1
|
Megantara S, Rusdin A, Budiman A, Shamsuddin S, Mohtar N, Muchtaridi M. Revolutionizing Antiviral Therapeutics: Unveiling Innovative Approaches for Enhanced Drug Efficacy. Int J Nanomedicine 2024; 19:2889-2915. [PMID: 38525012 PMCID: PMC10961067 DOI: 10.2147/ijn.s447721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
Since the beginning of the coronavirus pandemic in late 2019, viral infections have become one of the top three causes of mortality worldwide. Immunization and the use of immunomodulatory drugs are effective ways to prevent and treat viral infections. However, the primary therapy for managing viral infections remains antiviral and antiretroviral medication. Unfortunately, these drugs are often limited by physicochemical constraints such as low target selectivity and poor aqueous solubility. Although several modifications have been made to enhance the physicochemical characteristics and efficacy of these drugs, there are few published studies that summarize and compare these modifications. Our review systematically synthesized and discussed antiviral drug modification reports from publications indexed in Scopus, PubMed, and Google Scholar databases. We examined various approaches that were investigated to address physicochemical issues and increase activity, including liposomes, cocrystals, solid dispersions, salt modifications, and nanoparticle drug delivery systems. We were impressed by how well each strategy addressed physicochemical issues and improved antiviral activity. In conclusion, these modifications represent a promising way to improve the physicochemical characteristics, functionality, and effectiveness of antivirals in clinical therapy.
Collapse
Affiliation(s)
- Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Research Collaboration Centre for Theranostic Radio Pharmaceuticals, National Research and Innovation Agency (BRIN), Sumedang, 45363, Indonesia
| | - Agus Rusdin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | | | - Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Research Collaboration Centre for Theranostic Radio Pharmaceuticals, National Research and Innovation Agency (BRIN), Sumedang, 45363, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
2
|
Vanitha S, Sathish Kumar N, Reddi Mohan Naidu K, Balaji M, Varada Reddy A, Saritha N. Synthesis, spectral characterization, and biological studies of Schiff bases and their mixed ligand Zn(II) complexes with heterocyclic bases. INORG NANO-MET CHEM 2023; 53:803-814. [DOI: 10.1080/24701556.2022.2068588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/08/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
Affiliation(s)
- S. Vanitha
- Department of Chemistry, J. N. T. University, Ananthapuramu, A.P., India
| | - N. Sathish Kumar
- Inorganic and Analytical Division, Department of Chemistry, S.V. University, Tirupati, A.P., India
| | - K. Reddi Mohan Naidu
- Department of Science and Humanities, S. V. Engineering College, Tirupati, A.P., India
| | - M. Balaji
- Department of Biochemistry, S.V. University, Tirupati, A.P., India.
| | - A. Varada Reddy
- Inorganic and Analytical Division, Department of Chemistry, S.V. University, Tirupati, A.P., India
| | - N. Saritha
- Department of Chemistry, J.N.T.U.A. College of Engineering, Kalikiri, A.P., India
| |
Collapse
|
3
|
Shankar DS, Rambabu A, M S, Lakshmi PVA, Shivaraj. Copper(II) Complexes Derived from Schiff Bases Containing 4-Methylbenzylamine as a Core Unit: Cytotoxicity, pBR322-DNA Studies, Biological Assays, and Quantum Chemical Parameters. Chem Biodivers 2023; 20:e202300030. [PMID: 37254615 DOI: 10.1002/cbdv.202300030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/01/2023]
Abstract
Bivalent copper complexes, [Cu(SB1 )2 ] 1 (SB1 =(2-(4-methylbenzylimino)methyl)-5-methylphenol, [Cu(SB2 )2 ] 2 (SB2 =(2-(4-methylbenzylimino)methyl)-4-bromolphenol), and [Cu(SB3 )2 ] 3 (SB3 =(2-(4-methylbenzylimino)methyl)-4,6-dibromophenol) were synthesized using the Schiff bases prepared from 4-methylbenzylamine (p-tolylmethanamine). These were characterized using a variety of spectro-analytical methods. For all copper complexes, a square planar geometry was determined through spectral analyses. Utilizing molecular orbital energies, the stability of the copper complexes was calculated from quantum chemical characteristics. The kinetic and thermal degradation parameters were calculated from the thermograms. Studies on DNA binding interactions, such as UV absorption and emission, have shown that the manner of DNA binding is intercalative, and the binding constant (Kb ) order is 3>2>1. Under oxidative and photolytic techniques, the copper complexes outperform the parent Schiff bases in their ability to cleave double-stranded pBR322 DNA. When tested for cytotoxicity on the KB3 and MCF7 cell lines, complexes displayed greater activity than their parent ligands. Studies on the complexes' in-vitro antibacterial and antioxidant activity showed that they are significantly more powerful than the parent ligands.
Collapse
Affiliation(s)
- Dasari Shiva Shankar
- Department of Chemistry, Osmania University, Hyderabad, 500007, Telangana, India
- Deartment of Chemistry, Post Graduate College, Osmania University, 502249, Mirzapur
| | - Aveli Rambabu
- Department of Science and Humanities, St. Martin's Engineering College, Dhulapally, Hyderabad, 500100, Telangana, India
| | - Swathi M
- Department of Chemistry, Osmania University, Hyderabad, 500007, Telangana, India
| | - P V Anantha Lakshmi
- Department of Chemistry, Osmania University, Hyderabad, 500007, Telangana, India
| | - Shivaraj
- Department of Chemistry, Osmania University, Hyderabad, 500007, Telangana, India
| |
Collapse
|
4
|
Budiman A, Rusdin A, Aulifa DL. Current Techniques of Water Solubility Improvement for Antioxidant Compounds and Their Correlation with Its Activity: Molecular Pharmaceutics. Antioxidants (Basel) 2023; 12:378. [PMID: 36829937 PMCID: PMC9952677 DOI: 10.3390/antiox12020378] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The aqueous solubility of a drug is important in the oral formulation because the drug can be absorbed from intestinal sites after being dissolved in the gastrointestinal fluid, leading to its bioavailability. Almost 80% of active pharmaceutical ingredients are poorly water-soluble, including antioxidant compounds. This makes antioxidant activity inefficient in preventing disease, particularly for orally administered formulations. Although several investigations have been carried out to improve the solubility of antioxidant compounds, there is still limited research fully discussing the subject. Therefore, this study aimed to provide an overview and discussion of the issues related to the methods that have been used to improve the solubility and activity of antioxidant compounds. Articles were found using the keywords "antioxidant" and "water solubility improvement" in the Scopus, PubMed, and Google Scholar databases. The selected articles were published within the last five years to ensure all information was up-to-date with the same objectives. The most popular methods of the strategies employed were solid dispersion, co-amorphous, and nanoparticle drug delivery systems, which were used to enhance the solubility of antioxidant compounds. These investigations produced impressive results, with a detailed discussion of the mechanism of improvement in the solubility and antioxidant activity of the compounds developed. This review shows that the strategies used to increase the solubility of antioxidant compounds successfully improved their antioxidant activity with enhanced free radical scavenging abilities.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Agus Rusdin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
- Department of Pharmacy, Poltekkes Kemenkes Bandung, Bandung 40161, Indonesia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| |
Collapse
|
5
|
Vhanale BT, Shinde AT. Synthesis, Characterization, Powder X-Ray Diffraction Analysis, ESR Study, Thermal Stability of Ni(II) and Fe(III) Schiff Base Ligand Complexes and Potency Study as Antibacterial and Antioxidant Agents. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2022.2158886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Bhagwat T. Vhanale
- P.G. Department of Chemistry, S.C.S. College, Omerga, India
- P.G. Department of Chemistry, N.E.S. Science College, Nanded, India
| | - Avinash T. Shinde
- P.G. Department of Chemistry, S.C.S. College, Omerga, India
- P.G. Department of Chemistry, N.E.S. Science College, Nanded, India
| |
Collapse
|
6
|
Mamta P, Chaudhary A. Synthesis, Spectroscopic elucidation, In vitro Antimicrobial, Cytotoxic and CT-DNA binding Evaluation of Heterobimetallic Complexes of Ni(II) with Main Group/Transition Metal dichlorides. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Elaboration and structural study of Ni(II), Cu(II), Zn(II) and Co(II) complexes based on the ligand [(N1Z,N2Z)-N1,N2-bis((1H-pyrrol-2-yl) methylene) ethane-1,2-diamine] with evaluation of antioxidant/antibacterial activities and cytotoxicity. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
8
|
Talebi A, Salehi M, Khaleghian A, Kubicki M. Evaluation of anticancer activities and their apoptosis, molecular docking and antioxidant studies on new Ni(II), VO(IV), Cu(II) , Co(III) Schiff base complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Zaki M, Hairat S, Kamaal S, Aljarba NH, AL–Johani NS, Alkahtani S. Synthesis, crystal structure elucidation and DNA/HSA binding profile of Ni(II) complex of Schiff base derived from 3–ethoxy salicylaldehyde and o–phenylenediamine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Schiff base containing fluorouracil and its M(II) complexes: Synthesis, characterization, cytotoxic and antioxidant activities. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Savcı A, Buldurun K, Alkış ME, Alan Y, Turan N. Synthesis, characterization, antioxidant and anticancer activities of a new Schiff base and its M(II) complexes derived from 5-fluorouracil. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:172. [PMID: 35972705 DOI: 10.1007/s12032-022-01774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 10/15/2022]
Abstract
In this study, Schiff base ligand was obtained from the condensation reaction of benzene-1,2-diamine and 5-fluoropyrimidine-2,4(1H,3H)-dione (5-FU). Metal(II) complexes were synthesized with Fe(II), Co(II) and Ni(II) chloride salts. The synthesized ligand and metal complexes were characterized by FT-IR, UV-vis, 1H-13C NMR, elemental analyses, mass spectroscopy, magnetic moments, molar conductivity and thermogravimetric analysis studies. With the help of different techniques reveal Fe(II), Co(II) and Ni(II) complexes have exhibited tetrahedral and octahedral geometry. Ligand acted as bidentate and it binds metal(II) ions through deprotonated-NH, imine-N atom and carbonyl-O atom, respectively. DPPH, ABTS, FRAP, CUPRAC and total antioxidant activity methods were used to determine the antioxidant properties of ligand and metal complexes. According to the results, the synthesized compounds showed very high antioxidant activity compared to 5-FU. The cytotoxicities of the synthesized compounds were performed on MCF-7 (human breast cancer) and L-929 (fibroblast) cell lines using the MTT assay. In addition, the effect of electroporation (EP) on the cytotoxicity of the compounds was investigated. Our results demonstrated that novel Co(II) and Ni(II) complexes show potential as new anticancer agents and ECT may be a viable treatment option for breast cancer.
Collapse
Affiliation(s)
- Ahmet Savcı
- Department of Molecular Biology and Genetics, Faculty of Art and Science, Mus Alparslan University, 49250, Mus, Turkey.
| | - Kenan Buldurun
- Department of Medical Services and Techniques, Health Services Vocational School, Mus Alparslan University, 49250, Mus, Turkey
| | - Mehmet Eşref Alkış
- Department of Occupational Health and Safety, Faculty of Health Sciences, Mus Alparslan University, 49250, Mus, Turkey
| | - Yusuf Alan
- Department of Molecular Biology and Genetics, Faculty of Art and Science, Mus Alparslan University, 49250, Mus, Turkey
| | - Nevin Turan
- Department of Chemistry, Faculty of Arts and Sciences, Mus Alparslan University, 49250, Mus, Turkey
| |
Collapse
|
12
|
Siqueira JD, de Pellegrin SF, Fioravanço LP, André Fontana L, Iglesias BA, Chaves OA, Back DF. Self-association synthesis with ortho-vanillin to promote mono- and heptanuclear complexes and their evaluation as antioxidant agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Venkateswarlu K, Rambabu A, Shankar DS, Lakshmi PVA, Shivaraj. A Treatise on Furan Cored Schiff Base Cu(II), Ni(II) and Co(III) Complexes Accentuating Their Biological Efficacy: Synthesis, Thermal and Spectroscopic Characterization, DNA Interactions, Antioxidant and Antibacterial Activity Studies. Chem Biodivers 2022; 19:e202100686. [PMID: 35137530 DOI: 10.1002/cbdv.202100686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/14/2022] [Indexed: 02/04/2023]
Abstract
Three metal complexes [Cu(FMIMDIP)2 ] (1), [Ni(FMIMDIP)2 ] (2) and [Co(FMIMDIP)3 ] (3) where, FMIMDIP=(((furan-2-yl)methylimino)methyl)-4,6-diiodophenol, were synthesized and characterized by various spectroscopy. The analytical data revealed a square planar geometry for 1 and 2 and an octahedral geometry for 3. The kinetic and thermodynamic parameters of the thermal decomposition steps were calculated from the thermograms. The quantum chemical parameters have been calculated using HOMO-LUMO energies and reveal the stability of the complexes. The DNA interaction of 1-3 towards calf-thymus DNA was investigated by absorption titration, fluorescence spectroscopy and gel electrophoresis. All the complexes bind to DNA via intercalation mode with binding constant (Kb ) values of 4.17×103 M-1 to 5.9×104 M-1 and also effectively cleave pBR322 DNA by oxidative and photolytic techniques. The synergistic action of metal chelates with ascorbic acid induced the generation of free radicals. The antibacterial activity of 1-3 was tested against B. thuringiensis, S. pneumoniae, E. coli, and P. putida. Complex 3 has the best activity among all the complexes.
Collapse
Affiliation(s)
| | - Aveli Rambabu
- Department of Science and Humanities, St. Martin's Engineering College, Dhulapally, Hyderabad, Telangana, 500100, India
| | - Dasari Shiva Shankar
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India
| | - P V Anantha Lakshmi
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India
| | - Shivaraj
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India
| |
Collapse
|
14
|
New trinuclear nickel(II) complexes as potential topoisomerase I/IIα inhibitors: in vitro DNA binding, cleavage and cytotoxicity against human cancer cell lines. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02005-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Ngoepe MP, Clayton HS. Metal Complexes as DNA Synthesis and/or Repair Inhibitors: Anticancer and Antimicrobial Agents. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1741035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractMedicinal inorganic chemistry involving the utilization of metal-based compounds as therapeutics has become a field showing distinct promise. DNA and RNA are ideal drug targets for therapeutic intervention in the case of various diseases, such as cancer and microbial infection. Metals play a vital role in medicine, with at least 10 metals known to be essential for human life and a further 46 nonessential metals having been involved in drug therapies and diagnosis. These metal-based complexes interact with DNA in various ways, and are often delivered as prodrugs which undergo activation in vivo. Metal complexes cause DNA crosslinking, leading to the inhibition of DNA synthesis and repair. In this review, the various interactions of metal complexes with DNA nucleic acids, as well as the underlying mechanism of action, were highlighted. Furthermore, we also discussed various tools used to investigate the interaction between metal complexes and the DNA. The tools included in vitro techniques such as spectroscopy and electrophoresis, and in silico studies such as protein docking and density-functional theory that are highlighted for preclinical development.
Collapse
Affiliation(s)
| | - Hadley S. Clayton
- Department of Chemistry, University of South Africa, Pretoria, South Africa
| |
Collapse
|
16
|
Venkateswarlu K, Anantha Lakshmi PV, Shivaraj. Synthesis, spectroscopic and thermal studies of Cu
+2
, Ni
+2
and Co
+3
complexes of Schiff base containing furan moiety. Antitumor, antioxidant, antibacterial and DNA interaction studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | - Shivaraj
- Department of Chemistry Osmania University Hyderabad Telangana India
| |
Collapse
|
17
|
Rambabu A, Daravath S, Shankar DS, Shivaraj. DNA-binding, -cleavage and antimicrobial investigation on mononuclear Cu(II) Schiff base complexes originated from Riluzole. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Venkateswarlu K, Daravath S, Ramesh G, Lakshmi PVA, Shivaraj. Investigation of DNA binding and bioactivities of furan cored Schiff base Cu (II), Ni (II), and Co (III) complexes: Synthesis, characterization and spectroscopic properties. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | - Gali Ramesh
- Department of Chemistry Osmania University Hyderabad India
| | | | - Shivaraj
- Department of Chemistry Osmania University Hyderabad India
| |
Collapse
|
19
|
Antioxidant, antimicrobial, DNA binding and cleavage studies of novel Co(II), Ni(II) and Cu(II) complexes of N, O donor Schiff bases: Synthesis and spectral characterization. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
20
|
Synthesis, spectral characterization, DNA/BSA binding, antimicrobial and in vitro cytotoxicity of cobalt(III) complexes containing 7-hydroxy-4-oxo-4H-chromene Schiff bases. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Ganji N, Daravath S, Rambabu A, Venkateswarlu K, Shiva Shankar D, Shivaraj. Exploration of DNA interaction, antimicrobial and antioxidant studies on binary transition metal complexes with isoxazole Schiff bases: Preparation and spectral characterization. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Jyothi N, Ganji N, Daravath S, Shivaraj. Mononuclear cobalt(II), nickel(II) and copper(II) complexes: Synthesis, spectral characterization and interaction study with nucleotide by in vitro biochemical analysis. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Benabid W, Ouari K, Bendia S, Bourzami R, Ait Ali M. Crystal structure, spectroscopic studies, DFT calculations, cyclic voltammetry and biological activity of a copper (II) Schiff base complex. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127313] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Vamsikrishna N, Daravath S, Ganji N, Pasha N, Shivaraj. Synthesis, structural characterization, DNA interaction, antibacterial and cytotoxicity studies of bivalent transition metal complexes of 6-aminobenzothiazole Schiff base. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107767] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Ramesh G, Daravath S, Ganji N, Rambabu A, Venkateswarlu K, Shivaraj. Facile synthesis, structural characterization, DNA binding, incision evaluation, antioxidant and antimicrobial activity studies of Cobalt(II), Nickle(II) and Copper(II) complexes of 3-amino-5-(4-fluorophenyl)isoxazole derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127338] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Kabeer H, Hanif S, Arsalan A, Asmat S, Younus H, Shakir M. Structural-Dependent N,O-Donor Imine-Appended Cu(II)/Zn(II) Complexes: Synthesis, Spectral, and in Vitro Pharmacological Assessment. ACS OMEGA 2020; 5:1229-1245. [PMID: 31984281 PMCID: PMC6977212 DOI: 10.1021/acsomega.9b03762] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/23/2019] [Indexed: 05/26/2023]
Abstract
Four mononuclear bioefficient imine-based coordination complexes, [(L 1 ) 2 Cu], [(L 1 ) 2 Zn], [(L 2 )Cu(H 2 O)], and [(L 2 )Zn(H 2 O)], were synthesized using ligands [L 1 = 2-(((3-hydroxynaphthalen-2-yl)methylene)amino)-2-methylpropane-1,3-diol and L 2 = 4-(1-((1,3-dihydroxy-2-methylpropan-2-yl)imino)ethyl)benzene-1,3-diol]. The formation of the complexes was ascertained by elemental analysis, Fourier transform infrared, 1H NMR, 13C NMR, electrospray ionization-mass spectroscopy, electron paramagnetic resonance, and thermogravimetric analysis. The comparative binding propensity profiles of the above-synthesized complexes with the DNA/human serum albumin (HSA) were investigated via UV absorption, fluorescence, and Förster resonance energy-transfer studies. On the basis of extended conjugation and planarity, L 1 complexes exhibited superior bioactivity with greater calculated DNA binding constant values, (K b) 2.9444 × 103 [(L 1 ) 2 Cu] and 2.2693 × 103 [(L 1 ) 2 Zn], as compared to L 2 complexes, 1.793 × 103 [(L 2 )Cu(H 2 O)] and 9.801 × 102 [(L 2 )Zn(H 2 O)]. The competitive displacement assay of complexes was performed by means of fluorogenic dyes (EtBr and Hoechst), which corroborates the occurrence of minor groove binding because of the enhanced displacement activity with Hoechst 33258. The minor groove binding of the [(L 1 ) 2 Cu] complex is further confirmed by the molecular docking study. Moreover, the HSA study demonstrated effective static quenching of complexes with substantial K sv values. The [(L 1 ) 2 Cu] complex was found to have pronounced cleavage efficiency as evaluated from sodium dodecyl sulfate polyacrylamide gel electrophoresis electrophoresis. Furthermore, in vitro antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl and superoxide radicals further proclaimed the remarkable bioefficiency of compounds, which make them promising as active chemotherapeutic agents.
Collapse
Affiliation(s)
- Hina Kabeer
- Department
of Chemistry, Interdisciplinary Biotechnology Unit, and Department of
Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Summaiya Hanif
- Department
of Chemistry, Interdisciplinary Biotechnology Unit, and Department of
Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Abdullah Arsalan
- Department
of Chemistry, Interdisciplinary Biotechnology Unit, and Department of
Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Shamoon Asmat
- Department
of Chemistry, Interdisciplinary Biotechnology Unit, and Department of
Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Hina Younus
- Department
of Chemistry, Interdisciplinary Biotechnology Unit, and Department of
Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Shakir
- Department
of Chemistry, Interdisciplinary Biotechnology Unit, and Department of
Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
27
|
Rambabu A, Ganji N, Daravath S, Venkateswarlu K, Rangan K, Shivaraj. Mononuclear Co(II), Ni(II) and Cu(II) complexes of the Schiff base, 2-(((4-trifluoromethoxy)phenylimino)methyl)-6-tert-butylphenol: Synthesis, spectroscopic characterization, X-ray study and biological evaluation. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Daravath S, Rambabu A, Shankar DS, Shivaraj. Structure elucidation of copper(II), cobalt(II) and nickel(II) complexes of benzothiazole derivatives: Investigation of DNA binding, nuclease efficacy, free radical scavenging and biocidal properties. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cdc.2019.100293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Venkateswarlu K, Ganji N, Daravath S, Kanneboina K, Rangan K, Shivaraj. Crystal structure, DNA interactions, antioxidant and antitumor activity of thermally stable Cu(II), Ni(II) and Co(III) complexes of an N,O donor Schiff base ligand. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.06.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Layek S, Agrahari B, Dey S, Ganguly R, Pathak DD. Copper(II)-faciliated synthesis of substituted thioethers and 5-substituted 1H-tetrazoles: Experimental and theoretical studies. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Buldurun K, Turan N, Aras A, Mantarcı A, Turkan F, Bursal E. Spectroscopic and Structural Characterization, Enzyme Inhibitions, and Antioxidant Effects of New Ru(II) and Ni(II) Complexes of Schiff Base. Chem Biodivers 2019; 16:e1900243. [DOI: 10.1002/cbdv.201900243] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/14/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Kenan Buldurun
- Department of Chemistry, Faculty of Arts and Sciences Muş Alparslan University 49250 Muş Turkey
| | - Nevin Turan
- Department of Chemistry, Faculty of Arts and Sciences Muş Alparslan University 49250 Muş Turkey
| | - Abdulmelik Aras
- Department of Biochemistry, Faculty of Arts and Sciences Igdır University 76100 Igdır Turkey
| | - Asim Mantarcı
- Department of Physics, Faculty of Arts and Sciences Muş Alparslan University 49250 Muş Turkey
| | - Fikret Turkan
- Health Services Vocational School Igdır University 76100 Igdır Turkey
| | - Ercan Bursal
- Department of Nursing, School of Health Muş Alparslan University 49250 Muş Turkey
| |
Collapse
|
32
|
Daravath S, Rambabu A, Vamsikrishna N, Ganji N, Raj S. Synthesis, structural characterization, antioxidant, antimicrobial, DNA incision evaluation and binding investigation studies on copper(II) and cobalt(II) complexes of benzothiazole cored Schiff bases. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1634263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sreenu Daravath
- Department of Chemistry, Osmania University, Hyderabad, India
| | - Aveli Rambabu
- Department of Chemistry, Osmania University, Hyderabad, India
| | | | - Nirmala Ganji
- Department of Chemistry, Osmania University, Hyderabad, India
| | - Shiva Raj
- Department of Chemistry, Osmania University, Hyderabad, India
| |
Collapse
|
33
|
Xin W, Jinglan K, Yonghui Z, Liguo Y, Linna G. Crystal structure of bis(( E)-2-ethoxy-6-(((2-hydroxyethyl)imino)methyl)phenolato-κ 2
N, O)copper(II), C 22H 28N 2CuO 6. Z KRIST-NEW CRYST ST 2019. [DOI: 10.1515/ncrs-2018-0367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C22H28N2CuO6, monoclinic, P21/c (no. 14), a = 8.5942(7) Å, b = 25.888(2) Å, c = 4.8204(4) Å, β = 97.785(3)°, V = 1062.60(15) Å3, Z = 2, R
gt(F) = 0.0313, wR
ref(F
2) = 0.0878, T = 296(2) K.
Collapse
Affiliation(s)
- Wang Xin
- College of Chemistry and Environmental Engineering , Anyang Institute of Technology , Anyang 455000, Henan , P.R. China
| | - Kan Jinglan
- College of Chemistry, Chemical Engineering and Materials Science , Shandong Normal University , Jinan 250014, Shandong , P.R. China
| | - Zhang Yonghui
- College of Chemistry and Environmental Engineering , Anyang Institute of Technology , Anyang 455000, Henan , P.R. China
| | - Yang Liguo
- College of Chemistry and Environmental Engineering , Anyang Institute of Technology , Anyang 455000, Henan , P.R. China
| | - Gao Linna
- College of Chemical and Environmental Engineering , Shandong University of Science and Technology , Qingdao 266590 , P.R. China
| |
Collapse
|
34
|
Synthesis, characterization, antioxidant, antimicrobial and DNA binding properties of ruthenium(II), cobalt(II) and nickel(II) complexes of Schiff base containing o-vanillin. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03806-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Peng DL. Syntheses, characterization and crystal structures of Schiff base nickel(II) complexes with antibacterial activity. INORG NANO-MET CHEM 2019. [DOI: 10.1080/24701556.2019.1567540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Dong-Lai Peng
- Key Laboratory of Surface and Interface Science of Henan Province, School of Material & Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| |
Collapse
|
36
|
Ganji N, Rambabu A, Vamsikrishna N, Daravath S, Shivaraj. Copper(II) complexes with isoxazole Schiff bases: Synthesis, spectroscopic investigation, DNA binding and nuclease activities, antioxidant and antimicrobial studies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.06.100] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
Three mononuclear Cu (II) complexes based on p-tolylmethanamine Schiff bases: In-vitro cytotoxicity, DNA binding ability, nuclease activity and antibacterial studies. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.09.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Daravath S, Vamsikrishna N, Ganji N, Venkateswarlu K, Shivaraj. Synthesis, characterization, DNA binding ability, nuclease efficacy and biological evaluation studies of Co(II), Ni(II) and Cu(II) complexes with benzothiazole Schiff base. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cdc.2018.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Shakdofa MM, Labib AA, Abdel-Hafez NA, Mousa HA. Synthesis and Characterization of VO2+, Co2+, Ni2+, Cu2+and Zn2+Complexes of a Schiff base ligand derived from ethyl 2-amino-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate and their Investigation as fungicide Agents. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mohamad M.E. Shakdofa
- Chemistry Department, Faculty of Science and Arts, Khulais; University of Jeddah; Saudi Arabia
- Inorganic Chemistry Department; National Research Center; P.O. 12622 Dokki Cairo Egypt
| | - Ammar A. Labib
- Inorganic Chemistry Department; National Research Center; P.O. 12622 Dokki Cairo Egypt
| | - Naglaa A. Abdel-Hafez
- Applied Organic Chemistry Department; National Research Center; P.O. 12622 Dokki Cairo Egypt
| | - Hanan A. Mousa
- Inorganic Chemistry Department; National Research Center; P.O. 12622 Dokki Cairo Egypt
| |
Collapse
|