1
|
Cellier G, Nordey T, Cortada L, Gauche M, Rasoamanana H, Yahiaoui N, Rébert E, Prior P, Chéron JJ, Poussier S, Pruvost O. Molecular Epidemiology of Ralstonia pseudosolanacearum Phylotype I Strains in the Southwest Indian Ocean Region and Their Relatedness to African Strains. PHYTOPATHOLOGY 2023; 113:423-435. [PMID: 36399027 DOI: 10.1094/phyto-09-22-0355-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The increasing requirement for developing tools enabling fine strain traceability responsible for epidemics is tightly linked with the need to understand factors shaping pathogen populations and their environmental interactions. Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) is one of the most important plant diseases in tropical and subtropical regions. Sadly, little, outdated, or no information on its epidemiology is reported in the literature, although alarming outbreaks are regularly reported as disasters. A large set of phylotype I isolates (n = 2,608) was retrieved from diseased plants in fields across the Southwest Indian Ocean (SWIO) and Africa. This collection enabled further assessment of the epidemiological discriminating power of the previously published RS1-MLVA14 scheme. Thirteen markers were validated and characterized as not equally informative. Most had little infra-sequevar polymorphism, and their performance depended on the sequevar. Strong correlation was found with a previous multilocus sequence typing scheme. However, 2 to 3% of sequevars were not correctly assigned through endoglucanase gene sequence. Discriminant analysis of principal components (DAPC) revealed four groups with strong phylogenetic relatedness to sequevars 31, 33, and 18. Phylotype I-31 isolates were highly prevalent in the SWIO and Africa, but their dissemination pathways remain unclear. Tanzania and Mauritius showed the greatest diversity of RSSC strains, as the four DAPC groups were retrieved. Mauritius was the sole territory harboring a vast phylogenetic diversity and all DAPC groups. More research is still needed to understand the high prevalence of phylotype I-31 at such a large geographic scale.
Collapse
Affiliation(s)
- Gilles Cellier
- Anses, Plant Health Laboratory, Saint Pierre, Reunion Island
| | | | - Laura Cortada
- East Africa Hub, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
- Nematology Section, Department of Biology, Ghent University, Ghent, Belgium
| | - Mirana Gauche
- University of Reunion Island, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
- CIRAD, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| | - Hasina Rasoamanana
- University of Reunion Island, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
- CIRAD, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| | - Noura Yahiaoui
- Anses, Plant Health Laboratory, Saint Pierre, Reunion Island
- University of Reunion Island, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
- CIRAD, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| | - Emeline Rébert
- University of Reunion Island, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
- CIRAD, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| | - Philippe Prior
- INRAE, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint-Pierre, Reunion Island
| | - Jean Jacques Chéron
- CIRAD, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| | - Stéphane Poussier
- University of Reunion Island, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| | - Olivier Pruvost
- CIRAD, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| |
Collapse
|
2
|
COLMAN RE, BRINKERHOFF RJ, BUSCH JD, RAY C, DOYLE A, SAHL JW, KEIM P, COLLINGE SK, WAGNER DM. No evidence for enzootic plague within black-tailed prairie dog (Cynomys ludovicianus) populations. Integr Zool 2021; 16:834-851. [PMID: 33882192 PMCID: PMC9292313 DOI: 10.1111/1749-4877.12546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Yersinia pestis, causative agent of plague, occurs throughout the western United States in rodent populations and periodically causes epizootics in susceptible species, including black-tailed prairie dogs (Cynomys ludovicianus). How Y. pestis persists long-term in the environment between these epizootics is poorly understood but multiple mechanisms have been proposed, including, among others, a separate enzootic transmission cycle that maintains Y. pestis without involvement of epizootic hosts and persistence of Y. pestis within epizootic host populations without causing high mortality within those populations. We live-trapped and collected fleas from black-tailed prairie dogs and other mammal species from sites with and without black-tailed prairie dogs in 2004 and 2005 and tested all fleas for presence of Y. pestis. Y. pestis was not detected in 2126 fleas collected in 2004 but was detected in 294 fleas collected from multiple sites in 2005, before and during a widespread epizootic that drastically reduced black-tailed prairie dog populations in the affected colonies. Temporal and spatial patterns of Y. pestis occurrence in fleas and genotyping of Y. pestis present in some infected fleas suggest Y. pestis was introduced multiple times from sources outside the study area and once introduced, was dispersed between several sites. We conclude Y. pestis likely was not present in these black-tailed prairie dog colonies prior to epizootic activity in these colonies. Although we did not identify likely enzootic hosts, we found evidence that deer mice (Peromyscus maniculatus) may serve as bridging hosts for Y. pestis between unknown enzootic hosts and black-tailed prairie dogs.
Collapse
Affiliation(s)
- Rebecca E. COLMAN
- Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - R. Jory BRINKERHOFF
- Environmental Studies ProgramUniversity of Colorado at BoulderBoulderColoradoUSA
| | - Joseph D. BUSCH
- Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Chris RAY
- Environmental Studies ProgramUniversity of Colorado at BoulderBoulderColoradoUSA
| | - Adina DOYLE
- Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Jason W. SAHL
- Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Paul KEIM
- Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Sharon K. COLLINGE
- Environmental Studies ProgramUniversity of Colorado at BoulderBoulderColoradoUSA
| | - David M. WAGNER
- Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
3
|
Bakhtiari M, Park J, Ding YC, Shleizer-Burko S, Neuhausen SL, Halldórsson BV, Stefánsson K, Gymrek M, Bafna V. Variable number tandem repeats mediate the expression of proximal genes. Nat Commun 2021; 12:2075. [PMID: 33824302 PMCID: PMC8024321 DOI: 10.1038/s41467-021-22206-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Variable number tandem repeats (VNTRs) account for significant genetic variation in many organisms. In humans, VNTRs have been implicated in both Mendelian and complex disorders, but are largely ignored by genomic pipelines due to the complexity of genotyping and the computational expense. We describe adVNTR-NN, a method that uses shallow neural networks to genotype a VNTR in 18 seconds on 55X whole genome data, while maintaining high accuracy. We use adVNTR-NN to genotype 10,264 VNTRs in 652 GTEx individuals. Associating VNTR length with gene expression in 46 tissues, we identify 163 "eVNTRs". Of the 22 eVNTRs in blood where independent data is available, 21 (95%) are replicated in terms of significance and direction of association. 49% of the eVNTR loci show a strong and likely causal impact on the expression of genes and 80% have maximum effect size at least 0.3. The impacted genes are involved in diseases including Alzheimer's, obesity and familial cancers, highlighting the importance of VNTRs for understanding the genetic basis of complex diseases.
Collapse
Affiliation(s)
- Mehrdad Bakhtiari
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Jonghun Park
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Yuan-Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | | | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | | | | | - Melissa Gymrek
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Vineet Bafna
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Cui Y, Schmid BV, Cao H, Dai X, Du Z, Ryan Easterday W, Fang H, Guo C, Huang S, Liu W, Qi Z, Song Y, Tian H, Wang M, Wu Y, Xu B, Yang C, Yang J, Yang X, Zhang Q, Jakobsen KS, Zhang Y, Stenseth NC, Yang R. Evolutionary selection of biofilm-mediated extended phenotypes in Yersinia pestis in response to a fluctuating environment. Nat Commun 2020; 11:281. [PMID: 31941912 PMCID: PMC6962365 DOI: 10.1038/s41467-019-14099-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Yersinia pestis is transmitted from fleas to rodents when the bacterium develops an extensive biofilm in the foregut of a flea, starving it into a feeding frenzy, or, alternatively, during a brief period directly after feeding on a bacteremic host. These two transmission modes are in a trade-off regulated by the amount of biofilm produced by the bacterium. Here by investigating 446 global isolated Y. pestis genomes, including 78 newly sequenced isolates sampled over 40 years from a plague focus in China, we provide evidence for strong selection pressures on the RNA polymerase ω-subunit encoding gene rpoZ. We demonstrate that rpoZ variants have an increased rate of biofilm production in vitro, and that they evolve in the ecosystem during colder and drier periods. Our results support the notion that the bacterium is constantly adapting-through extended phenotype changes in the fleas-in response to climate-driven changes in the niche.
Collapse
Affiliation(s)
- Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Boris V Schmid
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, N-0316, Oslo, Norway
| | - Hanli Cao
- The Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, 830002, China
| | - Xiang Dai
- The Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, 830002, China
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - W Ryan Easterday
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, N-0316, Oslo, Norway
| | - Haihong Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Chenyi Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Shanqian Huang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Wanbing Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhizhen Qi
- Key Laboratory for Plague Prevention and Control of Qinghai Province, Qinghai Institute for Endemic Diseases Prevention and Control, Xining, 811602, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Min Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Bing Xu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jing Yang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Xianwei Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Qingwen Zhang
- Key Laboratory for Plague Prevention and Control of Qinghai Province, Qinghai Institute for Endemic Diseases Prevention and Control, Xining, 811602, China
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, N-0316, Oslo, Norway.
| | - Yujiang Zhang
- The Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, 830002, China.
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, N-0316, Oslo, Norway. .,Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China.
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
5
|
Nakato GV, Fuentes Rojas JL, Verniere C, Blondin L, Coutinho T, Mahuku G, Wicker E. A new Multi Locus Variable Number of Tandem Repeat Analysis Scheme for epidemiological surveillance of Xanthomonas vasicola pv. musacearum, the plant pathogen causing bacterial wilt on banana and enset. PLoS One 2019; 14:e0215090. [PMID: 30973888 PMCID: PMC6459536 DOI: 10.1371/journal.pone.0215090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/26/2019] [Indexed: 11/25/2022] Open
Abstract
Xanthomonas vasicola pv. musacearum (Xvm) which causes Xanthomonas wilt (XW) on banana (Musa accuminata x balbisiana) and enset (Ensete ventricosum), is closely related to the species Xanthomonas vasicola that contains the pathovars vasculorum (Xvv) and holcicola (Xvh), respectively pathogenic to sugarcane and sorghum. Xvm is considered a monomorphic bacterium whose intra-pathovar diversity remains poorly understood. With the sudden emergence of Xvm within east and central Africa coupled with the unknown origin of one of the two sublineages suggested for Xvm, attention has shifted to adapting technologies that focus on identifying the origin and distribution of the genetic diversity within this pathogen. Although microbiological and conventional molecular diagnostics have been useful in pathogen identification. Recent advances have ushered in an era of genomic epidemiology that aids in characterizing monomorphic pathogens. To unravel the origin and pathways of the recent emergence of XW in Eastern and Central Africa, there was a need for a genotyping tool adapted for molecular epidemiology. Multi-Locus Variable Number of Tandem Repeat Analysis (MLVA) is able to resolve the evolutionary patterns and invasion routes of a pathogen. In this study, we identified microsatellite loci from nine published Xvm genome sequences. Of the 36 detected microsatellite loci, 21 were selected for primer design and 19 determined to be highly typeable, specific, reproducible and polymorphic with two- to four- alleles per locus on a sub-collection. The 19 markers were multiplexed and applied to genotype 335 Xvm strains isolated from seven countries over several years. The microsatellite markers grouped the Xvm collection into three clusters; with two similar to the SNP-based sublineages 1 and 2 and a new cluster 3, revealing an unknown diversity in Ethiopia. Five of the 19 markers had alleles present in both Xvm and Xanthomonas vasicola pathovars holcicola and vasculorum, supporting the phylogenetic closeliness of these three pathovars. Thank to the public availability of the haplotypes on the MLVABank database, this highly reliable and polymorphic genotyping tool can be further used in a transnational surveillance network to monitor the spread and evolution of XW throughout Africa.. It will inform and guide management of Xvm both in banana-based and enset-based cropping systems. Due to the suitability of MLVA-19 markers for population genetic analyses, this genotyping tool will also be used in future microevolution studies.
Collapse
Affiliation(s)
- Gloria Valentine Nakato
- IITA, Kampala, Uganda
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics/Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | | | | | | | - Teresa Coutinho
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics/Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | | | - Emmanuel Wicker
- UMR IPME, Univ Montpellier, CIRAD, IRD, Montpellier, France
- CIRAD, UMR IPME, Montpellier, France
| |
Collapse
|
6
|
Fu S, Octavia S, Wang Q, Tanaka MM, Tay CY, Sintchenko V, Lan R. Evolution of Variable Number Tandem Repeats and Its Relationship with Genomic Diversity in Salmonella Typhimurium. Front Microbiol 2016; 7:2002. [PMID: 28082952 PMCID: PMC5183578 DOI: 10.3389/fmicb.2016.02002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/30/2016] [Indexed: 01/06/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is the most common Salmonella serovar causing human infections in Australia and many other countries. A total of 12,112 S. Typhimurium isolates from New South Wales were analyzed by multi-locus variable number of tandem repeat (VNTR) analysis (MLVA) using five VNTRs from 2007 to 2014. We found that mid ranges of repeat units of 8–14 in VNTR locus STTR5, 6–13 in STTR6, and 9–12 in STTR10 were always predominant in the population (>50%). In vitro passaging experiments using MLVA type carrying extreme length alleles found that the majority of long length alleles mutated to short ones and short length alleles mutated to longer ones. Both data suggest directional mutability of VNTRs toward mid-range repeats. Sequencing of 28 isolates from a newly emerged MLVA type and its five single locus variants revealed that single nucleotide variation between isolates with up to two MLVA differences ranged from 0 to 12 single nucleotide polymorphisms (SNPs). However, there was no relationship between SNP and VNTR differences. A population genetic model of the joint distribution of VNTRs and SNPs variations was used to estimate the mutation rates of the two markers, yielding a ratio of 1 VNTR change to 6.9 SNP changes. When only one VNTR repeat difference was considered, the majority of pairwise SNP difference between isolates were 4 SNPs or fewer. Based on this observation and our previous findings of SNP differences of outbreak isolates, we suggest that investigation of S. Typhimurium community outbreaks should include cases of 1 repeat difference to increase sensitivity. This study offers new insights into the short-term VNTR evolution of S. Typhimurium and its application for epidemiological typing.
Collapse
Affiliation(s)
- Songzhe Fu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, NSW, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, NSW, Australia
| | - Qinning Wang
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research, Westmead Hospital Sydney, NSW, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, NSW, Australia
| | - Chin Yen Tay
- Pathology and Laboratory Medicine, University of Western Australia Perth, WA, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research, Westmead HospitalSydney, NSW, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of SydneySydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, NSW, Australia
| |
Collapse
|
7
|
Vogler AJ, Nottingham R, Busch JD, Sahl JW, Shuey MM, Foster JT, Schupp JM, Smith SR, Rocke TE, Keim P, Wagner DM. VNTR diversity in Yersinia pestis isolates from an animal challenge study reveals the potential for in vitro mutations during laboratory cultivation. INFECTION GENETICS AND EVOLUTION 2016; 45:297-302. [PMID: 27664903 DOI: 10.1016/j.meegid.2016.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/30/2016] [Accepted: 09/20/2016] [Indexed: 10/21/2022]
Abstract
Underlying mutation rates and other evolutionary forces shape the population structure of bacteria in nature. Although easily overlooked, similar forces are at work in the laboratory and may influence observed mutations. Here, we investigated tissue samples and Yersinia pestis isolates from a rodent laboratory challenge with strain CO92 using whole genome sequencing and multi-locus variable-number tandem repeat (VNTR) analysis (MLVA). We identified six VNTR mutations that were found to have occurred in vitro during laboratory cultivation rather than in vivo during the rodent challenge. In contrast, no single nucleotide polymorphism (SNP) mutations were observed, either in vivo or in vitro. These results were consistent with previously published mutation rates and the calculated number of Y. pestis generations that occurred during the in vitro versus the in vivo portions of the experiment. When genotyping disease outbreaks, the potential for in vitro mutations should be considered, particularly when highly variable genetic markers such as VNTRs are used.
Collapse
Affiliation(s)
- Amy J Vogler
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, United States
| | - Roxanne Nottingham
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, United States
| | - Joseph D Busch
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, United States
| | - Jason W Sahl
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, United States
| | - Megan M Shuey
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, United States; Department of Medicine, Vanderbilt University, School of Medicine, Nashville, TN, United States
| | - Jeffrey T Foster
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, United States; Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - James M Schupp
- Translational Genomics Research Institute North, Flagstaff, AZ, United States
| | - Susan R Smith
- US Geological Survey, National Wildlife Health Center, Madison, WI, United States
| | - Tonie E Rocke
- US Geological Survey, National Wildlife Health Center, Madison, WI, United States
| | - Paul Keim
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, United States; Translational Genomics Research Institute North, Flagstaff, AZ, United States
| | - David M Wagner
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, United States.
| |
Collapse
|
8
|
Kalvisa A, Tsirogiannis C, Silamikelis I, Skenders G, Broka L, Zirnitis A, Jansone I, Ranka R. MIRU-VNTR genotype diversity and indications of homoplasy in M. avium strains isolated from humans and slaughter pigs in Latvia. INFECTION GENETICS AND EVOLUTION 2016; 43:15-21. [PMID: 27178993 DOI: 10.1016/j.meegid.2016.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/06/2016] [Accepted: 05/08/2016] [Indexed: 10/21/2022]
Abstract
Diseases which are caused by non-tuberculous mycobacteria (NTM) are an increasing problem in the developed countries. In Latvia, one of the most clinically important members of NTM is Mycobacterium avium (M. avium), an opportunistic pathogen which has been isolated from several lung disease patients and tissue samples of slaughter pigs. This study was designed to characterize the genetic diversity of the M. avium isolates in Latvia and to compare the distribution of genotypic patterns among humans and pigs. Eleven (Hall and Salipante, 2010) clinical M. avium samples, isolated from patients of Center of Tuberculosis and Lung Diseases (years 2003-2010), and 32 isolates from pig necrotic mesenterial lymph nodes in different regions (years 2003-2007) were analyzed. The majority (42 of 43) of samples were identified as M. avium subsp. hominissuis; one porcine isolate belonged to M. avium subsp. avium. MIRU-VNTR genotyping revealed 13 distinct genotypes, among which nine genotype patterns, including M. avium subsp. avium isolate, were newly identified. IS1245 RFLP fingerprinting of 25 M. avium subsp. hominissuis samples yielded 17 different IS1245 RFLP patterns, allowing an efficient discrimination of isolates. Clusters of identical RFLP profiles were observed within host species, geographical locations and time frame of several years. Additional in silico analysis on simulated MIRU-VNTR genotype population datasets showed that the MIRU-VNTR pattern similarity could partly arise due to probabilistic increase of acquiring homoplasy among subpopulations, thus the similar MIRU-VNTR profiles of M. avium strains even in close geographical proximity should be interpreted with caution.
Collapse
Affiliation(s)
- Adrija Kalvisa
- Latvian Biomedical Research and Study Centre (LV BMC), Riga, Latvia; Riga Stradins University (RSU), Riga, Latvia
| | | | | | - Girts Skenders
- Riga East University Hospital, Tuberculosis and Lung Diseases Center, Latvia
| | - Lonija Broka
- Riga East University Hospital, Tuberculosis and Lung Diseases Center, Latvia
| | - Agris Zirnitis
- Department of Veterinary Medicine, Latvia University of Agriculture, Jelgava, Latvia
| | - Inta Jansone
- Latvian Biomedical Research and Study Centre (LV BMC), Riga, Latvia
| | - Renate Ranka
- Latvian Biomedical Research and Study Centre (LV BMC), Riga, Latvia; Riga Stradins University (RSU), Riga, Latvia.
| |
Collapse
|
9
|
Two Distinct Yersinia pestis Populations Causing Plague among Humans in the West Nile Region of Uganda. PLoS Negl Trop Dis 2016; 10:e0004360. [PMID: 26866815 PMCID: PMC4750964 DOI: 10.1371/journal.pntd.0004360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/14/2015] [Indexed: 01/14/2023] Open
Abstract
Background Plague is a life-threatening disease caused by the bacterium, Yersinia pestis. Since the 1990s, Africa has accounted for the majority of reported human cases. In Uganda, plague cases occur in the West Nile region, near the border with Democratic Republic of Congo. Despite the ongoing risk of contracting plague in this region, little is known about Y. pestis genotypes causing human disease. Methodology/Principal Findings During January 2004–December 2012, 1,092 suspect human plague cases were recorded in the West Nile region of Uganda. Sixty-one cases were culture-confirmed. Recovered Y. pestis isolates were analyzed using three typing methods, single nucleotide polymorphisms (SNPs), pulsed field gel electrophoresis (PFGE), and multiple variable number of tandem repeat analysis (MLVA) and subpopulations analyzed in the context of associated geographic, temporal, and clinical data for source patients. All three methods separated the 61 isolates into two distinct 1.ANT lineages, which persisted throughout the 9 year period and were associated with differences in elevation and geographic distribution. Conclusions/Significance We demonstrate that human cases of plague in the West Nile region of Uganda are caused by two distinct 1.ANT genetic subpopulations. Notably, all three typing methods used, SNPs, PFGE, and MLVA, identified the two genetic subpopulations, despite recognizing different mutation types in the Y. pestis genome. The geographic and elevation differences between the two subpopulations is suggestive of their maintenance in highly localized enzootic cycles, potentially with differing vector-host community composition. This improved understanding of Y. pestis subpopulations in the West Nile region will be useful for identifying ecologic and environmental factors associated with elevated plague risk. Plague, a severe and often fatal zoonotic disease, is caused by the bacterium Yersinia pestis. Currently, the majority of human cases have been reported from resource limited areas of Africa, where the proximity to commensal rats and other small mammals increases the likelihood for human contact with infected animals or their fleas. Over a 9 year time period, >1000 suspect cases were recorded in the West Nile region of Uganda within the districts of Arua and Zombo. Culture-confirmed cases were shown by three independent typing methods to be due to two distinct 1.ANT genetic subpopulations of Y. pestis. The two genetic subpopulations persisted throughout the 9 year time period, consistent with their ongoing maintenance in local enzootic cycles. Additionally, the two subpopulations were found to differ with respect to geographic location and elevation, with SNP Group 1 strains being found further north and at lower elevations as compared to SNP Group 2. The relative independence of the two Y. pestis subpopulations is suggestive of their maintenance in distinct foci involving enzootic cycles with differing vector-host community composition.
Collapse
|
10
|
Kingry LC, Rowe LA, Respicio-Kingry LB, Beard CB, Schriefer ME, Petersen JM. Whole genome multilocus sequence typing as an epidemiologic tool for Yersinia pestis. Diagn Microbiol Infect Dis 2015; 84:275-80. [PMID: 26778487 DOI: 10.1016/j.diagmicrobio.2015.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/19/2015] [Accepted: 12/10/2015] [Indexed: 01/14/2023]
Abstract
Human plague is a severe and often fatal zoonotic disease caused by Yersinia pestis. For public health investigations of human cases, nonintensive whole genome molecular typing tools, capable of defining epidemiologic relationships, are advantageous. Whole genome multilocus sequence typing (wgMLST) is a recently developed methodology that simplifies genomic analyses by transforming millions of base pairs of sequence into character data for each gene. We sequenced 13 US Y. pestis isolates with known epidemiologic relationships. Sequences were assembled de novo, and multilocus sequence typing alleles were assigned by comparison against 3979 open reading frames from the reference strain CO92. Allele-based cluster analysis accurately grouped the 13 isolates, as well as 9 publicly available Y. pestis isolates, by their epidemiologic relationships. Our findings indicate wgMLST is a simplified, sensitive, and scalable tool for epidemiologic analysis of Y. pestis strains.
Collapse
Affiliation(s)
- Luke C Kingry
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, CO 80523
| | - Lori A Rowe
- Division of Scientific Resources, Biotechnology Core Facility Branch, Centers for Disease Prevention and Control, Atlanta, GA 30329
| | - Laurel B Respicio-Kingry
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, CO 80523
| | - Charles B Beard
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, CO 80523
| | - Martin E Schriefer
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, CO 80523
| | - Jeannine M Petersen
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, CO 80523.
| |
Collapse
|
11
|
Leiser OP, Merkley ED, Clowers BH, Deatherage Kaiser BL, Lin A, Hutchison JR, Melville AM, Wagner DM, Keim PS, Foster JT, Kreuzer HW. Investigation of Yersinia pestis Laboratory Adaptation through a Combined Genomics and Proteomics Approach. PLoS One 2015; 10:e0142997. [PMID: 26599979 PMCID: PMC4658026 DOI: 10.1371/journal.pone.0142997] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 10/29/2015] [Indexed: 11/19/2022] Open
Abstract
The bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a parallel serial passage experiment (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing, LC-MS/MS proteomic analysis, and GC/MS metabolomics. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS/MS proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism and cell envelope biogenesis. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement.
Collapse
Affiliation(s)
- Owen P. Leiser
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86001, United States of America
| | - Eric D. Merkley
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, WA, 99354, United States of America
| | - Brooke L. Deatherage Kaiser
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - Andy Lin
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - Janine R. Hutchison
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - Angela M. Melville
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - David M. Wagner
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86001, United States of America
| | - Paul S. Keim
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86001, United States of America
| | - Jeffrey T. Foster
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86001, United States of America
| | - Helen W. Kreuzer
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
- * E-mail:
| |
Collapse
|
12
|
Vogler AJ, Keim P, Wagner DM. A review of methods for subtyping Yersinia pestis: From phenotypes to whole genome sequencing. INFECTION GENETICS AND EVOLUTION 2015; 37:21-36. [PMID: 26518910 DOI: 10.1016/j.meegid.2015.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/23/2015] [Accepted: 10/24/2015] [Indexed: 12/28/2022]
Abstract
Numerous subtyping methods have been applied to Yersinia pestis with varying success. Here, we review the various subtyping methods that have been applied to Y. pestis and their capacity for answering questions regarding the population genetics, phylogeography, and molecular epidemiology of this important human pathogen. Methods are evaluated in terms of expense, difficulty, transferability among laboratories, discriminatory power, usefulness for different study questions, and current applicability in light of the advent of whole genome sequencing.
Collapse
Affiliation(s)
- Amy J Vogler
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ 86011-4073, USA.
| | - Paul Keim
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ 86011-4073, USA; Translational Genomics Research Institute North, Flagstaff, AZ 86001, USA.
| | - David M Wagner
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ 86011-4073, USA.
| |
Collapse
|
13
|
Lowell JL, Antolin MF, Andersen GL, Hu P, Stokowski RP, Gage KL. Single-Nucleotide Polymorphisms Reveal Spatial Diversity Among Clones of Yersinia pestis During Plague Outbreaks in Colorado and the Western United States. Vector Borne Zoonotic Dis 2015; 15:291-302. [PMID: 25988438 PMCID: PMC4449629 DOI: 10.1089/vbz.2014.1714] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND In western North America, plague epizootics caused by Yersinia pestis appear to sweep across landscapes, primarily infecting and killing rodents, especially ground squirrels and prairie dogs. During these epizootics, the risk of Y. pestis transmission to humans is highest. While empirical models that include climatic conditions and densities of rodent hosts and fleas can predict when epizootics are triggered, bacterial transmission patterns across landscapes, and the scale at which Y. pestis is maintained in nature during inter-epizootic periods, are poorly defined. Elucidating the spatial extent of Y. pestis clones during epizootics can determine whether bacteria are propagated across landscapes or arise independently from local inter-epizootic maintenance reservoirs. MATERIAL AND METHODS We used DNA microarray technology to identify single-nucleotide polymorphisms (SNPs) in 34 Y. pestis isolates collected in the western United States from 1980 to 2006, 21 of which were collected during plague epizootics in Colorado. Phylogenetic comparisons were used to elucidate the hypothesized spread of Y. pestis between the mountainous Front Range and the eastern plains of northern Colorado during epizootics. Isolates collected from across the western United States were included for regional comparisons. RESULTS By identifying SNPs that mark individual clones, our results strongly suggest that Y. pestis is maintained locally and that widespread epizootic activity is caused by multiple clones arising independently at small geographic scales. This is in contrast to propagation of individual clones being transported widely across landscapes. Regionally, our data are consistent with the notion that Y. pestis diversifies at relatively local scales following long-range translocation events. We recommend that surveillance and prediction by public health and wildlife management professionals focus more on models of local or regional weather patterns and ecological factors that may increase risk of widespread epizootics, rather than predicting or attempting to explain epizootics on the basis of movement of host species that may transport plague.
Collapse
Affiliation(s)
- Jennifer L. Lowell
- Department of Health Sciences, Carroll College, Helena, Montana
- Department of Biology, Colorado State University, Fort Collins, Colorado
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Michael F. Antolin
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Gary L. Andersen
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Ping Hu
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | | | - Kenneth L. Gage
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| |
Collapse
|
14
|
Velsko SP, Osburn J, Allen J. Forensic interpretation of molecular variation on networks of disease transmission and genetic inheritance. Electrophoresis 2014; 35:3117-24. [PMID: 25137141 PMCID: PMC7159361 DOI: 10.1002/elps.201400205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/26/2014] [Accepted: 08/01/2014] [Indexed: 11/20/2022]
Abstract
This paper describes the inference-on-networks (ION) framework for forensic interpretat ION of molecular typing data in cases involving allegations of infectious microbial transmission, association of disease outbreaks with alleged sources, and identifying familial relationships using mitochondrial or Y chromosomal DNA. The framework is applicable to molecular typing data obtained using any technique, including those based on electrophoretic separations. A key insight is that the networks associated with disease transmission or DNA inheritance can be used to define specific testable relationships and avoid the ambiguity and subjectivity associated with the criteria used for inferring genetic relatedness now in use. We discuss specific applications of the framework to the 2003 severe acute respiratory syndrome (SARS) outbreak in Singapore and the 2001 foot-and-mouth disease virus (FMDV) outbreak in Great Britain.
Collapse
Affiliation(s)
- Stephan P. Velsko
- Lawrence Livermore National LaboratoryGlobal Security DirectorateLivermoreCAUSA
| | - Joanne Osburn
- Lawrence Livermore National LaboratoryGlobal Security DirectorateLivermoreCAUSA
| | - Jonathan Allen
- Lawrence Livermore National LaboratoryGlobal Security DirectorateLivermoreCAUSA
| |
Collapse
|
15
|
Benavides JA, Cross PC, Luikart G, Creel S. Limitations to estimating bacterial cross-species transmission using genetic and genomic markers: inferences from simulation modeling. Evol Appl 2014; 7:774-87. [PMID: 25469159 PMCID: PMC4227858 DOI: 10.1111/eva.12173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 04/30/2014] [Indexed: 12/12/2022] Open
Abstract
Cross-species transmission (CST) of bacterial pathogens has major implications for human health, livestock, and wildlife management because it determines whether control actions in one species may have subsequent effects on other potential host species. The study of bacterial transmission has benefitted from methods measuring two types of genetic variation: variable number of tandem repeats (VNTRs) and single nucleotide polymorphisms (SNPs). However, it is unclear whether these data can distinguish between different epidemiological scenarios. We used a simulation model with two host species and known transmission rates (within and between species) to evaluate the utility of these markers for inferring CST. We found that CST estimates are biased for a wide range of parameters when based on VNTRs and a most parsimonious reconstructed phylogeny. However, estimations of CST rates lower than 5% can be achieved with relatively low bias using as low as 250 SNPs. CST estimates are sensitive to several parameters, including the number of mutations accumulated since introduction, stochasticity, the genetic difference of strains introduced, and the sampling effort. Our results suggest that, even with whole-genome sequences, unbiased estimates of CST will be difficult when sampling is limited, mutation rates are low, or for pathogens that were recently introduced.
Collapse
Affiliation(s)
| | - Paul C Cross
- U.S. Geological Survey, Northern Rocky Mountain Science Center Bozeman, MT, USA
| | - Gordon Luikart
- Flathead Lake Biological Station, Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana Polson, MT, USA
| | - Scott Creel
- Department of Ecology, Montana State University Bozeman, MT, USA
| |
Collapse
|
16
|
Analysis of Salmonella enterica serovar Typhimurium variable-number tandem-repeat data for public health investigation based on measured mutation rates and whole-genome sequence comparisons. J Bacteriol 2014; 196:3036-44. [PMID: 24957617 DOI: 10.1128/jb.01820-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Variable-number tandem repeats (VNTRs) mutate rapidly and can be useful markers for genotyping. While multilocus VNTR analysis (MLVA) is increasingly used in the detection and investigation of food-borne outbreaks caused by Salmonella enterica serovar Typhimurium (S. Typhimurium) and other bacterial pathogens, MLVA data analysis usually relies on simple clustering approaches that may lead to incorrect interpretations. Here, we estimated the rates of copy number change at each of the five loci commonly used for S. Typhimurium MLVA, during in vitro and in vivo passage. We found that loci STTR5, STTR6, and STTR10 changed during passage but STTR3 and STTR9 did not. Relative rates of change were consistent across in vitro and in vivo growth and could be accurately estimated from diversity measures of natural variation observed during large outbreaks. Using a set of 203 isolates from a series of linked outbreaks and whole-genome sequencing of 12 representative isolates, we assessed the accuracy and utility of several alternative methods for analyzing and interpreting S. Typhimurium MLVA data. We show that eBURST analysis was accurate and informative. For construction of MLVA-based trees, a novel distance metric, based on the geometric model of VNTR evolution coupled with locus-specific weights, performed better than the commonly used simple or categorical distance metrics. The data suggest that, for the purpose of identifying potential transmission clusters for further investigation, isolates whose profiles differ at one of the rapidly changing STTR5, STTR6, and STTR10 loci should be collapsed into the same cluster.
Collapse
|
17
|
Cui Y, Yang X, Xiao X, Anisimov AP, Li D, Yan Y, Zhou D, Rajerison M, Carniel E, Achtman M, Yang R, Song Y. Genetic variations of live attenuated plague vaccine strains (Yersinia pestis EV76 lineage) during laboratory passages in different countries. INFECTION GENETICS AND EVOLUTION 2014; 26:172-9. [PMID: 24905600 DOI: 10.1016/j.meegid.2014.05.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 05/13/2014] [Accepted: 05/21/2014] [Indexed: 12/20/2022]
Abstract
Plague, one of the most devastating infectious diseases in human history, is caused by the bacterial species Yersinia pestis. A live attenuated Y. pestis strain (EV76) has been widely used as a plague vaccine in various countries around the world. Here we compared the whole genome sequence of an EV76 strain used in China (EV76-CN) with the genomes of Y. pestis wild isolates to identify genetic variations specific to the EV76 lineage. We identified 6 SNPs and 6 Indels (insertions and deletions) differentiating EV76-CN from its counterparts. Then, we screened these polymorphic sites in 28 other strains of EV76 lineage that were stored in different countries. Based on the profiles of SNPs and Indels, we reconstructed the parsimonious dissemination history of EV76 lineage. This analysis revealed that there have been at least three independent imports of EV76 strains into China. Additionally, we observed that the pyrE gene is a mutation hotspot in EV76 lineages. The fine comparison results based on whole genome sequence in this study provide better understanding of the effects of laboratory passages on the accumulation of genetic polymorphisms in plague vaccine strains. These variations identified here will also be helpful in discriminating different EV76 derivatives.
Collapse
Affiliation(s)
- Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xianwei Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiao Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Andrey P Anisimov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | | | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | | | - Elisabeth Carniel
- Yersinia Research Unit, National Reference Laboratory, Institut Pasteur, Paris, France
| | - Mark Achtman
- Environmental Research Institute, University College Cork, Cork, Ireland, United Kingdom; Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Environmental Research Institute, University College Cork, Cork, Ireland, United Kingdom.
| |
Collapse
|
18
|
Mick V, Le Carrou G, Corde Y, Game Y, Jay M, Garin-Bastuji B. Brucella melitensis in France: persistence in wildlife and probable spillover from Alpine ibex to domestic animals. PLoS One 2014; 9:e94168. [PMID: 24732322 PMCID: PMC3986073 DOI: 10.1371/journal.pone.0094168] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/12/2014] [Indexed: 11/19/2022] Open
Abstract
Bovine brucellosis is a major zoonosis, mainly caused by Brucella abortus, more rarely by Brucella melitensis. France has been bovine brucellosis officially-free since 2005 with no cases reported in domestic/wild ruminants since 2003. In 2012, bovine and autochthonous human cases due to B. melitensis biovar 3 (Bmel3) occurred in the French Alps. Epidemiological investigations implemented in wild and domestic ruminants evidenced a high seroprevalence (>45%) in Alpine ibex (Capra ibex); no cases were disclosed in other domestic or wild ruminants, except for one isolated case in a chamois (Rupicapra rupicapra). These results raised the question of a possible persistence/emergence of Brucella in wildlife. The purpose of this study was to assess genetic relationships among the Bmel3 strains historically isolated in humans, domestic and wild ruminants in Southeastern France, over two decades, by the MLVA-panel2B assay, and to propose a possible explanation for the origin of the recent bovine and human infections. Indeed, this genotyping strategy proved to be efficient for this microepidemiological investigation using an interpretation cut-off established for a fine-scale setting. The isolates, from the 2012 domestic/human outbreak harbored an identical genotype, confirming a recent and direct contamination from cattle to human. Interestingly, they clustered not only with isolates from wildlife in 2012, but also with local historical domestic isolates, in particular with the 1999 last bovine case in the same massif. Altogether, our results suggest that the recent bovine outbreak could have originated from the Alpine ibex population. This is the first report of a B. melitensis spillover from wildlife to domestic ruminants and the sustainability of the infection in Alpine ibex. However, this wild population, reintroduced in the 1970s in an almost closed massif, might be considered as a semi-domestic free-ranging herd. Anthropogenic factors could therefore account with the high observed intra-species prevalence.
Collapse
Affiliation(s)
- Virginie Mick
- Paris-Est University/Anses, EU/OIE/FAO & National Reference Laboratory for Brucellosis, Animal Health Laboratory, Maisons-Alfort, France
| | - Gilles Le Carrou
- Paris-Est University/Anses, EU/OIE/FAO & National Reference Laboratory for Brucellosis, Animal Health Laboratory, Maisons-Alfort, France
| | - Yannick Corde
- Paris-Est University/Anses, EU/OIE/FAO & National Reference Laboratory for Brucellosis, Animal Health Laboratory, Maisons-Alfort, France
| | - Yvette Game
- Departmental Veterinary Laboratory of Savoie (LDAV 73), Chambery, France
| | - Maryne Jay
- Paris-Est University/Anses, EU/OIE/FAO & National Reference Laboratory for Brucellosis, Animal Health Laboratory, Maisons-Alfort, France
| | - Bruno Garin-Bastuji
- Paris-Est University/Anses, EU/OIE/FAO & National Reference Laboratory for Brucellosis, Animal Health Laboratory, Maisons-Alfort, France
| |
Collapse
|
19
|
Chiou CS. Multilocus variable-number tandem repeat analysis as a molecular tool for subtyping and phylogenetic analysis of bacterial pathogens. Expert Rev Mol Diagn 2014; 10:5-7. [DOI: 10.1586/erm.09.76] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Bühlmann A, Dreo T, Rezzonico F, Pothier JF, Smits THM, Ravnikar M, Frey JE, Duffy B. Phylogeography and population structure of the biologically invasive phytopathogen Erwinia amylovora inferred using minisatellites. Environ Microbiol 2013; 16:2112-25. [PMID: 24112873 DOI: 10.1111/1462-2920.12289] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/14/2013] [Indexed: 01/08/2023]
Abstract
Erwinia amylovora causes a major disease of pome fruit trees worldwide, and is regulated as a quarantine organism in many countries. While some diversity of isolates has been observed, molecular epidemiology of this bacterium is hindered by a lack of simple molecular typing techniques with sufficiently high resolution. We report a molecular typing system of E. amylovora based on variable number of tandem repeats (VNTR) analysis. Repeats in the E. amylovora genome were identified with comparative genomic tools, and VNTR markers were developed and validated. A Multiple-Locus VNTR Analysis (MLVA) was applied to E. amylovora isolates from bacterial collections representing global and regional distribution of the pathogen. Based on six repeats, MLVA allowed the distinction of 227 haplotypes among a collection of 833 isolates of worldwide origin. Three geographically separated groups were recognized among global isolates using Bayesian clustering methods. Analysis of regional outbreaks confirmed presence of diverse haplotypes but also high representation of certain haplotypes during outbreaks. MLVA analysis is a practical method for epidemiological studies of E. amylovora, identifying previously unresolved population structure within outbreaks. Knowledge of such structure can increase our understanding on how plant diseases emerge and spread over a given geographical region.
Collapse
Affiliation(s)
- Andreas Bühlmann
- Plant Protection Division, Agroscope Changins-Wädenswil Research Station ACW, CH-8820, Wädenswil, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Dynamic of mutational events in variable number tandem repeats of Escherichia coli O157:H7. BIOMED RESEARCH INTERNATIONAL 2013; 2013:390354. [PMID: 24093095 PMCID: PMC3777172 DOI: 10.1155/2013/390354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 07/22/2013] [Indexed: 11/30/2022]
Abstract
VNTRs regions have been successfully used for bacterial subtyping; however, the hypervariability in VNTR loci is problematic when trying to predict the relationships among isolates. Since few studies have examined the mutation rate of these markers, our aim was to estimate mutation rates of VNTRs specific for verotoxigenic E. coli O157:H7. The knowledge of VNTR mutational rates and the factors affecting them would make MLVA more effective for epidemiological or microbial forensic investigations. For this purpose, we analyzed nine loci performing parallel, serial passage experiments (PSPEs) on 9 O157:H7 strains. The combined 9 PSPE population rates for the 8 mutating loci ranged from 4.4 × 10−05 to 1.8 × 10−03 mutations/generation, and the combined 8-loci mutation rate was of 2.5 × 10−03 mutations/generation. Mutations involved complete repeat units, with only one point mutation detected. A similar proportion between single and multiple repeat changes was detected. Of the 56 repeat mutations, 59% were insertions and 41% were deletions, and 72% of the mutation events corresponded to O157-10 locus. For alleles with up to 13 UR, a constant and low mutation rate was observed; meanwhile longer alleles were associated with higher and variable mutation rates. Our results are useful to interpret data from microevolution and population epidemiology studies and particularly point out that the inclusion or not of O157-10 locus or, alternatively, a differential weighting data according to the mutation rates of loci must be evaluated in relation with the objectives of the proposed study.
Collapse
|
22
|
Pearson T, Hornstra HM, Sahl JW, Schaack S, Schupp JM, Beckstrom-Sternberg SM, O'Neill MW, Priestley RA, Champion MD, Beckstrom-Sternberg JS, Kersh GJ, Samuel JE, Massung RF, Keim P. When outgroups fail; phylogenomics of rooting the emerging pathogen, Coxiella burnetii. Syst Biol 2013; 62:752-62. [PMID: 23736103 PMCID: PMC3739886 DOI: 10.1093/sysbio/syt038] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 02/19/2013] [Accepted: 05/28/2013] [Indexed: 11/20/2022] Open
Abstract
Rooting phylogenies is critical for understanding evolution, yet the importance, intricacies and difficulties of rooting are often overlooked. For rooting, polymorphic characters among the group of interest (ingroup) must be compared to those of a relative (outgroup) that diverged before the last common ancestor (LCA) of the ingroup. Problems arise if an outgroup does not exist, is unknown, or is so distant that few characters are shared, in which case duplicated genes originating before the LCA can be used as proxy outgroups to root diverse phylogenies. Here, we describe a genome-wide expansion of this technique that can be used to solve problems at the other end of the evolutionary scale: where ingroup individuals are all very closely related to each other, but the next closest relative is very distant. We used shared orthologous single nucleotide polymorphisms (SNPs) from 10 whole genome sequences of Coxiella burnetii, the causative agent of Q fever in humans, to create a robust, but unrooted phylogeny. To maximize the number of characters informative about the rooting, we searched entire genomes for polymorphic duplicated regions where orthologs of each paralog could be identified so that the paralogs could be used to root the tree. Recent radiations, such as those of emerging pathogens, often pose rooting challenges due to a lack of ingroup variation and large genomic differences with known outgroups. Using a phylogenomic approach, we created a robust, rooted phylogeny for C. burnetii. [Coxiella burnetii; paralog SNPs; pathogen evolution; phylogeny; recent radiation; root; rooting using duplicated genes.].
Collapse
Affiliation(s)
- Talima Pearson
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, USA
| | - Heidie M. Hornstra
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, USA
| | - Jason W. Sahl
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biology, Reed College, Portland, OR, USA
| | - Sarah Schaack
- Pathogen Genomics Division, Translational Genomics Research Institute, Flagstaff, AZ, USA
| | | | - Stephen M. Beckstrom-Sternberg
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biology, Reed College, Portland, OR, USA
| | - Matthew W. O'Neill
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, USA
| | - Rachael A. Priestley
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mia D. Champion
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biology, Reed College, Portland, OR, USA
| | | | - Gilbert J. Kersh
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - James E. Samuel
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, College Station, TX, USA
| | - Robert F. Massung
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Paul Keim
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biology, Reed College, Portland, OR, USA
| |
Collapse
|
23
|
Li Y, Cui Y, Cui B, Yan Y, Yang X, Wang H, Qi Z, Zhang Q, Xiao X, Guo Z, Ma C, Wang J, Song Y, Yang R. Features of Variable Number of Tandem Repeats in Yersinia pestis and the Development of a Hierarchical Genotyping Scheme. PLoS One 2013; 8:e66567. [PMID: 23805236 PMCID: PMC3689786 DOI: 10.1371/journal.pone.0066567] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/09/2013] [Indexed: 01/14/2023] Open
Abstract
Background Variable number of tandem repeats (VNTRs) that are widely distributed in the genome of Yersinia pestis proved to be useful markers for the genotyping and source-tracing of this notorious pathogen. In this study, we probed into the features of VNTRs in the Y. pestis genome and developed a simple hierarchical genotyping system based on optimized VNTR loci. Methodology/Principal Findings Capillary electrophoresis was used in this study for multi-locus VNTR analysis (MLVA) in 956 Y. pestis strains. The general features and genetic diversities of 88 VNTR loci in Y. pestis were analyzed with BioNumerics, and a “14+12” loci-based hierarchical genotyping system, which is compatible with single nucleotide polymorphism-based phylogenic analysis, was established. Conclusions/Significance Appropriate selection of target loci reduces the impact of homoplasies caused by the rapid mutation rates of VNTR loci. The optimized “14+12” loci are highly discriminative in genotyping and source-tracing Y. pestis for molecular epidemiological or microbial forensic investigations with less time and lower cost. An MLVA genotyping datasets of representative strains will improve future research on the source-tracing and microevolution of Y. pestis.
Collapse
Affiliation(s)
- Yanjun Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Laboratory Department, Navy General Hospital, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Baizhong Cui
- Qinghai Institute for Endemic Diseases Prevention and Control, Xining, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xianwei Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Haidong Wang
- Laboratory Department, Navy General Hospital, Beijing, China
| | - Zhizhen Qi
- Qinghai Institute for Endemic Diseases Prevention and Control, Xining, China
| | - Qingwen Zhang
- Qinghai Institute for Endemic Diseases Prevention and Control, Xining, China
| | - Xiao Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhaobiao Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Cong Ma
- Laboratory Department, Navy General Hospital, Beijing, China
| | - Jing Wang
- Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (RY); (YS)
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (RY); (YS)
| |
Collapse
|
24
|
Multiple-locus variable-number tandem-repeat analysis in genotyping Yersinia enterocolitica strains from human and porcine origins. J Clin Microbiol 2013; 51:2154-9. [PMID: 23637293 DOI: 10.1128/jcm.00710-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sporadic and epidemiologically linked Yersinia enterocolitica strains (n = 379) isolated from fecal samples from human patients, tonsil or fecal samples from pigs collected at slaughterhouses, and pork samples collected at meat stores were genotyped using multiple-locus variable-number tandem-repeat analysis (MLVA) with six loci, i.e., V2A, V4, V5, V6, V7, and V9. In total, 312 different MLVA types were found. Similar types were detected (i) in fecal samples collected from human patients over 2 to 3 consecutive years, (ii) in samples from humans and pigs, and (iii) in samples from pigs that originated from the same farms. Among porcine strains, we found farm-specific MLVA profiles. Variations in the numbers of tandem repeats from one to four for variable-number tandem-repeat (VNTR) loci V2A, V5, V6, and V7 were observed within a farm. MLVA was applicable for serotypes O:3, O:5,27, and O:9 and appeared to be a highly discriminating tool for distinguishing sporadic and outbreak-related strains. With long-term use, interpretation of the results became more challenging due to variations in more-discriminating loci, as was observed for strains originating from pig farms. Additionally, we encountered unexpectedly short V2A VNTR fragments and sequenced them. According to the sequencing results, updated guidelines for interpreting V2A VNTR results were prepared.
Collapse
|
25
|
A decade of plague in Mahajanga, Madagascar: insights into the global maritime spread of pandemic plague. mBio 2013; 4:e00623-12. [PMID: 23404402 PMCID: PMC3573667 DOI: 10.1128/mbio.00623-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A cluster of human plague cases occurred in the seaport city of Mahajanga, Madagascar, from 1991 to 1999 following 62 years with no evidence of plague, which offered insights into plague pathogen dynamics in an urban environment. We analyzed a set of 44 Mahajanga isolates from this 9-year outbreak, as well as an additional 218 Malagasy isolates from the highland foci. We sequenced the genomes of four Mahajanga strains, performed whole-genome sequence single-nucleotide polymorphism (SNP) discovery on those strains, screened the discovered SNPs, and performed a high-resolution 43-locus multilocus variable-number tandem-repeat analysis of the isolate panel. Twenty-two new SNPs were identified and defined a new phylogenetic lineage among the Malagasy isolates. Phylogeographic analysis suggests that the Mahajanga lineage likely originated in the Ambositra district in the highlands, spread throughout the northern central highlands, and was then introduced into and became transiently established in Mahajanga. Although multiple transfers between the central highlands and Mahajanga occurred, there was a locally differentiating and dominant subpopulation that was primarily responsible for the 1991-to-1999 Mahajanga outbreaks. Phylotemporal analysis of this Mahajanga subpopulation revealed a cycling pattern of diversity generation and loss that occurred during and after each outbreak. This pattern is consistent with severe interseasonal genetic bottlenecks along with large seasonal population expansions. The ultimate extinction of plague pathogens in Mahajanga suggests that, in this environment, the plague pathogen niche is tenuous at best. However, the temporary large pathogen population expansion provides the means for plague pathogens to disperse and become ecologically established in more suitable nonurban environments. Maritime spread of plague led to the global dissemination of this disease and affected the course of human history. Multiple historical plague waves resulted in massive human mortalities in three classical plague pandemics: Justinian (6th and 7th centuries), Middle Ages (14th to 17th centuries), and third (mid-1800s to the present). Key to these events was the pathogen’s entry into new lands by “plague ships” via seaport cities. Although initial disease outbreaks in ports were common, they were almost never sustained for long and plague pathogens survived only if they could become established in ecologically suitable habitats. Although plague pathogens’ ability to invade port cities has been essential for intercontinental spread, these regions have not proven to be a suitable long-term niche. The disease dynamics in port cities such as Mahajanga are thus critical to plague pathogen amplification and dispersal into new suitable ecological niches for the observed global long-term maintenance of plague pathogens.
Collapse
|
26
|
Genotyping of present-day and historical Geobacillus species isolates from milk powders by high-resolution melt analysis of multiple variable-number tandem-repeat loci. Appl Environ Microbiol 2012; 78:7090-7. [PMID: 22865061 DOI: 10.1128/aem.01817-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spores of thermophilic Geobacillus species are a common contaminant of milk powder worldwide due to their ability to form biofilms within processing plants. Genotyping methods can provide information regarding the source and monitoring of contamination. A new genotyping method was developed based on multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) in conjunction with high-resolution melt analysis (MLV-HRMA) and compared to the currently used method, randomized amplified polymorphic DNA PCR (RAPD-PCR). Four VNTR loci were identified and used to genotype 46 Geobacillus isolates obtained from retailed powder and samples from 2 different milk powder processing plants. These 46 isolates were differentiated into 16 different groups using MLV-HRMA (D = 0.89). In contrast, only 13 RAPD-PCR genotypes were identified among the 46 isolates (D = 0.79). This new method was then used to analyze 35 isolates obtained from powders with high spore counts (>10(4) spores · g(-1)) from a single processing plant together with 27 historical isolates obtained from powder samples processed in the same region of Australia 17 years ago. Results showed that three genotypes can coexist in a single processing run, while the same genotypes observed 17 years ago are present today. While certain genotypes could be responsible for powders with high spore counts, there was no correlation to specific genotypes being present in powder plants and retailed samples. In conclusion, the MLV-HRMA method is useful for genotyping Geobacillus spp. to provide insight into the prevalence and persistence of certain genotypes within milk powder processing plants.
Collapse
|
27
|
Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M, Carriço JA. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics 2012; 13:87. [PMID: 22568821 PMCID: PMC3403920 DOI: 10.1186/1471-2105-13-87] [Citation(s) in RCA: 415] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/08/2012] [Indexed: 11/23/2022] Open
Abstract
Background With the decrease of DNA sequencing costs, sequence-based typing methods are rapidly becoming the gold standard for epidemiological surveillance. These methods provide reproducible and comparable results needed for a global scale bacterial population analysis, while retaining their usefulness for local epidemiological surveys. Online databases that collect the generated allelic profiles and associated epidemiological data are available but this wealth of data remains underused and are frequently poorly annotated since no user-friendly tool exists to analyze and explore it. Results PHYLOViZ is platform independent Java software that allows the integrated analysis of sequence-based typing methods, including SNP data generated from whole genome sequence approaches, and associated epidemiological data. goeBURST and its Minimum Spanning Tree expansion are used for visualizing the possible evolutionary relationships between isolates. The results can be displayed as an annotated graph overlaying the query results of any other epidemiological data available. Conclusions PHYLOViZ is a user-friendly software that allows the combined analysis of multiple data sources for microbial epidemiological and population studies. It is freely available at http://www.phyloviz.net.
Collapse
|
28
|
Gibbons HS, Krepps MD, Ouellette G, Karavis M, Onischuk L, Leonard P, Broomall S, Sickler T, Betters JL, McGregor P, Donarum G, Liem A, Fochler E, McNew L, Rosenzweig CN, Skowronski E. Comparative genomics of 2009 seasonal plague (Yersinia pestis) in New Mexico. PLoS One 2012; 7:e31604. [PMID: 22359605 PMCID: PMC3281092 DOI: 10.1371/journal.pone.0031604] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/10/2012] [Indexed: 02/07/2023] Open
Abstract
Plague disease caused by the Gram-negative bacterium Yersinia pestis routinely affects animals and occasionally humans, in the western United States. The strains native to the North American continent are thought to be derived from a single introduction in the late 19th century. The degree to which these isolates have diverged genetically since their introduction is not clear, and new genomic markers to assay the diversity of North American plague are highly desired. To assay genetic diversity of plague isolates within confined geographic areas, draft genome sequences were generated by 454 pyrosequencing from nine environmental and clinical plague isolates. In silico assemblies of Variable Number Tandem Repeat (VNTR) loci were compared to laboratory-generated profiles for seven markers. High-confidence SNPs and small Insertion/Deletions (Indels) were compared to previously sequenced Y. pestis isolates. The resulting panel of mutations allowed clustering of the strains and tracing of the most likely evolutionary trajectory of the plague strains. The sequences also allowed the identification of new putative SNPs that differentiate the 2009 isolates from previously sequenced plague strains and from each other. In addition, new insertion points for the abundant insertion sequences (IS) of Y. pestis are present that allow additional discrimination of strains; several of these new insertions potentially inactivate genes implicated in virulence. These sequences enable whole-genome phylogenetic analysis and allow the unbiased comparison of closely related isolates of a genetically monomorphic pathogen.
Collapse
Affiliation(s)
- Henry S Gibbons
- United States Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sobral D, Mariani-Kurkdjian P, Bingen E, Vu-Thien H, Hormigos K, Lebeau B, Loisy-Hamon F, Munck A, Vergnaud G, Pourcel C. A new highly discriminatory multiplex capillary-based MLVA assay as a tool for the epidemiological survey of Pseudomonas aeruginosa in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis 2012; 31:2247-56. [PMID: 22327344 DOI: 10.1007/s10096-012-1562-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/18/2012] [Indexed: 12/24/2022]
Abstract
Multiple locus variable number of tandem repeats (VNTR) analysis (MLVA) has been shown to provide a high level of information for epidemiological investigations and the follow-up of Pseudomonas aeruginosa chronic infection. In the present study, an automatized MLVA assay has been developed for the analysis of 16 VNTRs in two multiplex polymerase chain reactions (PCRs), followed by capillary electrophoresis. The result in the form of a code is directly usable for clustering analyses. This MLVA-16(Orsay) scheme was applied to the genotyping of 83 isolates from eight cystic fibrosis patients, demonstrating that the same genotype persisted during eight years of chronic infection in the majority of cases. Comparison with pulsed-field gel electrophoresis (PFGE) analysis showed that both methods were congruent, MLVA providing, in some cases, additional informativity. The evolution of strains during long-term infection was revealed by the presence of VNTR variants.
Collapse
Affiliation(s)
- D Sobral
- Institut de Génétique et Microbiologie, University Paris-Sud, UMR 8621, 91405, Orsay, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
García K, Gavilán RG, Höfle MG, Martínez-Urtaza J, Espejo RT. Microevolution of pandemic Vibrio parahaemolyticus assessed by the number of repeat units in short sequence tandem repeat regions. PLoS One 2012; 7:e30823. [PMID: 22292049 PMCID: PMC3265528 DOI: 10.1371/journal.pone.0030823] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/22/2011] [Indexed: 11/18/2022] Open
Abstract
The emergence of the pandemic strain Vibrio parahaemolyticus O3:K6 in 1996 caused a large increase of diarrhea outbreaks related to seafood consumption in Southeast Asia, and later worldwide. Isolates of this strain constitutes a clonal complex, and their effectual differentiation is possible by comparison of their variable number tandem repeats (VNTRs). The differentiation of the isolates by the differences in VNTRs will allow inferring the population dynamics and microevolution of this strain but this requires knowing the rate and mechanism of VNTRs' variation. Our study of mutants obtained after serial cultivation of clones showed that mutation rates of the six VNTRs examined are on the order of 10(-4) mutant per generation and that difference increases by stepwise addition of single mutations. The single stepwise mutation (SSM) was deduced because mutants with 1, 2, 3, or more repeat unit deletions or insertions follow a geometric distribution. Plausible phylogenetic trees are obtained when, according to SSM, the genetic distance between clusters with different number of repeats is assessed by the absolute differences in repeats. Using this approach, mutants originated from different isolates of pandemic V. parahaemolyticus after serial cultivation are clustered with their parental isolates. Additionally, isolates of pandemic V. parahaemolyticus from Southeast Asia, Tokyo, and northern and southern Chile are clustered according their geographical origin. The deepest split in these four populations is observed between the Tokyo and southern Chile populations. We conclude that proper phylogenetic relations and successful tracing of pandemic V. parahaemolyticus requires measuring the differences between isolates by the absolute number of repeats in the VNTRs considered.
Collapse
Affiliation(s)
- Katherine García
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Ronnie G. Gavilán
- Instituto de Acuicultura, Universidad de Santiago de Compostela, Campus Universitario Sur, Santiago de Compostela, Spain
| | - Manfred G. Höfle
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Jaime Martínez-Urtaza
- Instituto de Acuicultura, Universidad de Santiago de Compostela, Campus Universitario Sur, Santiago de Compostela, Spain
| | - Romilio T. Espejo
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
31
|
Strain Typing Using Multiple “Variable Number of Tandem Repeat” Analysis and Genetic Element CRISPR. Mol Microbiol 2011. [DOI: 10.1128/9781555816834.ch11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
32
|
Vogler AJ, Birdsell DN, Lee J, Vaissaire J, Doujet CL, Lapalus M, Wagner DM, Keim P. Phylogeography of Francisella tularensis ssp. holarctica in France. Lett Appl Microbiol 2011; 52:177-80. [PMID: 21214606 DOI: 10.1111/j.1472-765x.2010.02977.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To investigate the phylogeography of French Francisella tularensis ssp. holarctica isolates. METHODS AND RESULTS Canonical SNPs and MLVA were used to genotype 103 French F. tularensis ssp. holarctica isolates. We confirmed the presence of one subclade, the central and western European group (B.Br.FTNF002-00), and identified four major MLVA genotypes with no obvious geographical differentiation. CONCLUSIONS The lack of geographical resolution among MLVA genotypes suggests rapid dispersal, convergent evolution or a combination of the two. SIGNIFICANCE AND IMPACT OF THE STUDY This study expands knowledge of the phylogeography of one of the two dominant European F. tularensis ssp. holarctica subclades and illustrates the need for additional SNP discovery within this subclade.
Collapse
Affiliation(s)
- A J Vogler
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Leblois R, Kuhls K, François O, Schönian G, Wirth T. Guns, germs and dogs: On the origin of Leishmania chagasi. INFECTION GENETICS AND EVOLUTION 2011; 11:1091-5. [PMID: 21511057 DOI: 10.1016/j.meegid.2011.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/31/2011] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
Abstract
The evolutionary history of Leishmania chagasi, the aetiological agent of visceral leishmaniasis in South America has been widely debated. This study addresses the problem of the origin of L. chagasi, its timing and demography with fast evolving genetic markers, a suite of Bayesian clustering algorithms and coalescent modelling. Here, using 14 microsatellite markers, 450 strains from the Leishmania donovani complex, we show that the vast majority of the Central and South American L. chagasi were nested within the Portuguese Leishmania infantum clade. Moreover, L. chagasi allelic richness was half that of their Old World counterparts. The bottleneck signature was estimated to be about 500 years old and the settlement of L. chagasi in the New World, probably via infected dogs, was accompanied by a thousand-fold population decrease. Visceral leishmaniasis, lethal if untreated, is therefore one more disease that the Conquistadores brought to the New World.
Collapse
Affiliation(s)
- Raphaël Leblois
- Muséum National d'Histoire Naturelle, UMR-CNRS 7205, Laboratoire Origine Structure Evolution de la Biodiversité, 16 rue Buffon, F-75005 Paris, France
| | | | | | | | | |
Collapse
|
34
|
Brevik ØJ, Ottem KF, Nylund A. Multiple-locus, variable number of tandem repeat analysis (MLVA) of the fish-pathogen Francisella noatunensis. BMC Vet Res 2011; 7:5. [PMID: 21261955 PMCID: PMC3037875 DOI: 10.1186/1746-6148-7-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 01/24/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since Francisella noatunensis was first isolated from cultured Atlantic cod in 2004, it has emerged as a global fish pathogen causing disease in both warm and cold water species. Outbreaks of francisellosis occur in several important cultured fish species making a correct management of this disease a matter of major importance. Currently there are no vaccines or treatments available. A strain typing system for use in studies of F. noatunensis epizootics would be an important tool for disease management. However, the high genetic similarity within the Francisella spp. makes strain typing difficult, but such typing of the related human pathogen Francisella tullarensis has been performed successfully by targeting loci with higher genetic variation than the traditional signature sequences. These loci are known as Variable Numbers of Tandem Repeat (VNTR). The aim of this study is to identify possible useful VNTRs in the genome of F. noatunensis. RESULTS Seven polymorphic VNTR loci were identified in the preliminary genome sequence of F. noatunensis ssp. noatunensis GM2212 isolate. These VNTR-loci were sequenced in F. noatunensis isolates collected from Atlantic cod (Gadus morhua) from Norway (n = 21), Three-line grunt (Parapristipoma trilineatum) from Japan (n = 1), Tilapia (Oreochromis spp.) from Indonesia (n = 3) and Atlantic salmon (Salmo salar) from Chile (n = 1). The Norwegian isolates presented in this study show both nine allelic profiles and clades, and that the majority of the farmed isolates belong in two clades only, while the allelic profiles from wild cod are unique. CONCLUSIONS VNTRs can be used to separate isolates belonging to both subspecies of F. noatunensis. Low allelic diversity in F. noatunensis isolates from outbreaks in cod culture compared to isolates wild cod, indicate that transmission of these isolates may be a result of human activity. The sequence based MLVA system presented in this study should provide a good starting point for further development of a genotyping system that can be used in studies of epizootics and disease management of francisellosis.
Collapse
Affiliation(s)
- Øyvind J Brevik
- Department of Biology, University of Bergen, Post box 7800, N-5020 Bergen, Norway
| | - Karl F Ottem
- Department of Biology, University of Bergen, Post box 7800, N-5020 Bergen, Norway
| | - Are Nylund
- Department of Biology, University of Bergen, Post box 7800, N-5020 Bergen, Norway
| |
Collapse
|
35
|
Broschat SL, Call DR, Davis MA, Meng D, Lockwood S, Ahmed R, Besser TE. Improved identification of epidemiologically related strains of Salmonella enterica by use of a fusion algorithm based on pulsed-field gel electrophoresis and multiple-locus variable-number tandem-repeat analysis. J Clin Microbiol 2010; 48:4072-82. [PMID: 20739482 PMCID: PMC3020867 DOI: 10.1128/jcm.00659-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/18/2010] [Accepted: 08/17/2010] [Indexed: 11/20/2022] Open
Abstract
Pulsed-field gel electrophoresis (PFGE) and multiple-locus variable-number tandem-repeat analysis (MLVA) are used to assess genetic similarity between bacterial strains. There are cases, however, when neither of these methods quantifies genetic variation at a level of resolution that is well suited for studying the molecular epidemiology of bacterial pathogens. To improve estimates based on these methods, we propose a fusion algorithm that combines the information obtained from both PFGE and MLVA assays to assess epidemiological relationships. This involves generating distance matrices for PFGE data (Dice coefficients) and MLVA data (single-step stepwise-mutation model) and modifying the relative distances using the two different data types. We applied the algorithm to a set of Salmonella enterica serovar Typhimurium isolates collected from a wide range of sampling dates, locations, and host species. All three classification methods (PFGE only, MLVA only, and fusion) produced a similar pattern of clustering relative to groupings of common phage types, with the fusion results being slightly better. We then examined a group of serovar Newport isolates collected over a limited geographic and temporal scale and showed that the fusion of PFGE and MLVA data produced the best discrimination of isolates relative to a collection site (farm). Our analysis shows that the fusion of PFGE and MLVA data provides an improved ability to discriminate epidemiologically related isolates but provides only minor improvement in the discrimination of less related isolates.
Collapse
Affiliation(s)
- S L Broschat
- Department of Veterinary Microbiology and Pathology, School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington 99164-2752, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Reyes JF, Tanaka MM. Mutation rates of spoligotypes and variable numbers of tandem repeat loci in Mycobacterium tuberculosis. INFECTION GENETICS AND EVOLUTION 2010; 10:1046-51. [DOI: 10.1016/j.meegid.2010.06.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 06/24/2010] [Accepted: 06/24/2010] [Indexed: 01/14/2023]
|
37
|
Multiple-locus variable-number tandem-repeat analysis for discriminating within Salmonella enterica serovar Typhimurium definitive types and investigation of outbreaks. Epidemiol Infect 2010; 139:1050-9. [PMID: 20822575 DOI: 10.1017/s0950268810002025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discriminatory power of multiple-locus variable-number tandem-repeat analysis (MLVA) needs to be evaluated for all Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium) phage types so that the power of this methodology is understood and results can be interpreted correctly during outbreak investigations. We evaluated the ability of MLVA to characterize four definitive phage types (DT) problematic in New Zealand. MLVA discriminated between DT104 isolates although there was very limited variation in the MLVA profiles for isolates with an RDNC phage type (reacts but does not conform to a recognized Typhimurium phage pattern) first observed in New Zealand's Enteric Reference Laboratory in May 2006. Most DT101 isolates had indistinguishable MLVA profiles or profiles that differed at one or two loci. This was also observed in DT160 isolates. MLVA may not identify all common-source outbreaks although it provided valuable data when applied to case isolates from two S. Typhimurium outbreaks.
Collapse
|
38
|
Colman RE, Vogler AJ, Lowell JL, Gage KL, Morway C, Reynolds PJ, Ettestad P, Keim P, Kosoy MY, Wagner DM. Fine-scale identification of the most likely source of a human plague infection. Emerg Infect Dis 2010; 15:1623-5. [PMID: 19861057 PMCID: PMC2866393 DOI: 10.3201/eid1510.090188] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We describe an analytic approach to provide fine-scale discrimination among multiple infection source hypotheses. This approach uses mutation-rate data for rapidly evolving multiple locus variable-number tandem repeat loci in probabilistic models to identify the most likely source. We illustrate the utility of this approach using data from a North American human plague investigation.
Collapse
|
39
|
Within-host evolution of Burkholderia pseudomallei in four cases of acute melioidosis. PLoS Pathog 2010; 6:e1000725. [PMID: 20090837 PMCID: PMC2799673 DOI: 10.1371/journal.ppat.1000725] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 12/14/2009] [Indexed: 11/19/2022] Open
Abstract
Little is currently known about bacterial pathogen evolution and adaptation within the host during acute infection. Previous studies of Burkholderia pseudomallei, the etiologic agent of melioidosis, have shown that this opportunistic pathogen mutates rapidly both in vitro and in vivo at tandemly repeated loci, making this organism a relevant model for studying short-term evolution. In the current study, B. pseudomallei isolates cultured from multiple body sites from four Thai patients with disseminated melioidosis were subjected to fine-scale genotyping using multilocus variable-number tandem repeat analysis (MLVA). In order to understand and model the in vivo variable-number tandem repeat (VNTR) mutational process, we characterized the patterns and rates of mutations in vitro through parallel serial passage experiments of B. pseudomallei. Despite the short period of infection, substantial divergence from the putative founder genotype was observed in all four melioidosis cases. This study presents a paradigm for examining bacterial evolution over the short timescale of an acute infection. Further studies are required to determine whether the mutational process leads to phenotypic alterations that impact upon bacterial fitness in vivo. Our findings have important implications for future sampling strategies, since colonies in a single clinical sample may be genetically heterogeneous, and organisms in a culture taken late in the infective process may have undergone considerable genetic change compared with the founder inoculum.
Collapse
|
40
|
Keim P, Gruendike JM, Klevytska AM, Schupp JM, Challacombe J, Okinaka R. The genome and variation of Bacillus anthracis. Mol Aspects Med 2009; 30:397-405. [PMID: 19729033 DOI: 10.1016/j.mam.2009.08.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 08/24/2009] [Indexed: 01/01/2023]
Abstract
The Bacillus anthracis genome reflects its close genetic ties to Bacillus cereus and Bacillus thuringiensis but has been shaped by its own unique biology and evolutionary forces. The genome is comprised of a chromosome and two large virulence plasmids, pXO1 and pXO2. The chromosome is mostly co-linear among B. anthracis strains and even with the closest near neighbor strains. An exception to this pattern has been observed in a large inversion in an attenuated strain suggesting that chromosome co-linearity is important to the natural biology of this pathogen. In general, there are few polymorphic nucleotides among B. anthracis strains reflecting the short evolutionary time since its derivation from a B. cereus-like ancestor. The exceptions to this lack of diversity are the variable number tandem repeat (VNTR) loci that exist in genic and non genic regions of the chromosome and both plasmids. Their variation is associated with high mutability that is driven by rapid insertion and deletion of the repeats within an array. A notable example is found in the vrrC locus which is homologous to known DNA translocase genes from other bacteria.
Collapse
Affiliation(s)
- Paul Keim
- The Microbial Genetics and Genomics Center, Northern Arizona University, Flagstaff AZ 86011-4073, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Goethert HK, Saviet B, Telford SR. Metapopulation structure for perpetuation of Francisella tularensis tularensis. BMC Microbiol 2009; 9:147. [PMID: 19627585 PMCID: PMC2723117 DOI: 10.1186/1471-2180-9-147] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 07/23/2009] [Indexed: 11/12/2022] Open
Abstract
Background Outbreaks of Type A tularemia due to Francisella tularensis tularensis are typically sporadic and unstable, greatly hindering identification of the determinants of perpetuation and human risk. Martha's Vineyard, Massachusetts has experienced an outbreak of Type A tularemia which has persisted for 9 years. This unique situation has allowed us to conduct long-term eco-epidemiologic studies there. Our hypothesis is that the agent of Type A tularemia is perpetuated as a metapopulation, with many small isolated natural foci of transmission. During times of increased transmission, the foci would merge and a larger scale epizootic would occur, with greater likelihood that humans become exposed. Methods We sampled questing dog ticks from two natural foci on the island and tested them for tularemia DNA. We determined whether the force of transmission differed between the two foci. In addition, we examined the population structure of F. tularensis from ticks by variable number tandem repeat (VNTR) analysis, which allowed estimates of diversity, linkage disequilibrium, and eBURST analysis. Results The prevalence of tularemia DNA in ticks from our two field sites was markedly different: one site was stable over the course of the study yielding as many as 5.6% positive ticks. In contrast, infected ticks from the comparison site markedly increased in prevalence, from 0.4% in 2003 to 3.9% in 2006. Using 4 VNTR loci, we documented 75 different haplotypes (diversity = 0.91). eBURST analysis indicates that the stable site was essentially clonal, but the comparison site contained multiple unrelated lineages. The general bacterial population is evolving clonally (multilocus disequilibrium) and the bacteria in the two sites are reproductively isolated. Conclusion Even within an isolated island, tularemia natural foci that are no more than 15 km apart are uniquely segregated. One of our sites has stable transmission and the other is emergent. The population structure at the stable site is that of a clonal complex of circulating bacteria, whereas the emerging focus is likely to be derived from multiple founders. We conclude that the agent of tularemia may perpetuate in small stable natural foci and that new foci emerge as a result of spillover from such stable sites.
Collapse
Affiliation(s)
- Heidi K Goethert
- Division of Infectious Diseases, Tufts Cummings School of Veterinary Medicine, 200 Westboro Rd, North Grafton, MA 01536, USA.
| | | | | |
Collapse
|
42
|
Rees RK, Graves M, Caton N, Ely JM, Probert WS. Single tube identification and strain typing of Brucella melitensis by multiplex PCR. J Microbiol Methods 2009; 78:66-70. [PMID: 19410609 DOI: 10.1016/j.mimet.2009.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 04/22/2009] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
Abstract
We report the development of a single-tube, multi-locus variable number tandem repeat analysis (MLVA) assay for simultaneous speciation and strain typing of Brucella, the etiologic agent of brucellosis. Our MLVA assay consists of eight loci, two of which are species-specific markers that allow for definitive identification of Brucella melitensis, B. abortus, and Brucella species while ruling out related pathogenic bacterial genera. The remaining six loci are moderately variable loci capable of discriminating between Brucella strains originating within our study area. We applied the assay to a collection of 110 B. melitensis isolates of primarily Mexican origin and to smaller sample sizes of four other Brucella species for a total of 161 isolates. Simpson's index of diversity was 0.985 for B. melitensis and 0.938 for B. abortus. The assay accurately distinguished seven epidemiologically-linked clusters of B. melitensis infections and ascertained the source of infection in several laboratory-acquired cases. This assay is accessible to limited-resource settings due to its technological and economical feasibility. The timely and accurate information provided by this assay will potentially aid brucellosis control efforts, improve patient outcomes, and reduce the occurrence of laboratory-acquired infections.
Collapse
Affiliation(s)
- Rachel K Rees
- School of Public Health, University of California, Berkeley, 50 University Hall MC#7360, Berkeley, CA 94720-7360, USA
| | | | | | | | | |
Collapse
|
43
|
Call DR, Orfe L, Davis MA, Lafrentz S, Kang MS. Impact of compounding error on strategies for subtyping pathogenic bacteria. Foodborne Pathog Dis 2008; 5:505-16. [PMID: 18713065 DOI: 10.1089/fpd.2008.0097] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Comparative-omics will identify a multitude of markers that can be used for intraspecific discrimination between strains of bacteria. It seems intuitive that with this plethora of markers we can construct higher resolution subtyping assays using discrete markers to define strain "barcodes." Unfortunately, with each new marker added to an assay, overall assay robustness declines because errors are compounded exponentially. For example, the difference in accuracy of strain classification for an assay with 60 markers will change from 99.9% to 54.7% when average probe accuracy declines from 99.999% to 99.0%. To illustrate this effect empirically, we constructed a 19 probe bead-array for subtyping Listeria monocytogenes and showed that despite seemingly reliable individual probe accuracy (>97%), our best classification results at the strain level were <75%. A more robust strategy would use as few markers as possible to achieve strain discrimination. Consequently, we developed two variable number of tandem repeat (VNTR) assays (Vibrio parahaemolyticus and L. monocytogenes) and demonstrate that these assays along with a published assay (Salmonella enterica) produce robust results when products were machine scored. The discriminatory ability with four to seven VNTR loci was comparable to pulsed-field gel electrophoresis. Passage experiments showed some instability with ca. 5% of passaged lines showing evidence for new alleles within 30 days (V. parahaemolyticus and S. enterica). Changes were limited to a single locus and allele so conservative rules can be used to determine strain matching. Most importantly, VNTRs appear robust and portable and can clearly discriminate between strains with relatively few loci thereby limiting effects of compounding error.
Collapse
Affiliation(s)
- Douglas R Call
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164-7040, USA.
| | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Xiaonan Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and National Engineering Center for BioChip at Shanghai, Shanghai 201203, China;
- Laboratory of Microbial Molecular Physiology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongliang Yang
- Laboratory of Microbial Molecular Physiology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Guo-Ping Zhao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and National Engineering Center for BioChip at Shanghai, Shanghai 201203, China;
- Laboratory of Microbial Molecular Physiology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
45
|
Ma L, Taylor S, Jensen JS, Myers L, Lillis R, Martin DH. Short tandem repeat sequences in the Mycoplasma genitalium genome and their use in a multilocus genotyping system. BMC Microbiol 2008; 8:130. [PMID: 18664269 PMCID: PMC2515158 DOI: 10.1186/1471-2180-8-130] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 07/29/2008] [Indexed: 11/29/2022] Open
Abstract
Background Several methods have been reported for strain typing of Mycoplasma genitalium. The value of these methods has never been comparatively assessed. The aims of this study were: 1) to identify new potential genetic markers based on an analysis of short tandem repeat (STR) sequences in the published M. genitalium genome sequence; 2) to apply previously and newly identified markers to a panel of clinical strains in order to determine the optimal combination for an efficient multi-locus genotyping system; 3) to further confirm sexual transmission of M. genitalium using the newly developed system. Results We performed a comprehensive analysis of STRs in the genome of the M. genitalium type strain G37 and identified 18 loci containing STRs. In addition to one previously studied locus, MG309, we chose two others, MG307 and MG338, for further study. Based on an analysis of 74 unrelated patient specimens from New Orleans and Scandinavia, the discriminatory indices (DIs) for these three markers were 0.9153, 0.7381 and 0.8730, respectively. Two other previously described markers, including single nucleotide polymorphisms (SNPs) in the rRNA genes (rRNA-SNPs) and SNPs in the MG191 gene (MG191-SNPs) were found to have DIs of 0.5820 and 0.9392, respectively. A combination of MG309-STRs and MG191-SNPs yielded almost perfect discrimination (DI = 0.9894). An additional finding was that the rRNA-SNPs distribution pattern differed significantly between Scandinavia and New Orleans. Finally we applied multi-locus typing to further confirm sexual transmission using specimens from 74 unrelated patients and 31 concurrently infected couples. Analysis of multi-locus genotype profiles using the five variable loci described above revealed 27 of the couples had concordant genotype profiles compared to only four examples of concordance among the 74 unrelated randomly selected patients. Conclusion We propose that a combination of the MG309-STRs and MG191-SNPs is efficient for general epidemiological studies and addition of MG307-STRs and MG338-STRs is potentially useful for sexual network studies of M. genitalium infection. The multi-locus typing analysis of 74 unrelated M. genitalium-infected individuals and 31 infected couples adds to the evidence that M. genitalium is sexually transmitted.
Collapse
Affiliation(s)
- Liang Ma
- Section of Infectious Diseases, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Grant A, Arnold C, Thorne N, Gharbia S, Underwood A. Mathematical Modelling of Mycobacterium tuberculosis VNTR Loci Estimates a Very Slow Mutation Rate for the Repeats. J Mol Evol 2008; 66:565-74. [DOI: 10.1007/s00239-008-9104-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 02/22/2008] [Accepted: 03/19/2008] [Indexed: 11/28/2022]
|
47
|
Larsson P, Svensson K, Karlsson L, Guala D, Granberg M, Forsman M, Johanssont A. Canonical insertion-deletion markers for rapid DNA typing of Francisella tularensis. Emerg Infect Dis 2008; 13:1725-32. [PMID: 18217558 PMCID: PMC2874433 DOI: 10.3201/eid1311.070603] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By combining analysis of indel markers with multiple-locus variable-number tandem repeat
analysis, individual strains were identified. To develop effective and accurate typing of strains of Francisella
tularensis, a potent human pathogen and a putative bioterrorist agent, we
combined analysis of insertion-deletion (indel) markers with multiple-locus
variable-number tandem repeat analysis (MLVA). From 5 representative F.
tularensis genome sequences, 38 indel markers with canonical properties, i.e.,
capable of sorting strains into major genetic groups, were selected. To avoid markers with
a propensity for homoplasy, we used only those indels with 2 allelic variants and devoid
of substantial sequence repeats. MLVA included sequences with much diversity in copy
number of tandem repeats. The combined procedure allowed subspecies division, delineation
of clades A.I and A.II of subspecies tularensis, differentiation of
Japanese strains from other strains of subspecies holarctica, and
high-resolution strain typing. The procedure uses limited amounts of killed bacterial
preparations and, because only 1 single analytic method is needed, is time- and
cost-effective.
Collapse
Affiliation(s)
- Pär Larsson
- Swedish Defence Research Agency, Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
48
|
Differentiation of Clostridium botulinum serotype A strains by multiple-locus variable-number tandem-repeat analysis. Appl Environ Microbiol 2007; 74:875-82. [PMID: 18083878 DOI: 10.1128/aem.01539-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ten variable-number tandem-repeat (VNTR) regions identified within the complete genomic sequence of Clostridium botulinum strain ATCC 3502 were used to characterize 59 C. botulinum strains of the botulism neurotoxin A1 (BoNT/A1) to BoNT/A4 (BoNT/A1-A4) subtypes to determine their ability to discriminate among the serotype A strains. Two strains representing each of the C. botulinum serotypes B to G, including five bivalent strains, and two strains of the closely related species Clostridium sporogenes were also tested. Amplified fragment length polymorphism analyses revealed the genetic diversity among the serotypes and the high degree of similarity among many of the BoNT/A1 strains. The 10 VNTR markers amplified fragments within all of the serotype A strains but were less successful with strains of other serotypes. The composite multiple-locus VNTR analysis of the 59 BoNT/A1-A4 strains and 3 bivalent B strains identified 38 different genotypes. Thirty genotypes were identified among the 53 BoNT/A1 and BoNT/A1(B) strains, demonstrating discrimination below the subtype level. Contaminating DNA within crude toxin preparations of three BoNT/A subtypes (BoNT/A1 to BoNT/A3) also supported amplification of all of the VNTR regions. These markers provide clinical and forensics laboratories with a rapid, highly discriminatory tool to distinguish among C. botulinum BoNT/A1 strains for investigations of botulism outbreaks.
Collapse
|
49
|
Craven SH, Neidle EL. Double trouble: medical implications of genetic duplication and amplification in bacteria. Future Microbiol 2007; 2:309-21. [PMID: 17661705 DOI: 10.2217/17460913.2.3.309] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gene amplification allows organisms to adapt to changing environmental conditions. This type of increased gene dosage confers selectable benefits, typically by augmenting protein production. Gene amplification is a reversible process that does not require permanent genetic change. Although transient, altered gene dosage has significant medical impact. Recent examples of amplification in bacteria, described here, affect human disease by modifying antibiotic resistance, the virulence of pathogens, vaccine efficacy and antibiotic biosynthesis. Amplification is usually a two-step process whereby genetic duplication (step one) promotes further increases in copy number (step two). Both steps have important evolutionary significance for the emergence of innovative gene functions. Recent genome sequence analyses illustrate how genome plasticity can affect the evolution and immunogenic properties of bacterial pathogens.
Collapse
Affiliation(s)
- Sarah H Craven
- University of Georgia, Microbiology Department, Athens, GA 30602-2605, USA.
| | | |
Collapse
|
50
|
Weng X, Wang Z, Liu J, Kimura M, Black WC, Brennan PJ, Li H, Vissa VD. Identification and distribution of Mycobacterium leprae genotypes in a region of high leprosy prevalence in China: a 3-year molecular epidemiological study. J Clin Microbiol 2007; 45:1728-34. [PMID: 17428944 PMCID: PMC1933063 DOI: 10.1128/jcm.00018-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 02/05/2007] [Accepted: 03/28/2007] [Indexed: 11/20/2022] Open
Abstract
Multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) has been proposed as a means of strain typing for tracking the transmission of leprosy. However, empirical data for a defined population are lacking. To this end, a study was initiated to assess the diversity and distribution of prevalent Mycobacterium leprae strains in Qiubei County, Yunnan Province, People's Republic of China, where the annual detection rate of leprosy is 10-fold higher than the national average rate. Sixty-eight newly diagnosed leprosy patients were included in the study. MLVA at eight M. leprae loci was applied using DNA extracts from skin biopsies. The number of alleles per locus ranged from 4 to 24, providing adequate strain discrimination. MLVA strain typing identified several clusters of patients whose M. leprae specimens shared similar VNTR profiles. Two of these clusters were comprised of patients who resided predominantly in the north and northwest parts of Qiubei County. Furthermore, it was found that multicase families are common in this county: 23 of the 68 patients were from 11 families. Intrafamilial VNTR profiles closely matched within six families, although they were different between the families. Moreover, VNTR patterns related to those found in some multicase families were also detected in patients in the same or adjacent townships, indicating the utility of VNTR strain typing to identify and detect short-range transmission events. Social contact through village markets is proposed as a means of transmission.
Collapse
Affiliation(s)
- Xiaoman Weng
- Beijing Friendship Hospital-Affiliate of Capital University of Medical Sciences, Beijing Tropical Medicine Research Institute, 95 Yong An Road, Beijing 100050, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|