1
|
Godara R, Kaushik P, Tripathi K, Kumar R, Rana VS, Kumar R, Mandal A, Shanmugam V, Pankaj, Shakil NA. Green synthesis, structure-activity relationships, in silico molecular docking, and antifungal activities of novel prenylated chalcones. Front Chem 2024; 12:1389848. [PMID: 38746019 PMCID: PMC11093228 DOI: 10.3389/fchem.2024.1389848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
A series of 16 novel prenylated chalcones (5A-5P) was synthesized by microwave-assisted green synthesis using 5-prenyloxy-2-hydroxyacetophenone and different benzaldehydes. Comparisons were also performed between the microwave and conventional methods in terms of the reaction times and yields of all compounds, where the reaction times in the microwave and conventional methods were 1-4 min and 12-48 h, respectively. The synthesized compounds were characterized using different spectroscopic techniques, including IR, 1H-NMR, 13C-NMR, and LC-HRMS. The antifungal activities of all compounds were evaluated against Sclerotium rolfsii and Fusarium oxysporum under in vitro conditions and were additionally supported by structure-activity relationship (SAR) and molecular docking studies. Out of the 16 compounds screened, 2'-hydroxy-4-benzyloxy-5'-O-prenylchalcone (5P) showed the highest activity against both S. rolfsii and F. oxysporum, with ED50 of 25.02 and 31.87 mg/L, respectively. The molecular docking studies of the prenylated chalcones within the active sites of the EF1α and RPB2 gene sequences and FoCut5a sequence as the respective receptors for S. rolfsii and F. oxysporum revealed the importance of the compounds, where the binding energies of the docked molecules ranged from -38.3538 to -26.6837 kcal/mol for S. rolfsii and -43.400 to -23.839 kcal/mol for F. oxysporum. Additional docking parameters showed that these compounds formed stable complexes with the protein molecules.
Collapse
Affiliation(s)
- Rajni Godara
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Parshant Kaushik
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kailashpati Tripathi
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-National Research Centre on Seed Spices, Ajmer, Rajasthan, India
| | - Rakesh Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Central Inland Fisheries Research Institute, Guwahati, Assam, India
| | - Virendra Singh Rana
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajesh Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Abhishek Mandal
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - V Shanmugam
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pankaj
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Najam Akhtar Shakil
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
2
|
Baddam SR, Avula MK, Akula R, Battula VR, Kalagara S, Buchikonda R, Ganta S, Venkatesan S, Allaka TR. Design, synthesis and in silico molecular docking evaluation of novel 1,2,3-triazole derivatives as potent antimicrobial agents. Heliyon 2024; 10:e27773. [PMID: 38590856 PMCID: PMC10999864 DOI: 10.1016/j.heliyon.2024.e27773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024] Open
Abstract
Chalcone and triazole scaffolds have demonstrated a crucial role in the advancement of science and technology. Due to their significance, research has proceeded on the design and development of novel benzooxepine connected to 1,2,3-triazolyl chalcone structures. The new chalcone derivatives produced by benzooxepine triazole methyl ketone 2 and different aromatic carbonyl compounds 3 are discussed in this paper. All prepared compounds have well-established structures to a variety of spectral approaches, including mass analysis, 1H NMR, 13C NMR, and IR. Among the tested compounds, hybrids 4c, 4d, 4i, and 4k exhibited exceptional antibacterial susceptibilities with MIC range of 3.59-10.30 μM against the tested S. aureus strain. Compounds 4c, 4d displayed superior antifungal activity against F. oxysporum with MIC 3.25, 4.89 μM, when compared to fluconazole (MIC = 3.83 μM) respectively. On the other hand, analogues 4d, 4f, and 4k demonstrated equivalent antitubercular action against H37Rv strain with MIC range of 2.16-4.90 μM. The capacity of ligand 4f to form a stable compound on the active site of CYP51 from M. tuberculosis (1EA1) was confirmed by docking studies using amino acids Leu321(A), Pro77(A), Phe83(A), Lys74(A), Tyr76(A), Ala73(A), Arg96(A), Thr80(A), Met79(A), His259(A), and Gln72(A). Additionally, the chalcone‒1,2,3‒triazole hybrids ADME (absorption, distribution, metabolism, and excretion), characteristics of molecules, estimations of toxicity, and bioactivity parameters were assessed.
Collapse
Affiliation(s)
- Sudhakar Reddy Baddam
- University of Massachusetts Chan Medical School, RNA Therapeutic Institute, Worcester, MA, 01655, United States
| | - Mahesh Kumar Avula
- Technology Development Center, Custom Pharmaceutical Services, Dr. Reddy's Laboratories Pvt. Ltd., Hyderabad, Telangana, 500049, India
- Department of Organic Chemistry and FDW, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Raghunadh Akula
- Technology Development Center, Custom Pharmaceutical Services, Dr. Reddy's Laboratories Pvt. Ltd., Hyderabad, Telangana, 500049, India
| | - Venkateswara Rao Battula
- Department of Chemistry, AU College of Engineering (A), Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Sudhakar Kalagara
- Department of Chemistry and Biochemistry, University of the Texas at El Paso, El Paso, TX, 79968, United States
| | - Ravinder Buchikonda
- Technology Development Center, Custom Pharmaceutical Services, Dr. Reddy's Laboratories Pvt. Ltd., Hyderabad, Telangana, 500049, India
| | - Srinivas Ganta
- ScieGen Pharmaceutical Inc., Hauppauge, NY, 11788, United States
| | - Srinivasadesikan Venkatesan
- Department of Chemistry, School of Applied Science and Humanities, VIGNAN's Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh, 522213, India
| | - Tejeswara Rao Allaka
- Centre for Chemical Sciences and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana, 500085, India
| |
Collapse
|
3
|
Hegazy ME, Taher ES, Ghiaty AH, Bayoumi AH. Tailored quinoline hybrids as promising COX-2/15-LOX dual inhibitors endowed with diverse safety profile: Design, synthesis, SAR, and histopathological study. Bioorg Chem 2024; 145:107244. [PMID: 38428284 DOI: 10.1016/j.bioorg.2024.107244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/14/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Complications of the worldwide use of non-steroidal anti-inflammatory drugs (NSAIDs) sparked scientists to design novel harmless alternatives as an urgent need. So, a unique hybridization tactic of quinoline/pyrazole/thioamide (4a-c) has been rationalized and synthesized as potential COX-2/15-LOX dual inhibitors, utilizing relevant reported studies on these pharmacophores. Moreover, we extended these preceding hybrids into more varied functionality, bearing crucial thiazole scaffolds(5a-l). All the synthesized hybrids were evaluatedin vitroas COX-2/15-LOX dual inhibitors. Initially, series4a-cexhibited significant potency towards 15-LOX inhibition (IC50 = 5.454-4.509 μM) compared to meclofenamate sodium (IC50 = 3.837 μM). Moreover, they revealed reasonable inhibitory activities against the COX-2 enzyme in comparison to celecoxib.Otherwise, conjugates 5a-ldisclosed marked inhibitory activity against 15-LOX and strong inhibitory to COX-2. In particular, hybrids5d(IC50 = 0.239 μM, SI = 8.95), 5h(IC50 = 0.234 μM, SI = 20.35) and 5l (IC50 = 0.201 μM, SI = 14.42) revealed more potency and selectivity outperforming celecoxib (IC50 = 0.512 μM, SI = 4.28). In addition, the most potentcompounds, 4a, 5d, 5h, and 5l have been elected for further in vivoevaluation and displayed potent inhibition of edema in the carrageenan-induced rat paw edema test that surpassed indomethacin. Further, compounds5d, 5h, and 5l decreased serum inflammatory markers including oxidative biomarkersiNO, and pro-inflammatory mediators cytokines like TNF-α, IL-6, and PGE. Ulcerogenic liability for tested compounds demonstrated obvious gastric mucosal safety. Furthermore, a histopathological study for compound 5l suggested a confirmatory comprehensive safety profile for stomach, kidney, and heart tissues. Docking and drug-likeness studies offered a good convention with the obtained biological investigation.
Collapse
Affiliation(s)
- Mohamed E Hegazy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Ehab S Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan.
| | - Adel H Ghiaty
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt
| |
Collapse
|