understanding of the molecular mechanisms of sugar accumulation in 'Fengtang' plum and provide a framework for future fruit quality improvement.
Collapse
Affiliation(s)
- Xiaoshuang Nie
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Chen Hong
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Qiyu Wang
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Min Lu
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Huaming An
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
23
|
Moing A, Berton T, Roch L, Diarrassouba S, Bernillon S, Arrivault S, Deborde C, Maucourt M, Cabasson C, Bénard C, Prigent S, Jacob D, Gibon Y, Lemaire-Chamley M. Multi-omics quantitative data of tomato fruit unveils regulation modes of least variable metabolites. BMC PLANT BIOLOGY 2023; 23:365. [PMID: 37479985 PMCID: PMC10362748 DOI: 10.1186/s12870-023-04370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND The composition of ripe fruits depends on various metabolites which content evolves greatly throughout fruit development and may be influenced by the environment. The corresponding metabolism regulations have been widely described in tomato during fruit growth and ripening. However, the regulation of other metabolites that do not show large changes in content have scarcely been studied. RESULTS We analysed the metabolites of tomato fruits collected on different trusses during fruit development, using complementary analytical strategies. We identified the 22 least variable metabolites, based on their coefficients of variation. We first verified that they had a limited functional link with the least variable proteins and transcripts. We then posited that metabolite contents could be stabilized through complex regulations and combined their data with the quantitative proteome or transcriptome data, using sparse partial-least-square analyses. This showed shared regulations between several metabolites, which interestingly remained linked to early fruit development. We also examined regulations in specific metabolites using correlations with individual proteins and transcripts, which revealed that a stable metabolite does not always correlate with proteins and transcripts of its known related pathways. CONCLUSIONS The regulation of the least variable metabolites was then interpreted regarding their roles as hubs in metabolic pathways or as signalling molecules.
Collapse
Affiliation(s)
- Annick Moing
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Thierry Berton
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Léa Roch
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Salimata Diarrassouba
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Present Address: Laboratoire de Recherche en Sciences Végétales, UMR 5546 UPS/CNRS, Auzeville- Tolosane, F-31320 France
| | - Stéphane Bernillon
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Present Address: INRAE, Mycologie et Sécurité des Aliments, UR 1264, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, am Muehlenberg 14476, Potsdam-Golm, Germany
| | - Catherine Deborde
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Present Address: INRAE, UR1268 BIA, Centre INRAE Pays de Loire – Nantes, Nantes, F-44000 France
- Present address: INRAE, BIBS Facility, Centre INRAE Pays de Loire – Nantes, Nantes, F-44000 France
| | - Mickaël Maucourt
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Cécile Cabasson
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Camille Bénard
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Sylvain Prigent
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Daniel Jacob
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Yves Gibon
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Martine Lemaire-Chamley
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| |
Collapse
|
24
|
Qiu CW, Ma Y, Liu W, Zhang S, Wang Y, Cai S, Zhang G, Chater CCC, Chen ZH, Wu F. Genome resequencing and transcriptome profiling reveal molecular evidence of tolerance to water deficit in barley. J Adv Res 2023; 49:31-45. [PMID: 36170948 PMCID: PMC10334146 DOI: 10.1016/j.jare.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Frequent climate change-induced drought events are detrimental environmental stresses affecting global crop production and ecosystem health. Several efforts have facilitated crop breeding for resilient varieties to counteract stress. However, progress is hampered due to the complexity of drought tolerance; a greater variety of novel genes are required across varying environments. Tibetan annual wild barley is a unique and precious germplasm that is well adapted to abiotic stress and can provide elite genes for crop improvement in drought tolerance. OBJECTIVES To identify the genetic basis and unique mechanisms for drought tolerance in Tibetan wild barley. METHODS Whole genome resequencing and comparative RNA-seq approaches were performed to identify candidate genes associated with drought tolerance via investigating the genetic diversity and transcriptional variation between cultivated and Tibetan wild barley. Bioinformatics, population genetics, and gene silencing were conducted to obtain insights into ecological adaptation in barley and functions of key genes. RESULTS Over 20 million genetic variants and a total of 15,361 significantly affected genes were identified in our dataset. Combined genomic, transcriptomic, evolutionary, and experimental analyses revealed 26 water deficit resilience-associated genes in the drought-tolerant wild barley XZ5 with unique genetic variants and expression patterns. Functional prediction revealed Tibetan wild barley employs effective regulators to activate various responsive pathways with novel genes, such as Zinc-Induced Facilitator-Like 2 (HvZIFL2) and Peroxidase 11 (HvPOD11), to adapt to water deficit conditions. Gene silencing and drought tolerance evaluation in a natural barley population demonstrated that HvZIFL2 and HvPOD11 positively regulate drought tolerance in barley. CONCLUSION Our findings reveal functional genes that have been selected across barley's complex history of domestication to thrive in water deficit environments. This will be useful for molecular breeding and provide new insights into drought-tolerance mechanisms in wild relatives of major cereal crops.
Collapse
Affiliation(s)
- Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yue Ma
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Wenxing Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuo Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Shengguan Cai
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Caspar C C Chater
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK; School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Bavnhøj L, Driller JH, Zuzic L, Stange AD, Schiøtt B, Pedersen BP. Structure and sucrose binding mechanism of the plant SUC1 sucrose transporter. NATURE PLANTS 2023; 9:938-950. [PMID: 37188854 PMCID: PMC10281868 DOI: 10.1038/s41477-023-01421-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Sucrose import from photosynthetic tissues into the phloem is mediated by transporters from the low-affinity sucrose transporter family (SUC/SUT family). Furthermore, sucrose redistribution to other tissues is driven by phloem sap movement, the product of high turgor pressure created by this import activity. Additionally, sink organs such as fruits, cereals and seeds that accumulate high concentrations of sugar also depend on this active transport of sucrose. Here we present the structure of the sucrose-proton symporter, Arabidopsis thaliana SUC1, in an outward open conformation at 2.7 Å resolution, together with molecular dynamics simulations and biochemical characterization. We identify the key acidic residue required for proton-driven sucrose uptake and describe how protonation and sucrose binding are strongly coupled. Sucrose binding is a two-step process, with initial recognition mediated by the glucosyl moiety binding directly to the key acidic residue in a stringent pH-dependent manner. Our results explain how low-affinity sucrose transport is achieved in plants, and pinpoint a range of SUC binders that help define selectivity. Our data demonstrate a new mode for proton-driven symport with links to cation-driven symport and provide a broad model for general low-affinity transport in highly enriched substrate environments.
Collapse
Affiliation(s)
- Laust Bavnhøj
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan Heiner Driller
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lorena Zuzic
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
26
|
Yang MY, Yang X, Yan Z, Chao Q, Shen J, Shui GH, Guo PM, Wang BC. OsTST1, a key tonoplast sugar transporter from source to sink, plays essential roles in affecting yields and height of rice (Oryza sativa L.). PLANTA 2023; 258:4. [PMID: 37219719 DOI: 10.1007/s00425-023-04160-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
MAIN CONCLUSION OsTST1 affects yield and development and mediates sugar transportation of plants from source to sink in rice, which influences the accumulation of intermediate metabolites from tricarboxylic acid cycle indirectly. Tonoplast sugar transporters (TSTs) are essential for vacuolar sugar accumulation in plants. Carbohydrate transport across tonoplasts maintains the metabolic balance in plant cells, and carbohydrate distribution is crucial to plant growth and productivity. Large plant vacuoles store high concentrations of sugars to meet plant requirements for energy and other biological processes. The abundance of sugar transporter affects crop biomass and reproductive growth. However, it remains unclear whether the rice (Oryza sativa L.) sugar transport protein OsTST1 affects yield and development. In this study, we found that OsTST1 knockout mutants generated via CRISPR/Cas9 exhibited slower development, smaller seeds, and lower yield than wild type (WT) rice plants. Notably, plants overexpressing OsTST1 showed the opposite effects. Changes in rice leaves at 14 days after germination (DAG) and at 10 days after flowering (DAF) suggested that OsTST1 affected the accumulation of intermediate metabolites from the glycolytic pathway and the tricarboxylic acid (TCA) cycle. The modification of the sugar transport between cytosol and vacuole mediated by OsTST1 induces deregulation of several genes including transcription factors (TFs). In summary, no matter the location of sucrose and sink is, these preliminary results revealed that OsTST1 was important for sugar transport from source to sink tissues, thus affecting plant growth and development.
Collapse
Affiliation(s)
- Man-Yu Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiu Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- College of Life Sciences, National Demonstration Center for Experimental Biology Education, Sichuan University, Chengdu, 610064, China
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Shen
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Guang-Hou Shui
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peng-Mei Guo
- LipidALL Technologies Company Limited, Changzhou, 213022, Jiangsu, China
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
27
|
Prasad D, Jung WJ, Seo YW. Identification and molecular characterization of novel sucrose transporters in the hexaploid wheat (Triticum aestivum L.). Gene 2023; 860:147245. [PMID: 36736505 DOI: 10.1016/j.gene.2023.147245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Common wheat (Triticum aestivum) is a major cereal crop grown and consumed globally. Recent advances in sequencing technology have facilitated the exploration of large and repetitive genomes. Plant sucrose transporter (SUT) genes are vital components of energy transport systems that play prominent roles in various plant functions, such as signaling and stress regulation. In this study, we identified and analyzed five novel sucrose transporter genes in wheat. The wheat sucrose transporter genes were divided into five clades based on their phylogenetic relationships. Synteny analysis revealed that synteny in the genome is highly conserved between wheat and rye, barley, and Brachypodium. Furthermore, the cis-element analysis indicated that sucrose transporter genes might be regulated by light and some phytohormone-related transcriptional factors. Overall, plant tissue-specific gene expression revealed enhanced expression of the transporter genes in the root and stem, whereas they were differentially expressed under abiotic stress treatments (cold, heat, NaCl, PEG-6000, and sucrose). These results indicate that each TaSUT gene may play a crucial role in stabilizing plants under stress by actively regulating the energy demands of cells. The findings of this study may provide a basis for further research on sucrose transporters and their significant roles in plant energy metabolism as well as in abiotic stress response, signaling, and regulation.
Collapse
Affiliation(s)
- Depika Prasad
- Department of Plant Biotechnology, Korea University, Seoul 02841, South Korea
| | - Woo Joo Jung
- Institute of Life Science and Natural Resources, Korea University, Seoul 02841, South Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
28
|
Liu C, Hao D, Sun R, Zhang Y, Peng Y, Yuan Y, Jiang K, Li W, Wen X, Guo H. Arabidopsis NPF2.13 functions as a critical transporter of bacterial natural compound tunicamycin in plant-microbe interaction. THE NEW PHYTOLOGIST 2023; 238:765-780. [PMID: 36653958 DOI: 10.1111/nph.18752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Metabolites including antibiotics, enzymes, and volatiles produced by plant-associated bacteria are key factors in plant-microbiota interaction that regulates various plant biological processes. There should be crucial mediators responsible for their entry into host plants. However, less is known about the identities of these plant transporters. We report that the Arabidopsis Nitrate Transporter1 (NRT1)/NPF protein NPF2.13 functions in plant uptake of tunicamycin (TM), a natural antibiotic produced by several Streptomyces spp., which inhibits protein N-glycosylation. Loss of NPF2.13 function resulted in enhanced TM tolerance, whereas NPF2.13 overexpression led to TM hypersensitivity. Transport assays confirmed that NPF2.13 is a H+ /TM symporter and the transport is not affected by other substrates like nitrate. NPF2.13 exclusively showed TM transport activity among tested NPFs. Tunicamycin uptake from TM-producing Streptomyces upregulated the expression of nitrate-related genes including NPF2.13. Moreover, nitrate allocation to younger leaves was promoted by TM in host plants. Tunicamycin could also benefit plant defense against the pathogen. Notably, the TM effects were significantly repressed in npf2.13 mutant. Overall, this study identifies NPF2.13 protein as an important TM transporter in plant-microbe interaction and provides insights into multiple facets of NPF proteins in modulating plant nutrition and defense by transporting exterior bacterial metabolites.
Collapse
Affiliation(s)
- Chuanfa Liu
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech, 518055, Shenzhen, China
| | - Dongdong Hao
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech, 518055, Shenzhen, China
| | - Ruixue Sun
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech, 518055, Shenzhen, China
| | - Yi Zhang
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech, 518055, Shenzhen, China
| | - Yang Peng
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech, 518055, Shenzhen, China
| | - Yang Yuan
- The Applied Plant Genomics Laboratory, Crop Genomics and Bioinformatics Centre and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Kai Jiang
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech, 518055, Shenzhen, China
- SUSTech Academy for Advanced and Interdisciplinary Studies, SUSTech, 518055, Shenzhen, China
| | - Wenyang Li
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech, 518055, Shenzhen, China
| | - Xing Wen
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech, 518055, Shenzhen, China
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech, 518055, Shenzhen, China
| |
Collapse
|
29
|
Andersen CG, Bavnhøj L, Pedersen BP. May the proton motive force be with you: A plant transporter review. Curr Opin Struct Biol 2023; 79:102535. [PMID: 36796226 DOI: 10.1016/j.sbi.2023.102535] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/28/2022] [Accepted: 01/03/2023] [Indexed: 02/16/2023]
Abstract
As our ecosystems experience challenges associated with climate change, an improved understanding of the fundamental biochemical processes governing plant physiology is needed. Strikingly, current structural information on plant membrane transporters is severely limited compared to other kingdoms of life, with only 18 unique structures in total. To advance future breakthroughs and insight in plant cell molecular biology, structural knowledge of membrane transporters is indispensable. This review summarizes the current status of structural knowledge in the plant membrane transporter field. Plants utilize the proton motive force (PMF) to drive secondary active transport. We discuss the PMF, how it relates to secondary active transport and provide a classification of PMF driven secondary active transport, discussing recently published structures of symporters, antiporters, and uniporters from plants.
Collapse
Affiliation(s)
| | - Laust Bavnhøj
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark. https://twitter.com/laustbavnhoej
| | | |
Collapse
|
30
|
Guo R, Zhang Q, Ying Y, Liao W, Liu Y, Whelan J, Chuanzao M, Shou H. Functional characterization of the three Oryza sativa SPX-MFS proteins in maintaining phosphate homoeostasis. PLANT, CELL & ENVIRONMENT 2023; 46:1264-1277. [PMID: 35909262 DOI: 10.1111/pce.14414] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Plant vacuoles serve as the primary intracellular compartments for phosphorus (P) storage. The Oryza sativa genome contains three genes that encode SPX ( SYG1/ PHO81/ XPR1)-MFS ( Major Facility Superfamily) proteins (OsSPX-MFS1-3). The physiological roles of the three transporters under varying P conditions in laboratory and field are not known. To address this knowledge gap, we generated single, double and triple mutants for three OsSPX-MFS genes. All the mutants except Osspx-mfs2 display lower vacuolar Pi concentrations and OsSPX-MFSs overexpression plant display higher Pi accumulation, demonstrating that all OsSPX-MFSs are vacuolar Pi influx transporters. OsSPX-MFS3 plays the dominant role based on the phenotypes of single mutants in terms of growth, vacuolar and tissue Pi concentrations. OsSPX-MFS2 is the weakest and only functions as vacuole Pi sequestration in an Osspx-mfs1/3 background. The vacuolar Pi sequestration capacity was severely impaired in Osspx-mfs1/3 and Osspx-mfs1/2/3, which resulted in increased Pi allocation to aerial organs. High P in the panicle impaired panicle and fertility in Osspx-mfs1/3 and Osspx-mfs1/2/3. Osspx-mfs2 resulted in a more stable yield compared to the wild type under low P in field grown plants. The results suggest that alteration of vacuolar Pi sequestration may be a novel effective strategy to improve rice tolerance to low phosphorus in cropping systems.
Collapse
Affiliation(s)
- Runze Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
| | - Qi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
| | - Yinghui Ying
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenying Liao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - James Whelan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Animal, Plant and Soil Science, School of Life Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Melbourne, Victoria, Australia
| | - Mao Chuanzao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Team of Seed Engineering and Industrialization, Hainan Institute, Zhejiang University, Sanya, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, China
| |
Collapse
|
31
|
Bai Q, Chen X, Zheng Z, Feng J, Zhang Y, Shen Y, Huang Y. Vacuolar Phosphate Transporter1 (VPT1) may transport sugar in response to soluble sugar status of grape fruits. HORTICULTURE RESEARCH 2023; 10:uhac260. [PMID: 37533675 PMCID: PMC10392026 DOI: 10.1093/hr/uhac260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/17/2022] [Indexed: 08/04/2023]
Abstract
Vacuolar Phosphate Transporter1 (VPT1)-mediated phosphate uptake in the vacuoles is essential to plant development and fruit ripening. Interestingly, here we find that the VPT1 may transport sugar in response to soluble sugar status of fruits. The VvVPT1 protein isolated from grape (Vitis vinifera) berries was tonoplast-localized and contains SPX (Syg1/Pho81/XPR1) and MFS (major facilitator superfamily) domains. Its mRNA expression was significantly increased during fruit ripening and induced by sucrose. Functional analyses based on transient transgenic systems in grape berry showed that VvVPT1 positively regulated berry ripening and significantly affected hexose contents, fruit firmness, and ripening-related gene expression. The VPT1 proteins (Grape VvVPT1, strawberry FaVPT1, and Arabidopsis AtVPT1) all showed low affinity for phosphate verified in yeast system, while they appear different in sugar transport capacity, consistent with fruit sugar status. Thus, our findings reveal a role for VPT1 in fruit ripening, associated to its SPX and MFS domains in direct transport of soluble sugar available into the vacuole, and open potential avenues for genetic improvement in fleshy fruit.
Collapse
Affiliation(s)
| | | | | | - Jinjing Feng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yanjun Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yuanyue Shen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | | |
Collapse
|
32
|
Fakher B, Jakada BH, Greaves JG, Wang L, Niu X, Cheng Y, Zheng P, Aslam M, Qin Y, Wang X. Identification and expression analysis of pineapple sugar transporters reveal their role in the development and environmental response. FRONTIERS IN PLANT SCIENCE 2022; 13:964897. [PMID: 36352877 PMCID: PMC9638087 DOI: 10.3389/fpls.2022.964897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
In plants, sugars are required for several essential functions, including growth, storage, signaling, defense and reproduction. Sugar transporters carry out the controlled movement of sugars from source (leaves) to sink (fruits and roots) tissues and determine the overall development of the plant. Various types of sugar transporter families have been described in plants, including sucrose transporters (SUC/SUT), monosaccharide transporter (MST) and SWEET (from "Sugar Will Eventually be Exported Transporters"). However, the information about pineapple sugar transporters is minimal. This study systematically identified and classified 45 MST and 4 SUC/SUT genes in the pineapple genome. We found that the expression patterns of sugar transporter genes have a spatiotemporal expression in reproductive and vegetative tissues indicating their pivotal role in reproductive growth and development. Besides, different families of sugar transporters have a diel expression pattern in photosynthetic and non-photosynthetic tissues displaying circadian rhythm associated participation of sugar transporters in the CAM pathway. Moreover, regulation of the stress-related sugar transporters during cold stress indicates their contribution to cold tolerance in pineapple. Heterologous expression (yeast complementation assays) of sugar transporters in a mutant yeast strain suggested that SUT1/2 have the ability to transport sucrose, and STP13, STP26, pGlcT-L2 and TMT4 are able to transport glucose, whereas SWEET11/13 transport both sucrose and fructose. The information provided here would help researchers further explore the underlying molecular mechanism involved in the sugar metabolism of pineapple.
Collapse
Affiliation(s)
- Beenish Fakher
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Bello Hassan Jakada
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Joseph G. Greaves
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lulu Wang
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Xiaoping Niu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Cheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammad Aslam
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- Guangxi Key Lab of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, China
| |
Collapse
|
33
|
Wang J, Xue X, Zeng H, Li J, Chen L. Sucrose rather than GA transported by AtSWEET13 and AtSWEET14 supports pollen fitness at late anther development stages. THE NEW PHYTOLOGIST 2022; 236:525-537. [PMID: 35811428 PMCID: PMC9795879 DOI: 10.1111/nph.18368] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/05/2022] [Indexed: 05/31/2023]
Abstract
Both sugar and the hormone gibberellin (GA) are essential for anther-enclosed pollen development and thus for plant productivity in flowering plants. Arabidopsis (Arabidopsis thaliana) AtSWEET13 and AtSWEET14, which are expressed in anthers and associated with seed yield, transport both sucrose and GA. However, it is still unclear which substrate transported by them directly affects anther development and seed yield. Histochemical staining, cross-sectioning and microscopy imaging techniques were used to investigate and interpret the phenotypes of the atsweet13;14 double mutant during anther development. Genetic complementation of atsweet13;14 using AtSWEET9, which transports sucrose but not GA, and the GA transporter AtNPF3.1, respectively, was conducted to test the substrate preference relevant to the biological process. The loss of both AtSWEET13 and AtSWEET14 resulted in reduced pollen viability and therefore decreased pollen germination. AtSWEET9 fully rescued the defects in pollen viability and germination of atsweet13;14, whereas AtNPF3.1 failed to do so, indicating that AtSWEET13/14-mediated sucrose rather than GA is essential for pollen fertility. AtSWEET13 and AtSWEET14 function mainly at the anther wall during late anther development stages, and they probably are responsible for sucrose efflux into locules to support pollen development to maturation, which is vital for subsequent pollen viability and germination.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Xueyi Xue
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Houqing Zeng
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhou311121China
| | - Jiankun Li
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Li‐Qing Chen
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
34
|
Salgado FF, da Silva TLC, Vieira LR, Silva VNB, Leão AP, Costa MMDC, Togawa RC, de Sousa CAF, Grynberg P, Souza MT. The early response of oil palm ( Elaeis guineensis Jacq.) plants to water deprivation: Expression analysis of miRNAs and their putative target genes, and similarities with the response to salinity stress. FRONTIERS IN PLANT SCIENCE 2022; 13:970113. [PMID: 36212369 PMCID: PMC9539919 DOI: 10.3389/fpls.2022.970113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/25/2022] [Indexed: 06/09/2023]
Abstract
Oil palm (Elaeis guineensis Jacq.) is a oilseed crop of great economic importance drastically affected by abiotic stresses. MicroRNAs (miRNAs) play crucial roles in transcription and post-transcription regulation of gene expression, being essential molecules in the response of plants to abiotic stress. To better understand the molecular mechanisms behind the response of young oil palm plants to drought stress, this study reports on the prediction and characterization of miRNAs and their putative target genes in the apical leaf of plants subjected to 14 days of water deprivation. Then, the data from this study were compared to the data from a similar study that focused on salinity stress. Both, the drought-and salt-responsive miRNAs and their putative target genes underwent correlation analysis to identify similarities and dissimilarities among them. Among the 81 identified miRNAs, 29 are specific for oil palm, including two (egu-miR28ds and egu-miR29ds) new ones - described for the first time. As for the expression profile, 62 miRNAs were significantly differentially expressed under drought stress, being five up-regulated (miR396e, miR159b, miR529b, egu-miR19sds, and egu-miR29ds) and 57 down-regulated. Transcription factors, such as MYBs, HOXs, and NF-Ys, were predicted as putative miRNA-target genes in oil palm under water deprivation; making them the most predominant group of such genes. Finally, the correlation analysis study revealed a group of putative target genes with similar behavior under salt and drought stresses. Those genes that are upregulated by these two abiotic stresses encode lncRNAs and proteins linked to stress tolerance, stress memory, modulation of ROS signaling, and defense response regulation to abiotic and biotic stresses. In summary, this study provides molecular evidence for the possible involvement of miRNAs in the drought stress response in oil palm. Besides, it shows that, at the molecular level, there are many similarities in the response of young oil palm plants to these two abiotic stresses.
Collapse
Affiliation(s)
| | | | - Letícia Rios Vieira
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras, MG, Brazil
| | | | - André Pereira Leão
- The Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF, Brazil
| | - Marcos Mota do Carmo Costa
- The Brazilian Agricultural Research Corporation, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Roberto Coiti Togawa
- The Brazilian Agricultural Research Corporation, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | | | - Priscila Grynberg
- The Brazilian Agricultural Research Corporation, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Manoel Teixeira Souza
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras, MG, Brazil
- The Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF, Brazil
| |
Collapse
|
35
|
Bazihizina N, Böhm J, Messerer M, Stigloher C, Müller HM, Cuin TA, Maierhofer T, Cabot J, Mayer KFX, Fella C, Huang S, Al-Rasheid KAS, Alquraishi S, Breadmore M, Mancuso S, Shabala S, Ache P, Zhang H, Zhu JK, Hedrich R, Scherzer S. Stalk cell polar ion transport provide for bladder-based salinity tolerance in Chenopodium quinoa. THE NEW PHYTOLOGIST 2022; 235:1822-1835. [PMID: 35510810 DOI: 10.1111/nph.18205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na+ ), chloride (Cl- ), potassium (K+ ) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller. In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell's polar organization and bladder-directed solute flow. RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived.
Collapse
Affiliation(s)
- Nadia Bazihizina
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale delle Idee 30, 50019, Florence, Italy
- College of Science and Engineering, Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas., 7001, Australia
| | - Jennifer Böhm
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs Platz 2, 97082, Wuerzburg, Germany
| | - Maxim Messerer
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany
| | - Heike M Müller
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs Platz 2, 97082, Wuerzburg, Germany
| | - Tracey Ann Cuin
- Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tas., 7001, Australia
| | - Tobias Maierhofer
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs Platz 2, 97082, Wuerzburg, Germany
| | - Joan Cabot
- Diagnostic Devices Unit, LEITAT Technological Center, Innovació 2, Terrasse, 0822, Barcelona, Spain
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Christian Fella
- Fraunhofer IIS, Nano CT Systeme, Josef-Martin-Weg 63, 97074, Wuerzburg, Germany
| | - Shouguang Huang
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs Platz 2, 97082, Wuerzburg, Germany
| | - Khaled A S Al-Rasheid
- Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Alquraishi
- Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Michael Breadmore
- School of Natural Sciences, Australian Centre for Research on Separation Sciences (ACROSS), University of Tasmania, Private Bag 75, Hobart, Tas., 7001, Australia
| | - Stefano Mancuso
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Viale delle Idee 30, 50019, Florence, Italy
| | - Sergey Shabala
- College of Science and Engineering, Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas., 7001, Australia
- International Research Centre for Membrane Biology, Foshan University, Foshan, 528000, China
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs Platz 2, 97082, Wuerzburg, Germany
| | - Heng Zhang
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jian-Kang Zhu
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, No. 1088, Xueyuan Avenue, Shenzhen, Nanshan District, China
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs Platz 2, 97082, Wuerzburg, Germany
| | - Sönke Scherzer
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs Platz 2, 97082, Wuerzburg, Germany
| |
Collapse
|
36
|
Watanabe M, Otagaki S, Matsumoto S, Shiratake K. Genome-Wide Analysis of Multidrug and Toxic Compound Extruction Transporters in Grape. FRONTIERS IN PLANT SCIENCE 2022; 13:892638. [PMID: 35909729 PMCID: PMC9330396 DOI: 10.3389/fpls.2022.892638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Grape (Vitis vinifera L.) is an important fruit crop in the world. It is used as a table grape and is also used for raisin and wine production. Grape berries accumulate secondary metabolites, such as anthocyanins, tannins, and resveratrol, which are known as functional compounds for human health. Multidrug and toxic compound extrusion transporter (MATEs) transport secondary metabolites. MATEs also transport other solutes, including organic acids, and toxic xenobiotics, depending on cation gradient and play various roles in plants. MATE comprises 300-500 amino acid residues and possesses a MATE domain and 8-12 transmembrane domains. In the present study, 59 MATE genes were identified in the grape genome, and phylogenetic analysis revealed the presence of four groups of grape MATEs (Group 1-4). Their information, such as gene structures, protein motifs, predicted subcellular localizations, and gene IDs of four genome annotations, that is, CRIBI v1, CRIBI v2, Genoscope, and Vcost v3, were annotated. The transport substrates and physiological functions of grape MATEs were estimated based on their homology with the analyzed MATEs in other plant species. Group 1 may transport toxic compounds and alkaloids, Group 2 may transport polyphenolic compounds, Group 3 may transport organic acids, and Group 4 may transport plant hormones related to signal transduction. In addition to the known anthocyanin transporters, VvMATE37 and VvMATE39, a novel anthocyanin transporter, VvMATE38 in Group 2, was suggested as a key transporter for anthocyanin accumulation in grape berry skin. VvMATE46, VvMATE47, and VvMATE49 in Group 3 may contribute to Al3+ detoxification and Fe2+/Fe3+ translocation via organic acid transport. This study provides helpful and fundamental information for grape MATE studies and resolves the confusion of gene IDs in different genome annotations.
Collapse
|
37
|
Barda O, Levy M. IQD1 Involvement in Hormonal Signaling and General Defense Responses Against Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2022; 13:845140. [PMID: 35557724 PMCID: PMC9087847 DOI: 10.3389/fpls.2022.845140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
IQ Domain 1 (IQD1) is a novel Arabidopsis thaliana calmodulin-binding protein, which was found to be a positive regulator of glucosinolate (GS) accumulation and plant defense responses against insects. We demonstrate here that the IQD1 overexpressing line (IQD1 OXP ) was also more resistant also to the necrotrophic fungus Botrytis cinerea, whereas an IQD1 knockout line (iqd1-1) was much more sensitive. Furthermore, we showed that IQD1 is up-regulated by jasmonic acid (JA) and downregulated by salicylic acid (SA). A comparison of whole transcriptome expression between iqd1-1 and wild type plants revealed a substantial downregulation of genes involved in plant defense and hormone regulation. Further examination revealed a marked reduction of SA and increases in the levels of ethylene, JA and abscisic acid response genes in the iqd1-1 line. Moreover, quantification of SA, JA, and abscisic acids in IQD1 OXP and iqd1-1 lines relative to the wild type, showed a significant reduction in endogenous JA levels in the knockout line, simultaneously with increased SA levels. Relations between IQD1 OXP and mutants defective in plant-hormone response indicated that IQD1 cannot rescue the absence of NPR1 or impaired SA accumulation in the NahG line. IQD1 cannot rescue ein2 or eto1 mutations connected to the ethylene pathway involved in both defense responses against B. cinerea and in regulating GS accumulation. Furthermore, IQD1cannot rescue the aos, coi1 or jar1mutations, all involved in the defense response against B. cinerea and it depends on JAR1 to control indole glucosinolate accumulation. We also found that in the B. cinerea, which infected the iqd1-1 mutant, the most abundant upregulated group of proteins is involved in the degradation of complex carbohydrates, as correlated with the sensitivity of this mutant. In summary, our results suggest that IQD1 is an important A. thaliana defensive protein against B. cinerea that is integrated into several important pathways, such as those involved in plant defense and hormone responses.
Collapse
|
38
|
Wen S, Neuhaus HE, Cheng J, Bie Z. Contributions of sugar transporters to crop yield and fruit quality. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2275-2289. [PMID: 35139196 DOI: 10.1093/jxb/erac043] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/04/2022] [Indexed: 05/09/2023]
Abstract
The flux, distribution, and storage of soluble sugars regulate crop yield in terms of starch, oil, protein, and total carbohydrates, and affect the quality of many horticultural products. Sugar transporters contribute to phloem loading and unloading. The mechanisms of phloem loading have been studied in detail, but the complex and diverse mechanisms of phloem unloading and sugar storage in sink organs are less explored. Unloading and subsequent transport mechanisms for carbohydrates vary in different sink organs. Analyzing the transport and storage mechanisms of carbohydrates in important storage organs, such as cereal seeds, fruits, or stems of sugarcane, will provide information for genetic improvements to increase crop yield and fruit quality. This review discusses current research progress on sugar transporters involved in carbohydrate unloading and storage in sink organs. The roles of sugar transporters in crop yield and the accumulation of sugars are also discussed to highlight their contribution to efficient breeding.
Collapse
Affiliation(s)
- Suying Wen
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany
| | - Jintao Cheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China
| | - Zhilong Bie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China
| |
Collapse
|
39
|
Dinant S, Le Hir R. Delving deeper into the link between sugar transport, sugar signaling, and vascular system development. PHYSIOLOGIA PLANTARUM 2022; 174:e13684. [PMID: 35396718 DOI: 10.1111/ppl.13684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Plant growth and development rely on the transport and use of sugars produced during photosynthesis. Sugars have a dual function as nutrients and signal molecules in the cell. Many factors maintaining sugar homeostasis and signaling are now identified, but our understanding of the mechanisms involved in coordinating intracellular and intercellular sugar translocation is still limited. We also know little about the interplay between sugar transport and signaling and the formation of the vascular system, which controls long-distance sugar translocation. Sugar signaling has been proposed to play a role; however, evidence to support this hypothesis is still limited. Here, we exploited recent transcriptomics datasets produced in aerial organs of Arabidopsis to identify genes coding for sugar transporters or signaling components expressed in the vascular cells. We identified genes belonging to sugar transport and signaling for which no information is available regarding a role in vasculature development. In addition, the transcriptomics datasets obtained from sugar-treated Arabidopsis seedlings were used to assess the sugar-responsiveness of known genes involved in vascular differentiation. Interestingly, several key regulators of vascular development were found to be regulated by either sucrose or glucose. Especially CLE41, which controls the procambial cell fate, was oppositely regulated by sucrose or glucose in these datasets. Even if more experimental data are necessary to confirm these findings, this survey supports a link between sugar transport/signaling and vascular system development.
Collapse
Affiliation(s)
- Sylvie Dinant
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Rozenn Le Hir
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
40
|
Saini DK, Srivastava P, Pal N, Gupta PK. Meta-QTLs, ortho-meta-QTLs and candidate genes for grain yield and associated traits in wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1049-1081. [PMID: 34985537 DOI: 10.1007/s00122-021-04018-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/10/2021] [Indexed: 05/03/2023]
Abstract
In wheat, 2852 major QTLs of 8998 QTLs available for yield and related traits were used for meta-analysis; 141 meta-QTLs were identified, which included 13 breeder's MQTLs and 24 ortho-MQTLs; 1202 candidate genes and 50 homologues of genes for yield from other cereals were also identified. Meta-QTL analysis was conducted using 2852 of the 8998 known QTLs, retrieved from 230 reports published during 1999-2020 (including 19 studies on tetraploid wheat) for grain yield (GY) and the following ten component traits: (i) grain weight (GWei), (ii) grain morphology-related traits (GMRTs), (iii) grain number (GN), (iv) spikes-related traits (SRTs), (v) plant height (PH), (vi) tiller number (TN), (vii) harvest index (HI), (viii) biomass yield (BY), (ix) days to heading/flowering and maturity (DTH/F/M), and (x) grain filling duration (GFD). The study resulted in the identification of 141 meta-QTLs (MQTLs), with an average confidence interval (CI) of 1.4 cM as against a CI of > 12.1 cM (8.8 fold reduction) in the QTLs that were used. The corresponding physical length of CI ranged from 0.01 Mb to 661.9 Mb (mean, 31.5 Mb). Seventy-seven (77) of these 141 MQTLs overlapped marker-trait associations (MTAs) reported in genome-wide association studies. Also, 63 MQTLs (each based on at least 10 QTLs) were considered stable and robust, with 13 MQTLs described as breeder's MQTLs (selected based on small CI, large LOD, and high level of phenotypic variation explained). Thirty-five yield-related genes from rice, barley, and maize were also utilized to identify 50 wheat homologues in MQTLs. Further, the use of synteny and collinearity allowed the identification of 24 ortho-MQTLs which were common among the wheat, barley, rice, and maize. The results of the present study should prove useful for wheat breeding and future basic research in cereals including wheat, barley, rice, and maize.
Collapse
Affiliation(s)
- Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| |
Collapse
|
41
|
Acharya BR, Sandhu D, Dueñas C, Ferreira JFS, Grover KK. Deciphering Molecular Mechanisms Involved in Salinity Tolerance in Guar ( Cyamopsis tetragonoloba (L.) Taub.) Using Transcriptome Analyses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030291. [PMID: 35161272 PMCID: PMC8838131 DOI: 10.3390/plants11030291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 05/09/2023]
Abstract
Guar is a commercially important legume crop known for guar gum. Guar is tolerant to various abiotic stresses, but the mechanisms involved in its salinity tolerance are not well established. This study aimed to understand molecular mechanisms of salinity tolerance in guar. RNA sequencing (RNA-Seq) was employed to study the leaf and root transcriptomes of salt-tolerant (Matador) and salt-sensitive (PI 340261) guar genotypes under control and salinity. Our analyses identified a total of 296,114 unigenes assembled from 527 million clean reads. Transcriptome analysis revealed that the gene expression differences were more pronounced between salinity treatments than between genotypes. Differentially expressed genes associated with stress-signaling pathways, transporters, chromatin remodeling, microRNA biogenesis, and translational machinery play critical roles in guar salinity tolerance. Genes associated with several transporter families that were differentially expressed during salinity included ABC, MFS, GPH, and P-ATPase. Furthermore, genes encoding transcription factors/regulators belonging to several families, including SNF2, C2H2, bHLH, C3H, and MYB were differentially expressed in response to salinity. This study revealed the importance of various biological pathways during salinity stress and identified several candidate genes that may be used to develop salt-tolerant guar genotypes that might be suitable for cultivation in marginal soils with moderate to high salinity or using degraded water.
Collapse
Affiliation(s)
- Biswa R. Acharya
- U.S. Salinity Lab (USDA-ARS), 450 W Big Springs Road, Riverside, CA 92507, USA; (B.R.A.); (J.F.S.F.)
- College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA;
| | - Devinder Sandhu
- U.S. Salinity Lab (USDA-ARS), 450 W Big Springs Road, Riverside, CA 92507, USA; (B.R.A.); (J.F.S.F.)
- Correspondence: (D.S.); (K.K.G.)
| | - Christian Dueñas
- College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA;
| | - Jorge F. S. Ferreira
- U.S. Salinity Lab (USDA-ARS), 450 W Big Springs Road, Riverside, CA 92507, USA; (B.R.A.); (J.F.S.F.)
| | - Kulbhushan K. Grover
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
- Correspondence: (D.S.); (K.K.G.)
| |
Collapse
|
42
|
Shameer S, Wang Y, Bota P, Ratcliffe RG, Long SP, Sweetlove LJ. A hybrid kinetic and constraint-based model of leaf metabolism allows predictions of metabolic fluxes in different environments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:295-313. [PMID: 34699645 DOI: 10.1111/tpj.15551] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
While flux balance analysis (FBA) provides a framework for predicting steady-state leaf metabolic network fluxes, it does not readily capture the response to environmental variables without being coupled to other modelling formulations. To address this, we coupled an FBA model of 903 reactions of soybean (Glycine max) leaf metabolism with e-photosynthesis, a dynamic model that captures the kinetics of 126 reactions of photosynthesis and associated chloroplast carbon metabolism. Successful coupling was achieved in an iterative formulation in which fluxes from e-photosynthesis were used to constrain the FBA model and then, in turn, fluxes computed from the FBA model used to update parameters in e-photosynthesis. This process was repeated until common fluxes in the two models converged. Coupling did not hamper the ability of the kinetic module to accurately predict the carbon assimilation rate, photosystem II electron flux, and starch accumulation of field-grown soybean at two CO2 concentrations. The coupled model also allowed accurate predictions of additional parameters such as nocturnal respiration, as well as analysis of the effect of light intensity and elevated CO2 on leaf metabolism. Predictions included an unexpected decrease in the rate of export of sucrose from the leaf at high light, due to altered starch-sucrose partitioning, and altered daytime flux modes in the tricarboxylic acid cycle at elevated CO2 . Mitochondrial fluxes were notably different between growing and mature leaves, with greater anaplerotic, tricarboxylic acid cycle and mitochondrial ATP synthase fluxes predicted in the former, primarily to provide carbon skeletons and energy for protein synthesis.
Collapse
Affiliation(s)
- Sanu Shameer
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Yu Wang
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pedro Bota
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - R George Ratcliffe
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Stephen P Long
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
43
|
Meena V, Sharma S, Kaur G, Singh B, Pandey AK. Diverse Functions of Plant Zinc-Induced Facilitator-like Transporter for Their Emerging Roles in Crop Trait Enhancement. PLANTS 2021; 11:plants11010102. [PMID: 35009105 PMCID: PMC8747725 DOI: 10.3390/plants11010102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
The major facilitator superfamily (MFS) is a large and diverse group of secondary transporters found across all kingdoms of life. Zinc-induced facilitator-like (ZIFL) transporters are the MFS family members that function as exporters driven by the antiporter-dependent processes. The presence of multiple ZIFL transporters was shown in various plant species, as well as in bryophytes. However, only a few ZIFLs have been functionally characterized in plants, and their localization has been suggested to be either on tonoplast or at the plasma membrane. A subset of the plant ZIFLs were eventually characterized as transporters due to their specialized role in phytosiderophores efflux and auxin homeostasis, and they were also proven to impart tolerance to micronutrient deficiency. The emerging functions of ZIFL proteins highlight their role in addressing important traits in crop species. This review aims to provide insight into and discuss the importance of plant ZIFL in various tissue-specific functions. Furthermore, a spotlight is placed on their role in mobilizing essential micronutrients, including iron and zinc, from the rhizosphere to support plant survival. In conclusion, in this paper, we discuss the functional redundancy of ZIFL transporters to understand their roles in developing specific traits in crop.
Collapse
Affiliation(s)
- Varsha Meena
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar 140306, India; (V.M.); (S.S.); (G.K.)
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Shivani Sharma
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar 140306, India; (V.M.); (S.S.); (G.K.)
| | - Gazaldeep Kaur
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar 140306, India; (V.M.); (S.S.); (G.K.)
| | - Bhupinder Singh
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-IARI, New Delhi 110002, India;
| | - Ajay Kumar Pandey
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar 140306, India; (V.M.); (S.S.); (G.K.)
- Correspondence: or ; Tel.: +91-1724990124
| |
Collapse
|
44
|
Gonçalves MFM, Hilário S, Tacão M, Van de Peer Y, Alves A, Esteves AC. Genome and Metabolome MS-Based Mining of a Marine Strain of Aspergillus affinis. J Fungi (Basel) 2021; 7:1091. [PMID: 34947073 PMCID: PMC8709101 DOI: 10.3390/jof7121091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 01/09/2023] Open
Abstract
Aspergillus section Circumdati encompasses several species that express both beneficial (e.g., biochemical transformation of steroids and alkaloids, enzymes and metabolites) and harmful compounds (e.g., production of ochratoxin A (OTA)). Given their relevance, it is important to analyze the genetic and metabolic diversity of the species of this section. We sequenced the genome of Aspergillus affinis CMG 70, isolated from sea water, and compared it with the genomes of species from section Circumdati, including A. affinis's strain type. The A. affinis genome was characterized considering secondary metabolites biosynthetic gene clusters (BGCs), carbohydrate-active enzymes (CAZymes), and transporters. To uncover the biosynthetic potential of A. affinis CMG 70, an untargeted metabolomics (LC-MS/MS) approach was used. Cultivating the fungus in the presence and absence of sea salt showed that A. affinis CMG 70 metabolite profiles are salt dependent. Analyses of the methanolic crude extract revealed the presence of both unknown and well-known Aspergillus compounds, such as ochratoxin A, anti-viral (e.g., 3,5-Di-tert-butyl-4-hydroxybenzoic acid and epigallocatechin), anti-bacterial (e.g., 3-Hydroxybenzyl alcohol, l-pyroglutamic acid, lecanoric acid), antifungal (e.g., lpyroglutamic acid, 9,12,13-Trihydroxyoctadec-10-enoic acid, hydroxyferulic acid), and chemotherapeutic (e.g., daunomycinone, mitoxantrone) related metabolites. Comparative analysis of 17 genomes from 16 Aspergillus species revealed abundant CAZymes (568 per species), secondary metabolite BGCs (73 per species), and transporters (1359 per species). Some BGCs are highly conserved in this section (e.g., pyranonigrin E and UNII-YC2Q1O94PT (ACR toxin I)), while others are incomplete or completely lost among species (e.g., bikaverin and chaetoglobosins were found exclusively in series Sclerotiorum, while asperlactone seemed completely lost). The results of this study, including genome analysis and metabolome characterization, emphasize the molecular diversity of A. affinis CMG 70, as well as of other species in the section Circumdati.
Collapse
Affiliation(s)
- Micael F. M. Gonçalves
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.F.M.G.); (S.H.); (M.T.); (A.C.E.)
| | - Sandra Hilário
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.F.M.G.); (S.H.); (M.T.); (A.C.E.)
| | - Marta Tacão
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.F.M.G.); (S.H.); (M.T.); (A.C.E.)
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Artur Alves
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.F.M.G.); (S.H.); (M.T.); (A.C.E.)
| | - Ana C. Esteves
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.F.M.G.); (S.H.); (M.T.); (A.C.E.)
| |
Collapse
|
45
|
Zoghbi-Rodríguez NM, Gamboa-Tuz SD, Pereira-Santana A, Rodríguez-Zapata LC, Sánchez-Teyer LF, Echevarría-Machado I. Phylogenomic and Microsynteny Analysis Provides Evidence of Genome Arrangements of High-Affinity Nitrate Transporter Gene Families of Plants. Int J Mol Sci 2021; 22:13036. [PMID: 34884876 PMCID: PMC8658032 DOI: 10.3390/ijms222313036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
Nitrate transporter 2 (NRT2) and NRT3 or nitrate-assimilation-related 2 (NAR2) proteins families form a two-component, high-affinity nitrate transport system, which is essential for the acquisition of nitrate from soils with low N availability. An extensive phylogenomic analysis across land plants for these families has not been performed. In this study, we performed a microsynteny and orthology analysis on the NRT2 and NRT3 genes families across 132 plants (Sensu lato) to decipher their evolutionary history. We identified significant differences in the number of sequences per taxonomic group and different genomic contexts within the NRT2 family that might have contributed to N acquisition by the plants. We hypothesized that the greater losses of NRT2 sequences correlate with specialized ecological adaptations, such as aquatic, epiphytic, and carnivory lifestyles. We also detected expansion on the NRT2 family in specific lineages that could be a source of key innovations for colonizing contrasting niches in N availability. Microsyntenic analysis on NRT3 family showed a deep conservation on land plants, suggesting a high evolutionary constraint to preserve their function. Our study provides novel information that could be used as guide for functional characterization of these gene families across plant lineages.
Collapse
Affiliation(s)
- Normig M. Zoghbi-Rodríguez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico;
| | - Samuel David Gamboa-Tuz
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Alejandro Pereira-Santana
- Conacyt-Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico;
| | - Luis C. Rodríguez-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Lorenzo Felipe Sánchez-Teyer
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico; (S.D.G.-T.); (L.C.R.-Z.)
| | - Ileana Echevarría-Machado
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida 97205, Mexico;
| |
Collapse
|
46
|
Diao J, Li S, Ma L, Zhang P, Bai J, Wang J, Ma X, Ma W. Genome-Wide Analysis of Major Facilitator Superfamily and Its Expression in Response of Poplar to Fusarium oxysporum. Front Genet 2021; 12:769888. [PMID: 34745233 PMCID: PMC8567078 DOI: 10.3389/fgene.2021.769888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
The major facilitator superfamily (MFS) is one of the largest known membrane transporter families. MFSs are involved in many essential functions, but studies on the MFS family in poplar have not yet been reported. Here, we identified 41 MFS genes from Populus trichocarpa (PtrMFSs). We built a phylogenetic tree, which clearly divided members of PtrMFS into six groups with specific gene structures and protein motifs/domains. The promoter regions contain various cis-acting elements involved in stress and hormone responsiveness. Genes derived from segmental duplication events are unevenly distributed in 17 poplar chromosomes. Collinearity analysis showed that PtrMFS genes are conserved and homologous to corresponding genes from four other species. Transcriptome data indicated that 40 poplar MFS genes were differentially expressed when treated with Fusarium oxysporum. Co-expression networks and gene function annotations of MFS genes showed that MFS genes tightly co-regulated and closely related in function of transmembrane transport. Taken together, we systematically analyzed structure and function of genes and proteins in the PtrMFS family. Evidence indicated that poplar MFS genes play key roles in plant development and response to a biological stressor.
Collapse
Affiliation(s)
- Jian Diao
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Shuxuan Li
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Ling Ma
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Ping Zhang
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Jianyang Bai
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Jiaqi Wang
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Xiaoqian Ma
- Institute of Forest Protection, Heilongjiang Academy of Forestry, Harbin, China
| | - Wei Ma
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
47
|
Nogia P, Pati PK. Plant Secondary Metabolite Transporters: Diversity, Functionality, and Their Modulation. FRONTIERS IN PLANT SCIENCE 2021; 12:758202. [PMID: 34777438 PMCID: PMC8580416 DOI: 10.3389/fpls.2021.758202] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/01/2021] [Indexed: 05/04/2023]
Abstract
Secondary metabolites (SMs) play crucial roles in the vital functioning of plants such as growth, development, defense, and survival via their transportation and accumulation at the required site. However, unlike primary metabolites, the transport mechanisms of SMs are not yet well explored. There exists a huge gap between the abundant presence of SM transporters, their identification, and functional characterization. A better understanding of plant SM transporters will surely be a step forward to fulfill the steeply increasing demand for bioactive compounds for the formulation of herbal medicines. Thus, the engineering of transporters by modulating their expression is emerging as the most viable option to achieve the long-term goal of systemic metabolic engineering for enhanced metabolite production at minimum cost. In this review article, we are updating the understanding of recent advancements in the field of plant SM transporters, particularly those discovered in the past two decades. Herein, we provide notable insights about various types of fully or partially characterized transporters from the ABC, MATE, PUP, and NPF families including their diverse functionalities, structural information, potential approaches for their identification and characterization, several regulatory parameters, and their modulation. A novel perspective to the concept of "Transporter Engineering" has also been unveiled by highlighting its potential applications particularly in plant stress (biotic and abiotic) tolerance, SM accumulation, and removal of anti-nutritional compounds, which will be of great value for the crop improvement program. The present study creates a roadmap for easy identification and a better understanding of various transporters, which can be utilized as suitable targets for transporter engineering in future research.
Collapse
Affiliation(s)
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
48
|
Martin RC, Kronmiller BA, Dombrowski JE. Transcriptome Analysis of Lolium temulentum Exposed to a Combination of Drought and Heat Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112247. [PMID: 34834610 PMCID: PMC8621252 DOI: 10.3390/plants10112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Drought and heat are two major stresses predicted to increase in the future due to climate change. Plants exposed to multiple stressors elicit unique responses from those observed under individual stresses. A comparative transcriptome analysis of Lolium temulentum exposed to drought plus heat and non-stressed control plants revealed 20,221 unique up-regulated and 17,034 unique down-regulated differentially regulated transcripts. Gene ontology analysis revealed a strong emphasis on transcriptional regulation, protein folding, cell cycle/parts, organelles, binding, transport, signaling, oxidoreductase, and antioxidant activity. Differentially expressed genes (DEGs) encoding for transcriptional control proteins such as basic leucine zipper, APETALA2/Ethylene Responsive Factor, NAC, and WRKY transcription factors, and Zinc Finger (CCCH type and others) proteins were more often up-regulated, while DEGs encoding Basic Helix-Loop-Helix, MYB and GATA transcription factors, and C2H2 type Zinc Finger proteins were more often down-regulated. The DEGs encoding heat shock transcription factors were only up-regulated. Of the hormones, auxin-related DEGs were the most prevalent, encoding for auxin response factors, binding proteins, and efflux/influx carriers. Gibberellin-, cytokinin- and ABA-related DEGs were also prevalent, with fewer DEGs related to jasmonates and brassinosteroids. Knowledge of genes/pathways that grasses use to respond to the combination of heat/drought will be useful in developing multi-stress resistant grasses.
Collapse
Affiliation(s)
- Ruth C. Martin
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331-7102, USA;
| | - Brent A. Kronmiller
- Center for Quantitative Life Sciences, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-7102, USA;
| | - James E. Dombrowski
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331-7102, USA;
| |
Collapse
|
49
|
O’Rourke JA, Morrisey MJ, Merry R, Espina MJ, Lorenz AJ, Stupar RM, Graham MA. Mining Fiskeby III and Mandarin (Ottawa) Expression Profiles to Understand Iron Stress Tolerant Responses in Soybean. Int J Mol Sci 2021; 22:11032. [PMID: 34681702 PMCID: PMC8537376 DOI: 10.3390/ijms222011032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022] Open
Abstract
The soybean (Glycine max L. merr) genotype Fiskeby III is highly resistant to a multitude of abiotic stresses, including iron deficiency, incurring only mild yield loss during stress conditions. Conversely, Mandarin (Ottawa) is highly susceptible to disease and suffers severe phenotypic damage and yield loss when exposed to abiotic stresses such as iron deficiency, a major challenge to soybean production in the northern Midwestern United States. Using RNA-seq, we characterize the transcriptional response to iron deficiency in both Fiskeby III and Mandarin (Ottawa) to better understand abiotic stress tolerance. Previous work by our group identified a quantitative trait locus (QTL) on chromosome 5 associated with Fiskeby III iron efficiency, indicating Fiskeby III utilizes iron deficiency stress mechanisms not previously characterized in soybean. We targeted 10 of the potential candidate genes in the Williams 82 genome sequence associated with the QTL using virus-induced gene silencing. Coupling virus-induced gene silencing with RNA-seq, we identified a single high priority candidate gene with a significant impact on iron deficiency response pathways. Characterization of the Fiskeby III responses to iron stress and the genes underlying the chromosome 5 QTL provides novel targets for improved abiotic stress tolerance in soybean.
Collapse
Affiliation(s)
| | | | - Ryan Merry
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Mary Jane Espina
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Aaron J. Lorenz
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Robert M. Stupar
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | | |
Collapse
|
50
|
Bavnhøj L, Paulsen PA, Flores-Canales JC, Schiøtt B, Pedersen BP. Molecular mechanism of sugar transport in plants unveiled by structures of glucose/H + symporter STP10. NATURE PLANTS 2021; 7:1409-1419. [PMID: 34556835 DOI: 10.1038/s41477-021-00992-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/27/2021] [Indexed: 05/28/2023]
Abstract
Sugars are essential sources of energy and carbon and also function as key signalling molecules in plants. Sugar transport proteins (STP) are proton-coupled symporters responsible for uptake of glucose from the apoplast into plant cells. They are integral to organ development in symplastically isolated tissues such as seed, pollen and fruit. Additionally, STPs play a vital role in plant responses to stressors such as dehydration and prevalent fungal infections like rust and mildew. Here we present a structure of Arabidopsis thaliana STP10 in the inward-open conformation at 2.6 Å resolution and a structure of the outward-occluded conformation at improved 1.8 Å resolution, both with glucose and protons bound. The two structures describe key states in the STP transport cycle. Together with molecular dynamics simulations that establish protonation states and biochemical analysis, they pinpoint structural elements, conserved in all STPs, that clarify the basis of proton-to-glucose coupling. These results advance our understanding of monosaccharide uptake, which is essential for plant organ development, and set the stage for bioengineering strategies in crops.
Collapse
Affiliation(s)
- Laust Bavnhøj
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Peter Aasted Paulsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|