1
|
Sung YC, Li Y, Bernasconi Z, Baik S, Asuke S, Keller B, Fahima T, Coaker G. Wheat tandem kinase RWT4 directly binds a fungal effector to activate defense. Nat Genet 2025; 57:1238-1249. [PMID: 40229601 DOI: 10.1038/s41588-025-02162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 03/12/2025] [Indexed: 04/16/2025]
Abstract
Plants have intricate innate immune receptors that detect pathogens. Research has intensely focused on two receptor classes recognizing external and internal threats. Recent research has identified a class of disease-resistance proteins called tandem kinase proteins (TKPs). We investigated RWT4, a wheat TKP that confers resistance to the devastating fungal pathogen Magnaporthe oryzae. We established a rice protoplast system, revealing RWT4 specifically recognizes the AvrPWT4 effector, leading to the transcription of defense genes and inducing cell death. RWT4 possesses both kinase and pseudokinase domains, with its kinase activity essential for defense. RWT4 directly interacts with and transphosphorylates AvrPWT4. Biolayer interferometry revealed both RWT4 kinase and pseudokinase regions bind the effector. Sequence similarity and structural modeling revealed a partial kinase duplication in RWT4's kinase region as critical for effector interaction and defense activation. Collectively, these findings demonstrate that TKPs can directly bind a recognized effector, leading to downstream defense activation.
Collapse
Affiliation(s)
- Yi-Chang Sung
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Yinghui Li
- Department of Plant Pathology, University of California, Davis, CA, USA
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zoe Bernasconi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Suji Baik
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Soichiro Asuke
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Tzion Fahima
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Zhang M, Zhou X, Wang L, Liang X, Liu X, Jiang C. A SnRK2-HAK regulatory module confers natural variation of salt tolerance in maize. Nat Commun 2025; 16:4026. [PMID: 40301371 PMCID: PMC12041354 DOI: 10.1038/s41467-025-59332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/16/2025] [Indexed: 05/01/2025] Open
Abstract
The exclusion of sodium ions (Na+) from the shoot tissue, termed shoot Na+ exclusion, underlies a core mechanism of crop salt tolerance. Recent studies have shown that the HAK (High-Affinity K+ Transporter) family Na+ transporters play a key role in shoot Na+ exclusion of various crops, however, it is unknown whether and how this type of transporter is post-transcriptionally regulated. Here, we show that two closely related SnRK2 kinases, designated as ZmSnRK2.9 and ZmSnRK2.10, promote shoot Na+ exclusion and salt tolerance by activating the Na+ transporter ZmHAK4 in maize. Under salt conditions, the kinase activity of ZmSnRK2.9 and ZmSnRK2.10 is activated, then they interact with and phosphorylate ZmHAK4 at Ser5, increasing the Na+ transport activity of ZmHAK4, which in turn promotes salt tolerance by improving the exclusion of Na+ from the shoot tissue. Furthermore, we show that a 20-bp deletion that occurred naturally in the ZmSnRK2.10 promoter decreases its transcript level, resulting in an increased shoot Na+ content under salt conditions. Our findings support a breeding program that can utilize the favorable alleles of ZmHAK4 and ZmSnRK2.10 to enhance both the transcriptional and post-transcriptional activation of ZmHAK4, thus advancing the development of salt-tolerant maize.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China.
- The Zhongzhou Laboratory for Integrative Biology, Henan University, Zhengzhou, Henan, China.
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, Henan, China.
| | - Xueyan Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Limin Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoyan Liang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xin Liu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Caifu Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China.
- Frontiers Science Center for Molecular Design Breeding, Beijing, China.
| |
Collapse
|
3
|
Haghpanah M, Namdari A, Kaleji MK, Nikbakht-dehkordi A, Arzani A, Araniti F. Interplay Between ROS and Hormones in Plant Defense Against Pathogens. PLANTS (BASEL, SWITZERLAND) 2025; 14:1297. [PMID: 40364326 PMCID: PMC12073338 DOI: 10.3390/plants14091297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
Reactive oxygen species (ROS) are toxic by-products of aerobic cellular metabolism. However, ROS conduct multiple functions, and specific ROS sources can have beneficial or detrimental effects on plant health. This review explores the complex dynamics of ROS in plant defense mechanisms, focusing on their involvement in basal resistance, hypersensitive response (HR), and systemic acquired resistance (SAR). ROS, including superoxide anion (O2-), singlet oxygen (1O2), hydroxyl radicals (OH), and hydrogen peroxide (H2O2), are generated through various enzymatic pathways. They may serve to inhibit pathogen growth while also activating defense-related gene expression as signaling molecules. Oxidative damage in cells is mainly attributed to excess ROS production. ROS produce metabolic intermediates that are involved in various signaling pathways. The oxidative burst triggered by pathogen recognition initiates hyper-resistance (HR), a localized programmed cell death restricting pathogen spread. Additionally, ROS facilitate the establishment of SAR by inducing systemic signaling networks that enhance resistance across the plant. The interplay between ROS and phytohormones such as jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) further complicates this regulatory framework, underscoring the importance of ROS in orchestrating both local and systemic defense responses. Grasping these mechanisms is essential for creating strategies that enhance plant resilience to biotic stresses.
Collapse
Affiliation(s)
- Mostafa Haghpanah
- Dryland Agricultural Research Institute (DARI), Agriculture Research, Education and Extension Organization (AREEO), Gachsaran 7589172050, Iran; (M.H.); (A.N.)
| | - Amin Namdari
- Dryland Agricultural Research Institute (DARI), Agriculture Research, Education and Extension Organization (AREEO), Gachsaran 7589172050, Iran; (M.H.); (A.N.)
| | - Mostafa Koozehgar Kaleji
- Department of Agronomy, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4918943464, Iran;
| | - Azam Nikbakht-dehkordi
- Research and Technology Institute of Plant Production, Afzalipour Research Institute, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran;
| | - Ahmad Arzani
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, MI, Italy
| |
Collapse
|
4
|
Wei Y, Peng L, Zhou X. SnRK2s: Kinases or Substrates? PLANTS (BASEL, SWITZERLAND) 2025; 14:1171. [PMID: 40284059 PMCID: PMC12030411 DOI: 10.3390/plants14081171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025]
Abstract
Throughout their life cycle, plants persistent through environmental adversities that activate sophisticated stress-signaling networks, with protein kinases serving as pivotal regulators of these responses. The sucrose non-fermenting-1-related protein kinase 2 (SnRK2), a plant-specific serine/threonine kinase, orchestrates stress adaptation by phosphorylating downstream targets to modulate gene expression and physiological adjustments. While SnRK2 substrates have been extensively identified, the existing literature lacks a systematic classification of these components and their functional implications. This review synthesizes recent advances in characterizing SnRK2-phosphorylated substrates in Arabidopsis thaliana, providing a mechanistic framework for their roles in stress signaling and developmental regulation. Furthermore, we explore the understudied paradigm of SnRK2 undergoing multilayered post-translational modifications (PTMs), including phosphorylation, ubiquitination, SUMOylation, S-nitrosylation, sulfation (S-sulfination and tyrosine sulfation), and N-glycosylation. These PTMs collectively fine-tune SnRK2 stability, activity, and subcellular dynamics, revealing an intricate feedback system that balances kinase activation and attenuation. By integrating substrate networks with regulatory modifications, this work highlights SnRK2's dual role as both a phosphorylation executor and a PTM-regulated scaffold, offering new perspectives for engineering stress-resilient crops through targeted manipulation of SnRK2 signaling modules.
Collapse
Affiliation(s)
- Yunmin Wei
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
| | - Linzhu Peng
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China;
| | - Xiangui Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China;
| |
Collapse
|
5
|
Bao H, Wang Y, Li H, Wang Q, Lei Y, Ye Y, Wadood SF, Zhu H, Staehelin C, Stacey G, Xu S, Cao Y. The rhizobial effector NopT targets Nod factor receptors to regulate symbiosis in Lotus japonicus. eLife 2025; 13:RP97196. [PMID: 40183777 PMCID: PMC11970910 DOI: 10.7554/elife.97196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
It is well documented that type-III effectors are required by Gram-negative pathogens to directly target different host cellular pathways to promote bacterial infection. However, in the context of legume-rhizobium symbiosis, the role of rhizobial effectors in regulating plant symbiotic pathways remains largely unexplored. Here, we show that NopT, a YopT-type cysteine protease of Sinorhizobium fredii NGR234 directly targets the plant's symbiotic signaling pathway by associating with two Nod factor receptors (NFR1 and NFR5 of Lotus japonicus). NopT inhibits cell death triggered by co-expression of NFR1/NFR5 in Nicotiana benthamiana. Full-length NopT physically interacts with NFR1 and NFR5. NopT proteolytically cleaves NFR5 both in vitro and in vivo, but can be inactivated by NFR1 as a result of phosphorylation. NopT plays an essential role in mediating rhizobial infection in L. japonicus. Autocleaved NopT retains the ability to cleave NFR5 but no longer interacts with NFR1. Interestingly, genomes of certain Sinorhizobium species only harbor nopT genes encoding truncated proteins without the autocleavage site. These results reveal an intricate interplay between rhizobia and legumes, in which a rhizobial effector protease targets NFR5 to suppress symbiotic signaling. NFR1 appears to counteract this process by phosphorylating the effector. This discovery highlights the role of a bacterial effector in regulating a signaling pathway in plants and opens up the perspective of developing kinase-interacting proteases to fine-tune cellular signaling processes in general.
Collapse
Affiliation(s)
- Hanbin Bao
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Yanan Wang
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Haoxing Li
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Qiang Wang
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Yutao Lei
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Ying Ye
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Syed F Wadood
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhouChina
| | - Hui Zhu
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen UniversityGuangzhouChina
| | - Gary Stacey
- Divisions of Plant Science and Technology, Christopher S. Bond Life Sciences Center, University of MissouriColumbiaUnited States
| | - Shutong Xu
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| | - Yangrong Cao
- National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural UniversityWuhanChina
| |
Collapse
|
6
|
Veselova S, Nuzhnaya T, Burkhanova G, Rumyantsev S, Maksimov I. Abscisic Acid Can Play a Dual Role in the Triticum aestivum- Stagonospora nodorum Pathosystem. PLANTS (BASEL, SWITZERLAND) 2025; 14:355. [PMID: 39942917 PMCID: PMC11820657 DOI: 10.3390/plants14030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
Abscisic acid (ABA) is not only important for plant responses to abiotic stresses, but also plays a key and multifaceted role in plant immunity. In this work, we analyzed the role of ABA in the development of resistance/susceptibility in the wheat (Triticum aestivum L.)-Stagonospora nodorum Berk. pathosystem, which includes the recognition of the necrotic effectors (NEs) of a pathogen by the corresponding wheat susceptibility genes. We studied the interaction of the S. nodorum SnB isolate, which produces two NEs, SnToxA and SnTox3, with three wheat genotypes having different combinations of the corresponding host susceptibility genes (Tsn1 and Snn3-B1). The results of this work on the gene expression and redox status of resistant and sensitive wheat genotypes treated with ABA show that ABA signaling is directed at inducing the resistance of wheat plants to S. nodorum SnB isolate through the activation of the early post-invasive defense genes TaERD15 and TaABI5. The induction of the expression of these genes leads to reactive oxygen species (ROS) accumulation during the early stage of infection, with the subsequent limitation of the pathogen's growth. In the presence of a compatible interaction of SnTox3-Snn3-B1, ABA signaling is suppressed. On the contrary, in the presence of a compatible interaction of SnToxA-Tsn1, ABA signaling is activated, but the activity of the early post-invasive defense genes TaERD15 and TaABI5 is inhibited, and the expression of the NAC (NAM, ATAF1/2, and CUC2) transcription factor (TF) family genes TaNAC29 and TaNAC21/22 is induced. The TF genes TaNAC29 and TaNAC21/22 in the presence of SnToxA induce the development of the susceptibility of wheat plants to S. nodorum SnB, associated with a decrease in the oxidative burst during the early stage of infection. Thus, our study provides new data on the role of the NEs SnTox3 and SnToxA in manipulating ABA signaling in the development of the susceptibility of wheat to S. nodorum. Deepening our knowledge in this area will be instrumental for developing new strategies for breeding programs and will contribute to the development of environmentally friendly sustainable agriculture.
Collapse
Affiliation(s)
- Svetlana Veselova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.N.); (G.B.); (S.R.); (I.M.)
| | - Tatyana Nuzhnaya
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.N.); (G.B.); (S.R.); (I.M.)
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Guzel Burkhanova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.N.); (G.B.); (S.R.); (I.M.)
| | - Sergey Rumyantsev
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.N.); (G.B.); (S.R.); (I.M.)
| | - Igor Maksimov
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.N.); (G.B.); (S.R.); (I.M.)
| |
Collapse
|
7
|
Feng L, Luo X, Huang L, Zhang Y, Li F, Li S, Zhang Z, Yang X, Wang X, OuYang X, Shi X, Zhang D, Tao X, Chen J, Yang J, Zhang S, Liu Y. A viral protein activates the MAPK pathway to promote viral infection by downregulating callose deposition in plants. Nat Commun 2024; 15:10548. [PMID: 39632828 PMCID: PMC11618657 DOI: 10.1038/s41467-024-54467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved in both plants and animals and play critical roles in activating innate immunity to defend against various pathogens. However, the role of MAPK cascades in positively regulating or enhancing viral infections in plants is unclear. In this study, we investigate the involvement of MAPK cascades in infection by the positive-strand RNA virus tomato chlorosis virus (ToCV). Our findings reveal that ToCV infection activates MAPK cascades, promoting virus spread within plants. Specifically, ToCV P7, a pathogenicity determinant protein, localizes to the plasma membrane and recruits NbMPK3/6 from the nucleus. Subsequently, P7 is directly phosphorylated on serine 59 by NbMPK3/6. Phosphorylated P7 interacts with NbREM1.1 and inhibits its ability to induce callose deposition at plasmodesmata. These results demonstrate that NbMPK3/6 directly phosphorylate ToCV P7, modulating antiviral defence mechanisms by downregulating callose deposition at plasmodesmata and thereby enhancing ToCV transmission in N. benthamiana. This study sheds light on the intricate arms race between host defence and viral counter-defence strategies.
Collapse
Affiliation(s)
- Lixiao Feng
- Longping Branch, Biology College of Hunan University, Changsha, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiangwen Luo
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Liping Huang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Yu Zhang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shijun Li
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhanhong Zhang
- Longping Branch, Biology College of Hunan University, Changsha, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Xiao Yang
- Longping Branch, Biology College of Hunan University, Changsha, China
| | - Xin Wang
- Longping Branch, Biology College of Hunan University, Changsha, China
| | - Xian OuYang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiaobin Shi
- Longping Branch, Biology College of Hunan University, Changsha, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Deyong Zhang
- Longping Branch, Biology College of Hunan University, Changsha, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.
- Yuelushan Laboratory, Changsha, China.
| | - Songbai Zhang
- Longping Branch, Biology College of Hunan University, Changsha, China.
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China.
- Yuelushan Laboratory, Changsha, China.
| | - Yong Liu
- Longping Branch, Biology College of Hunan University, Changsha, China.
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Plant Protection of Hunan Academy of Agricultural Science, Changsha, China.
- Yuelushan Laboratory, Changsha, China.
| |
Collapse
|
8
|
Soni KK, Gurjar K, Ranjan A, Sinha S, Srivastava M, Verma V. Post-translational modifications control the signal at the crossroads of plant-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6957-6979. [PMID: 39177255 DOI: 10.1093/jxb/erae358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
The co-evolution of plants and pathogens has enabled them to 'outsmart' each other by promoting their own defence responses and suppressing those of the other. While plants are reliant on their sophisticated immune signalling pathways, pathogens make use of effector proteins to achieve the objective. This entails rapid regulation of underlying molecular mechanisms for prompt induction of associated signalling events in both plants as well as pathogens. The past decade has witnessed the emergence of post-translational modification (PTM) of proteins as a key a factor in modulating cellular responses. The ability of PTMs to expand the functional diversity of the proteome and induce rapid changes at the appropriate time enables them to play crucial roles in the regulation of plant-pathogen interactions. Therefore, this review will delve into the intricate interplay of five major PTMs involved in plant defence and pathogen countermeasures. We discuss how plants employ PTMs to fortify their immune networks, and how pathogen effectors utilize/target host modification systems to gain entry into plants and cause disease. We also emphasize the need for identification of novel PTMs and propose the use of PTM pathways as potential targets for genome editing approaches.
Collapse
Affiliation(s)
- Kamlesh Kumar Soni
- Department of Biotechnology, AKS University, Satna, Madhya Pradesh-485001, India
| | - Kishan Gurjar
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
| | - Aastha Ranjan
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
| | - Shashank Sinha
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
| | - Moumita Srivastava
- Plant Biotechnology and Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Thiruvananthapuram, Kerala-695014, India
| | - Vivek Verma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
- Plant Biotechnology Department, Gujarat Biotechnology University, Near Gujarat International Finance Tec City, Gandhinagar, Gujarat-382355, India
| |
Collapse
|
9
|
Lim YJ, Yoon YJ, Lee H, Choi G, Kim S, Ko J, Kim JH, Kim KT, Lee YH. Nuclear localization sequence of MoHTR1, a Magnaporthe oryzae effector, for transcriptional reprogramming of immunity genes in rice. Nat Commun 2024; 15:9764. [PMID: 39528565 PMCID: PMC11555045 DOI: 10.1038/s41467-024-54272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Plant pathogens secrete nuclear effectors into the host nuclei to modulate the host immune system. Although several nuclear effectors of fungal pathogens have been recently reported, the molecular mechanism of NLS-associated transport vehicles of nuclear effectors and the roles of NLS in transcriptional reprogramming of host immunity genes remain enigmatic. We previously reported the MoHTR1, a nuclear effector of the rice blast fungus, Magnaporthe oryzae. MoHTR1 is translocated to rice nuclei but not in fungal nuclei. Here, we identify the core NLS (RxKK) responsible for MoHTR1's nuclear localization. MoHTR1 is translocated in the host nucleus through interaction with rice importin α. MoHTR1 NLS empowers it to translocate the cytoplasmic effectors of M. oryzae into rice nuclei. Furthermore, other nuclear effector candidates of the blast pathogen and rice proteins which have RxKK also exhibit nuclear localization, highlighting the crucial role of RxKK in this process. We also unveil the importance of SUMOylation in the stability of MoHTR1 and translocation of MoHTR1 to host nuclei. Moreover, MoHTR1 NLS is essential for the pathogenicity of M. oryzae by reprogramming immunity-associated genes in the host. Our findings provide insights into the significance of plant-specific NLS on fungal nuclear effectors and its role in plant-pathogen interactions.
Collapse
Affiliation(s)
- You-Jin Lim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Yoon-Ju Yoon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hyunjun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Gobong Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Republic of Korea
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jaeho Ko
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jea Hyeoung Kim
- Department of Plant Medicine, Sunchon National University, Suncheon, Republic of Korea
| | - Ki-Tae Kim
- Department of Plant Medicine, Sunchon National University, Suncheon, Republic of Korea
- Department of Agricultural Life Science, Sunchon National University, Suncheon, Republic of Korea
| | - Yong-Hwan Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, Republic of Korea.
- Center for Fungal Genetic Resources, Seoul National University, Seoul, Republic of Korea.
- Plant Immunity Research Center, Seoul National University, Seoul, Republic of Korea.
- Center for Plant Microbiome Research, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Zhao C, Liu W, Zhang Y, Li Y, Ma C, Tian R, Li R, Li M, Huang L. Two transcription factors, AcREM14 and AcC3H1, enhance the resistance of kiwifruit Actinidiachinensis var. chinensis to Pseudomonas syringae pv. actinidiae. HORTICULTURE RESEARCH 2024; 11:uhad242. [PMID: 38222821 PMCID: PMC10782502 DOI: 10.1093/hr/uhad242] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/12/2023] [Indexed: 01/16/2024]
Abstract
Kiwifruit bacterial canker is a global disease caused by Pseudomonas syringae pv. actinidiae (Psa), which poses a major threat to kiwifruit production worldwide. Despite the economic importance of Actinidia chinensis var. chinensis, only a few resistant varieties have been identified to date. In this study, we screened 44 kiwifruit F1 hybrid lines derived from a cross between two A. chinensis var. chinensis lines and identified two offspring with distinct resistance to Psa: resistant offspring RH12 and susceptible offspring SH14. To identify traits associated with resistance, we performed a comparative transcriptomic analysis of these two lines. We identified several highly differentially expressed genes (DEGs) associated with flavonoid synthesis, pathogen interactions, and hormone signaling pathways, which play essential roles in disease resistance. Additionally, using weighted gene co-expression network analysis, we identified six core transcription factors. Moreover, qRT-PCR results demonstrated the high expression of AcC3H1 and AcREM14 in Psa-induced highly resistant hybrid lines. Ultimately, Overexpression of AcC3H1 and AcREM14 in kiwifruit enhanced disease resistance, and this was associated with upregulation of enzymatic activity and gene expression in the salicylic acid (SA) signaling pathway. Our study elucidates a molecular mechanism underlying disease resistance in kiwifruit and contributes to the advancement of research on kiwifruit breeding.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Wei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Yali Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Yuanzhe Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Chao Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Runze Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Rui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
11
|
Zhou D, Chen X, Chen X, Xia Y, Liu J, Zhou G. Plant immune receptors interact with hemibiotrophic pathogens to activate plant immunity. Front Microbiol 2023; 14:1252039. [PMID: 37876778 PMCID: PMC10591190 DOI: 10.3389/fmicb.2023.1252039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
Phytopathogens pose a devastating threat to the productivity and yield of crops by causing destructive plant diseases in natural and agricultural environments. Hemibiotrophic pathogens have a variable-length biotrophic phase before turning to necrosis and are among the most invasive plant pathogens. Plant resistance to hemibiotrophic pathogens relies mainly on the activation of innate immune responses. These responses are typically initiated after the plant plasma membrane and various plant immune receptors detect immunogenic signals associated with pathogen infection. Hemibiotrophic pathogens evade pathogen-triggered immunity by masking themselves in an arms race while also enhancing or manipulating other receptors to promote virulence. However, our understanding of plant immune defenses against hemibiotrophic pathogens is highly limited due to the intricate infection mechanisms. In this review, we summarize the strategies that different hemibiotrophic pathogens interact with host immune receptors to activate plant immunity. We also discuss the significant role of the plasma membrane in plant immune responses, as well as the current obstacles and potential future research directions in this field. This will enable a more comprehensive understanding of the pathogenicity of hemibiotrophic pathogens and how distinct plant immune receptors oppose them, delivering valuable data for the prevention and management of plant diseases.
Collapse
Affiliation(s)
- Diao Zhou
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Xingzhou Chen
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Xinggang Chen
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Yandong Xia
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Junang Liu
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Guoying Zhou
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
12
|
Nomura K, Imboden LA, Tanaka H, He SY. Multiple host targets of Pseudomonas effector protein HopM1 form a protein complex regulating apoplastic immunity and water homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551310. [PMID: 37577537 PMCID: PMC10418078 DOI: 10.1101/2023.07.31.551310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Bacterial type III effector proteins injected into the host cell play a critical role in mediating bacterial interactions with plant and animal hosts. Notably, some bacterial effectors are reported to target sequence-unrelated host proteins with unknown functional relationships. The Pseudomonas syringae effector HopM1 is such an example; it interacts with and/or degrades several HopM1-interacting (MIN) Arabidopsis proteins, including HopM1-interacting protein 2 (MIN2/RAD23), HopM1-interacting protein 7 (MIN7/BIG5), HopM1-interacting protein 10 (MIN10/14-3-3ĸ), and HopM1-interacting protein 13 (MIN13/BIG2). In this study, we purified the MIN7 complex formed in planta and found that it contains MIN7, MIN10, MIN13, as well as a tetratricopeptide repeat protein named HLB1. Mutational analysis showed that, like MIN7, HLB1 is required for pathogen-associated molecular pattern (PAMP)-, effector-, and benzothiadiazole (BTH)-triggered immunity. HLB1 is recruited to the trans-Golgi network (TGN)/early endosome (EE) in a MIN7-dependent manner. Both min7 and hlb1 mutant leaves contained elevated water content in the leaf apoplast and artificial water infiltration into the leaf apoplast was sufficient to phenocopy immune-suppressing phenotype of HopM1. These results suggest that multiple HopM1-targeted MIN proteins form a protein complex with a dual role in modulating water level and immunity in the apoplast, which provides an explanation for the dual phenotypes of HopM1 during bacterial pathogenesis.
Collapse
Affiliation(s)
- Kinya Nomura
- Department of Biology, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Lori Alice Imboden
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Hirokazu Tanaka
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-0033, Japan
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
13
|
Xu Y, Liu Z, Lv T, Wei Y, Liu W, Wei Y, Yang G, Liu L, Li T, Wang A. Exogenous Ca2+ promotes transcription factor phosphorylation to suppress ethylene biosynthesis in apple. PLANT PHYSIOLOGY 2023; 191:2475-2488. [PMID: 36653326 PMCID: PMC10069878 DOI: 10.1093/plphys/kiad022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 05/26/2023]
Abstract
Ethylene biosynthesis in apple (Malus domestica) fruit can be suppressed by calcium ions (Ca2+) during storage; however, the underlying mechanisms are unclear. In this study, we identified the apple transcription factor MCM1-AGAMOUS-DEFICIENS-SRF5 (MdMADS5), which functions as a transcriptional activator of the ethylene biosynthesis-related gene 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE1 (MdACS1), a partner of the calcium sensor CALCIUM-DEPENDENT PROTEIN KINASES7 (MdCDPK7). Ca2+ promoted the MdCDPK7-mediated phosphorylation of MdMADS5, which resulted in the degradation of MdMADS5 via the 26S proteasome pathway. MdCDPK7 also phosphorylated 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID OXIDASE1 (MdACO1), the key enzyme in ethylene biosynthesis, leading to MdACO1 degradation and inhibition of ethylene biosynthesis. Our results reveal that Ca2+/MdCDPK7-MdMADS5 and Ca2+/MdCDPK7-MdACO1 are involved in Ca2+-suppressed ethylene biosynthesis, which delays apple fruit ripening. These findings provide insights into fruit ripening, which may lead to the development of strategies for extending the shelf life of fruit.
Collapse
Affiliation(s)
- Yaxiu Xu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhi Liu
- Liaoning Institute of Pomology, Xiongyue 115009, China
| | - Tianxing Lv
- Liaoning Institute of Pomology, Xiongyue 115009, China
| | - Yun Wei
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Weiting Liu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yajing Wei
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Guangxin Yang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Li Liu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Tong Li
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
14
|
Wang C, Wang J, Zhang D, Cheng J, Zhu J, Yang Z. Identification and functional analysis of protein secreted by Alternaria solani. PLoS One 2023; 18:e0281530. [PMID: 36877688 PMCID: PMC9987770 DOI: 10.1371/journal.pone.0281530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/25/2023] [Indexed: 03/07/2023] Open
Abstract
Early blight, caused by the necrotrophic fungus Alternaria solani, is an important foliar disease that causes major yield losses of potato. Effector proteins secreted by pathogens to host cells can inhibit host immune response to pathogens. Currently, the function of effector proteins secreted by A. solani during infection is poorly understood. In this study, we identified and characterized a novel candidate effector protein, AsCEP50. AsCEP50 is a secreted protein that is highly expressed throughout the infection stages of A. solani. Agrobacterium tumefaciens-mediated transient expression in Nicotiana benthamiana and tomato demonstrated that AsCEP50 is located on the plasma membrane of N. benthamiana and regulates senescence-related genes, resulting in the chlorosis of N. benthamiana and tomato leaves. Δ50 mutants were unaffected in vegetative growth, spore formation and mycelium morphology. However, the deletion of AsCEP50 significantly reduced virulence, melanin production and penetration of A. solani. These results strongly supported that AsCEP50 is an important pathogenic factor at the infection stage and contributes to the virulence of Alternaria solani.
Collapse
Affiliation(s)
- Chen Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Jinhui Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Dai Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Jianing Cheng
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, P. R. China
- * E-mail: (JZ); (ZY)
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, P. R. China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, P. R. China
- * E-mail: (JZ); (ZY)
| |
Collapse
|
15
|
Sweetman C, Waterman CD, Wong DC, Day DA, Jenkins CL, Soole KL. Altering the balance between AOX1A and NDB2 expression affects a common set of transcripts in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:876843. [PMID: 36466234 PMCID: PMC9716356 DOI: 10.3389/fpls.2022.876843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Stress-responsive components of the mitochondrial alternative electron transport pathway have the capacity to improve tolerance of plants to abiotic stress, particularly the alternative oxidase AOX1A but also external NAD(P)H dehydrogenases such as NDB2, in Arabidopsis. NDB2 and AOX1A can cooperate to entirely circumvent the classical electron transport chain in Arabidopsis mitochondria. Overexpression of AOX1A or NDB2 alone can have slightly negative impacts on plant growth under optimal conditions, while simultaneous overexpression of NDB2 and AOX1A can reverse these phenotypic effects. We have taken a global transcriptomic approach to better understand the molecular shifts that occur due to overexpression of AOX1A alone and with concomitant overexpression of NDB2. Of the transcripts that were significantly up- or down- regulated in the AOX1A overexpression line compared to wild type (410 and 408, respectively), the majority (372 and 337, respectively) reverted to wild type levels in the dual overexpression line. Several mechanisms for the AOX1A overexpression phenotype are proposed based on the functional classification of these 709 genes, which can be used to guide future experiments. Only 28 genes were uniquely up- or down-regulated when NDB2 was overexpressed in the AOX1A overexpression line. On the other hand, many unique genes were deregulated in the NDB2 knockout line. Furthermore, several changes in transcript abundance seen in the NDB2 knockout line were consistent with changes in the AOX1A overexpression line. The results suggest that an imbalance in AOX1A:NDB2 protein levels caused by under- or over-expression of either component, triggers a common set of transcriptional responses that may be important in mitochondrial redox regulation. The most significant changes were transcripts associated with photosynthesis, secondary metabolism and oxidative stress responses.
Collapse
Affiliation(s)
- Crystal Sweetman
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | | | - Darren C.J. Wong
- College of Science, Australian National University, Canberra, ACT, Australia
| | - David A. Day
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Colin L.D. Jenkins
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Kathleen L. Soole
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
16
|
Wang C, Zhang D, Cheng J, Zhao D, Pan Y, Li Q, Zhu J, Yang Z, Wang J. Identification of effector CEP112 that promotes the infection of necrotrophic Alternaria solani. BMC PLANT BIOLOGY 2022; 22:466. [PMID: 36171557 PMCID: PMC9520946 DOI: 10.1186/s12870-022-03845-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Alternaria solani is a typical necrotrophic pathogen that can cause severe early blight on Solanaceae crops and cause ring disease on plant leaves. Phytopathogens produce secretory effectors that regulate the host immune response and promote pathogenic infection. Effector proteins, as specialized secretions of host-infecting pathogens, play important roles in disrupting host defense systems. At present, the role of the effector secreted by A. solani during infection remains unclear. We report the identification and characterization of AsCEP112, an effector required for A. solani virulence. RESULT The AsCEP112 gene was screened from the transcriptome and genome of A. solani on the basis of typical effector signatures. Fluorescence quantification and transient expression analysis showed that the expression level of AsCEP112 continued to increase during infection. The protein localized to the cell membrane of Nicotiana benthamiana and regulated senescence-related genes, resulting in the chlorosis of N. benthamiana and tomato leaves. Moreover, comparative analysis of AsCEP112 mutant obtained by homologous recombination with wild-type and revertant strains indicated that AsCEP112 gene played an active role in regulating melanin formation and penetration in the pathogen. Deletion of AsCEP112 also reduced the pathogenicity of HWC-168. CONCLUSION Our findings demonstrate that AsCEP112 was an important effector protein that targeted host cell membranes. AsCEP112 regulateed host senescence-related genes to control host leaf senescence and chlorosis, and contribute to pathogen virulence.
Collapse
Affiliation(s)
- Chen Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Dai Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Jianing Cheng
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Dongmei Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Yang Pan
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Qian Li
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, People's Republic of China.
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, People's Republic of China.
| | - Jinhui Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, 071001, People's Republic of China.
| |
Collapse
|
17
|
Chen M, Farmer N, Zhong Z, Zheng W, Tang W, Han Y, Lu G, Wang Z, Ebbole DJ. HAG Effector Evolution in Pyricularia Species and Plant Cell Death Suppression by HAG4. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:694-705. [PMID: 35345886 DOI: 10.1094/mpmi-01-22-0010-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Seventy host-adapted gene (HAG) effector family members from Pyricularia species are found in P. oryzae and three closely related species (isolates LS and 18-2 from an unknown Pyricularia sp., P. grisea, and P. pennisetigena) that share at least eight orthologous HAG family members with P. oryzae. The genome sequence of a more distantly related species, P. penniseti, lacks HAG genes, suggesting a time frame for the origin of the gene family in the genus. In P. oryzae, HAG4 is uniquely found in the genetic lineage that contains populations adapted to Setaria and Oryza hosts. We find a nearly identical HAG4 allele in a P. grisea isolate, suggesting transfer of HAG4 from P. grisea to P. oryzae. HAG4 encodes a suppressor of plant cell death. Yeast two-hybrid screens with several HAG genes independently identify common interacting clones from a rice complementary DNA library, suggesting conservation of protein surface motifs between HAG homologs with as little as 40% protein sequence identity. HAG family orthologs have diverged rapidly and HAG15 orthologs display unusually high rates of sequence divergence compared with adjacent genes suggesting gene-specific accelerated divergence. The sequence diversity of the HAG homologs in Pyricularia species provides a resource for examining mechanisms of gene family evolution and the relationship to structural and functional evolution of HAG effector family activity. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Meilian Chen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- Key Laboratory of Bio-Pesticide and Chemistry-Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nick Farmer
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, U.S.A
| | - Zhenhui Zhong
- Key Laboratory of Bio-Pesticide and Chemistry-Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhui Zheng
- Key Laboratory of Bio-Pesticide and Chemistry-Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Tang
- Key Laboratory of Bio-Pesticide and Chemistry-Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yijuan Han
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Guodong Lu
- Key Laboratory of Bio-Pesticide and Chemistry-Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- Key Laboratory of Bio-Pesticide and Chemistry-Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Daniel J Ebbole
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, U.S.A
| |
Collapse
|
18
|
Nakano M, Omae N, Tsuda K. Inter-organismal phytohormone networks in plant-microbe interactions. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102258. [PMID: 35820321 DOI: 10.1016/j.pbi.2022.102258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 06/10/2022] [Indexed: 05/14/2023]
Abstract
Phytohormones are produced by plants and play central roles in interactions with pathogenic and beneficial microbes as well as plant growth and development. Each phytohormone pathway consists of its biosynthesis, transport, perception, and signaling and is intertwined with each other at various levels to form phytohormone networks in plants. Different kinds of microbes also produce phytohormones that exert physiological roles within microbes and manipulate phytohormone networks in plants by using phytohormones, their mimics, and proteinaceous effectors. In turn, plant-derived phytohormones can directly or indirectly through plant signaling networks affect microbial metabolism and community assembly. Therefore, phytohormone networks in plants and microbes are connected through plant and microbial phytohormones and other molecules to form inter-organismal phytohormone networks. In this review, we summarize recent progress on molecular mechanisms of inter-organismal phytohormone networks and discuss future steps necessary for advancing our understanding of phytohormone networks.
Collapse
Affiliation(s)
- Masahito Nakano
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Natsuki Omae
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
19
|
What's new in protein kinase/phosphatase signalling in the control of plant immunity? Essays Biochem 2022; 66:621-634. [PMID: 35723080 PMCID: PMC9528078 DOI: 10.1042/ebc20210088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022]
Abstract
Plant immunity is crucial to plant health but comes at an expense. For optimal plant growth, tight immune regulation is required to prevent unnecessary rechannelling of valuable resources. Pattern- and effector-triggered immunity (PTI/ETI) represent the two tiers of immunity initiated after sensing microbial patterns at the cell surface or pathogen effectors secreted into plant cells, respectively. Recent evidence of PTI-ETI cross-potentiation suggests a close interplay of signalling pathways and defense responses downstream of perception that is still poorly understood. This review will focus on controls on plant immunity through phosphorylation, a universal and key cellular regulatory mechanism. Rather than a complete overview, we highlight “what’s new in protein kinase/phosphatase signalling” in the immunity field. In addition to phosphoregulation of components in the pattern recognition receptor (PRR) complex, we will cover the actions of the major immunity-relevant intracellular protein kinases/phosphatases in the ‘signal relay’, namely calcium-regulated kinases (e.g. calcium-dependent protein kinases, CDPKs), mitogen-activated protein kinases (MAPKs), and various protein phosphatases. We discuss how these factors define a phosphocode that generates cellular decision-making ‘logic gates’, which contribute to signalling fidelity, amplitude, and duration. To underscore the importance of phosphorylation, we summarize strategies employed by pathogens to subvert plant immune phosphopathways. In view of recent game-changing discoveries of ETI-derived resistosomes organizing into calcium-permeable pores, we speculate on a possible calcium-regulated phosphocode as the mechanistic control of the PTI-ETI continuum.
Collapse
|
20
|
Iswanto ABB, Vu MH, Pike S, Lee J, Kang H, Son GH, Kim J, Kim SH. Pathogen effectors: What do they do at plasmodesmata? MOLECULAR PLANT PATHOLOGY 2022; 23:795-804. [PMID: 34569687 PMCID: PMC9104267 DOI: 10.1111/mpp.13142] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Plants perceive an assortment of external cues during their life cycle, including abiotic and biotic stressors. Biotic stress from a variety of pathogens, including viruses, oomycetes, fungi, and bacteria, is considered to be a substantial factor hindering plant growth and development. To hijack the host cell's defence machinery, plant pathogens have evolved sophisticated attack strategies mediated by numerous effector proteins. Several studies have indicated that plasmodesmata (PD), symplasmic pores that facilitate cell-to-cell communication between a cell and neighbouring cells, are one of the targets of pathogen effectors. However, in contrast to plant-pathogenic viruses, reports of fungal- and bacterial-encoded effectors that localize to and exploit PD are limited. Surprisingly, a recent study of PD-associated bacterial effectors has shown that a number of bacterial effectors undergo cell-to-cell movement via PD. Here we summarize and highlight recent advances in the study of PD-associated fungal/oomycete/bacterial effectors. We also discuss how pathogen effectors interfere with host defence mechanisms in the context of PD regulation.
Collapse
Affiliation(s)
- Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Minh Huy Vu
- Division of Applied Life Science (BK21 Four Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Sharon Pike
- Division of Plant SciencesChristopher S. Bond Life Sciences Center and Interdisciplinary Plant GroupUniversity of MissouriColumbiaMissouriUSA
| | - Jihyun Lee
- Division of Applied Life Science (BK21 Four Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 Four Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Geon Hui Son
- Division of Applied Life Science (BK21 Four Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jae‐Yean Kim
- Division of Applied Life Science (BK21 Four Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
- Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
- Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
21
|
Leong JX, Raffeiner M, Spinti D, Langin G, Franz-Wachtel M, Guzman AR, Kim JG, Pandey P, Minina AE, Macek B, Hafrén A, Bozkurt TO, Mudgett MB, Börnke F, Hofius D, Üstün S. A bacterial effector counteracts host autophagy by promoting degradation of an autophagy component. EMBO J 2022; 41:e110352. [PMID: 35620914 PMCID: PMC9251887 DOI: 10.15252/embj.2021110352] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
Beyond its role in cellular homeostasis, autophagy plays anti‐ and promicrobial roles in host–microbe interactions, both in animals and plants. One prominent role of antimicrobial autophagy is to degrade intracellular pathogens or microbial molecules, in a process termed xenophagy. Consequently, microbes evolved mechanisms to hijack or modulate autophagy to escape elimination. Although well‐described in animals, the extent to which xenophagy contributes to plant–bacteria interactions remains unknown. Here, we provide evidence that Xanthomonas campestris pv. vesicatoria (Xcv) suppresses host autophagy by utilizing type‐III effector XopL. XopL interacts with and degrades the autophagy component SH3P2 via its E3 ligase activity to promote infection. Intriguingly, XopL is targeted for degradation by defense‐related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery. Our results implicate plant antimicrobial autophagy in the depletion of a bacterial virulence factor and unravel an unprecedented pathogen strategy to counteract defense‐related autophagy in plant–bacteria interactions.
Collapse
Affiliation(s)
- Jia Xuan Leong
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Margot Raffeiner
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Daniela Spinti
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Gautier Langin
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Mirita Franz-Wachtel
- Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of Tübingen, Tübingen, Germany
| | - Andrew R Guzman
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Pooja Pandey
- Department of Life Sciences, Imperial College London, London, UK
| | - Alyona E Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Boris Macek
- Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of Tübingen, Tübingen, Germany
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Tolga O Bozkurt
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Frederik Börnke
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Daniel Hofius
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Suayib Üstün
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.,Faculty of Biology & Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
22
|
Berrios L. Examining the genomic features of human and plant-associated Burkholderia strains. Arch Microbiol 2022; 204:335. [PMID: 35587294 DOI: 10.1007/s00203-022-02953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
Humans and plants have evolved in the near omnipresence of a microbial milieu, and the factors that govern host-microbe interactions continue to require scientific exploration. To better understand if and to what degree patterns between microbial genomic features and host association (i.e., human and plant) exist, I analyzed the genomes of select Burkholderia strains-a bacterial genus comprised of both human and plant-associated strains-that were isolated from either humans or plants. To this end, I uncovered host-specific, genomic patterns related to metabolic pathway potentials in addition to convergent features that may be related to pathogenic overlap between hosts. Together, these findings detail the genomic associations of human and plant-associated Burkholderia strains and provide a framework for future investigations that seek to link host-host transmission potentials.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
23
|
Ubiquitination of Receptorsomes, Frontline of Plant Immunity. Int J Mol Sci 2022; 23:ijms23062937. [PMID: 35328358 PMCID: PMC8948693 DOI: 10.3390/ijms23062937] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
Sessile plants are constantly exposed to myriads of unfavorable invading organisms with different lifestyles. To survive, plants have evolved plasma membrane-resident pattern recognition receptors (PRRs) and intracellular nucleotide-binding domain leucine-rich repeat receptors (NLRs) to initiate sophisticated downstream immune responses. Ubiquitination serves as one of the most important and prevalent posttranslational modifications (PTMs) to fine-tune plant immune responses. Over the last decade, remarkable progress has been made in delineating the critical roles of ubiquitination in plant immunity. In this review, we highlight recent advances in the understanding of ubiquitination in the modulation of plant immunity, with a particular focus on ubiquitination in the regulation of receptorsomes, and discuss how ubiquitination and other PTMs act in concert to ensure rapid, proper, and robust immune responses.
Collapse
|
24
|
Chen T, Zhang Z, Li B, Qin G, Tian S. Molecular basis for optimizing sugar metabolism and transport during fruit development. ABIOTECH 2021; 2:330-340. [PMID: 36303881 PMCID: PMC9590571 DOI: 10.1007/s42994-021-00061-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022]
Abstract
Sugars are fundamental metabolites synthesized in leaves and further delivered to fruit in fruit crops. They not only provide "sweetness" as fruit quality traits, but also function as signaling molecules to modulate the responses of fruit to environmental stimuli. Therefore, the understanding to the molecular basis for sugar metabolism and transport is crucial for improving fruit quality and dissecting responses to abiotic/biotic factors. Here, we provide a review for molecular components involved in sugar metabolism and transport, crosstalk with hormone signaling, and the roles of sugars in responses to abiotic and biotic stresses. Moreover, we also envisage the strategies for optimizing sugar metabolism during fruit quality maintenance.
Collapse
Affiliation(s)
- Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
25
|
Schreiber KJ, Chau-Ly IJ, Lewis JD. What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Microorganisms 2021; 9:1029. [PMID: 34064647 PMCID: PMC8150971 DOI: 10.3390/microorganisms9051029] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/05/2023] Open
Abstract
Phytopathogenic bacteria possess an arsenal of effector proteins that enable them to subvert host recognition and manipulate the host to promote pathogen fitness. The type III secretion system (T3SS) delivers type III-secreted effector proteins (T3SEs) from bacterial pathogens such as Pseudomonas syringae, Ralstonia solanacearum, and various Xanthomonas species. These T3SEs interact with and modify a range of intracellular host targets to alter their activity and thereby attenuate host immune signaling. Pathogens have evolved T3SEs with diverse biochemical activities, which can be difficult to predict in the absence of structural data. Interestingly, several T3SEs are activated following injection into the host cell. Here, we review T3SEs with documented enzymatic activities, as well as T3SEs that facilitate virulence-promoting processes either indirectly or through non-enzymatic mechanisms. We discuss the mechanisms by which T3SEs are activated in the cell, as well as how T3SEs modify host targets to promote virulence or trigger immunity. These mechanisms may suggest common enzymatic activities and convergent targets that could be manipulated to protect crop plants from infection.
Collapse
Affiliation(s)
- Karl J. Schreiber
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Ilea J. Chau-Ly
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Jennifer D. Lewis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
- Plant Gene Expression Center, United States Department of Agriculture, University of California, Berkeley, CA 94710, USA
| |
Collapse
|
26
|
Yu J, Gonzalez JM, Dong Z, Shan Q, Tan B, Koh J, Zhang T, Zhu N, Dufresne C, Martin GB, Chen S. Integrative Proteomic and Phosphoproteomic Analyses of Pattern- and Effector-Triggered Immunity in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:768693. [PMID: 34925416 PMCID: PMC8677958 DOI: 10.3389/fpls.2021.768693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/12/2021] [Indexed: 05/04/2023]
Abstract
Plants have evolved a two-layered immune system consisting of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). PTI and ETI are functionally linked, but also have distinct characteristics. Unraveling how these immune systems coordinate plant responses against pathogens is crucial for understanding the regulatory mechanisms underlying plant defense. Here we report integrative proteomic and phosphoproteomic analyses of the tomato-Pseudomonas syringae (Pst) pathosystem with different Pst mutants that allow the dissection of PTI and ETI. A total of 225 proteins and 79 phosphopeptides differentially accumulated in tomato leaves during Pst infection. The abundances of many proteins and phosphoproteins changed during PTI or ETI, and some responses were triggered by both PTI and ETI. For most proteins, the ETI response was more robust than the PTI response. The patterns of protein abundance and phosphorylation changes revealed key regulators involved in Ca2+ signaling, mitogen-activated protein kinase cascades, reversible protein phosphorylation, reactive oxygen species (ROS) and redox homeostasis, transcription and protein turnover, transport and trafficking, cell wall remodeling, hormone biosynthesis and signaling, suggesting their common or specific roles in PTI and/or ETI. A NAC (NAM, ATAF, and CUC family) domain protein and lipid particle serine esterase, two PTI-specific genes identified from previous transcriptomic work, were not detected as differentially regulated at the protein level and were not induced by PTI. Based on integrative transcriptomics and proteomics data, as well as qRT-PCR analysis, several potential PTI and ETI-specific markers are proposed. These results provide insights into the regulatory mechanisms underlying PTI and ETI in the tomato-Pst pathosystem, and will promote future validation and application of the disease biomarkers in plant defense.
Collapse
Affiliation(s)
- Juanjuan Yu
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, College of Life Sciences, Henan Normal University, Xinxiang, China
- *Correspondence: Juanjuan Yu,
| | - Juan M. Gonzalez
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States
| | - Zhiping Dong
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Qianru Shan
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Bowen Tan
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Jin Koh
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Tong Zhang
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Ning Zhu
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Craig Dufresne
- Thermo Fisher Scientific Inc., West Palm Beach, FL, United States
| | - Gregory B. Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Sixue Chen,
| |
Collapse
|
27
|
Xu N, Luo X, Wu W, Xing Y, Liang Y, Liu Y, Zou H, Wei HL, Liu J. A Plant Lectin Receptor-like Kinase Phosphorylates the Bacterial Effector AvrPtoB to Dampen Its Virulence in Arabidopsis. MOLECULAR PLANT 2020; 13:1499-1512. [PMID: 32977056 DOI: 10.1016/j.molp.2020.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/27/2020] [Accepted: 09/19/2020] [Indexed: 05/19/2023]
Abstract
Plasma membrane-localized receptor-like kinases (RLKs) perceive conserved pathogen-associated molecular patterns (PAMPs) in plants, leading to PAMP-triggered immunity (PTI). The Arabidopsis thaliana lectin RLK LecRK-IX.2 has been shown to regulate the bacterial flagellin-derived peptide flg22-induced PTI. Here, we discover that Pseudomonas syringae effector AvrPtoB targets LecRK-IX.2 for degradation, which subsequently suppresses LecRK-IX.2-mediated PTI and disease resistance. However, LecRK-IX.2 can interact with and phosphorylate AvrPtoB at serine site 335 (S335). AvrPtoB self-associates in vitro and in vivo, and the association appears to be essential for its E3 ligase activity in ubiquitinating substrate in plants. Phosphorylation of S335 disrupts the self-association and as a result, phosphomimetic AvrPtoBS335D cannot ubiquitinate LecRK-IX.2 efficiently, leading to the compromised virulence of AvrPtoB in suppressing PTI responses. flg22 enhances AvrPtoB S335 phosphorylation by inducing the expression and activating of LecRK-IX.2. Our study demonstrates that host RLKs can modify pathogen effectors to dampen their virulence and undermine their ability in suppressing PTI.
Collapse
Affiliation(s)
- Ning Xu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuming Luo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingying Xing
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingbo Liang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanzhi Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huasong Zou
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hai-Lei Wei
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|