1
|
Ramadhin AR, Lee SH, Zhou D, Salmazo A, Gonzalo-Hansen C, van Sluis M, Blom CMA, Janssens RC, Raams A, Dekkers D, Bezstarosti K, Slade D, Vermeulen W, Pines A, Demmers JAA, Bernecky C, Sixma TK, Marteijn JA. STK19 drives transcription-coupled repair by stimulating repair complex stability, RNA Pol II ubiquitylation, and TFIIH recruitment. Mol Cell 2024; 84:4740-4757.e12. [PMID: 39547223 DOI: 10.1016/j.molcel.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/16/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) efficiently eliminates DNA damage that impedes gene transcription by RNA polymerase II (RNA Pol II). TC-NER is initiated by the recognition of lesion-stalled RNA Pol II by CSB, which recruits the CRL4CSA ubiquitin ligase and UVSSA. RNA Pol II ubiquitylation at RPB1-K1268 by CRL4CSA serves as a critical TC-NER checkpoint, governing RNA Pol II stability and initiating DNA damage excision by TFIIH recruitment. However, the precise regulatory mechanisms of CRL4CSA activity and TFIIH recruitment remain elusive. Here, we reveal human serine/threonine-protein kinase 19 (STK19) as a TC-NER factor, which is essential for correct DNA damage removal and subsequent transcription restart. Cryogenic electron microscopy (cryo-EM) studies demonstrate that STK19 is an integral part of the RNA Pol II-TC-NER complex, bridging CSA, UVSSA, RNA Pol II, and downstream DNA. STK19 stimulates TC-NER complex stability and CRL4CSA activity, resulting in efficient RNA Pol II ubiquitylation and correct UVSSA and TFIIH binding. These findings underscore the crucial role of STK19 as a core TC-NER component.
Collapse
Affiliation(s)
- Anisha R Ramadhin
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Shun-Hsiao Lee
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, 1066 CX Amsterdam, the Netherlands
| | - Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Anita Salmazo
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Camila Gonzalo-Hansen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Marjolein van Sluis
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Cindy M A Blom
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Dick Dekkers
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Dea Slade
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, 1030 Vienna, Austria
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Carrie Bernecky
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Titia K Sixma
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, 1066 CX Amsterdam, the Netherlands.
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Pramanik S, Chen Y, Bhakat KK. Base Excision Repair in Mitotic Cells and the Role of Apurinic/Apyrimidinic Endonuclease 1 (APE1) in Post-Mitotic Transcriptional Reactivation of Genes. Int J Mol Sci 2024; 25:12735. [PMID: 39684445 DOI: 10.3390/ijms252312735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Endogenous DNA damage occurs throughout the cell cycle, with cells responding differently at various stages. The base excision repair (BER) pathway predominantly repairs damaged bases in the genome. While extensively studied in interphase cells, it is unknown if BER operates in mitosis and how apurinic/apyrimidinic (AP) sites, intermediates in the BER pathway that inhibit transcriptional elongation, are processed for post-mitotic gene reactivation. In this study, using an alkaline comet assay, we demonstrate that BER is inefficient in mitosis and that AP endonuclease 1 (APE1), a key BER enzyme, is required for the repair of damage post-mitosis. We previously demonstrated that APE1 is acetylated (AcAPE1) in the chromatin. Using high-resolution microscopy, we show that AcAPE1 remains associated with specific regions in the condensed chromatin in each of the phases of mitosis. This association presumably occurs via the binding of APE1 to the G-quadruplex structure, a non-canonical DNA structure predominantly present in the transcribed gene regions. Additionally, using a nascent RNA detection strategy, we demonstrate that the knockdown of APE1 delayed the rapid post-mitotic transcriptional reactivation of genes. Our findings highlight the functional importance of APE1 in the mitotic chromosomes to facilitate faster repair of endogenous damage and rapid post-mitotic gene reactivation in daughter cells.
Collapse
Affiliation(s)
- Suravi Pramanik
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yingling Chen
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kishor K Bhakat
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
3
|
Zhou D, Yu Q, Janssens RC, Marteijn JA. Live-cell imaging of endogenous CSB-mScarletI as a sensitive marker for DNA-damage-induced transcription stress. CELL REPORTS METHODS 2024; 4:100674. [PMID: 38176411 PMCID: PMC10831951 DOI: 10.1016/j.crmeth.2023.100674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Transcription by RNA polymerase II (RNA Pol II) is crucial for cellular function, but DNA damage severely impedes this process. Thus far, transcription-blocking DNA lesions (TBLs) and their repair have been difficult to quantify in living cells. To overcome this, we generated, using CRISPR-Cas9-mediated gene editing, mScarletI-tagged Cockayne syndrome group B protein (CSB) and UV-stimulated scaffold protein A (UVSSA) knockin cells. These cells allowed us to study the binding dynamics of CSB and UVSSA to lesion-stalled RNA Pol II using fluorescence recovery after photobleaching (FRAP). We show that especially CSB mobility is a sensitive transcription stress marker at physiologically relevant DNA damage levels. Transcription-coupled nucleotide excision repair (TC-NER)-mediated repair can be assessed by studying CSB immobilization over time. Additionally, flow cytometry reveals the regulation of CSB protein levels by CRL4CSA-mediated ubiquitylation and deubiquitylation by USP7. This approach allows the sensitive detection of TBLs and their repair and the study of TC-NER complex assembly and stability in living cells.
Collapse
Affiliation(s)
- Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Qing Yu
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Steurer B, Janssens RC, Geijer ME, Aprile-Garcia F, Geverts B, Theil AF, Hummel B, van Royen ME, Evers B, Bernards R, Houtsmuller AB, Sawarkar R, Marteijn J. DNA damage-induced transcription stress triggers the genome-wide degradation of promoter-bound Pol II. Nat Commun 2022; 13:3624. [PMID: 35750669 PMCID: PMC9232492 DOI: 10.1038/s41467-022-31329-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/10/2022] [Indexed: 01/22/2023] Open
Abstract
The precise regulation of RNA Polymerase II (Pol II) transcription after genotoxic stress is crucial for proper execution of the DNA damage-induced stress response. While stalling of Pol II on transcription-blocking lesions (TBLs) blocks transcript elongation and initiates DNA repair in cis, TBLs additionally elicit a response in trans that regulates transcription genome-wide. Here we uncover that, after an initial elongation block in cis, TBLs trigger the genome-wide VCP-mediated proteasomal degradation of promoter-bound, P-Ser5-modified Pol II in trans. This degradation is mechanistically distinct from processing of TBL-stalled Pol II, is signaled via GSK3, and contributes to the TBL-induced transcription block, even in transcription-coupled repair-deficient cells. Thus, our data reveal the targeted degradation of promoter-bound Pol II as a critical pathway that allows cells to cope with DNA damage-induced transcription stress and enables the genome-wide adaptation of transcription to genotoxic stress.
Collapse
Affiliation(s)
- Barbara Steurer
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marit E Geijer
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Bart Geverts
- Department of Pathology, Optical Imaging Centre, Erasmus MC, Rotterdam, The Netherlands
| | - Arjan F Theil
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Martin E van Royen
- Department of Pathology, Optical Imaging Centre, Erasmus MC, Rotterdam, The Netherlands
| | - Bastiaan Evers
- Oncode Institute, Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - René Bernards
- Oncode Institute, Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology, Optical Imaging Centre, Erasmus MC, Rotterdam, The Netherlands
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- MRC, University of Cambridge, Cambridge, UK
| | - Jurgen Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Martinez B, Bharati BK, Epshtein V, Nudler E. Pervasive Transcription-coupled DNA repair in E. coli. Nat Commun 2022; 13:1702. [PMID: 35354807 PMCID: PMC8967931 DOI: 10.1038/s41467-022-28871-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Global Genomic Repair (GGR) and Transcription-Coupled Repair (TCR) have been viewed, respectively, as major and minor sub-pathways of the nucleotide excision repair (NER) process that removes bulky lesions from the genome. Here we applied a next generation sequencing assay, CPD-seq, in E. coli to measure the levels of cyclobutane pyrimidine dimer (CPD) lesions before, during, and after UV-induced genotoxic stress, and, therefore, to determine the rate of genomic recovery by NER at a single nucleotide resolution. We find that active transcription is necessary for the repair of not only the template strand (TS), but also the non-template strand (NTS), and that the bulk of TCR is independent of Mfd - a DNA translocase that is thought to be necessary and sufficient for TCR in bacteria. We further show that repair of both TS and NTS is enhanced by increased readthrough past Rho-dependent terminators. We demonstrate that UV-induced genotoxic stress promotes global antitermination so that TCR is more accessible to the antisense, intergenic, and other low transcribed regions. Overall, our data suggest that GGR and TCR are essentially the same process required for complete repair of the bacterial genome.
Collapse
Affiliation(s)
- Britney Martinez
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Binod K Bharati
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, New York, 10016, USA
| | - Vitaly Epshtein
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, 10016, USA.
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, New York, 10016, USA.
| |
Collapse
|
6
|
Raina A, Sahu PK, Laskar RA, Rajora N, Sao R, Khan S, Ganai RA. Mechanisms of Genome Maintenance in Plants: Playing It Safe With Breaks and Bumps. Front Genet 2021; 12:675686. [PMID: 34239541 PMCID: PMC8258418 DOI: 10.3389/fgene.2021.675686] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/04/2021] [Indexed: 01/14/2023] Open
Abstract
Maintenance of genomic integrity is critical for the perpetuation of all forms of life including humans. Living organisms are constantly exposed to stress from internal metabolic processes and external environmental sources causing damage to the DNA, thereby promoting genomic instability. To counter the deleterious effects of genomic instability, organisms have evolved general and specific DNA damage repair (DDR) pathways that act either independently or mutually to repair the DNA damage. The mechanisms by which various DNA repair pathways are activated have been fairly investigated in model organisms including bacteria, fungi, and mammals; however, very little is known regarding how plants sense and repair DNA damage. Plants being sessile are innately exposed to a wide range of DNA-damaging agents both from biotic and abiotic sources such as ultraviolet rays or metabolic by-products. To escape their harmful effects, plants also harbor highly conserved DDR pathways that share several components with the DDR machinery of other organisms. Maintenance of genomic integrity is key for plant survival due to lack of reserve germline as the derivation of the new plant occurs from the meristem. Untowardly, the accumulation of mutations in the meristem will result in a wide range of genetic abnormalities in new plants affecting plant growth development and crop yield. In this review, we will discuss various DNA repair pathways in plants and describe how the deficiency of each repair pathway affects plant growth and development.
Collapse
Affiliation(s)
- Aamir Raina
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
- Botany Section, Women’s College, Aligarh Muslim University, Aligarh, India
| | - Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Agriculture University, Raipur, India
| | | | - Nitika Rajora
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Agriculture University, Raipur, India
| | - Samiullah Khan
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Rais A. Ganai
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, India
| |
Collapse
|
7
|
Kajitani GS, Nascimento LLDS, Neves MRDC, Leandro GDS, Garcia CCM, Menck CFM. Transcription blockage by DNA damage in nucleotide excision repair-related neurological dysfunctions. Semin Cell Dev Biol 2021; 114:20-35. [DOI: 10.1016/j.semcdb.2020.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/18/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
|
8
|
Malfatti MC, Antoniali G, Codrich M, Burra S, Mangiapane G, Dalla E, Tell G. New perspectives in cancer biology from a study of canonical and non-canonical functions of base excision repair proteins with a focus on early steps. Mutagenesis 2021; 35:129-149. [PMID: 31858150 DOI: 10.1093/mutage/gez051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations of DNA repair enzymes and consequential triggering of aberrant DNA damage response (DDR) pathways are thought to play a pivotal role in genomic instabilities associated with cancer development, and are further thought to be important predictive biomarkers for therapy using the synthetic lethality paradigm. However, novel unpredicted perspectives are emerging from the identification of several non-canonical roles of DNA repair enzymes, particularly in gene expression regulation, by different molecular mechanisms, such as (i) non-coding RNA regulation of tumour suppressors, (ii) epigenetic and transcriptional regulation of genes involved in genotoxic responses and (iii) paracrine effects of secreted DNA repair enzymes triggering the cell senescence phenotype. The base excision repair (BER) pathway, canonically involved in the repair of non-distorting DNA lesions generated by oxidative stress, ionising radiation, alkylation damage and spontaneous or enzymatic deamination of nucleotide bases, represents a paradigm for the multifaceted roles of complex DDR in human cells. This review will focus on what is known about the canonical and non-canonical functions of BER enzymes related to cancer development, highlighting novel opportunities to understand the biology of cancer and representing future perspectives for designing new anticancer strategies. We will specifically focus on APE1 as an example of a pleiotropic and multifunctional BER protein.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marta Codrich
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Silvia Burra
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
9
|
Vessoni AT, Guerra CCC, Kajitani GS, Nascimento LLS, Garcia CCM. Cockayne Syndrome: The many challenges and approaches to understand a multifaceted disease. Genet Mol Biol 2020; 43:e20190085. [PMID: 32453336 PMCID: PMC7250278 DOI: 10.1590/1678-4685-gmb-2019-0085] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 01/15/2020] [Indexed: 01/04/2023] Open
Abstract
The striking and complex phenotype of Cockayne syndrome (CS) patients combines progeria-like features with developmental deficits. Since the establishment of the in vitro culture of skin fibroblasts derived from patients with CS in the 1970s, significant progress has been made in the understanding of the genetic alterations associated with the disease and their impact on molecular, cellular, and organismal functions. In this review, we provide a historic perspective on the research into CS by revisiting seminal papers in this field. We highlighted the great contributions of several researchers in the last decades, ranging from the cloning and characterization of CS genes to the molecular dissection of their roles in DNA repair, transcription, redox processes and metabolism control. We also provide a detailed description of all pathological mutations in genes ERCC6 and ERCC8 reported to date and their impact on CS-related proteins. Finally, we review the contributions (and limitations) of many genetic animal models to the study of CS and how cutting-edge technologies, such as cell reprogramming and state-of-the-art genome editing, are helping us to address unanswered questions.
Collapse
Affiliation(s)
| | - Camila Chaves Coelho Guerra
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| | - Gustavo Satoru Kajitani
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Livia Luz Souza Nascimento
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Camila Carrião Machado Garcia
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| |
Collapse
|
10
|
Wienholz F, Zhou D, Turkyilmaz Y, Schwertman P, Tresini M, Pines A, van Toorn M, Bezstarosti K, Demmers JAA, Marteijn JA. FACT subunit Spt16 controls UVSSA recruitment to lesion-stalled RNA Pol II and stimulates TC-NER. Nucleic Acids Res 2019; 47:4011-4025. [PMID: 30715484 PMCID: PMC6486547 DOI: 10.1093/nar/gkz055] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 11/15/2022] Open
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) is a dedicated DNA repair pathway that removes transcription-blocking DNA lesions (TBLs). TC-NER is initiated by the recognition of lesion-stalled RNA Polymerase II by the joint action of the TC-NER factors Cockayne Syndrome protein A (CSA), Cockayne Syndrome protein B (CSB) and UV-Stimulated Scaffold Protein A (UVSSA). However, the exact recruitment mechanism of these factors toward TBLs remains elusive. Here, we study the recruitment mechanism of UVSSA using live-cell imaging and show that UVSSA accumulates at TBLs independent of CSA and CSB. Furthermore, using UVSSA deletion mutants, we could separate the CSA interaction function of UVSSA from its DNA damage recruitment activity, which is mediated by the UVSSA VHS and DUF2043 domains, respectively. Quantitative interaction proteomics showed that the Spt16 subunit of the histone chaperone FACT interacts with UVSSA, which is mediated by the DUF2043 domain. Spt16 is recruited to TBLs, independently of UVSSA, to stimulate UVSSA recruitment and TC-NER-mediated repair. Spt16 specifically affects UVSSA, as Spt16 depletion did not affect CSB recruitment, highlighting that different chromatin-modulating factors regulate different reaction steps of the highly orchestrated TC-NER pathway.
Collapse
Affiliation(s)
- Franziska Wienholz
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Yasemin Turkyilmaz
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Petra Schwertman
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Maria Tresini
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Marvin van Toorn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Centre, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Jeroen A A Demmers
- Proteomics Centre, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
11
|
Bradley CC, Gordon AJE, Halliday JA, Herman C. Transcription fidelity: New paradigms in epigenetic inheritance, genome instability and disease. DNA Repair (Amst) 2019; 81:102652. [PMID: 31326363 DOI: 10.1016/j.dnarep.2019.102652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA transcription errors are transient, yet frequent, events that do have consequences for the cell. However, until recently we lacked the tools to empirically measure and study these errors. Advances in RNA library preparation and next generation sequencing (NGS) have allowed the spectrum of transcription errors to be empirically measured over the entire transcriptome and in nascent transcripts. Combining these powerful methods with forward and reverse genetic strategies has refined our understanding of transcription factors known to enhance RNA accuracy and will enable the discovery of new candidates. Furthermore, these approaches will shed additional light on the complex interplay between transcription fidelity and other DNA transactions, such as replication and repair, and explore a role for transcription errors in cellular evolution and disease.
Collapse
Affiliation(s)
- Catherine C Bradley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA; Robert and Janice McNair Foundation/ McNair Medical Institute M.D./Ph.D. Scholars Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alasdair J E Gordon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jennifer A Halliday
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Acetaldehyde forms covalent GG intrastrand crosslinks in DNA. Sci Rep 2019; 9:660. [PMID: 30679737 PMCID: PMC6345987 DOI: 10.1038/s41598-018-37239-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 12/04/2018] [Indexed: 01/18/2023] Open
Abstract
Carcinogens often generate mutable DNA lesions that contribute to cancer and aging. However, the chemical structure of tumorigenic DNA lesions formed by acetaldehyde remains unknown, although it has long been considered an environmental mutagen in alcohol, tobacco, and food. Here, we identify an aldehyde-induced DNA lesion, forming an intrastrand crosslink between adjacent guanine bases, but not in single guanine bases or in other combinations of nucleotides. The GG intrastrand crosslink exists in equilibrium in the presence of aldehyde, and therefore it has not been detected or analyzed in the previous investigations. The newly identified GG intrastrand crosslinks might explain the toxicity and mutagenicity of acetaldehyde in DNA metabolism.
Collapse
|
13
|
Sugasawa K. Mechanism and regulation of DNA damage recognition in mammalian nucleotide excision repair. DNA Repair (Amst) 2019; 45:99-138. [DOI: 10.1016/bs.enz.2019.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Ikehata H, Yamamoto M. Roles of the KEAP1-NRF2 system in mammalian skin exposed to UV radiation. Toxicol Appl Pharmacol 2018; 360:69-77. [DOI: 10.1016/j.taap.2018.09.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022]
|
15
|
What happens at the lesion does not stay at the lesion: Transcription-coupled nucleotide excision repair and the effects of DNA damage on transcription in cis and trans. DNA Repair (Amst) 2018; 71:56-68. [PMID: 30195642 DOI: 10.1016/j.dnarep.2018.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Unperturbed transcription of eukaryotic genes by RNA polymerase II (Pol II) is crucial for proper cell function and tissue homeostasis. However, the DNA template of Pol II is continuously challenged by damaging agents that can result in transcription impediment. Stalling of Pol II on transcription-blocking lesions triggers a highly orchestrated cellular response to cope with these cytotoxic lesions. One of the first lines of defense is the transcription-coupled nucleotide excision repair (TC-NER) pathway that specifically removes transcription-blocking lesions thereby safeguarding unperturbed gene expression. In this perspective, we outline recent data on how lesion-stalled Pol II initiates TC-NER and we discuss new mechanistic insights in the TC-NER reaction, which have resulted in a better understanding of the causative-linked Cockayne syndrome and UV-sensitive syndrome. In addition to these direct effects on lesion-stalled Pol II (effects in cis), accumulating evidence shows that transcription, and particularly Pol II, is also affected in a genome-wide manner (effects in trans). We will summarize the diverse consequences of DNA damage on transcription, including transcription inhibition, induction of specific transcriptional programs and regulation of alternative splicing. Finally, we will discuss the function of these diverse cellular responses to transcription-blocking lesions and their consequences on the process of transcription restart. This resumption of transcription, which takes place either directly at the lesion or is reinitiated from the transcription start site, is crucial to maintain proper gene expression following removal of the DNA damage.
Collapse
|
16
|
Structural basis of DNA lesion recognition for eukaryotic transcription-coupled nucleotide excision repair. DNA Repair (Amst) 2018; 71:43-55. [PMID: 30174298 DOI: 10.1016/j.dnarep.2018.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Eukaryotic transcription-coupled nucleotide excision repair (TC-NER) is a pathway that removes DNA lesions capable of blocking RNA polymerase II (Pol II) transcription from the template strand. This process is initiated by lesion-arrested Pol II and the recruitment of Cockayne Syndrome B protein (CSB). In this review, we will focus on the lesion recognition steps of eukaryotic TC-NER and summarize the recent research progress toward understanding the structural basis of Pol II-mediated lesion recognition and Pol II-CSB interactions. We will discuss the roles of CSB in both TC-NER initiation and transcription elongation. Finally, we propose an updated model of tripartite lesion recognition and verification for TC-NER in which CSB ensures Pol II-mediated recognition of DNA lesions for TC-NER.
Collapse
|
17
|
Burns JA, Chowdhury MA, Cartularo L, Berens C, Scicchitano DA. Genetic instability associated with loop or stem-loop structures within transcription units can be independent of nucleotide excision repair. Nucleic Acids Res 2018; 46:3498-3516. [PMID: 29474673 PMCID: PMC5909459 DOI: 10.1093/nar/gky110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/04/2018] [Accepted: 02/14/2018] [Indexed: 12/31/2022] Open
Abstract
Simple sequence repeats (SSRs) are found throughout the genome, and under some conditions can change in length over time. Germline and somatic expansions of trinucleotide repeats are associated with a series of severely disabling illnesses, including Huntington's disease. The underlying mechanisms that effect SSR expansions and contractions have been experimentally elusive, but models suggesting a role for DNA repair have been proposed, in particular the involvement of transcription-coupled nucleotide excision repair (TCNER) that removes transcription-blocking DNA damage from the transcribed strand of actively expressed genes. If the formation of secondary DNA structures that are associated with SSRs were to block RNA polymerase progression, TCNER could be activated, resulting in the removal of the aberrant structure and a concomitant change in the region's length. To test this, TCNER activity in primary human fibroblasts was assessed on defined DNA substrates containing extrahelical DNA loops that lack discernible internal base pairs or DNA stem-loops that contain base pairs within the stem. The results show that both structures impede transcription elongation, but there is no corresponding evidence that nucleotide excision repair (NER) or TCNER operates to remove them.
Collapse
Affiliation(s)
- John A Burns
- Department of Biology, New York University, New York, NY 10003, USA
| | | | - Laura Cartularo
- Department of Biology, New York University, New York, NY 10003, USA
| | - Christian Berens
- Institute of Molecular Pathogenesis, Friedrich-Löffler-Institut, Jena, Germany
| | - David A Scicchitano
- Department of Biology, New York University, New York, NY 10003, USA
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Bukowska B, Karwowski BT. Actual state of knowledge in the field of diseases related with defective nucleotide excision repair. Life Sci 2018; 195:6-18. [DOI: 10.1016/j.lfs.2017.12.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 12/11/2022]
|
19
|
Kolbanovskiy M, Chowdhury MA, Nadkarni A, Broyde S, Geacintov NE, Scicchitano DA, Shafirovich V. The Nonbulky DNA Lesions Spiroiminodihydantoin and 5-Guanidinohydantoin Significantly Block Human RNA Polymerase II Elongation in Vitro. Biochemistry 2017; 56:3008-3018. [PMID: 28514164 DOI: 10.1021/acs.biochem.7b00295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The most common, oxidatively generated lesion in cellular DNA is 8-oxo-7,8-dihydroguanine, which can be oxidized further to yield highly mutagenic spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh) in DNA. In human cell-free extracts, both lesions can be excised by base excision repair and global genomic nucleotide excision repair. However, it is not known if these lesions can be removed by transcription-coupled DNA repair (TCR), a pathway that clears lesions from DNA that impede RNA synthesis. To determine if Sp or Gh impedes transcription, which could make each a viable substrate for TCR, either an Sp or a Gh lesion was positioned on the transcribed strand of DNA under the control of a promoter that supports transcription by human RNA polymerase II. These constructs were incubated in HeLa nuclear extracts that contained active RNA polymerase II, and the resulting transcripts were resolved by denaturing polyacrylamide gel electrophoresis. The structurally rigid Sp strongly blocks transcription elongation, permitting 1.6 ± 0.5% nominal lesion bypass. In contrast, the conformationally flexible Gh poses less of a block to human RNAPII, allowing 9 ± 2% bypass. Furthermore, fractional lesion bypass for Sp and Gh is minimally affected by glycosylase activity found in the HeLa nuclear extract. These data specifically suggest that both Sp and Gh may well be susceptible to TCR because each poses a significant block to human RNA polymerase II progression. A more general principle is also proposed: Conformational flexibility may be an important structural feature of DNA lesions that enhances their transcriptional bypass.
Collapse
Affiliation(s)
- Marina Kolbanovskiy
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| | - Moinuddin A Chowdhury
- Department of Biology, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| | - Aditi Nadkarni
- Department of Biology, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| | - Suse Broyde
- Department of Biology, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| | - Nicholas E Geacintov
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| | - David A Scicchitano
- Department of Biology, New York University , 100 Washington Square East, New York, New York 10003-5180, United States.,Division of Science, New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Vladimir Shafirovich
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003-5180, United States
| |
Collapse
|
20
|
Steurer B, Marteijn JA. Traveling Rocky Roads: The Consequences of Transcription-Blocking DNA Lesions on RNA Polymerase II. J Mol Biol 2016; 429:3146-3155. [PMID: 27851891 DOI: 10.1016/j.jmb.2016.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022]
Abstract
The faithful transcription of eukaryotic genes by RNA polymerase II (RNAP2) is crucial for proper cell function and tissue homeostasis. However, transcription-blocking DNA lesions of both endogenous and environmental origin continuously challenge the progression of elongating RNAP2. The stalling of RNAP2 on a transcription-blocking lesion triggers a series of highly regulated events, including RNAP2 processing to make the lesion accessible for DNA repair, R-loop-mediated DNA damage signaling, and the initiation of transcription-coupled DNA repair. The correct execution and coordination of these processes is vital for resuming transcription following the successful repair of transcription-blocking lesions. Here, we outline recent insights into the molecular consequences of RNAP2 stalling on transcription-blocking DNA lesions and how these lesions are resolved to restore mRNA synthesis.
Collapse
Affiliation(s)
- Barbara Steurer
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
21
|
Sadik H, Korangath P, Nguyen NK, Gyorffy B, Kumar R, Hedayati M, Teo WW, Park S, Panday H, Munoz TG, Menyhart O, Shah N, Pandita RK, Chang JC, DeWeese T, Chang HY, Pandita TK, Sukumar S. HOXC10 Expression Supports the Development of Chemotherapy Resistance by Fine Tuning DNA Repair in Breast Cancer Cells. Cancer Res 2016; 76:4443-56. [PMID: 27302171 DOI: 10.1158/0008-5472.can-16-0774] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/25/2016] [Indexed: 11/16/2022]
Abstract
Development of drug resistance is a major factor limiting the continued success of cancer chemotherapy. To overcome drug resistance, understanding the underlying mechanism(s) is essential. We found that HOXC10 is overexpressed in primary carcinomas of the breast, and even more significantly in distant metastasis arising after failed chemotherapy. High HOXC10 expression correlates with shorter recurrence-free and overall survival in patients with estrogen receptor-negative breast cancer undergoing chemotherapy. We found that HOXC10 promotes survival in cells treated with doxorubicin, paclitaxel, or carboplatin by suppressing apoptosis and upregulating NF-κB Overexpressed HOXC10 increases S-phase-specific DNA damage repair by homologous recombination (HR) and checkpoint recovery in cells at three important phases. For double-strand break repair, HOXC10 recruits HR proteins at sites of DNA damage. It enhances resection and lastly, it resolves stalled replication forks, leading to initiation of DNA replication following DNA damage. We show that HOXC10 facilitates, but is not directly involved in DNA damage repair mediated by HR. HOXC10 achieves integration of these functions by binding to, and activating cyclin-dependent kinase, CDK7, which regulates transcription by phosphorylating the carboxy-terminal domain of RNA polymerase II. Consistent with these findings, inhibitors of CDK7 reverse HOXC10-mediated drug resistance in cultured cells. Blocking HOXC10 function, therefore, presents a promising new strategy to overcome chemotherapy resistance in breast cancer. Cancer Res; 76(15); 4443-56. ©2016 AACR.
Collapse
Affiliation(s)
- Helen Sadik
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Preethi Korangath
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nguyen K Nguyen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Balazs Gyorffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary. 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Rakesh Kumar
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mohammad Hedayati
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wei Wen Teo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sunju Park
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hardik Panday
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Teresa Gonzalez Munoz
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Otilia Menyhart
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary. 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Nilay Shah
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Raj K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas
| | - Jenny C Chang
- Methodist Cancer Center, The Houston Methodist Research Institute, Houston, Texas
| | - Theodore DeWeese
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Howard Y Chang
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas.
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
22
|
Manova V, Gruszka D. DNA damage and repair in plants - from models to crops. FRONTIERS IN PLANT SCIENCE 2015; 6:885. [PMID: 26557130 PMCID: PMC4617055 DOI: 10.3389/fpls.2015.00885] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/05/2015] [Indexed: 05/17/2023]
Abstract
The genomic integrity of every organism is constantly challenged by endogenous and exogenous DNA-damaging factors. Mutagenic agents cause reduced stability of plant genome and have a deleterious effect on development, and in the case of crop species lead to yield reduction. It is crucial for all organisms, including plants, to develop efficient mechanisms for maintenance of the genome integrity. DNA repair processes have been characterized in bacterial, fungal, and mammalian model systems. The description of these processes in plants, in contrast, was initiated relatively recently and has been focused largely on the model plant Arabidopsis thaliana. Consequently, our knowledge about DNA repair in plant genomes - particularly in the genomes of crop plants - is by far more limited. However, the relatively small size of the Arabidopsis genome, its rapid life cycle and availability of various transformation methods make this species an attractive model for the study of eukaryotic DNA repair mechanisms and mutagenesis. Moreover, abnormalities in DNA repair which proved to be lethal for animal models are tolerated in plant genomes, although sensitivity to DNA damaging agents is retained. Due to the high conservation of DNA repair processes and factors mediating them among eukaryotes, genes and proteins that have been identified in model species may serve to identify homologous sequences in other species, including crop plants, in which these mechanisms are poorly understood. Crop breeding programs have provided remarkable advances in food quality and yield over the last century. Although the human population is predicted to "peak" by 2050, further advances in yield will be required to feed this population. Breeding requires genetic diversity. The biological impact of any mutagenic agent used for the creation of genetic diversity depends on the chemical nature of the induced lesions and on the efficiency and accuracy of their repair. More recent targeted mutagenesis procedures also depend on host repair processes, with different pathways yielding different products. Enhanced understanding of DNA repair processes in plants will inform and accelerate the engineering of crop genomes via both traditional and targeted approaches.
Collapse
Affiliation(s)
- Vasilissa Manova
- Department of Molecular Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of SciencesSofia
| | - Damian Gruszka
- Department of Genetics, Faculty of Biology and Environment Protection, University of SilesiaKatowice, Poland
| |
Collapse
|
23
|
Xu L, Wang W, Chong J, Shin JH, Xu J, Wang D. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications. Crit Rev Biochem Mol Biol 2015; 50:503-19. [PMID: 26392149 DOI: 10.3109/10409238.2015.1087960] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress toward understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation.
Collapse
Affiliation(s)
- Liang Xu
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Wei Wang
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Jenny Chong
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Ji Hyun Shin
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Jun Xu
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Dong Wang
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| |
Collapse
|
24
|
Sonohara Y, Iwai S, Kuraoka I. An in vitro method for detecting genetic toxicity based on inhibition of RNA synthesis by DNA lesions. Genes Environ 2015; 37:8. [PMID: 27350805 PMCID: PMC4918014 DOI: 10.1186/s41021-015-0014-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/09/2015] [Indexed: 11/25/2022] Open
Abstract
Introduction A wide variety of DNA lesions such as ultraviolet light-induced photoproducts and chemically induced bulky adducts and crosslinks (intrastrand and interstrand) interfere with replication and lead to mutations and cell death. In the human body, these damages may cause cancer, inborn diseases, and aging. So far, mutation-related actions of DNA polymerases during replication have been intensively studied. However, DNA lesions also block RNA synthesis, making the detection of their effects on transcription equally important for chemical safety assessment. Previously, we established an in vivo method for detecting DNA damage induced by ultraviolet light and/or chemicals via inhibition of RNA polymerase by visualizing transcription. Results Here, we present an in vitro method for detecting the effects of chemically induced DNA lesions using in vitro transcription with T7 RNA polymerase and real-time reverse transcription polymerase chain reaction (PCR) based on inhibition of in vitro RNA synthesis. Conventional PCR and real-time reverse transcription PCR without in vitro transcription can detect DNA lesions such as complicated cisplatin DNA adducts but not UV-induced lesions. We found that only this combination of in vitro transcription and real-time reverse transcription PCR can detect both cisplatin- and UV-induced DNA lesions that interfere with transcription. Conclusions We anticipate that this method will be useful for estimating the potential transcriptional toxicity of chemicals in terminally differentiated cells engaged in active transcription and translation but not in replication.
Collapse
Affiliation(s)
- Yuina Sonohara
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Isao Kuraoka
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| |
Collapse
|
25
|
Abstract
Environmental agents are constantly challenging cells by damaging DNA, leading to the blockage of transcription elongation. How do cells deal with transcription-blockage and how is transcription restarted after the blocking lesions are removed? Here we review the processes responsible for the removal of transcription-blocking lesions, as well as mechanisms of transcription restart. We also discuss recent data suggesting that blocked RNA polymerases may not resume transcription from the site of the lesion following its removal but, rather, are forced to start over from the beginning of genes.
Collapse
|
26
|
Boros G, Miko E, Muramatsu H, Weissman D, Emri E, van der Horst GTJ, Szegedi A, Horkay I, Emri G, Karikó K, Remenyik É. Identification of Cyclobutane Pyrimidine Dimer-Responsive Genes Using UVB-Irradiated Human Keratinocytes Transfected with In Vitro-Synthesized Photolyase mRNA. PLoS One 2015; 10:e0131141. [PMID: 26121660 PMCID: PMC4488231 DOI: 10.1371/journal.pone.0131141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/27/2015] [Indexed: 12/16/2022] Open
Abstract
Major biological effects of UVB are attributed to cyclobutane pyrimidine dimers (CPDs), the most common photolesions formed on DNA. To investigate the contribution of CPDs to UVB-induced changes of gene expression, a model system was established by transfecting keratinocytes with pseudouridine-modified mRNA (Ψ-mRNA) encoding CPD-photolyase. Microarray analyses of this model system demonstrated that more than 50% of the gene expression altered by UVB was mediated by CPD photolesions. Functional classification of the gene targets revealed strong effects of CPDs on the regulation of the cell cycle and transcriptional machineries. To confirm the microarray data, cell cycle-regulatory genes, CCNE1 and CDKN2B that were induced exclusively by CPDs were selected for further investigation. Following UVB irradiation, expression of these genes increased significantly at both mRNA and protein levels, but not in cells transfected with CPD-photolyase Ψ-mRNA and exposed to photoreactivating light. Treatment of cells with inhibitors of c-Jun N-terminal kinase (JNK) blocked the UVB-dependent upregulation of both genes suggesting a role for JNK in relaying the signal of UVB-induced CPDs into transcriptional responses. Thus, photolyase mRNA-based experimental platform demonstrates CPD-dependent and -independent events of UVB-induced cellular responses, and, as such, has the potential to identify novel molecular targets for treatment of UVB-mediated skin diseases.
Collapse
Affiliation(s)
- Gábor Boros
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edit Miko
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Hiromi Muramatsu
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eszter Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Dermatological Allergology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Irén Horkay
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail:
| | - Katalin Karikó
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Éva Remenyik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
27
|
Tanasova M, Goeldi S, Meyer F, Hanawalt PC, Spivak G, Sturla SJ. Altered minor-groove hydrogen bonds in DNA block transcription elongation by T7 RNA polymerase. Chembiochem 2015; 16:1212-8. [PMID: 25881991 DOI: 10.1002/cbic.201500077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 01/16/2023]
Abstract
DNA transcription depends upon the highly efficient and selective function of RNA polymerases (RNAPs). Modifications in the template DNA can impact the progression of RNA synthesis, and a number of DNA adducts, as well as abasic sites, arrest or stall transcription. Nonetheless, data are needed to understand why certain modifications to the structure of DNA bases stall RNA polymerases while others are efficiently bypassed. In this study, we evaluate the impact that alterations in dNTP/rNTP base-pair geometry have on transcription. T7 RNA polymerase was used to study transcription over modified purines and pyrimidines with altered H-bonding capacities. The results suggest that introducing wobble base-pairs into the DNA:RNA heteroduplex interferes with transcriptional elongation and stalls RNA polymerase. However, transcriptional stalling is not observed if mismatched base-pairs do not H-bond. Together, these studies show that RNAP is able to discriminate mismatches resulting in wobble base-pairs, and suggest that, in cases of modifications with minor steric impact, DNA:RNA heteroduplex geometry could serve as a controlling factor for initiating transcription-coupled DNA repair.
Collapse
Affiliation(s)
- Marina Tanasova
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (USA)
| | - Silvan Goeldi
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich (Switzerland)
| | - Fabian Meyer
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich (Switzerland)
| | - Philip C Hanawalt
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305-5020 (USA)
| | - Graciela Spivak
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305-5020 (USA)
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich (Switzerland).
| |
Collapse
|
28
|
Xu L, Da L, Plouffe SW, Chong J, Kool E, Wang D. Molecular basis of transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis. DNA Repair (Amst) 2014; 19:71-83. [PMID: 24767259 DOI: 10.1016/j.dnarep.2014.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maintaining high transcriptional fidelity is essential for life. Some DNA lesions lead to significant changes in transcriptional fidelity. In this review, we will summarize recent progress towards understanding the molecular basis of RNA polymerase II (Pol II) transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis. In particular, we will focus on the three key checkpoint steps of controlling Pol II transcriptional fidelity: insertion (specific nucleotide selection and incorporation), extension (differentiation of RNA transcript extension of a matched over mismatched 3'-RNA terminus), and proofreading (preferential removal of misincorporated nucleotides from the 3'-RNA end). We will also discuss some novel insights into the molecular basis and chemical perspectives of controlling Pol II transcriptional fidelity through structural, computational, and chemical biology approaches.
Collapse
Affiliation(s)
- Liang Xu
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Linati Da
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Steven W Plouffe
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Jenny Chong
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Eric Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, United States.
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States.
| |
Collapse
|
29
|
Kitsera N, Gasteiger K, Lühnsdorf B, Allgayer J, Epe B, Carell T, Khobta A. Cockayne syndrome: varied requirement of transcription-coupled nucleotide excision repair for the removal of three structurally different adducts from transcribed DNA. PLoS One 2014; 9:e94405. [PMID: 24713864 PMCID: PMC3979923 DOI: 10.1371/journal.pone.0094405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/14/2014] [Indexed: 12/04/2022] Open
Abstract
Hereditary defects in the transcription-coupled nucleotide excision repair (TC-NER) pathway of damaged DNA cause severe neurodegenerative disease Cockayne syndrome (CS), however the origin and chemical nature of the underlying DNA damage had remained unknown. To find out, to which degree the structural properties of DNA lesions determine the extent of transcription arrest in human CS cells, we performed quantitative host cell reactivation analyses of expression vectors containing various synthetic adducts. We found that a single 3-(deoxyguanosin-N2-yl)-2-acetylaminofluorene adduct (dG(N2)-AAF) constitutes an unsurmountable obstacle to transcription in both CS-A and CS-B cells and is removed exclusively by the CSA- and CSB-dependent pathway. In contrast, contribution of the CS proteins to the removal of two other transcription-blocking DNA lesions – N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG(C8)-AAF) and cyclobutane thymine-thymine (TT) dimer – is only minor (TT dimer) or none (dG(C8)-AAF). The unique properties of dG(N2)-AAF identify this adduct as a prototype for a new class of DNA lesions that escape the alternative global genome repair and could be critical for the CS pathogenesis.
Collapse
Affiliation(s)
- Nataliya Kitsera
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Karola Gasteiger
- Department of Chemistry and Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
| | - Bork Lühnsdorf
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Julia Allgayer
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Thomas Carell
- Department of Chemistry and Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
| | - Andriy Khobta
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
30
|
Epshtein V, Kamarthapu V, McGary K, Svetlov V, Ueberheide B, Proshkin S, Mironov A, Nudler E. UvrD facilitates DNA repair by pulling RNA polymerase backwards. Nature 2014; 505:372-7. [PMID: 24402227 DOI: 10.1038/nature12928] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/02/2013] [Indexed: 11/09/2022]
Abstract
UvrD helicase is required for nucleotide excision repair, although its role in this process is not well defined. Here we show that Escherichia coli UvrD binds RNA polymerase during transcription elongation and, using its helicase/translocase activity, forces RNA polymerase to slide backward along DNA. By inducing backtracking, UvrD exposes DNA lesions shielded by blocked RNA polymerase, allowing nucleotide excision repair enzymes to gain access to sites of damage. Our results establish UvrD as a bona fide transcription elongation factor that contributes to genomic integrity by resolving conflicts between transcription and DNA repair complexes. Furthermore, we show that the elongation factor NusA cooperates with UvrD in coupling transcription to DNA repair by promoting backtracking and recruiting nucleotide excision repair enzymes to exposed lesions. Because backtracking is a shared feature of all cellular RNA polymerases, we propose that this mechanism enables RNA polymerases to function as global DNA damage scanners in bacteria and eukaryotes.
Collapse
Affiliation(s)
- Vitaly Epshtein
- 1] Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA [2]
| | - Venu Kamarthapu
- 1] Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA [2] Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA [3]
| | - Katelyn McGary
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Sergey Proshkin
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow 117545, Russia
| | - Alexander Mironov
- 1] State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow 117545, Russia [2] Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow 119991, Russia
| | - Evgeny Nudler
- 1] Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA [2] Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
31
|
Tremblay M, Charton R, Wittner M, Levasseur G, Griesenbeck J, Conconi A. UV light-induced DNA lesions cause dissociation of yeast RNA polymerases-I and establishment of a specialized chromatin structure at rRNA genes. Nucleic Acids Res 2013; 42:380-95. [PMID: 24097442 PMCID: PMC3874186 DOI: 10.1093/nar/gkt871] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The cytotoxicity of UV light-induced DNA lesions results from their interference with transcription and replication. DNA lesions arrest elongating RNA polymerases, an event that triggers transcription-coupled nucleotide excision repair. Since arrested RNA polymerases reduce the accessibility of repair factors to DNA lesions, they might be displaced. The fate of arrested RNA polymerases-II at DNA lesions has been extensively studied, yielding partially contradictory results. Considerably less is known about RNA polymerases-I that transcribe nucleosomes-depleted rRNA genes at very high rate. To investigate the fate of arrested RNA polymerases-I at DNA lesions, chromatin-immunoprecipitation, electron microscopy, transcription run-on, psoralen-cross-linking and chromatin-endogenous cleavage were employed. We found that RNA polymerases-I density increased at the 5′-end of the gene, likely due to continued transcription initiation followed by elongation and pausing/release at the first DNA lesion. Most RNA polymerases-I dissociated downstream of the first DNA lesion, concomitant with chromatin closing that resulted from deposition of nucleosomes. Although nucleosomes were deposited, the high mobility group-box Hmo1 (component of actively transcribed rRNA genes) remained associated. After repair of DNA lesions, Hmo1 containing chromatin might help to restore transcription elongation and reopening of rRNA genes chromatin.
Collapse
Affiliation(s)
- Maxime Tremblay
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada and Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, 93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress. Proc Natl Acad Sci U S A 2013; 110:E2261-70. [PMID: 23733932 DOI: 10.1073/pnas.1220071110] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cockayne syndrome type B ATPase (CSB) belongs to the SwItch/Sucrose nonfermentable family. Its mutations are linked to Cockayne syndrome phenotypes and classically are thought to be caused by defects in transcription-coupled repair, a subtype of DNA repair. Here we show that after UV-C irradiation, immediate early genes such as activating transcription factor 3 (ATF3) are overexpressed. Although the ATF3 target genes, including dihydrofolate reductase (DHFR), were unable to recover RNA synthesis in CSB-deficient cells, transcription was restored rapidly in normal cells. There the synthesis of DHFR mRNA restarts on the arrival of RNA polymerase II and CSB and the subsequent release of ATF3 from its cAMP response element/ATF target site. In CSB-deficient cells ATF3 remains bound to the promoter, thereby preventing the arrival of polymerase II and the restart of transcription. Silencing of ATF3, as well as stable introduction of wild-type CSB, restores RNA synthesis in UV-irradiated CSB cells, suggesting that, in addition to its role in DNA repair, CSB activity likely is involved in the reversal of inhibitory properties on a gene-promoter region. We present strong experimental data supporting our view that the transcriptional defects observed in UV-irradiated CSB cells are largely the result of a permanent transcriptional repression of a certain set of genes in addition to some defect in DNA repair.
Collapse
|
33
|
A quantitative assay for assessing the effects of DNA lesions on transcription. Nat Chem Biol 2013; 8:817-22. [PMID: 22902614 PMCID: PMC3509257 DOI: 10.1038/nchembio.1046] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/22/2012] [Indexed: 12/12/2022]
Abstract
Most mammalian cells in nature are quiescent but actively transcribing mRNA for normal physiological processes; thus, it is important to investigate how endogenous and exogenous DNA damage compromises transcription in cells. Here we describe a new competitive transcription and adduct bypass (CTAB) assay to determine the effects of DNA lesions on the fidelity and efficiency of transcription. Using this strategy, we demonstrate that the oxidatively induced lesions 8,5'-cyclo-2'-deoxyadenosine (cdA) and 8,5'-cyclo-2'-deoxyguanosine (cdG) and the methylglyoxal-induced lesion N(2)-(1-carboxyethyl)-2'-deoxyguanosine (N(2)-CEdG) strongly inhibited transcription in vitro and in mammalian cells. In addition, cdA and cdG, but not N(2)-CEdG, induced transcriptional mutagenesis in vitro and in vivo. Furthermore, when located on the template DNA strand, all examined lesions were primarily repaired by transcription-coupled nucleotide excision repair in mammalian cells. This newly developed CTAB assay should be generally applicable for quantitatively assessing how other DNA lesions affect DNA transcription in vitro and in cells.
Collapse
|
34
|
Baradaran-Heravi A, Cho KS, Tolhuis B, Sanyal M, Morozova O, Morimoto M, Elizondo LI, Bridgewater D, Lubieniecka J, Beirnes K, Myung C, Leung D, Fam HK, Choi K, Huang Y, Dionis KY, Zonana J, Keller K, Stenzel P, Mayfield C, Lücke T, Bokenkamp A, Marra MA, van Lohuizen M, Lewis DB, Shaw C, Boerkoel CF. Penetrance of biallelic SMARCAL1 mutations is associated with environmental and genetic disturbances of gene expression. Hum Mol Genet 2012; 21:2572-87. [PMID: 22378147 PMCID: PMC3349428 DOI: 10.1093/hmg/dds083] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/07/2012] [Accepted: 02/24/2012] [Indexed: 01/21/2023] Open
Abstract
Biallelic mutations of the DNA annealing helicase SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1) cause Schimke immuno-osseous dysplasia (SIOD, MIM 242900), an incompletely penetrant autosomal recessive disorder. Using human, Drosophila and mouse models, we show that the proteins encoded by SMARCAL1 orthologs localize to transcriptionally active chromatin and modulate gene expression. We also show that, as found in SIOD patients, deficiency of the SMARCAL1 orthologs alone is insufficient to cause disease in fruit flies and mice, although such deficiency causes modest diffuse alterations in gene expression. Rather, disease manifests when SMARCAL1 deficiency interacts with genetic and environmental factors that further alter gene expression. We conclude that the SMARCAL1 annealing helicase buffers fluctuations in gene expression and that alterations in gene expression contribute to the penetrance of SIOD.
Collapse
Affiliation(s)
- Alireza Baradaran-Heravi
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Generation of reporter plasmids containing defined base modifications in the DNA strand of choice. Anal Biochem 2012; 425:47-53. [PMID: 22406247 DOI: 10.1016/j.ab.2012.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 02/07/2023]
Abstract
Physiological effects of DNA bases other than A, G, C, and T as well as ways of removal of such bases from genomes are studied intensely. Methods for targeted insertion of modified bases into DNA, therefore, are highly demanded in the fields of DNA repair and epigenetics. This article describes efficient procedures for incorporation of modified DNA bases into a plasmid-borne enhanced green fluorescent protein (EGFP) gene. The procedure exploits excision of a stretch of 18 nt from either the transcribed or nontranscribed DNA strand with the help of the sequence-specific nicking endonucleases Nb.Bpu10I and Nt.Bpu10I. The excised single-stranded oligonucleotide is then swapped for a synthetic DNA strand containing a desired base modification. Base modifications that form Watson-Crick-type base pairs were efficiently incorporated into plasmid DNA by a straightforward strand exchange, which was achieved by local melting in the presence of large excesses of the synthetic oligonucleotides and reannealing followed by ligation. Base modifications that cause significant distortions of the normal DNA structure, such as thymine glycol and uracil mispaired with guanine, failed to produce high yields of direct strand exchange but could still be incorporated very efficiently when the excised fragment was depleted in an intermediate step.
Collapse
|
36
|
Sidorenko VS, Yeo JE, Bonala RR, Johnson F, Schärer OD, Grollman AP. Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts. Nucleic Acids Res 2012; 40:2494-505. [PMID: 22121226 PMCID: PMC3315299 DOI: 10.1093/nar/gkr1095] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 01/14/2023] Open
Abstract
Exposure to aristolochic acid (AA), a component of Aristolochia plants used in herbal remedies, is associated with chronic kidney disease and urothelial carcinomas of the upper urinary tract. Following metabolic activation, AA reacts with dA and dG residues in DNA to form aristolactam (AL)-DNA adducts. These mutagenic lesions generate a unique TP53 mutation spectrum, dominated by A:T to T:A transversions with mutations at dA residues located almost exclusively on the non-transcribed strand. We determined the level of AL-dA adducts in human fibroblasts treated with AA to determine if this marked strand bias could be accounted for by selective resistance to global-genome nucleotide excision repair (GG-NER). AL-dA adduct levels were elevated in cells deficient in GG-NER and transcription-coupled NER, but not in XPC cell lines lacking GG-NER only. In vitro, plasmids containing a single AL-dA adduct were resistant to the early recognition and incision steps of NER. Additionally, the NER damage sensor, XPC-RAD23B, failed to specifically bind to AL-DNA adducts. However, placing AL-dA in mismatched sequences promotes XPC-RAD23B binding and renders this adduct susceptible to NER, suggesting that specific structural features of this adduct prevent processing by NER. We conclude that AL-dA adducts are not recognized by GG-NER, explaining their high mutagenicity and persistence in target tissues.
Collapse
Affiliation(s)
- Victoria S. Sidorenko
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jung-Eun Yeo
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Radha R. Bonala
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Francis Johnson
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Orlando D. Schärer
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Arthur P. Grollman
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
37
|
Winczura A, Zdżalik D, Tudek B. Damage of DNA and proteins by major lipid peroxidation products in genome stability. Free Radic Res 2012; 46:442-59. [PMID: 22257221 DOI: 10.3109/10715762.2012.658516] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidative stress and lipid peroxidation (LPO) accompanying infections and chronic inflammation may induce several human cancers. LPO products are characterized by carbohydrate chains of different length, reactive aldehyde groups and double bonds, which make these molecules reactive to nucleic acids, proteins and cellular thiols. LPO-derived adducts to DNA bases form etheno-type and propano-type exocyclic rings, which have profound mutagenic potential, and are elevated in several cancer-prone diseases. Adducts of long chain LPO products to DNA bases inhibit transcription. Elimination from DNA of LPO-induced lesions is executed by several repair systems: base excision repair (BER), direct reversal by AlkB family proteins, nucleotide excision repair (NER) and recombination. Modifications of proteins with LPO products may regulate cellular processes like apoptosis, cell signalling and senescence. This review summarizes consequences of LPO products' presence in cell, particularly 4-hydroxy-2-nonenal, in terms of genomic stability.
Collapse
Affiliation(s)
- Alicja Winczura
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 02-106 Warsaw, Poland
| | | | | |
Collapse
|
38
|
Nakano T, Ouchi R, Kawazoe J, Pack SP, Makino K, Ide H. T7 RNA polymerases backed up by covalently trapped proteins catalyze highly error prone transcription. J Biol Chem 2012; 287:6562-72. [PMID: 22235136 DOI: 10.1074/jbc.m111.318410] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RNA polymerases (RNAPs) transcribe genes through the barrier of nucleoproteins and site-specific DNA-binding proteins on their own or with the aid of accessory factors. Proteins are often covalently trapped on DNA by DNA damaging agents, forming DNA-protein cross-links (DPCs). However, little is known about how immobilized proteins affect transcription. To elucidate the effect of DPCs on transcription, we constructed DNA templates containing site-specific DPCs and performed in vitro transcription reactions using phage T7 RNAP. We show here that DPCs constitute strong but not absolute blocks to in vitro transcription catalyzed by T7 RNAP. More importantly, sequence analysis of transcripts shows that RNAPs roadblocked not only by DPCs but also by the stalled leading RNAP become highly error prone and generate mutations in the upstream intact template regions. This contrasts with the transcriptional mutations induced by conventional DNA lesions, which are delivered to the active site or its proximal position in RNAPs and cause direct misincorporation. Our data also indicate that the trailing RNAP stimulates forward translocation of the stalled leading RNAP, promoting the translesion bypass of DPCs. The present results provide new insights into the transcriptional fidelity and mutual interactions of RNAPs that encounter persistent roadblocks.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Prabha S, China A, Rao DN, Nagaraja V. WITHDRAWN: Stimulation of the Mycobacterium tuberculosis transcription elongation by MtbMfd. Tuberculosis (Edinb) 2011:S1472-9792(11)00213-7. [PMID: 22129656 DOI: 10.1016/j.tube.2011.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 11/03/2011] [Accepted: 11/08/2011] [Indexed: 11/20/2022]
Abstract
This article has been withdrawn at the request of the author(s). The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Swayam Prabha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
40
|
Khobta A, Epe B. Interactions between DNA damage, repair, and transcription. Mutat Res 2011; 736:5-14. [PMID: 21907218 DOI: 10.1016/j.mrfmmm.2011.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 06/22/2011] [Accepted: 07/25/2011] [Indexed: 01/16/2023]
Abstract
This review addresses a variety of mechanisms by which DNA repair interacts with transcription and vice versa. Blocking of transcriptional elongation is the best studied of these mechanisms. Transcription recovery after damage therefore has often been used as a surrogate marker of DNA repair in cells. However, it has become evident that relationships between DNA damage, repair, and transcription are more complex due to various indirect effects of DNA damage on gene transcription. These include inhibition of transcription by DNA repair intermediates as well as regulation of transcription and of the epigenetic status of the genes by DNA repair-related mechanisms. In addition, since transcription is emerging as an important endogenous source of DNA damage in cells, we briefly summarise recent advances in understanding the nature of co-transcriptionally induced DNA damage and the DNA repair pathways involved.
Collapse
Affiliation(s)
- Andriy Khobta
- Institute of Pharmacy and Biochemistry, University of Mainz, Mainz, Germany
| | | |
Collapse
|
41
|
Salinas-Rios V, Belotserkovskii BP, Hanawalt PC. DNA slip-outs cause RNA polymerase II arrest in vitro: potential implications for genetic instability. Nucleic Acids Res 2011; 39:7444-54. [PMID: 21666257 PMCID: PMC3177194 DOI: 10.1093/nar/gkr429] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The abnormal number of repeats found in triplet repeat diseases arises from 'repeat instability', in which the repetitive section of DNA is subject to a change in copy number. Recent studies implicate transcription in a mechanism for repeat instability proposed to involve RNA polymerase II (RNAPII) arrest caused by a CTG slip-out, triggering transcription-coupled repair (TCR), futile cycles of which may lead to repeat expansion or contraction. In the present study, we use defined DNA constructs to directly test whether the structures formed by CAG and CTG repeat slip-outs can cause transcription arrest in vitro. We found that a slip-out of (CAG)(20) or (CTG)(20) repeats on either strand causes RNAPII arrest in HeLa cell nuclear extracts. Perfect hairpins and loops on either strand also cause RNAPII arrest. These findings are consistent with a transcription-induced repeat instability model in which transcription arrest in mammalian cells may initiate a 'gratuitous' TCR event leading to a change in repeat copy number. An understanding of the underlying mechanism of repeat instability could lead to intervention to slow down expansion and delay the onset of many neurodegenerative diseases in which triplet repeat expansion is implicated.
Collapse
|
42
|
Circulating human B lymphocytes are deficient in nucleotide excision repair and accumulate mutations upon proliferation. Blood 2011; 117:6277-86. [DOI: 10.1182/blood-2010-12-326637] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Faithful repair of DNA lesions is a crucial task that dividing cells must actively perform to maintain genome integrity. Strikingly, nucleotide excision repair (NER), the most versatile DNA repair system, is specifically down-regulated in terminally differentiated cells. This prompted us to examine whether NER attenuation might be a common feature of all G0-arrested cells, and in particular of those that retain the capacity to reenter cell cycle and might thus convert unrepaired DNA lesions into mutations, a prerequisite for malignant transformation. Here we report that quiescent primary human B lymphocytes down-regulate NER at the global genome level while maintaining proficient repair of constitutively expressed genes. Quiescent B cells exposed to an environment that causes both DNA damage and proliferation accumulate point mutations in silent and inducible genes crucial for cell replication and differentiation, such as BCL6 and Cyclin D2. Similar to differentiated cells, NER attenuation in quiescent cells is associated with incomplete phosphorylation of the ubiquitin activating enzyme Ube1, which is required for proficient NER. Our data establish a mechanistic link between NER attenuation during quiescence and cell mutagenesis and also support the concept that oncogenic events targeting cell cycle- or activation-induced genes might initiate genomic instability and lymphomagenesis.
Collapse
|
43
|
Kitsera N, Stathis D, Lühnsdorf B, Müller H, Carell T, Epe B, Khobta A. 8-Oxo-7,8-dihydroguanine in DNA does not constitute a barrier to transcription, but is converted into transcription-blocking damage by OGG1. Nucleic Acids Res 2011; 39:5926-34. [PMID: 21441539 PMCID: PMC3152326 DOI: 10.1093/nar/gkr163] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The common DNA base modification 8-oxo-7,8-dihydroguanine (8-oxo-G) affects the efficiency and fidelity of transcription. We constructed plasmid substrates carrying single 8-oxo-G residues, specifically positioned in the transcribed or the non-transcribed DNA strands, to investigate their effects on the expression of an EGFP reporter gene and to explore the role of base excision repair in the mechanism of transcription inhibition. We report that 8-oxo-G does not directly block transcription in cells, since a single 8-oxo-G in the transcribed DNA strand did not reduce the EGFP expression levels in repair-deficient (OGG1-null) mouse embryonic fibroblast cell lines. Rather, inhibition of transcription by 8-oxo-G fully depends on 8-oxoguanine DNA glycosylase (OGG1) and, at the same time, does not require the localization of the lesion in the transcribed DNA strand. We propose that the interruption of transcription is induced by base excision repair intermediates and, therefore, could be a common consequence of various DNA base modifications. Concordantly, the non-blocking DNA modification uracil was also found to inhibit transcription, but in an OGG1-independent manner.
Collapse
Affiliation(s)
- Nataliya Kitsera
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Helicases that underpin replication of protein-bound DNA in Escherichia coli. Biochem Soc Trans 2011; 39:606-10. [DOI: 10.1042/bst0390606] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A pre-requisite for successful cell division in any organism is synthesis of an accurate copy of the genetic information needed for survival. This copying process is a mammoth task, given the amount of DNA that must be duplicated, but potential blocks to replication fork movement also pose a challenge for genome duplication. Damage to the template inhibits the replication machinery but proteins bound to the template such as RNA polymerases also present barriers to replication. This review discusses recent results from Escherichia coli that shed light on the roles of helicases in overcoming protein–DNA barriers to replication and that may illustrate fundamental aspects of how duplication of protein-bound DNA is underpinned in all organisms.
Collapse
|
45
|
Jensen A, Mullenders LHF. Transcription factor IIS impacts UV-inhibited transcription. DNA Repair (Amst) 2010; 9:1142-50. [PMID: 20729154 DOI: 10.1016/j.dnarep.2010.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/08/2010] [Accepted: 08/03/2010] [Indexed: 11/25/2022]
Abstract
Inhibition of transcription elongation can cause severe developmental and neurological abnormalities notably manifested by the rare recessive progeroid disorder Cockayne syndrome (CS). DNA alterations can cause permanent blocks to an elongating RNA polymerase II (RNAPII) leading to transcriptional arrest. Abrogation of transcription arrest requires removal of transcription blocking lesions through transcription-coupled nucleotide excision repair (TC-NER) a process defective in CS. Transcription elongation factor IIS (TFIIS) has been found to localize with the TC-NER complex after cellular exposure to UV-C light and in vitro addition of TFIIS to a damage arrested RNAPII causes transcript shortening. Hence default TFIIS activity might mimic or contribute to the severe phenotype of Cockayne syndrome. Here we show that down regulation of TFIIS by siRNA treatment of human cells lead to impaired RNA synthesis recovery and elevated levels of hyper-phosphorylated RNAPII after UV-irradiation. TFIIS knock down does not affect TC-NER, the reappearance of hypo-phosphorylated RNAPII post-UV-irradiation, UV sensitivity or the p53 damage response. These findings reveal a role for TFIIS in transcription recovery and re-establishment of the balance between hypo- and hyper-phosphorylated RNAPII after DNA damage repair.
Collapse
Affiliation(s)
- Anne Jensen
- Department of Toxicogenetics, Leiden University Medical Center, The Netherlands
| | | |
Collapse
|
46
|
Mechanisms and implications of transcription blockage by guanine-rich DNA sequences. Proc Natl Acad Sci U S A 2010; 107:12816-21. [PMID: 20616059 DOI: 10.1073/pnas.1007580107] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Various DNA sequences that interfere with transcription due to their unusual structural properties have been implicated in the regulation of gene expression and with genomic instability. An important example is sequences containing G-rich homopurine-homopyrimidine stretches, for which unusual transcriptional behavior is implicated in regulation of immunogenesis and in other processes such as genomic translocations and telomere function. To elucidate the mechanism of the effect of these sequences on transcription we have studied T7 RNA polymerase transcription of G-rich sequences in vitro. We have shown that these sequences produce significant transcription blockage in an orientation-, length- and supercoiling-dependent manner. Based upon the effects of various sequence modifications, solution conditions, and ribonucleotide substitutions, we conclude that transcription blockage is due to formation of unusually stable RNA/DNA hybrids, which could be further exacerbated by triplex formation. These structures are likely responsible for transcription-dependent replication blockage by G-rich sequences in vivo.
Collapse
|
47
|
Kadekaro AL, Leachman S, Kavanagh RJ, Swope V, Cassidy P, Supp D, Sartor M, Schwemberger S, Babcock G, Wakamatsu K, Ito S, Koshoffer A, Boissy RE, Manga P, Sturm RA, Abdel-Malek ZA. Melanocortin 1 receptor genotype: an important determinant of the damage response of melanocytes to ultraviolet radiation. FASEB J 2010; 24:3850-60. [PMID: 20519635 DOI: 10.1096/fj.10-158485] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The melanocortin 1 receptor gene is a main determinant of human pigmentation, and a melanoma susceptibility gene, because its variants that are strongly associated with red hair color increase melanoma risk. To test experimentally the association between melanocortin 1 receptor genotype and melanoma susceptibility, we compared the responses of primary human melanocyte cultures naturally expressing different melanocortin 1 receptor variants to α-melanocortin and ultraviolet radiation. We found that expression of 2 red hair variants abolished the response to α-melanocortin and its photoprotective effects, evidenced by lack of functional coupling of the receptor, and absence of reduction in ultraviolet radiation-induced hydrogen peroxide generation or enhancement of repair of DNA photoproducts, respectively. These variants had different heterozygous effects on receptor function. Microarray data confirmed the observed differences in responses of melanocytes with functional vs. nonfunctional receptor to α-melanocortin and ultraviolet radiation, and identified DNA repair and antioxidant genes that are modulated by α-melanocortin. Our findings highlight the molecular mechanisms by which the melanocortin 1 receptor genotype controls genomic stability of and the mutagenic effect of ultraviolet radiation on human melanocytes.
Collapse
Affiliation(s)
- Ana Luisa Kadekaro
- Department of Dermatology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0592, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Svejstrup JQ. The interface between transcription and mechanisms maintaining genome integrity. Trends Biochem Sci 2010; 35:333-8. [PMID: 20194025 DOI: 10.1016/j.tibs.2010.02.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/03/2010] [Accepted: 02/05/2010] [Indexed: 12/27/2022]
Abstract
Maintaining genome integrity is crucial for correctly regulated gene expression. Conversely, the process of transcription fundamentally impinges on genome stability, necessitating cellular mechanisms that lessen the genome destabilizing effect of reading genes. This review provides an overview of our present knowledge of how eukaryotic RNA polymerase II transcription affects, and is affected by, other DNA-related processes such as chromatin remodeling, DNA repair, recombination and replication.
Collapse
Affiliation(s)
- Jesper Q Svejstrup
- Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, EN6 3LD, UK.
| |
Collapse
|
49
|
Malik S, Chaurasia P, Lahudkar S, Durairaj G, Shukla A, Bhaumik SR. Rad26p, a transcription-coupled repair factor, is recruited to the site of DNA lesion in an elongating RNA polymerase II-dependent manner in vivo. Nucleic Acids Res 2009; 38:1461-77. [PMID: 20007604 PMCID: PMC2836574 DOI: 10.1093/nar/gkp1147] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Rad26p, a yeast homologue of human Cockayne syndrome B with an ATPase activity, plays a pivotal role in stimulating DNA repair at the coding sequences of active genes. On the other hand, DNA repair at inactive genes or silent areas of the genome is not regulated by Rad26p. However, how Rad26p recognizes DNA lesions at the actively transcribing genes to facilitate DNA repair is not clearly understood in vivo. Here, we show that Rad26p associates with the coding sequences of genes in a transcription-dependent manner, but independently of DNA lesions induced by 4-nitroquinoline-1-oxide in Saccharomyces cerevisiae. Further, histone H3 lysine 36 methylation that occurs at the active coding sequence stimulates the recruitment of Rad26p. Intriguingly, we find that Rad26p is recruited to the site of DNA lesion in an elongating RNA polymerase II-dependent manner. However, Rad26p does not recognize DNA lesions in the absence of active transcription. Together, these results provide an important insight as to how Rad26p is delivered to the damage sites at the active, but not inactive, genes to stimulate repair in vivo, shedding much light on the early steps of transcription-coupled repair in living eukaryotic cells.
Collapse
Affiliation(s)
- Shivani Malik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, 1245 Lincoln Drive, Carbondale, IL-62901, USA
| | | | | | | | | | | |
Collapse
|
50
|
Hamann I, Schwerdtle T, Hartwig A. Establishment of a non-radioactive cleavage assay to assess the DNA repair capacity towards oxidatively damaged DNA in subcellular and cellular systems and the impact of copper. Mutat Res 2009; 669:122-130. [PMID: 19505484 DOI: 10.1016/j.mrfmmm.2009.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/19/2009] [Accepted: 05/27/2009] [Indexed: 05/27/2023]
Abstract
Oxidative stress is involved in many diseases, and the search for appropriate biomarkers is one major focus in molecular epidemiology. 8-Oxoguanine (8-oxoG), a potentially mutagenic DNA lesion, is considered to be a sensitive biomarker for oxidative stress. Another approach consists in assessing the repair capacity towards 8-oxoG, mediated predominantly by the human 8-oxoguanine DNA glycosylase 1 (hOGG1). With respect to the latter, during the last few years so-called cleavage assays have been described, investigating the incision of (32)P-labelled and 8-oxoG damaged oligonucleotides by cell extracts. Within the present study, a sensitive non-radioactive test system based on a Cy5-labelled oligonucleotide has been established. Sources of incision activity are isolated proteins or extracts prepared from cultured cells and peripheral blood mononuclear cells (PBMC). After comparing different oligonucleotide structures, a hairpin-like structure was selected which was not degraded by cell extracts. Applying this test system the impact of copper on the activity of isolated hOGG1 and on hOGG activity in A549 cells was examined, showing a distinct inhibition of the isolated protein at low copper concentration as compared to a modest inhibition of hOGG activity in cells at beginning cytotoxic concentrations. For investigating PBMC, all reaction conditions, including the amounts of oligonucleotide and cell extract as well as the reaction time have been optimized. The incision activities of PBMC protein extracts obtained from different donors have been investigated, and inter-individual differences have been observed. In summary, the established method is as sensitive and even faster than the radioactive technique, and additionally, offers the advantage of reduced costs and low health risk.
Collapse
Affiliation(s)
- Ingrit Hamann
- Fachgebiet Lebensmittelchemie und Toxikologie, Institut für Lebensmitteltechnologie und Lebensmittelchemie, Technische Universität Berlin, Berlin, Germany
| | | | | |
Collapse
|