1
|
Queiroz LHS, Barros RS, de Sousa FF, Lage MR, Sarraguça MC, Ribeiro PRS. Preparation and Characterization of a Rifampicin Coamorphous Material with Tromethamine Coformer: An Experimental-Theoretical Study. Mol Pharm 2024; 21:1272-1284. [PMID: 38361428 DOI: 10.1021/acs.molpharmaceut.3c00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Rifampicin (RIF) is an antibiotic used to treat tuberculosis and leprosy. Even though RIF is a market-available drug, it has a low aqueous solubility, hindering its bioavailability. Among the strategies for bioavailability improvement of poorly soluble drugs, coamorphous systems have been revealed as an alternative in the increase of the aqueous solubility of drug systems and at the same time also increasing the amorphous state stability and dissolution rate when compared with the neat drug. In this work, a new coamorphous form from RIF and tromethamine (TRIS) was synthesized by slow evaporation. Structural, electronic, and thermodynamic properties and solvation effects, as well as drug-coformer intermolecular interactions, were studied through density functional theory (DFT) calculations. Powder X-ray diffraction (PXRD) data allowed us to verify the formation of a new coamorphous. In addition, the DFT study indicates a possible intermolecular interaction by hydrogen bonds between the available amino and carbonyl groups of RIF and the hydroxyl and amino groups of TRIS. The theoretical spectra obtained are in good agreement with the experimental data, suggesting the main interactions occurring in the formation of the coamorphous system. PXRD was used to study the physical stability of the coamorphous system under accelerated ICH conditions (40 °C and 75% RH), indicating that the material remained in an amorphous state up to 180 days. The thermogravimetry result of this material showed a good thermal stability up to 153 °C, and differential scanning calorimetry showed that the glass temperature (Tg) was at 70.0 °C. Solubility studies demonstrated an increase in the solubility of RIF by 5.5-fold when compared with its crystalline counterpart. Therefore, this new material presents critical parameters that can be considered in the development of new coamorphous formulations.
Collapse
Affiliation(s)
- Luís H S Queiroz
- NUPFARQ, Programa de Pós-Graduação em Ciência dos Materiais (PPGCM), Centro de Ciências de Imperatriz (CCIM), Universidade Federal do Maranhão (UFMA), Imperatriz, Maranhão 65.900-410, Brazil
| | - Ranna S Barros
- NUPFARQ, Programa de Pós-Graduação em Ciência dos Materiais (PPGCM), Centro de Ciências de Imperatriz (CCIM), Universidade Federal do Maranhão (UFMA), Imperatriz, Maranhão 65.900-410, Brazil
| | - Francisco F de Sousa
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará (UFPA), Belém, Pará 65.075-110, Brazil
| | - Mateus R Lage
- NUPFARQ, Programa de Pós-Graduação em Ciência dos Materiais (PPGCM), Centro de Ciências de Imperatriz (CCIM), Universidade Federal do Maranhão (UFMA), Imperatriz, Maranhão 65.900-410, Brazil
- Coordenação do Curso de Ciência e Tecnologia, Centro de Ciências de Balsas, Universidade Federal do Maranhão (UFMA), Balsas, Maranhão 65.800-000, Brazil
| | - Mafalda C Sarraguça
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | - Paulo R S Ribeiro
- NUPFARQ, Programa de Pós-Graduação em Ciência dos Materiais (PPGCM), Centro de Ciências de Imperatriz (CCIM), Universidade Federal do Maranhão (UFMA), Imperatriz, Maranhão 65.900-410, Brazil
| |
Collapse
|
2
|
Peterson BN, Morales AC, Tomlin JM, Gorman CGW, Christ PE, Sharpe SAL, Huston SM, Rivera-Adorno FA, O'Callahan BT, Fraund M, Noh Y, Pahari P, Whelton AJ, El-Khoury PZ, Moffet RC, Zelenyuk A, Laskin A. Chemical characterization of microplastic particles formed in airborne waste discharged from sewer pipe repairs. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1718-1731. [PMID: 37781874 DOI: 10.1039/d3em00193h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Microplastic particles are of increasing environmental concern due to the widespread uncontrolled degradation of various commercial products made of plastic and their associated waste disposal. Recently, common technology used to repair sewer pipes was reported as one of the emission sources of airborne microplastics in urban areas. This research presents results of the multi-modal comprehensive chemical characterization of the microplastic particles related to waste discharged in the pipe repair process and compares particle composition with the components of uncured resin and cured plastic composite used in the process. Analysis of these materials employs complementary use of surface-enhanced Raman spectroscopy, scanning transmission X-ray spectro-microscopy, single particle mass spectrometry, and direct analysis in real-time high-resolution mass spectrometry. It is shown that the composition of the relatively large (100 μm) microplastic particles resembles components of plastic material used in the process. In contrast, the composition of the smaller (micrometer and sub-micrometer) particles is significantly different, suggesting their formation from unintended polymerization of water-soluble components occurring in drying droplets of the air-discharged waste. In addition, resin material type influences the composition of released microplastic particles. Results are further discussed to guide the detection and advanced characterization of airborne microplastics in future field and laboratory studies pertaining to sewer pipe repair technology.
Collapse
Affiliation(s)
| | - Ana C Morales
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| | - Jay M Tomlin
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| | - Carrie G W Gorman
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| | - Peter E Christ
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| | - Steven A L Sharpe
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| | - Shelby M Huston
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| | | | - Brian T O'Callahan
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Yoorae Noh
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, USA
- Department of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, USA
| | - Pritee Pahari
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, USA
- Department of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, USA
| | - Andrew J Whelton
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, USA
- Department of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, USA
| | - Patrick Z El-Khoury
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Chemical Physics & Analysis, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Alla Zelenyuk
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
- Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
3
|
Al-Wahaibi LH, Abdalla M, Mary YS, Mary YS, Costa RA, Rana M, El-Emam AA, Hassan HM, Al-Shaalan NH. Spectroscopic, Solvation Effects and MD Simulation of an Adamantane-Carbohydrazide Derivative, a Potential Antiviral Agent. Polycycl Aromat Compd 2023; 43:2056-2070. [DOI: 10.1080/10406638.2022.2039233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/28/2022] [Indexed: 12/16/2022]
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | | | | | - Renyer Alves Costa
- Department of Chemistry, Federal University of Amazonas (DQ-UFAM), Manaus, Brazil
| | - Meenakshi Rana
- Department of Physics, School of Sciences, Uttarakhand Open University, Haldwani, India
| | - Ali A. El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Hanan M. Hassan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Costal Road, Gamasa City, Mansoura, Egypt
| | - Nora H. Al-Shaalan
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Saini SS, Copello GJ, Martini MF. Solid phase extraction with rotating cigarette filter for determination of bisphenol A in source and drinking water: computational and analytical studies. ANAL SCI 2023; 39:607-617. [PMID: 36807887 DOI: 10.1007/s44211-023-00276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/14/2023] [Indexed: 02/23/2023]
Abstract
An ultrasound assisted solid phase extraction method using rotating cigarette filter is developed herein to preconcentrate and determine trace amount of bisphenol in source and drinking water. Qualitative and quantitative measurements were performed using high-performance liquid chromatography coupled with ultra violet detector. Sorbent-analyte interactions were thoroughly investigated computationally and experimentally using molecular dynamics simulations; and attenuated total reflectance Fourier transform infrared spectroscopy, and Raman spectroscopy, respectively. Various extraction parameters were investigated and optimized. Under the optimal conditions, the results were linear in a low scale range of 0.01-55 ng/mL with correlation coefficient of 0.9941 and a low limit of detection (0.04 ng/mL, signal/noise = 3:1). A good precision (intra-day relative standard deviation ≤ 6.05%, inter-day relative standard deviation ≤ 7.12%) and recovery (intra-day ≥ 98.41%, inter-day ≥ 98.04%)) are obtained. Finally, the proposed solid phase extraction method offered a low cost, simple, fast, and sensitive analytical method to determine trace amount of bisphenol A in source and drinking water samples with chromatographic detection.
Collapse
Affiliation(s)
- Shivender Singh Saini
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Samba, Jammu and Kashmir, 181143, India.
| | - Guillermo J Copello
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Florencia Martini
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Farmacología, UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Junín 956, C1113AAD, Buenos Aires, Argentina
| |
Collapse
|
5
|
Saini SS, Copello GJ, Fagan SB, Tonel MZ. Comparison of three cyclodextrins to optimize bisphenol A extraction from source water: Computational, spectroscopic, and analytical studies. J Sep Sci 2023; 46:e2300012. [PMID: 36807516 DOI: 10.1002/jssc.202300012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/31/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Computationally and spectroscopically assisted analytical comparative investigation into the extraction of bisphenol A using three cyclodextrins, that is, α, β, and γ respectively, were performed. A simple, self-tailored μ-solid-phase extraction podium was used to extract bisphenol A from water samples, and high-performance liquid chromatography-ultraviolet was used for the qualitative and quantitative analysis of bisphenol A. Density functional theory first principle calculations, attenuated total reflectance Fourier-transform infrared spectroscopy and Fourier-transform Raman spectroscopy data supports the analytical selection of β-cyclodextrin as the adsorbent for bisphenol A extraction. Analytical optimization of various parameters including sample volume, sample pH, eluting solvent and its volume was performed to discover the most proper conditions for maximum extraction. Under the optimized conditions, a limit of detection value of 0.70 ng/ml and a limit of quantification value of 2.31 ng/ml was achieved with β-cyclodextrin, with recovery (%) values over 98.40-102.50 in real source water samples. Overall, well assisted by comprehensive computational and spectroscopic studies, a novel, simple, sensitive and economic analytical method was developed for the extraction of bisphenol A from source water using cyclodextrin.
Collapse
Affiliation(s)
- Shivender Singh Saini
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Samba, India
| | - Guillermo J Copello
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), GINaPS (Grupo de Investigación en Nanotecnología, Polímeros y Sustentabilidad), Buenos Aires, Argentina
| | | | | |
Collapse
|
6
|
Din STU, Lee H, Yang W. Z-Scheme Heterojunction of 3-Dimensional Hierarchical Bi 3O 4Cl/Bi 5O 7I for a Significant Enhancement in the Photocatalytic Degradation of Organic Pollutants (RhB and BPA). NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:767. [PMID: 35269255 PMCID: PMC8911787 DOI: 10.3390/nano12050767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
In this study, we report the synthesis of a 3-dimensional (3D) hierarchical Bi3O4Cl/Bi5O7I (BOC/BOI) heterostructure for the photocatalytic degradation of Rhodamine-B (RhB) dye and colorless Bisphenol-A (BPA) pollutant under visible light. The heterostructure was prepared using in situ solvothermal and calcination methods. BOC/BOI exhibits a 3D hierarchical structure constructed with thin nano-platelets. The photocatalytic performance of the BOC/BOI photocatalyst demonstrated that the degradation efficiencies of RhB and BPA were 97% and 92% after light illumination within 90 and 30 min, respectively. In comparison, bare BOC and BOI efficiencies were only 20% and 10% for RhB dye, respectively, and 2.3% and 37% for BPA aqueous pollutants, respectively. Moreover, radical trapping measurements indicated that •O2- and •OH radicals played prominent roles in RhB and BPA degradation into mineralization. Analysis of band structures and photochemical redox reactions of BOC/BOI revealed a Z-scheme charge transfer between BOC and BOI by an internal electric field formed at the interface. Therefore, the highly improved photocatalytic performance of the BOC/BOI heterostructure is attributed to the synergetic effects of large surface area, high visible-light absorption, and the enhanced separation and transport of photo-excited electron-hole pairs induced by the hierarchical and Z-scheme heterojunction of the BOC/BOI.
Collapse
Affiliation(s)
| | | | - Woochul Yang
- Department of Physics, Dongguk University, Seoul 04620, Korea; (S.T.U.D.); (H.L.)
| |
Collapse
|
7
|
Surface-Enhanced Raman Spectroscopy for Bisphenols Detection: Toward a Better Understanding of the Analyte-Nanosystem Interactions. NANOMATERIALS 2021; 11:nano11040881. [PMID: 33808378 PMCID: PMC8067303 DOI: 10.3390/nano11040881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022]
Abstract
Silver nanoparticles functionalized with thiolated β-cyclodextrin (CD-SH) were employed for the detection of bisphenols (BPs) A, B, and S by means of surface-enhanced Raman spectroscopy (SERS). The functionalization of Ag nanoparticles with CD-SH leads to an improvement of the sensitivity of the implemented SERS nanosensor. Using a multivariate analysis of the SERS data, the limit of detection of these compounds was estimated at about 10−7 M, in the range of the tens of ppb. Structural analysis of the CD-SH/BP complex was performed by density functional theory (DFT) calculations. Theoretical results allowed the assignment of key structural vibrational bands related to ring breathing motions and the inter-ring vibrations and pointed out an external interaction due to four hydrogen bonds between the hydroxyl groups of BP and CD located at the external top of the CD cone. DFT calculations allowed also checking the interaction energies of the different molecular species on the Ag surface and testing the effect of the presence of CD-SH on the BPs’ affinity. These findings were in agreement with the experimental evidences that there is not an actual inclusion of BP inside the CD cavity. The SERS sensor and the analysis procedure of data based on partial least square regression proposed here were tested in a real sample consisting of the detection of BPs in milk extracts to validate the detection performance of the SERS sensor.
Collapse
|
8
|
Uzzaman M, Hasan MK, Mahmud S, Yousuf A, Islam S, Uddin MN, Barua A. Physicochemical, spectral, molecular docking and ADMET studies of Bisphenol analogues; A computational approach. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
9
|
Sun Y, Lu X, Du P, Xie P, Ullah R. Terahertz spectroscopy of Bisphenol "A", "AF", "S", "E" and the interrelationship between their molecular vibrations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 209:70-77. [PMID: 30359851 DOI: 10.1016/j.saa.2018.09.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/16/2018] [Accepted: 09/29/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol "A" is a widespread environmental hormone. After the prohibition on the use of BPA in some applications, it is progressively replaced by its variants. However, these variants of Bisphenol "A" are also noxious. It is therefore of the utmost importance to find the similarity among these materials and put all of them under restriction to avoid harmful effects. Therefore, Bisphenol "A", "AF", "E", and "S" are studied by Terahertz spectroscopy (0.5-2.5 THz). Various molecular vibrations are found and assigned based on density-functional-theory calculations. Refractive Indices are calculated as well. The principal component analysis reveals the critical vibrational frequencies for their detection and shows the correlation between them.
Collapse
Affiliation(s)
- Yiwen Sun
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Xingxing Lu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Pengju Du
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Pengfei Xie
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Ramzan Ullah
- Department of Physics, COMSATS Institute of Information Technology, Islamabad 45550, Pakistan.
| |
Collapse
|
10
|
Al-Amri AH, Elroby SA, Hilal RH. Theoretical insight into the structure and bonding characteristics of Bisphenol-A. QTAIM and NBO analyses. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1142/s0219633618500347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bisphenol-A (BPA) is considered as one of the most suspicious disruptors. Exposure to BPA may bring about possible human toxicities. BPA is an emerging contaminant widely used in manufacturing of epoxy, unsaturated polyester-styreneand polycarbonate resins. BPA is released into the environment through industrial and municipal wastewater discharges; its degradation products are probably more dangerous than BPA itself. The present study aims at a better insight into its ground state electronic and acid–base properties, and the mechanism of its thermal decomposition. Density functional theory (DFT) is utilized to study the geometry, electronic structure and electrostatic potential (ESP) for BPA. The molecule is noncoplanar with one of the phenolate moieties forced out of the plane by 57[Formula: see text]. This might very well determine the dissociation reaction pathway and in the meantime facilitates strong conjugation and considerable delocalization along the rest of the molecule. Proton affinities and deprotonation enthalpies are computed and discussed. Bonding characteristics are investigated within the natural bond-orbital (NBO) and quantum theory of atom in molecule (QTAIM) frameworks.
Collapse
Affiliation(s)
- Aeshah H. Al-Amri
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 76971, Dammam, Saudi Arabia
| | - Shaaban A. Elroby
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Rifaat H. Hilal
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Qiu L, Liu Q, Zeng X, Liu Q, Hou X, Tian Y, Wu L. Sensitive detection of bisphenol A by coupling solid phase microextraction based on monolayer graphene-coated Ag nanoparticles on Si fibers to surface enhanced Raman spectroscopy. Talanta 2018; 187:13-18. [DOI: 10.1016/j.talanta.2018.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/25/2018] [Accepted: 05/01/2018] [Indexed: 11/24/2022]
|
12
|
Ullah R, Wang X. Molecular vibrations of bisphenol "S" revealed by FTIR spectroscopy and their correlation with bisphenol "A" disclosed by principal component analysis. APPLIED OPTICS 2018; 57:D20-D26. [PMID: 30117934 DOI: 10.1364/ao.57.000d20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol "S" (BPS), a common replacement for bisphenol "A" (BPA) after its ban in food contact applications, is studied by Fourier transform infrared (FTIR) spectroscopy (400-6800 cm-1). Identified molecular vibrations are assigned based on density functional theory calculations. As BPS is suspected to be as toxic as BPA, principal component analysis is used to find possible correlations among their molecular vibrations. We have found frequencies showing a connection between these two materials via molecular vibrations, helping not only to categorize such materials but also to find the origin of their toxicity.
Collapse
|
13
|
Confocal raman spectroscopy studies on the mutual diffusion behavior at the interface between two different polyesters. POLYM ENG SCI 2018. [DOI: 10.1002/pen.24656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Cysteamine-Assisted Highly Sensitive Detection of Bisphenol A in Water Samples by Surface-Enhanced Raman Spectroscopy with Ag Nanoparticle-Modified Filter Paper as Substrate. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0762-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|