1
|
Medetalibeyoğlu H, Atalay A, Sağlamtaş R, Manap S, Ortaakarsu AB, Ekinci E, Yüksek H, Tüzün B. Synthesis, design, and cholinesterase inhibitory activity of novel 1,2,4-triazole Schiff bases: A combined experimental and computational approach. Int J Biol Macromol 2025; 306:141350. [PMID: 39986523 DOI: 10.1016/j.ijbiomac.2025.141350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is characterized by cholinergic dysfunction, necessitating the development of potent cholinesterase inhibitors for therapeutic intervention. In this research, a series of novel 1,2,4-triazole Schiff bases (S1-S8) was successfully synthesized and tested for their cholinesterase inhibitory activities both in vitro and in silico. 4-Hydroxy-3-methoxybenzaldehyde reacted with 4-methylbenzene sulfonyl chloride, then refluxed and recrystallized to form 4-formyl-2-methoxyphenyl 4-methyl benzenesulfonate, which combined with 4-amino-5-alkyl(aryl)-2,4-dihydro-3H-1,2,4-triazol-3-ones in acetic acid to yield Schiff bases. The synthesis yielded high-purity compounds with efficiency ranging from 87.5 % to 99.5 %, confirmed through IR, 1H NMR, 13C NMR, and UV-Vis spectroscopy. The biological evaluation showed that S4 demonstrated the strongest inhibition of acetylcholinesterase (AChE) with an IC50 of 3.00 μM, significantly outperforming rivastigmine (IC50 = 8.95 μM) and galantamine (IC50 = 29.5 μM). Additionally, S7 emerged as the most effective inhibitor of butyrylcholinesterase (BChE), with an IC50 of 0.77 μM, comparable to rivastigmine (IC50 = 0.62 μM) and far stronger than galantamine (IC50 = 27.8 μM). The Ki values reinforced the selective inhibition properties, with S4 (1.04 ± 0.003 μM) and S7 (0.61 ± 0.001 μM) showing high affinity for AChE and BChE, respectively. Molecular docking studies identified crucial π-π interactions and hydrogen bonding between the triazole derivatives and key enzyme residues, contributing to their high inhibitory potency. These interactions were further validated through molecular dynamics simulations, which confirmed the stability of the S4 and S7 complexes with AChE and BChE over extended periods. Computational analysis, including FMO studies, supported the experimental data, showing that HOMO-LUMO energy gaps significantly influenced the compounds' reactivity, stability, and inhibitory profiles. Overall, the study presents strong evidence that these novel 1,2,4-triazole Schiff bases possess potent and selective cholinesterase inhibition, notably S4 for AChE and S7 for BChE. These results suggest that these novel compounds have significant potential as selective cholinesterase inhibitors, particularly for Alzheimer's disease, warranting further in vivo studies.
Collapse
Affiliation(s)
- Hilal Medetalibeyoğlu
- Department of Chemistry, Faculty of Arts and Sciences, Kafkas University, Kars, Turkey.
| | - Abdurrahman Atalay
- Department of Nutrition and Dietetics, Faculty of Health Science, Avrasya University, Trabzon, Turkey
| | - Rüya Sağlamtaş
- Department of Medical Services and Techniques, Vocational School of Health Services, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | - Sevda Manap
- Department of Chemistry, Faculty of Arts and Sciences, Kafkas University, Kars, Turkey
| | | | - Emel Ekinci
- Central Research Laboratory Application and Research Center, Çankırı Karatekin University, Çankırı, Turkey
| | - Haydar Yüksek
- Department of Chemistry, Faculty of Arts and Sciences, Kafkas University, Kars, Turkey
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey.
| |
Collapse
|
2
|
Hariri R, Saeedi M, Mojtabavi S, Alizadeh S, Ebadi A, Faramarzi MA, Amini M, Sharifzadeh M, Biglar M, Akbarzadeh T. Design, synthesis, and investigation of novel 5-arylpyrazole-glucose hybrids as α-glucosidase inhibitors. Sci Rep 2025; 15:9912. [PMID: 40121215 PMCID: PMC11929827 DOI: 10.1038/s41598-025-92706-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Considering the global incidence of diabetes, developing new compounds to lower blood sugar levels has become increasingly crucial. As a result, there has been a growing focus on the synthesis of α-glucosidase inhibitors in recent years. This study investigated design, synthesis, and effects of novel 5-aryl pyrazole-glucose hybrids as α-glucosidase inhibitors. Thirteen derivatives from this class of compounds were synthesized, demonstrating superior in vitro inhibitory effects (IC50 values ranging from 0.5 to 438.6 µM, compared to acarbose at 750.0 µM). Among them, compound 8g (IC50 = 0.5 µM) was selected for further investigations and the kinetic studies revealed that it is a competitive inhibitor (Ki = 0.46 µM). Fluorescence assays indicated changes in the fluorescence intensity, while thermodynamic analyses suggested that compound 8g promoted a transition of the enzyme into an unfolded state. Furthermore, in vivo studies demonstrated that 8g effectively reduced blood sugar levels in rats at doses comparable to acarbose. Molecular docking studies revealed that this compound interacted with the enzyme's active site, and molecular dynamics simulations showed that pharmacophores engaged in various interactions with the enzyme.
Collapse
Affiliation(s)
- Roshanak Hariri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Alizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Ebadi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Biglar
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Aroua LM, Alkhaibari IS, Alminderej FM, Messaoudi S, Chigurupati S, Al-mahmoud SA, Albadri AE, Emwas AH, Mohammed HA. Synthesis, bioactivity, and molecular docking of pyrazole bearing Schiff-bases as prospective dual alpha-amylase and alpha-glucosidase inhibitors with antioxidant activity. J Mol Struct 2025; 1320:139291. [DOI: 10.1016/j.molstruc.2024.139291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
4
|
Dadou S, Altay A, Baydere C, Anouar EH, Türkmenoğlu B, Koudad M, Dege N, Oussaid A, Benchat N, Karrouchi K. Chalcone-based imidazo[2,1- b]thiazole derivatives: synthesis, crystal structure, potent anticancer activity, and computational studies. J Biomol Struct Dyn 2025; 43:261-276. [PMID: 38009853 DOI: 10.1080/07391102.2023.2280756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
In this work, two novel chalcone-based imidazothiazole derivatives ITC-1 and ITC-2 were synthesized and characterized by 1H NMR, 13C NMR and high-resolution mass spectrometry with electrospray ionization, and chemical structure of ITC-1 was confirmed by single-crystal X-ray diffraction. Also, the anticancer activity of ITC-1 and ITC-2 was evaluated. First, antiproliferative activity tests were performed against cancer cells namely, human-derived breast adenocarcinoma (MCF-7), lung carcinoma (A-549), and colorectal adenocarcinoma (HT-29) cell lines, and mouse fibroblast healthy cell line (3T3-L1) by XTT assay. Afterward, mitochondrial membrane disruption (MMP), caspase activity, and apoptosis tests were performed on MCF-7 cells to elucidate the anticancer mechanism of action of the test compounds by flow cytometry analysis. XTT results revealed that both compounds exhibited a very high degree of antiproliferative effects on each tested cancer cell line with very low IC50 values while showing much lower antiproliferation on 3T3-L1 normal cells with much higher IC50 values. Besides, ITC-2 was determined to have a striking cytotoxic power competing with the chemotherapeutic drug carboplatin. Flow cytometry results demonstrated the mitochondrial-mediated apoptotic effects of both compounds through membrane disruption and multi-caspase activation in MCF-7 cells. Finally, molecular docking studies were performed to determine the structural understanding of the test compounds by their interactions on caspase-3 and DNA dodecamer enzymes, respectively. The interactions between the compound and the crystal structure were determined according to parameters such as free binding energies (ΔGBind), Glide score values, and determination of the active binding site. The obtained data suggest that ITC-1 and ITC-2 may be considered remarkable anticancer drug candidates. In addition to molecular docking via in silico approaches, the pharmacokinetic properties of compounds ITC-1 and ITC-2 were calculated using the Schrödinger 2021-2 Qikprop wizard.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Said Dadou
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda, Morocco
- Laboratory of Molecular Chemistry, Materials and Environment, Polydisciplinary Faculty of Nador, Mohammed First University, Oujda, Morocco
| | - Ahmet Altay
- Department of Chemistry, Faculty of Arts and Science, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Cemile Baydere
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Burçin Türkmenoğlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mohammed Koudad
- Laboratory of Molecular Chemistry, Materials and Environment, Polydisciplinary Faculty of Nador, Mohammed First University, Oujda, Morocco
| | - Necmi Dege
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Abdelouahad Oussaid
- Laboratory of Molecular Chemistry, Materials and Environment, Polydisciplinary Faculty of Nador, Mohammed First University, Oujda, Morocco
| | - Noureddine Benchat
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
5
|
Sahu R, Shah K. A Captivating Potential of Schiff Bases Derivatives for Antidiabetic Activity. Curr Pharm Des 2025; 31:37-56. [PMID: 39313905 DOI: 10.2174/0113816128339161240913055034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
A double bond between the nitrogen and carbon atoms characterizes a wide class of compounds known as Schiff bases. The flexibility of Schiff bases is formed from several methods and may be combined with alkyl or aryl substituents. The group is a part of organic compounds, either synthetic or natural, and it serves as a precursor and an intermediate in drugs that have therapeutic action. The review focuses on molecular docking and structure-activity relationship (SAR) analysis for antidiabetic effects of the different nonmetal Schiff bases. Many studies have found that Schiff bases are used as linkers in an extensive range of synthesized compounds and other activities. Thus, this current study aims to give the scientific community a thoughtful look at the principal ideas put forward by investigators regarding antidiabetic actions exhibited by certain Schiff-based derivatives, as this review covered many aspects, including docking and SAR analysis. For individuals who intend to create novel antidiabetic compounds with Schiff bases as pharmacophores or physiologically active moieties, it will be an invaluable informational resource.
Collapse
Affiliation(s)
- Rakesh Sahu
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
- Department of Pharmacy, School of Pharmacy, Sharda University, Greater Noida 201310, India
- Department of Pharmaceutical Chemistry, School of Medical and Allied Sciences, Galgotias University, Greater Noida 201310, India
| | - Kamal Shah
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
6
|
Xing M, Xie F, Wang G, Yuan C, Huang S, Zhou T, Song Z, Ai L. The inhibitory effects of free and bound phenolics from Phyllanthus emblica Linn. on α-amylase: a comparison study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9719-9728. [PMID: 39132987 DOI: 10.1002/jsfa.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Phyllanthus emblica Linn. (PE) is rich in polyphenols, which can be categorized into free and bound phenolics (PEFP and PEBP). This study evaluated the inhibitory effect of PEFB and PEBP on α-amylase for the first time. The mechanism of the inhibition effect of PEFP and PEBP on α-amylase was investigated by enzyme inhibition kinetics, multispectral analysis, thermodynamics, and molecular docking. RESULTS Free and bound phenolics inhibited α-amylase activity effectively in a mixed type of inhibition. Fluorescence quenching and thermodynamic analyses showed that the binding of PEFP and PEBP to α-amylase occurred through a static quenching process (Kq = 6.94 × 10¹² and 5.74 × 10¹² L mol-1 s-1), which was accompanied by a redshift (λem from 343 to 347 nm), leading to a change in the microenvironment. This process was found to be a spontaneous exothermic reaction (ΔG < 0). Circular dichroism (CD) analysis confirms that the secondary structure of α-amylase was altered, in particular a decrease in α-helixes and an increase in random coils. Molecular docking studies showed that PEFP and PEBP interacted with α-amylase through hydrogen bonding and hydrophobic interactions. CONCLUSION The present study provides valuable insights into the mechanism of action of PEFP and PEBP on α-amylase, which will provide a theoretical basis for their possible use as novel natural α-amylase inhibitors. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mingxia Xing
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Fan Xie
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chunmei Yuan
- Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, Yunnan Maoduoli Group Food Co., Ltd., Yuxi, China
| | - Siyan Huang
- Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, Yunnan Maoduoli Group Food Co., Ltd., Yuxi, China
| | - Tingrun Zhou
- Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, Yunnan Maoduoli Group Food Co., Ltd., Yuxi, China
| | - Zibo Song
- Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, Yunnan Maoduoli Group Food Co., Ltd., Yuxi, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
7
|
Bhat AA, Tandon N, Singh I. Pyrrolidine derivatives as α-amylase and α-glucosidase inhibitors: Design, synthesis, structure-activity relationship (SAR), docking studies and HSA binding. Heliyon 2024; 10:e39444. [PMID: 39502250 PMCID: PMC11535763 DOI: 10.1016/j.heliyon.2024.e39444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
In our pursuit of developing effective inhibitors for the enzymes α-amylase and α-glucosidase, which play a crucial role in carbohydrate metabolism related to type-2 diabetes, we synthesized compounds featuring a pyrrolidine ring. The synthesis involved coupling N-Boc-proline with various aromatic amines, resulting in the formation of distinct N-Boc proline amides. To investigate the influence of the Boc group on enzyme inhibition, the Boc group was subsequently removed. In vitro, testing against α-amylase and α-glucosidase, with metformin and acarbose as reference standards, revealed that the 4-methoxy analogue 3g showed noteworthy inhibitory activity, with IC50 values of 26.24 and 18.04 μg/mL, respectively. Compounds 3a with an IC50 value of 36.32 μg/mL and 3f with an IC50 value of 27.51 μg/mL displayed significant inhibitory activity against α-amylase and α-glucosidase, respectively. The results of molecular docking studies of the most potent pyrrolidine derivatives 3a and 3g with α-amylase and 3f and 3g with α-glucosidase showed good agreement with experimental data. Moreover, compound 3g showed strong binding interactions with HSA having binding constant values of 7.08 × 105 M-1 and 4.77 × 105 M-1 using UV-visible and fluorescence spectrophotometry, respectively.
Collapse
Affiliation(s)
- Aeyaz Ahmad Bhat
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Nitin Tandon
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Iqubal Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| |
Collapse
|
8
|
Seyfi S, Salarinejad S, Moghimi S, Toolabi M, Sadeghian N, Tüzün B, Firoozpour L, Ketabforoosh SHME, Taslimi P, Foroumadi A. Synthesis, biological activities, and molecular docking studies of triazolo[4,3-b]triazine derivatives as a novel class of α-glucosidase and α-amylase inhibitors. Arch Pharm (Weinheim) 2024; 357:e2300628. [PMID: 38501879 DOI: 10.1002/ardp.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
In diabetes mellitus, amylase and glucosidase enzymes are the primary triggers. The main function of these enzymes is to break macromolecules into simple sugar units, which directly affect blood sugar levels by increasing blood permeability. To overcome this metabolic effect, there is a need for a potent and effective inhibitor capable of suppressing the enzymatic conversion of sugar macromolecules into their smaller units. Herein, we reported the discovery of a series of substituted triazolo[4,3-b][1,2,4]triazine derivatives as α-glucosidase and α-amylase inhibitors. All target compounds demonstrated significant inhibitory activities against α-glucosidase and α-amylase enzymes compared with acarbose as the positive control. The most potent compound 10k, 2-[(6-phenyl-[1,2,4]triazolo[4,3-b][1,2,4]triazin-3-yl)thio]-N-[4-(trifluoromethyl)phenyl]acetamide, demonstrated IC50 values of 31.87 and 24.64 nM against α-glucosidase and α-amylase enzymes, respectively. To study their mechanism of action, kinetic studies were also done, which determined the mode of inhibition of both enzymes. Molecular docking was used to confirm the binding interactions of the most active compounds.
Collapse
Affiliation(s)
- Soheila Seyfi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Salarinejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Toolabi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Loghman Firoozpour
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima H M E Ketabforoosh
- Department of Medicinal Chemistry, School of Pharmacy, Alborz University of Medical Science, Karaj, Iran
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Ramle AQ, Chan NNMY, Ng MP, Tan CH, Sim KS, Tiekink ERT, Fei CC. Structural insights and cytotoxicity evaluation of benz[e]indole pyrazolyl-substituted amides. Mol Divers 2024; 28:1363-1376. [PMID: 37278911 DOI: 10.1007/s11030-023-10662-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Abstract
Five new compounds of benz[e]indole pyrazolyl-substituted amides (2a-e) were synthesised in low to good yields via the direct amide-coupling reaction between a pyrazolyl derivative containing a carboxylic acid and several amine substrates. The molecular structures were determined by various spectroscopic methods, such as NMR (1H, 13C and 19F), FT-IR and high-resolution mass spectrometry (HRMS). X-ray crystallographic analysis on the 4-fluorobenzyl derivative (2d) reveals the amide-O atom to reside to the opposite side of the molecule to the pyrazolyl-N and pyrrolyl-N atoms; in the molecular packing, helical chains feature amide-N‒H⋯N(pyrrolyl) hydrogen bonds. Density-functional theory (DFT) at the geometry-optimisation B3LYP/6-31G(d) level on the full series shows general agreement with the experimental structures. While the LUMO in each case is spread over the benz[e]indole pyrazolyl moiety, the HOMO spreads over the halogenated benzo-substituted amide moieties or is localised near the benz[e]indole pyrazolyl moieties. The MTT assay showed that 2e, exhibited the highest toxicity against a human colorectal carcinoma (HCT 116 cell line) without appreciable toxicity towards the normal human colon fibroblast (CCD-18Co cell line). Based on molecular docking calculations, the probable cytotoxic mechanism of 2e is through the DNA minor groove binding.
Collapse
Affiliation(s)
- Abdul Qaiyum Ramle
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | | | - Min Phin Ng
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chun Hoe Tan
- Department of Biotechnology, Faculty of Applied Science, Lincoln University College, Selangor, Malaysia
| | - Kae Shin Sim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Edward R T Tiekink
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Chee Chin Fei
- Nanotechnology and Catalysis Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
El Mahdaoui A, Radi S, Draoui Y, El Massaoudi M, Ouahhoud S, Asehraou A, Bentouhami NE, Saalaoui E, Benabbes R, Robeyns K, Garcia Y. Synthesis, Crystal Structures, Genotoxicity, and Antifungal and Antibacterial Studies of Ni(II) and Cd(II) Pyrazole Amide Coordination Complexes. Molecules 2024; 29:1186. [PMID: 38474698 DOI: 10.3390/molecules29051186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/25/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, we synthesized two coordination complexes based on pyrazole-based ligands, namely 1,5-dimethyl-N-phenyl-1H-pyrazole-3-carboxamide (L1) and 1,5-dimethyl-N-propyl-1H-pyrazole-3-carboxamide (L2), with the aim to investigate bio-inorganic properties. Their crystal structures revealed a mononuclear complex [Ni(L1)2](ClO4)2 (C1) and a dinuclear complex [Cd2(L2)2]Cl4 (C2). Very competitive antifungal and anti-Fusarium activities were found compared to the reference standard cycloheximide. Additionally, L1 and L2 present very weak genotoxicity in contrast to the observed increase in genotoxicity for the coordination complexes C1 and C2.
Collapse
Affiliation(s)
- Amal El Mahdaoui
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Youssef Draoui
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Mohamed El Massaoudi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Sabir Ouahhoud
- Laboratory of Bioresource Biotechnology Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
- Faculty of Medicine and Pharmacy, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresource Biotechnology Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Nour Eddine Bentouhami
- Laboratory of Bioresource Biotechnology Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Ennouamane Saalaoui
- Laboratory of Bioresource Biotechnology Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Redouane Benabbes
- Laboratory of Bioresource Biotechnology Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
11
|
Khator R, Monga V. Recent advances in the synthesis and medicinal perspective of pyrazole-based α-amylase inhibitors as antidiabetic agents. Future Med Chem 2024. [PMID: 38230638 DOI: 10.4155/fmc-2023-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Diabetes is a serious health threat across the globe, claiming millions of lives worldwide. Among the various strategies employed, inhibition of α-amylase is a therapeutic protocol for the management of Type 2 diabetes mellitus. α-Amylase is a crucial enzyme involved in the breakdown of dietary starch into simpler units. However, the clinically used α-amylase inhibitors have various drawbacks. Therefore, design and development of novel α-amylase inhibitors have gained significant attention. The pyrazole motif has been identified as a versatile scaffold in medicinal chemistry, and recent studies have led to the identification of various pyrazole-based α-amylase inhibitors. This review compiles therapeutic implications of pyrazole-appended α-amylase inhibitors; their synthesis, biological activities, structure-activity relationships and molecular docking studies are discussed.
Collapse
Affiliation(s)
- Rakesh Khator
- Drug Design & Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences & Natural Products, Central University of Punjab, VPO-Ghudda, 151401, Bathinda, Punjab, India
| | - Vikramdeep Monga
- Drug Design & Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences & Natural Products, Central University of Punjab, VPO-Ghudda, 151401, Bathinda, Punjab, India
| |
Collapse
|
12
|
Mortada S, Karrouchi K, Hamza EH, Oulmidi A, Bhat MA, Mamad H, Aalilou Y, Radi S, Ansar M, Masrar A, Faouzi MEA. Synthesis, structural characterizations, in vitro biological evaluation and computational investigations of pyrazole derivatives as potential antidiabetic and antioxidant agents. Sci Rep 2024; 14:1312. [PMID: 38225280 PMCID: PMC10789823 DOI: 10.1038/s41598-024-51290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024] Open
Abstract
In this study, a two pyrazole derivatives; 2-(5-methyl-1H-pyrazole-3-carbonyl)-N-phenylhydrazine-1-carboxamide (Pyz-1) and 4-amino-5-(5-methyl-1H-pyrazol-3-yl)-4H-1,2,4-triazole-3-thiol (Pyz-2) were synthesized and characterized by 13C-NMR, 1H-NMR, FT-IR, and mass spectrometry. A complete molecular structures optimization, electronic and thermodynamic properties of Pyz-1 and Pyz-2 in gas phase and aqueous solution were predicted by using hybrid B3LYP method with the 6-311++G** basis sets. Pyz-1 and Pyz-2 were evaluated in vitro for their anti-diabetic, antioxidant and xanthine oxidase inhibition activities. For anti-diabetic activity, Pyz-1 and Pyz-2 showed a potent α-glucosidase and α-amylase inhibition with IC50 values of 75.62 ± 0.56, 95.85 ± 0.92 and 119.3 ± 0.75, 120.2 ± 0.68 µM, respectively, compared to Acarbose (IC50(α-glucosidase) = 72.58 ± 0.68 µM, IC50(α-amylase) = 115.6 ± 0.574 µM). In xanthine oxidase assay, Pyz-1 and Pyz-2 exhibited remarkable inhibitory ability with IC50 values 24.32 ± 0.78 and 10.75 ± 0.54 µM, respectively. The result of antioxidant activities showed that the title compounds have considerable antioxidant and radical scavenger abilities. In addition, molecular docking simulation was used to determine the binding modes and energies between the title compounds and α-glucosidase and α-amylase enzymes.
Collapse
Affiliation(s)
- Salma Mortada
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco.
| | - El Hadki Hamza
- CERNE2D: Laboratory of Spectroscopy, Molecular Modelling, Materials, Nanomaterials, Water and Enviroment (LS3MN2E), Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Afaf Oulmidi
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Mashooq Ahamd Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hassane Mamad
- Central Laboratory of Hematology, Ibn Sina Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Youssra Aalilou
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Smaail Radi
- Laboratoire de Chimie Appliquée et Environnement (LCAE), Faculté des Sciences, Université Mohammed I, 60000, Oujda, Morocco
| | - M'hammed Ansar
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Azlarab Masrar
- Central Laboratory of Hematology, Ibn Sina Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| |
Collapse
|
13
|
Yalazan H, Koç D, Aydın Kose F, Fandaklı S, Tüzün B, Akgül Mİ, Sadeghian N, Taslimi P, Kantekin H. Design, syntheses, theoretical calculations, MM-GBSA, potential anti-cancer and enzyme activities of novel Schiff base compounds. J Biomol Struct Dyn 2023; 42:13100-13113. [PMID: 37921706 DOI: 10.1080/07391102.2023.2274972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
In this study, new Schiff base compounds (SB-F-OH, SB-Cl-OH and SB-Br-OH) were derived from chalcone-derived amine compounds containing halogen groups and 4-hydroxybenzaldehyde. Also, their phthalonitrile compounds (SB-F-CN, SB-Cl-CN and SB-Br-CN) have been synthesized. The structures of these compounds were elucidated by NMR, FT-IR and Mass spectroscopic methods. The quantum chemical parameters were calculated at B3LYP/6-31++g(d,p), HF/6-31++g(d,p) and M062X/6-31++g(d,p) levels. As the biological application of the synthesized compounds, (i) their inhibition properties of the synthesized compounds on Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE) metabolic enzymes were investigated, and their potential anticancer activities against neuroblastoma (NB; SH-SY5Y) and healthy fibroblast (NIH-3T3) cell lines were determined by in vitro assays. All compounds showed inhibition at nanomolar level with the Ki values in the range of 97.86 ± 30.51-516.82 ± 31.42 nM for AChE, 33.21 ± 4.45-78.50 ± 8.91 nM for BChE, respectively. It has been determined that all tested compounds have a remarkable cytotoxic effect against SH-SY5Y, and IC50 values were significantly lower than NIH-3T3 cells. The lowest IC50 value was observed in SB-Cl-OH (7.48 ± 0.86 µM) and SB-Cl-CN (7.31 ± 0.69 µM). The molecular docking of the molecules was also investigated using crystal structure of AChE enzyme protein (PDB ID: 4M0E), crystal structure of BChE protein (PDB ID: 6R6V) and SH-SY5Y cancer protein (PDB ID: 2F3F, 3PBL and 5WIV). The ADME properties of the compounds were investigated. MM/GBSA method is calculated binding free energy. Afterwards, ADME/T analysis was performed to examine the some properties of the molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Halise Yalazan
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| | - Damla Koç
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Türkiye
| | - Fadime Aydın Kose
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, İzmir, Türkiye
| | - Seda Fandaklı
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Muhammed İsmail Akgül
- Department of Biochemistry, Faculty of Pharmacy, Izmir Katip Celebi University, İzmir, Türkiye
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Türkiye
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Türkiye
| | - Halit Kantekin
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| |
Collapse
|
14
|
Firdaus JU, Siddiqui N, Alam O, Manaithiya A, Chandra K. Identification of novel pyrazole containing ɑ-glucosidase inhibitors: insight into pharmacophore, 3D-QSAR, virtual screening, and molecular dynamics study. J Biomol Struct Dyn 2023; 41:9398-9423. [PMID: 36376021 DOI: 10.1080/07391102.2022.2141893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
Pharmacophore modelling, 3 D QSAR modelling, virtual screening, and molecular dynamics study, all-in-one combination were employed successfully design and develop an alpha-glucosidase inhibitor. To explain the structural prerequisites of biologically active components, 3 D-QSAR models were generated using the selected best hypothesis (AARRR) for compounds 55 included in the model C. The selection of 3 D-QSAR models showed that the Gaussian steric characteristic is crucial to alpha glucosidase's inhibitory potential. The alpha-glucosidase inhibitory potency of the compound is enhanced by other components, including Gaussian hydrophobic groups, Gaussian hydrogen bond acceptor or donor groups, Gaussian electrostatic characteristics, and a Gaussian steric feature. An identification of structure-activity relationships can be obtained from the developed 3 D-QSAR, C model, with R2 = 0.77 and SD = 0.02 for training set, and Q2 = 0.66, RMSE 0.02, and Pearson R = 0.81 for testing set, corresponding to elevated predictive ability. Additionally, docking and MM/GBSA experiments on 1146023 showed that it interacts with critical amino acids in the binding site when coupled with acarbose. Further, five compounds that display a high affinity for alpha-glucosidase were found, and these compounds may serve as potent leads for alpha-glucosidase inhibitor development. Biological activity will be tested for these compounds in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jannat Ul Firdaus
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nadeem Siddiqui
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Kailash Chandra
- Department of Biochemistry, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
15
|
Bennani FE, Doudach L, Karrouchi K, Tarib A, Rudd CE, Ansar M, Faouzi MEA. Targeting EGFR, RSK1, RAF1, PARP2 and LIN28B for several cancer type therapies with newly synthesized pyrazole derivatives via a computational study. J Biomol Struct Dyn 2023; 41:4194-4218. [PMID: 35442150 DOI: 10.1080/07391102.2022.2064915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
Cancer remains the leading cause of death in the world despite the significant advancements made in anticancer drug discovery. This study is aimed to computationally evaluate the efficacy of 63 in-house synthesized pyrazole derivatives targeted to bind with prominent cancer targets namely EGFR, RSK1, RAF1, PARP2 and LIN28B known to be expressed, respectively, in lung, colon, skin, ovarian and pancreatic cancer cells. Initially, we perform the molecular docking investigations for all pyrazole compounds with a comparison to known standard drugs for each target. Docking studies have revealed that some pyrazole compounds possess better binding affinity scores than standard drug compounds. Thereafter, a long-range of 1 μs molecular dynamic (MD) simulation study for top ranked docked compounds with all respective proteins was carried out to assess the interaction stability in a dynamic environment. The results suggested that the top ranked complexes showed a stable interaction profile for a longer period of time. The outcome of this study suggests that pyrazole compounds, M33, M36, M76 and M77, are promising molecular candidates that can modulate the studied target proteins significantly in comparison to their known inhibitor based on their selective binding interactions profile. Furthermore, ADME-T profile has been explored to check for the drug-likeness and pharmacokinetics profiles and found that all proposed compounds exhibited acceptable values for being a potential drug-like candidate with non-toxic characteristics. Overall, extensive computational investigations indicate that the four proposed pyrazole inhibitors/modulators studied against each respective target protein will be helpful for future cancer therapeutic developments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatima Ezzahra Bennani
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Latifa Doudach
- Department of Biomedical Engineering Medical Physiology, Higher School of Technical Education of Rabat, Mohammed V University in Rabat, Rabat, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Abdelilah Tarib
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Christopher E Rudd
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Faculty of Medicine, Université de Montreal, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - M'hammed Ansar
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
16
|
Mushtaq A, Azam U, Mehreen S, Naseer MM. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges. Eur J Med Chem 2023; 249:115119. [PMID: 36680985 DOI: 10.1016/j.ejmech.2023.115119] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus is one of the biggest challenges for the scientific community in the 21st century. It is a well-recognized multifactorial health problem contributes significantly to high mortality rates by causing serious health complications mainly related to cardiovascular diseases, kidney damage and neuropathy. The inhibition of α-glucosidase (enzyme that catalyses starch hydrolysis in the intestine) is an effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes. However, the presently approved drugs/inhibitors such as acarbose, miglitol and voglibose have several undesirable gastrointestinal side effects impeding their applications. Therefore, search for novel and more effective inhibitors with reduced side effects and less cost remains a fascinating area of research. In this context, a large variety of α-glucosidase inhibitors have been identified in recent years that demands attention from drug development community. This review is therefore an effort to summarize and highlight the promising α-glucosidase inhibitors especially those which are primarily based on aromatic heterocyclic scaffolds such as coumarin, imidazole, isatin, pyrimidine, quinazoline, triazine, thiazole etc, having improved safety and pharmacological profiles.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saba Mehreen
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | |
Collapse
|
17
|
Saddik R, Brandán SA, Mortada S, Baydere C, Roby O, Dege N, Tighadouini S, Tahiri M, Faouzi MA, Karrouchi K. Synthesis, crystal structure, Hirshfeld surface analysis, DFT and antihyperglycemic activity of 9-allyl-2,3,9,10a-tetrahydrobenzo[b]cyclopenta[e][1,4]diazepin-10(1H)-one. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
18
|
Synthesis, α-glucosidase inhibitory activity, and molecular docking of cinnamamides. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
19
|
Tas A, Tüzün B, Khalilov AN, Taslimi P, Ağbektas T, Cakmak NK. In vitro cytotoxic effects, in silico studies, some metabolic enzymes inhibition, and vibrational spectral analysis of novel β-amino alcohol compounds. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Synthesis, Spectroscopic Characterization, Antibacterial Activity, and Computational Studies of Novel Pyridazinone Derivatives. Molecules 2023; 28:molecules28020678. [PMID: 36677736 PMCID: PMC9861222 DOI: 10.3390/molecules28020678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
In this work, a novel series of pyridazinone derivatives (3-17) were synthesized and characterized by NMR (1H and 13C), FT-IR spectroscopies, and ESI-MS methods. All synthesized compounds were screened for their antibacterial activities against Staphylococcus aureus (Methicillin-resistant), Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, and Acinetobacter baumannii. Among the series, compounds 7 and 13 were found to be active against S. aureus (MRSA), P. aeruginosa, and A. baumannii with the lowest MIC value range of 3.74-8.92 µM. Afterwards, DFT calculations of B3LYP/6-31++G(d,p) level were carried out to investigate geometry structures, frontier molecular orbital, molecular electrostatic potential maps, and gap energies of the synthesized compounds. In addition, the activities of these compounds against various bacterial proteins were compared with molecular-docking calculations. Finally, ADMET studies were performed to investigate the possibility of using of the target compounds as drugs.
Collapse
|
21
|
Firdaus JU, Siddiqui N, Alam O, Manaithiya A, Chandra K. Pyrazole scaffold-based derivatives: A glimpse of α-glucosidase inhibitory activity, SAR, and route of synthesis. Arch Pharm (Weinheim) 2023; 356:e2200421. [PMID: 36617511 DOI: 10.1002/ardp.202200421] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023]
Abstract
The α-glucosidase is a validated target to develop drugs for treating type 2 diabetes mellitus. The existing α-glucosidase inhibitors have certain shortcomings related to side effects and route of synthesis. Accordingly, it is inevitable to develop new chemical templates as α-glucosidase inhibitors. Pyrazole derivatives have a special place in medicinal chemistry because of various biological activities. Recently, pyrazole-based heterocyclic compounds have emerged as a promising scaffold to develop α-glucosidase inhibitors. This study focuses on the recently reported pyrazole-based α-glucosidase inhibitors, including their biological activity (in vivo, in vitro, and in silico), structure-activity relationship, and ways of synthesis. The literature revealed the development of several promising pyrazole-based α-glucosidase inhibitors and new synthetic routes for their preparation. The encouraging α-glucosidase inhibitory results of the pyrazole-based heterocyclic compounds make them an attractive target for further research. The authors also foresee the arrival of the pyrazole-based α-glucosidase inhibitors in clinical practice.
Collapse
Affiliation(s)
- Jannat Ul Firdaus
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nadeem Siddiqui
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Kailash Chandra
- Department of Biochemistry, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
22
|
Çelik MS, Çetinus ŞA, Yenidünya AF, Çetinkaya S, Tüzün B. Biosorption of Rhodamine B dye from aqueous solution by Rhus coriaria L. plant: Equilibrium, kinetic, thermodynamic and DFT calculations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
23
|
Structural and thermal analyses of metaxalone with succinic, adipic and salicylic acids. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Shahzadi I, Zahoor AF, Tüzün B, Mansha A, Anjum MN, Rasul A, Irfan A, Kotwica-Mojzych K, Mojzych M. Repositioning of acefylline as anti-cancer drug: Synthesis, anticancer and computational studies of azomethines derived from acefylline tethered 4-amino-3-mercapto-1,2,4-triazole. PLoS One 2022; 17:e0278027. [PMID: 36520942 PMCID: PMC9754256 DOI: 10.1371/journal.pone.0278027] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022] Open
Abstract
Novel azomethines derived from acefylline tethered triazole hybrids (7a-k) have been synthesized and evaluated against human liver cancer cell line (Hep G2) using MTT assay. The synthesized series of azomethines exhibited promising efficacy against liver cancer cell line. Screening of the synthesized series identified compound 7d with the least cell viability value (11.71 ± 0.39%) as the most potent anticancer agent in contrast to the reference drug acefylline (cell viability = 80 ± 3.87%). In this study, the potentials of the novel agents (7a-k) to inhibit liver cancer proteins were assessed. Subsequently, the structure-activity relationship of the potential drug candidates was assessed via ADME/T molecular screening. The cytotoxic potential of these derivatives was also investigated by hemolysis and thrombolysis. Their hemolytic and thrombolytic studies showed that all of these drugs had very low cytotoxicity and moderate clot lysis activity. Compound 7g (0.26% hemolysis) and 7k (52.1% clot lysis) were the least toxic and moderate thrombolytic agents respectively.
Collapse
Affiliation(s)
- Irum Shahzadi
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Naveed Anjum
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| |
Collapse
|
25
|
Inhibition mechanisms of wounded okra on the α-glucosidase/α-amylase. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Thari FZ, Fettach S, Anouar EH, Tachallait H, Albalwi H, Ramli Y, Mague JT, Karrouchi K, Faouzi MEA, Bougrin K. Synthesis, crystal structures, α-glucosidase and α-amylase inhibition, DFT and molecular docking investigations of two thiazolidine-2,4-dione derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Ghabbour HA, Fahim AM, Abu El-Enin MA, Al-Rashood ST, Abdel-Aziz HA. Crystal structure, Hirshfeld surface analysis and computational study of three 2-(4-arylthiazol-2-yl)isoindoline-1,3-dione derivatives. MOLECULAR CRYSTALS AND LIQUID CRYSTALS 2022; 742:40-55. [DOI: 10.1080/15421406.2022.2045794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Hazem A. Ghabbour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Asmaa M. Fahim
- Green Chemistry Department, National Research Center, Dokki, Cairo, Egypt
| | - Mohammed A. Abu El-Enin
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Faculty of Pharmacy, National University of Science and Technology, Nasiriya, Iraq
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hatem A. Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, Egypt
| |
Collapse
|
28
|
Synthesis, characterization, chemical and biological activities of 4-(4-methoxyphenethyl)-5- benzyl-2-hydroxy-2H-1,2,4-triazole-3(4H)-one phthalocyanine derivatives. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Mortada S, Brandán SA, Karrouchi K, El-gourrami O, doudach L, Bacha RE, Ansar M, Faouzi MEA. Synthesis, spectroscopic and DFT studies of 5-methyl-1H-pyrazole-3-carbohydrazide N-glycoside as potential anti-diabetic and antioxidant agent. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
30
|
Al-Janabi IAS, Yavuz SÇ, Köprü S, Tapera M, Kekeçmuhammed H, Akkoç S, Tüzün B, Patat Ş, Sarıpınar E. Antiproliferative activity and molecular docking studies of new 4-oxothiazolidin-5-ylidene acetate derivatives containing guanylhydrazone moiety. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Bhat MA, Tüzün B, Alsaif NA, Ali Khan A, Naglah AM. Synthesis, characterization, molecular modeling against EGFR target and ADME/T analysis of novel purine derivatives of sulfonamides. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Synthesis, characterization and bioactivity of novel 8-hydroxyquinoline derivatives: Experimental, molecular docking, DFT and POM analyses. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Ebenezer O, Shapi M, Tuszynski JA. A Review of the Recent Development in the Synthesis and Biological Evaluations of Pyrazole Derivatives. Biomedicines 2022; 10:biomedicines10051124. [PMID: 35625859 PMCID: PMC9139179 DOI: 10.3390/biomedicines10051124] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Pyrazoles are five-membered heterocyclic compounds that contain nitrogen. They are an important class of compounds for drug development; thus, they have attracted much attention. In the meantime, pyrazole derivatives have been synthesized as target structures and have demonstrated numerous biological activities such as antituberculosis, antimicrobial, antifungal, and anti-inflammatory. This review summarizes the results of published research on pyrazole derivatives synthesis and biological activities. The published research works on pyrazole derivatives synthesis and biological activities between January 2018 and December 2021 were retrieved from the Scopus database and reviewed accordingly.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban 4026, South Africa; (O.E.); (M.S.)
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael Shapi
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban 4026, South Africa; (O.E.); (M.S.)
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Mechanical and Aerospace Engineering, (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
- Correspondence:
| |
Collapse
|
34
|
Yalazan H, Tüzün B, Akkaya D, Barut B, Kantekin H, Yıldırmış S. Quinoline‐fused both non‐peripheral and peripheral Zn
II
and Mg
II
phthalocyanines: Anti‐cholinesterase, anti‐α‐glucosidase, DNA nuclease, antioxidant activities and in silico studies. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Halise Yalazan
- Faculty of Sciences, Department of Chemistry Karadeniz Technical University Trabzon Turkey
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas Sivas Cumhuriyet University Sivas Turkey
| | - Didem Akkaya
- Faculty of Pharmacy, Department of Biochemistry Karadeniz Technical University Trabzon Turkey
| | - Burak Barut
- Faculty of Pharmacy, Department of Biochemistry Karadeniz Technical University Trabzon Turkey
| | - Halit Kantekin
- Faculty of Sciences, Department of Chemistry Karadeniz Technical University Trabzon Turkey
| | - Sermet Yıldırmış
- Faculty of Pharmacy, Department of Biochemistry Karadeniz Technical University Trabzon Turkey
| |
Collapse
|
35
|
Karrouchi K, Fettach S, Anouar EH, Bayach I, Albalwi H, Arshad S, Sebbar NK, Tachalait H, Bougrin K, Faouzi MEA, Himmi B. Synthesis, Spectroscopic Characterization, DFT, Molecular Docking and Antidiabetic Activity of N-Isonicotinoyl Arylaldehyde Hydrazones. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2028870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Saad Fettach
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed University V in Rabat, Morocco
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Imene Bayach
- Chemistry Department, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Hanan Albalwi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Suhana Arshad
- X-Ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, Penang, Malaysia
| | - Nada Kheira Sebbar
- Laboratoire de Chimie Bioorganique Appliquée, Faculte ́Des Sciences, Universite ́IbnZohr, Agadir, Morocco
| | - Hamza Tachalait
- Equipe de Chimie Des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Morocco
| | - Khalid Bougrin
- Equipe de Chimie Des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Morocco
- Chemical and Biochemical Sciences Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed University V in Rabat, Morocco
| | - Benacer Himmi
- Filière Techniques de Santé, Institut Supérieur Des Professions Infirmières et Techniques de Santé de Rabat, Ministère de la Santé, Morocco
| |
Collapse
|