1
|
Zheng X, Li L, Gao JM, Hu Y, Deng L, Kang YF, Zhang Y. Radiation-induced white matter dysfunction in patients with nasopharyngeal carcinoma. Front Neurosci 2025; 19:1548744. [PMID: 40129723 PMCID: PMC11931022 DOI: 10.3389/fnins.2025.1548744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/26/2025] [Indexed: 03/26/2025] Open
Abstract
Radiation-induced structural abnormalities in white matter (WM) have been reported in patients with nasopharyngeal carcinoma (NPC); however, the alterations in functional domain were insufficiently investigated. A total of 111 NPC patients were included and these patients, based on whether completed radiation therapy (RT) or not, were divided into pre-RT (n = 47) and post-RT (n = 64) groups. Functional connectivity strength (FCS) between WM regions (WW-FCS) and between WM and gray matter (GM) regions (GW-FCS) was used to investigate the radiation-induced changes in WM function. Compared with the pre-RT patients, post-RT NPC patients showed decreased WW-FCS in the left superior cerebellar peduncle, right anterior limb of internal capsule, bilateral posterior thalamic radiation, and left tapetum. Compared with the pre-RT patients, post-RT NPC patients showed decreased GW-FCS in the left caudate, bilateral visual cortex, and the right ventral prefrontal cortex. In the post-RT group, the GW-FCS in left visual cortex was negatively correlated with radiation dosage for the brain stem (r = -0.35, p = 0.039), and for the left temporal lobe (r = -0.46, p = 0.0058). The GW-FCS in right visual cortex was negatively correlated with radiation dosage for the left temporal lobe (r = -0.38, p = 0.025). Our findings of decreased WW-FCS and GW-FCS in such brain regions (such as visual cortex, posterior thalamic radiation, and anterior limb of internal capsule, as well as superior cerebellar peduncle) suggest potential functional impairments in visual and motor systems.
Collapse
Affiliation(s)
- Xingyou Zheng
- Department of Medical Imaging, The Fourth Hospital of Changsha (Integrated Traditional Chinese and Western Medicine Hospital of Changsha, Changsha Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Li Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-ming Gao
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang Hu
- Independent Researcher, Shanghai, China
| | - Limeng Deng
- Department of Medical Imaging, The Fourth Hospital of Changsha (Integrated Traditional Chinese and Western Medicine Hospital of Changsha, Changsha Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Ya-fei Kang
- School of Information, Xi’an University of Finance and Economics, Xi’an, Shaanxi, China
| | - Youming Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Fukunaga H, Hamada N. Testicular exposure to ionizing radiation and sperm epigenetic alterations as possible mechanisms of hereditary effects: perspectives from the viewpoint of radiation protection. Int J Radiat Biol 2024; 101:101-106. [PMID: 39689155 DOI: 10.1080/09553002.2024.2440860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/22/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
PURPOSE Since the genotoxicity of ionizing radiation was demonstrated in the 1920s, its hereditary effects have remained a serious concern for human society. The International Commission on Radiological Protection has highlighted the need for appropriate protection against hereditary effects of radiation in humans. In this paper, we review the literature on the possible multigenerational and transgenerational effects following testicular exposure to radiation, focusing on sperm epigenetic alterations as possible mechanisms. RESULTS This mini-review highlights that hereditary effects following testicular exposure occur via epigenetic changes of germ cells in animal models, providing implications on human radiation protection. CONCLUSIONS A great amount of epigenomic research data has emerged rapidly since the beginning of this century; thus, a revision of the radiological protection protocols against the hereditary effects of radiation would be no longer inevitable. The collection and analysis of evidence on these effects must be enhanced and further accelerated to formulate appropriate protection protocols in the future.
Collapse
Affiliation(s)
- Hisanori Fukunaga
- Department of Biomedical Science and Engineering, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| |
Collapse
|
3
|
Dahl H, Ballangby J, Tengs T, Wojewodzic MW, Eide DM, Brede DA, Graupner A, Duale N, Olsen AK. Dose rate dependent reduction in chromatin accessibility at transcriptional start sites long time after exposure to gamma radiation. Epigenetics 2023; 18:2193936. [PMID: 36972203 PMCID: PMC10054331 DOI: 10.1080/15592294.2023.2193936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Ionizing radiation (IR) impact cellular and molecular processes that require chromatin remodelling relevant for cellular integrity. However, the cellular implications of ionizing radiation (IR) delivered per time unit (dose rate) are still debated. This study investigates whether the dose rate is relevant for inflicting changes to the epigenome, represented by chromatin accessibility, or whether it is the total dose that is decisive. CBA/CaOlaHsd mice were whole-body exposed to either chronic low dose rate (2.5 mGy/h for 54 d) or the higher dose rates (10 mGy/h for 14 d and 100 mGy/h for 30 h) of gamma radiation (60Co, total dose: 3 Gy). Chromatin accessibility was analysed in liver tissue samples using Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-Seq), both one day after and over three months post-radiation (>100 d). The results show that the dose rate contributes to radiation-induced epigenomic changes in the liver at both sampling timepoints. Interestingly, chronic low dose rate exposure to a high total dose (3 Gy) did not inflict long-term changes to the epigenome. In contrast to the acute high dose rate given to the same total dose, reduced accessibility at transcriptional start sites (TSS) was identified in genes relevant for the DNA damage response and transcriptional activity. Our findings link dose rate to essential biological mechanisms that could be relevant for understanding long-term changes after ionizing radiation exposure. However, future studies are needed to comprehend the biological consequence of these findings.
Collapse
Affiliation(s)
- Hildegunn Dahl
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jarle Ballangby
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Torstein Tengs
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division for Aquaculture, Department of breeding and genetics, Nofima, Ås, Norway
| | - Marcin W. Wojewodzic
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Department of Research, Section Molecular Epidemiology and Infections, Cancer Registry of Norway, Oslo, Norway
| | - Dag M. Eide
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Dag Anders Brede
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anne Graupner
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Nur Duale
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ann-Karin Olsen
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
4
|
Laanen P, Cuypers A, Saenen E, Horemans N. Flowering under enhanced ionising radiation conditions and its regulation through epigenetic mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:246-259. [PMID: 36731286 DOI: 10.1016/j.plaphy.2023.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
As sessile organisms, plants have to deal with unfavourable conditions by acclimating or adapting in order to survive. Regulation of flower induction is one such mechanism to ensure reproduction and species survival. Flowering is a tightly regulated process under the control of a network of genes, which can be affected by environmental cues and stress. The effects of ionising radiation (IR) on flowering, however, have been poorly studied. Understanding the effects of ionising radiation on flowering, including the timing, gene pathways, and epigenetics involved, is crucial in the continuing effort of environmental radiation protection. The review shows that plants alter their flowering pattern in response to IR, with various flowering related genes (eg. FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT), CONSTANS (CO), GIGANTEA (GI), APETALA1 (AP1), LEAFY (LFY)) and epigenetic processes (DNA methylation, and miRNA expression eg. miRNA169, miR156, miR172) being affected. Thereby, showing a hypothetical IR-induced flowering mechanism. Further research on the interaction between IR and flowering in plants is, however, needed to elucidate the mechanisms behind the stress-induced flowering response.
Collapse
Affiliation(s)
- Pol Laanen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| | - Ann Cuypers
- Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| | - Eline Saenen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium.
| | - Nele Horemans
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| |
Collapse
|
5
|
El-Sayed A, Aleya L, Kamel M. Epigenetics and the role of nutraceuticals in health and disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28480-28505. [PMID: 36694069 DOI: 10.1007/s11356-023-25236-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In the post-genomic era, the data provided by complete genome sequencing could not answer several fundamental questions about the causes of many noninfectious diseases, diagnostic biomarkers, and novel therapeutic approaches. The rapidly expanding understanding of epigenetic mechanisms, as well as widespread acceptance of their hypothesized role in disease induction, facilitated the development of a number of novel diagnostic markers and therapeutic concepts. Epigenetic aberrations are reversible in nature, which enables the treatment of serious incurable diseases. Therefore, the interest in epigenetic modulatory effects has increased over the last decade, so about 60,000 publications discussing the expression of epigenetics could be detected in the PubMed database. Out of these, 58,442 were published alone in the last 10 years, including 17,672 reviews (69 historical articles), 314 clinical trials, 202 case reports, 197 meta-analyses, 156 letters to the editor, 108 randomized controlled trials, 87 observation studies, 40 book chapters, 22 published lectures, and 2 clinical trial protocols. The remaining publications are either miscellaneous or a mixture of the previously mentioned items. According to the species and gender, the publications included 44,589 human studies (17,106 females, 14,509 males, and the gender is not mentioned in the remaining papers) and 30,253 animal studies. In the present work, the role of epigenetic modulations in health and disease and the influencing factors in epigenetics are discussed.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, 25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
6
|
Blinova EA, Nikiforov VS, Kotikova AI, Yanishevskaya MA, Akleyev AV. Methylation Status of Apoptosis Genes and Intensity of Apoptotic Death of Peripheral Blood Lymphocytes in Persons Chronically Exposed to Radiation. Mol Biol 2022. [DOI: 10.1134/s002689332205003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Seong KM, Cenci G. Editorial: The Genetic and Epigenetic Bases of Cellular Response to Ionizing Radiation. Front Genet 2022; 13:857168. [PMID: 35309150 PMCID: PMC8931710 DOI: 10.3389/fgene.2022.857168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ki Moon Seong
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
- *Correspondence: Ki Moon Seong, ; Giovanni Cenci,
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
- Fondazione Cenci Bolognetti/Istituto Pasteur Italia, Rome, Italy
- *Correspondence: Ki Moon Seong, ; Giovanni Cenci,
| |
Collapse
|
8
|
Stati G, Passaretta F, Gindraux F, Centurione L, Di Pietro R. The Role of the CREB Protein Family Members and the Related Transcription Factors in Radioresistance Mechanisms. Life (Basel) 2021; 11:1437. [PMID: 34947968 PMCID: PMC8706059 DOI: 10.3390/life11121437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 02/05/2023] Open
Abstract
In the framework of space flight, the risk of radiation carcinogenesis is considered a "red" risk due to the high likelihood of occurrence as well as the high potential impact on the quality of life in terms of disease-free survival after space missions. The cyclic AMP response element-binding protein (CREB) is overexpressed both in haematological malignancies and solid tumours and its expression and function are modulated following irradiation. The CREB protein is a transcription factor and member of the CREB/activating transcription factor (ATF) family. As such, it has an essential role in a wide range of cell processes, including cell survival, proliferation, and differentiation. Among the CREB-related nuclear transcription factors, NF-κB and p53 have a relevant role in cell response to ionising radiation. Their expression and function can decide the fate of the cell by choosing between death or survival. The aim of this review was to define the role of the CREB/ATF family members and the related transcription factors in the response to ionising radiation of human haematological malignancies and solid tumours.
Collapse
Affiliation(s)
- Gianmarco Stati
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Francesca Passaretta
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Florelle Gindraux
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, 25030 Besançon, France;
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU, 25030 Besançon, France
| | - Lucia Centurione
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| |
Collapse
|
9
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
10
|
Dawood A, Mothersill C, Seymour C. Low dose ionizing radiation and the immune response: what is the role of non-targeted effects? Int J Radiat Biol 2021; 97:1368-1382. [PMID: 34330196 DOI: 10.1080/09553002.2021.1962572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This review aims to trace the historical narrative surrounding the low dose effects of radiation on the immune system and how our understanding has changed from the beginning of the 20th century to now. The particular focus is on the non-targeted effects (NTEs) of low dose ionizing radiation (LDIR) which are effects that occur when irradiated cells emit signals that cause effects in the nearby or distant non-irradiated cells known as radiation induced bystander effect (RIBE). Moreover, radiation induced genomic instability (RIGI) and abscopal effect (AE) also regarded as NTE. This was prompted by our recent discovery that ultraviolet A (UVA) photons are emitted by the irradiated cells and that these photons can trigger NTE such as the RIBE in unirradiated recipients of these photons. Given the well-known association between UV radiation and the immune response, where these biophotons may pose as bystander signals potentiating processes in deep tissues as a consequence of LDIR, it is timely to review the field with a fresh lens. Various pathways and immune components that contribute to the beneficial and adverse types of modulation induced by LDR will also be revisited. CONCLUSION There is limited evidence for LDIR induced immune effects by way of a non-targeted mechanism in biological tissue. The literature examining low to medium dose effects of ionizing radiation on the immune system and its components is complex and controversial. Early work was compromised by lack of good dosimetry while later work mainly looks at the involvement of immune response in radiotherapy. There is a lack of research in the LDIR/NTE field focusing on immune response although bone marrow stem cells and lineages were critical in the identification and characterization of NTE where effects like RIGI and RIBE were heavily researched. This may be in part, a result of the difficulty of isolating NTE in whole organisms which are essential for good immune response studies. Models involving inter organism transmission of NTE are a promising route to overcome these issues.
Collapse
Affiliation(s)
- Annum Dawood
- Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | | | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| |
Collapse
|
11
|
Gorbunov NV, Kiang JG. Brain Damage and Patterns of Neurovascular Disorder after Ionizing Irradiation. Complications in Radiotherapy and Radiation Combined Injury. Radiat Res 2021; 196:1-16. [PMID: 33979447 PMCID: PMC8297540 DOI: 10.1667/rade-20-00147.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 04/02/2021] [Indexed: 12/31/2022]
Abstract
Exposure to ionizing radiation, mechanical trauma, toxic chemicals or infections, or combinations thereof (i.e., combined injury) can induce organic injury to brain tissues, the structural disarrangement of interactive networks of neurovascular and glial cells, as well as on arrays of the paracrine and systemic destruction. This leads to subsequent decline in cognitive capacity and decompensation of mental health. There is an ongoing need for improvement in mitigating and treating radiation- or combined injury-induced brain injury. Cranial irradiation per se can cause a multifactorial encephalopathy that occurs in a radiation dose- and time-dependent manner due to differences in radiosensitivity among the various constituents of brain parenchyma and vasculature. Of particular concern are the radiosensitivity and inflammation susceptibility of: 1. the neurogenic and oligodendrogenic niches in the subependymal and hippocampal domains; and 2. the microvascular endothelium. Thus, cranial or total-body irradiation can cause a plethora of biochemical and cellular disorders in brain tissues, including: 1. decline in neurogenesis and oligodendrogenesis; 2. impairment of the blood-brain barrier; and 3. ablation of vascular capillary. These changes, along with cerebrovascular inflammation, underlie different stages of encephalopathy, from the early protracted stage to the late delayed stage. It is evident that ionizing radiation combined with other traumatic insults such as penetrating wound, burn, blast, systemic infection and chemotherapy, among others, can exacerbate the radiation sequelae (and vice versa) with increasing severity of neurogenic and microvascular patterns of radiation brain damage.
Collapse
Affiliation(s)
| | - Juliann G. Kiang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
12
|
Di Nisio E, Lupo G, Licursi V, Negri R. The Role of Histone Lysine Methylation in the Response of Mammalian Cells to Ionizing Radiation. Front Genet 2021; 12:639602. [PMID: 33859667 PMCID: PMC8042281 DOI: 10.3389/fgene.2021.639602] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic genomes are wrapped around nucleosomes and organized into different levels of chromatin structure. Chromatin organization has a crucial role in regulating all cellular processes involving DNA-protein interactions, such as DNA transcription, replication, recombination and repair. Histone post-translational modifications (HPTMs) have a prominent role in chromatin regulation, acting as a sophisticated molecular code, which is interpreted by HPTM-specific effectors. Here, we review the role of histone lysine methylation changes in regulating the response to radiation-induced genotoxic damage in mammalian cells. We also discuss the role of histone methyltransferases (HMTs) and histone demethylases (HDMs) and the effects of the modulation of their expression and/or the pharmacological inhibition of their activity on the radio-sensitivity of different cell lines. Finally, we provide a bioinformatic analysis of published datasets showing how the mRNA levels of known HMTs and HDMs are modulated in different cell lines by exposure to different irradiation conditions.
Collapse
Affiliation(s)
- Elena Di Nisio
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Lupo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Valerio Licursi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Rodolfo Negri
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Counsil (IBPM-CNR), Rome, Italy
| |
Collapse
|
13
|
Radiation, a two-edged sword: From untoward effects to fractionated radiotherapy. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.108994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Belli M, Indovina L. The Response of Living Organisms to Low Radiation Environment and Its Implications in Radiation Protection. Front Public Health 2020; 8:601711. [PMID: 33384980 PMCID: PMC7770185 DOI: 10.3389/fpubh.2020.601711] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Life has evolved on Earth for about 4 billion years in the presence of the natural background of ionizing radiation. It is extremely likely that it contributed, and still contributes, to shaping present form of life. Today the natural background radiation is extremely small (few mSv/y), however it may be significant enough for living organisms to respond to it, perhaps keeping memory of this exposure. A better understanding of this response is relevant not only for improving our knowledge on life evolution, but also for assessing the robustness of the present radiation protection system at low doses, such as those typically encountered in everyday life. Given the large uncertainties in epidemiological data below 100 mSv, quantitative evaluation of these health risk is currently obtained with the aid of radiobiological models. These predict a health detriment, caused by radiation-induced genetic mutations, linearly related to the dose. However a number of studies challenged this paradigm by demonstrating the occurrence of non-linear responses at low doses, and of radioinduced epigenetic effects, i.e., heritable changes in genes expression not related to changes in DNA sequence. This review is focused on the role that epigenetic mechanisms, besides the genetic ones, can have in the responses to low dose and protracted exposures, particularly to natural background radiation. Many lines of evidence show that epigenetic modifications are involved in non-linear responses relevant to low doses, such as non-targeted effects and adaptive response, and that genetic and epigenetic effects share, in part, a common origin: the reactive oxygen species generated by ionizing radiation. Cell response to low doses of ionizing radiation appears more complex than that assumed for radiation protection purposes and that it is not always detrimental. Experiments conducted in underground laboratories with very low background radiation have even suggested positive effects of this background. Studying the changes occurring in various living organisms at reduced radiation background, besides giving information on the life evolution, have opened a new avenue to answer whether low doses are detrimental or beneficial, and to understand the relevance of radiobiological results to radiation protection.
Collapse
Affiliation(s)
| | - Luca Indovina
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
15
|
Phenotypic and Functional Characteristics of Exosomes Derived from Irradiated Mouse Organs and Their Role in the Mechanisms Driving Non-Targeted Effects. Int J Mol Sci 2020; 21:ijms21218389. [PMID: 33182277 PMCID: PMC7664902 DOI: 10.3390/ijms21218389] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/29/2022] Open
Abstract
Molecular communication between irradiated and unirradiated neighbouring cells initiates radiation-induced bystander effects (RIBE) and out-of-field (abscopal) effects which are both an example of the non-targeted effects (NTE) of ionising radiation (IR). Exosomes are small membrane vesicles of endosomal origin and newly identified mediators of NTE. Although exosome-mediated changes are well documented in radiation therapy and oncology, there is a lack of knowledge regarding the role of exosomes derived from inside and outside the radiation field in the early and delayed induction of NTE following IR. Therefore, here we investigated the changes in exosome profile and the role of exosomes as possible molecular signalling mediators of radiation damage. Exosomes derived from organs of whole body irradiated (WBI) or partial body irradiated (PBI) mice after 24 h and 15 days post-irradiation were transferred to recipient mouse embryonic fibroblast (MEF) cells and changes in cellular viability, DNA damage and calcium, reactive oxygen species and nitric oxide signalling were evaluated compared to that of MEF cells treated with exosomes derived from unirradiated mice. Taken together, our results show that whole and partial-body irradiation increases the number of exosomes, instigating changes in exosome-treated MEF cells, depending on the source organ and time after exposure.
Collapse
|
16
|
Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int J Mol Sci 2020; 21:ijms21175993. [PMID: 32825382 PMCID: PMC7503247 DOI: 10.3390/ijms21175993] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
The present system of radiation protection assumes that exposure at low doses and/or low dose-rates leads to health risks linearly related to the dose. They are evaluated by a combination of epidemiological data and radiobiological models. The latter imply that radiation induces deleterious effects via genetic mutation caused by DNA damage with a linear dose-dependence. This picture is challenged by the observation of radiation-induced epigenetic effects (changes in gene expression without altering the DNA sequence) and of non-linear responses, such as non-targeted and adaptive responses, that in turn can be controlled by gene expression networks. Here, we review important aspects of the biological response to ionizing radiation in which epigenetic mechanisms are, or could be, involved, focusing on the possible implications to the low dose issue in radiation protection. We examine in particular radiation-induced cancer, non-cancer diseases and transgenerational (hereditary) effects. We conclude that more realistic models of radiation-induced cancer should include epigenetic contribution, particularly in the initiation and progression phases, while the impact on hereditary risk evaluation is expected to be low. Epigenetic effects are also relevant in the dispute about possible "beneficial" effects at low dose and/or low dose-rate exposures, including those given by the natural background radiation.
Collapse
|
17
|
Shemetun OV, Pilinska MA. RADIATION-INDUCED BYSTANDER EFFECT - MODELING, MANIFESTATION, MECHANISMS, PERSISTENCE, CANCER RISKS (literature review). PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 24:65-92. [PMID: 31841459 DOI: 10.33145/2304-8336-2019-24-65-92] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 01/02/2023]
Abstract
The review summarizes and analyzes the data of world scientific literature and the results of the own research con- cerning one of the main non-targeted effects of ionizing radiation - the radiation induced bystander effect (RIBE) - the ability of irradiated target cells to induce secondary biological changes in non-irradiated receptor cells. The his- tory of studies of this phenomenon is presented - it described under various names since 1905, began to study from the end of the twentieth century when named as RIBE and caused particular interest in the scientific community during recent decades. It is shown that the development of biological science and the improvement of research methods allowed to get new in-depth data on the development of RIBE not only at the level of the whole organism, but even at the genome level. The review highlights the key points of numerous RIBE investigations including mod- eling; methodological approaches to studying; classification; features of interaction between irradiated and intact cells; the role of the immune system, oxidative stress, cytogenetic disorders, changes in gene expression in the mechanism of development of RIBE; rescue effect, abscopal effect, persistence, modification, medical effects. It is emphasized that despite the considerable amount of research concerning the bystander response as the universal phenomenon and RIBE as one of its manifestations, there are still enough «white spots» in determining the mech- anisms of the RIBE formation and assessing the possible consequences of its development for human health.
Collapse
Affiliation(s)
- O V Shemetun
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - M A Pilinska
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| |
Collapse
|
18
|
Karpenko D, Dorofeeva A, Petinati N, Shipounova I, Drize N, Bigildeev A. Functional Characteristics of the Mouse Il1b Promoter in Various Tissues Before and After Irradiation. DNA Cell Biol 2020; 39:790-800. [PMID: 32176536 DOI: 10.1089/dna.2019.5310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interleukin-1 beta (IL1B) is a key inducer of inflammation and an important factor in the regulation of hematopoietic stem cells and mesenchymal stromal progenitors. Irradiation of mice with ionizing radiation has been shown to induce a lasting increase in IL1B concentration in peripheral blood. One of the possible mechanisms may be demethylation of CpG cytosines in the Il1b promoter, which has not been characterized in detail for the mouse. In this study, the methylation level of CpGs located in a region between -3562 and -208 bp upstream of the start of transcription is studied in muscles, bones, liver, thymus, spleen, bone marrow, lymph nodes, lungs, and brain. The methylation level is compared to Il1b expression. Tissue-specific features of CpG methylation are established. It is demonstrated that the region between -2420 and -2406 bp is likely a part of the mouse Il1b promoter/enhancer and may determine the base level of Il1b expression in various tissues. Irradiation at a dose of 6 Gy does not change the methylation profile of most studied CpGs, and therefore, the cause of the stably increased IL1B level after irradiation is unlikely to be a change in the methylation of the studied CpGs in investigated tissues.
Collapse
Affiliation(s)
- Dmitriy Karpenko
- Laboratory for Physiology of Hematopoiesis, National Research Center for Hematology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alyona Dorofeeva
- Laboratory for Physiology of Hematopoiesis, National Research Center for Hematology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Natalia Petinati
- Laboratory for Physiology of Hematopoiesis, National Research Center for Hematology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Irina Shipounova
- Laboratory for Physiology of Hematopoiesis, National Research Center for Hematology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nina Drize
- Laboratory for Physiology of Hematopoiesis, National Research Center for Hematology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey Bigildeev
- Laboratory for Physiology of Hematopoiesis, National Research Center for Hematology of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
19
|
Sisakht M, Darabian M, Mahmoodzadeh A, Bazi A, Shafiee SM, Mokarram P, Khoshdel Z. The role of radiation induced oxidative stress as a regulator of radio-adaptive responses. Int J Radiat Biol 2020; 96:561-576. [PMID: 31976798 DOI: 10.1080/09553002.2020.1721597] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose: Various sources of radiation including radiofrequency, electromagnetic radiation (EMR), low- dose X-radiation, low-level microwave radiation and ionizing radiation (IR) are indispensable parts of modern life. In the current review, we discussed the adaptive responses of biological systems to radiation with a focus on the impacts of radiation-induced oxidative stress (RIOS) and its molecular downstream signaling pathways.Materials and methods: A comprehensive search was conducted in Web of Sciences, PubMed, Scopus, Google Scholar, Embase, and Cochrane Library. Keywords included Mesh terms of "radiation," "electromagnetic radiation," "adaptive immunity," "oxidative stress," and "immune checkpoints." Manuscripts published up until December 2019 were included.Results: RIOS induces various molecular adaptors connected with adaptive responses in radiation exposed cells. One of these adaptors includes p53 which promotes various cellular signaling pathways. RIOS also activates the intrinsic apoptotic pathway by depolarization of the mitochondrial membrane potential and activating the caspase apoptotic cascade. RIOS is also involved in radiation-induced proliferative responses through interaction with mitogen-activated protein kinases (MAPks) including p38 MAPK, ERK, and c-Jun N-terminal kinase (JNK). Protein kinase B (Akt)/phosphoinositide 3-kinase (PI3K) signaling pathway has also been reported to be involved in RIOS-induced proliferative responses. Furthermore, RIOS promotes genetic instability by introducing DNA structural and epigenetic alterations, as well as attenuating DNA repair mechanisms. Inflammatory transcription factors including macrophage migration inhibitory factor (MIF), nuclear factor κB (NF-κB), and signal transducer and activator of transcription-3 (STAT-3) paly major role in RIOS-induced inflammation.Conclusion: In conclusion, RIOS considerably contributes to radiation induced adaptive responses. Other possible molecular adaptors modulating RIOS-induced responses are yet to be divulged in future studies.
Collapse
Affiliation(s)
- Mohsen Sisakht
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Darabian
- Department of Radiology, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodzadeh
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Bazi
- Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Sayed Mohammad Shafiee
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khoshdel
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Leblanc JE, Burtt JJ. Radiation Biology and Its Role in the Canadian Radiation Protection Framework. HEALTH PHYSICS 2019; 117:319-329. [PMID: 30907783 DOI: 10.1097/hp.0000000000001060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The linear no-threshold (linear-non-threshold) model is a dose-response model that has long served as the foundation of the international radiation protection framework, which includes the Canadian regulatory framework. Its purpose is to inform the choice of appropriate dose limits and subsequent as low as reasonably achievable requirements, social and economic factors taken into account. The linear no-threshold model assumes that the risk of developing cancer increases proportionately with increasing radiation dose. The linear no-threshold model has historically been applied by extrapolating the risk of cancer at high doses (>1,000 mSv) down to low doses in a linear manner. As the health effects of radiation exposure at low doses remain ambiguous, reducing uncertainties found in cancer risk dose-response models can be achieved through in vitro and animal-based studies. The purpose of this critical review is to analyze whether the linear no-threshold model is still applicable for use by modern nuclear regulators for radiation protection purposes, or if there is sufficient scientific evidence supporting an alternate model from which to derive regulatory dose limits.
Collapse
|
21
|
Electromagnetic Fields, Genomic Instability and Cancer: A Systems Biological View. Genes (Basel) 2019; 10:genes10060479. [PMID: 31242701 PMCID: PMC6627294 DOI: 10.3390/genes10060479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 12/12/2022] Open
Abstract
This review discusses the use of systems biology in understanding the biological effects of electromagnetic fields, with particular focus on induction of genomic instability and cancer. We introduce basic concepts of the dynamical systems theory such as the state space and attractors and the use of these concepts in understanding the behavior of complex biological systems. We then discuss genomic instability in the framework of the dynamical systems theory, and describe the hypothesis that environmentally induced genomic instability corresponds to abnormal attractor states; large enough environmental perturbations can force the biological system to leave normal evolutionarily optimized attractors (corresponding to normal cell phenotypes) and migrate to less stable variant attractors. We discuss experimental approaches that can be coupled with theoretical systems biology such as testable predictions, derived from the theory and experimental methods, that can be used for measuring the state of the complex biological system. We also review potentially informative studies and make recommendations for further studies.
Collapse
|
22
|
Obodovskiy I. Effect of Radiation on Biological Structures. Radiation Mutagenesis. RADIATION 2019. [DOI: 10.1016/b978-0-444-63979-0.00035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
23
|
Kryvokhyzha MV, Krutovsky KV, Rashydov NM. Differential expression of flowering genes in Arabidopsis thaliana under chronic and acute ionizing radiation. Int J Radiat Biol 2018; 95:626-634. [PMID: 30570374 DOI: 10.1080/09553002.2019.1562251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Chronic and acute irradiations have drastic effects on flowering stage that plays an important role in further seed development and can determine seed yield. The expression of the key flowering genes, AP1, CO, GI, FT, FLC, and LFY, sensitive to irradiation repair gene RAD51 and the proliferation gene PCNA2 were studied in the wild-type Arabidopsis thaliana (Columbia ecotype) under chronic and acute irradiations. MATERIALS AND METHODS Chronic irradiation was performed using the radioactive isotope 137СsCl in two total doses of 3 cGy and 17 cGy, with the dose rate of 10-7 cGy/s and 6.8 10-6 cGy/s, respectively. The plants were grown under chronic irradiation during 6 weeks, from seeds till the 6.3 stage of flowering. For acute exposure, the plants were X-ray irradiated one time at the 5.0 development stage (20 days old) by a total dose of 15 Gy with the dose rate of 89 cGy/s. RESULTS After chronic irradiation with the 3 cGy dose the irradiated plants demonstrated 8 ± 2.8 days earlier flowering than in the control group. However, at the 17 cGy chronic and at the 15 Gy acute doses plants showed 14 ± 3.7 and 2 ± 1.4 days later flowering, respectively. The 3 cGy chronic exposure significantly increased the expression of the CO gene by a factor of 1.152 (1.087-1.217 95% C.I.) and decreased the expression of the FT gene by a factor of 0.128 (0.021-0.396 95% C.I.). The 17 cGy chronic exposure decreased expression of the AP1 gene by a factor of 0.872 (0.803-0.940 95% C.I.) and the LFY gene by a factor of 0.471 (0.306-0.687 95% C.I.). The 15 Gy acute exposure decreased the expression of the AP1 gene by a factor of 0.104 (0.074-0.144 95% C.I.) and the PCNA2 gene by a factor of 0.346 (0.238-0.488 95% C.I.). CONCLUSIONS The increased expression of the CO gene and decreased expression of the AP1 and FT genes under the lower dose of chronic exposure were associated with earlier flowering. The acute exposure increased the expression of the PCNA2 gene and decreased the expression of the flowering genes, except AP1. The flowering was delayed under both the higher dose of chronic exposure and under acute exposure, but it was less affected by the latter. Presumably, it was related to the activation of DNA repair under the 3 cGy chronic and 15 Gy acute irradiations.
Collapse
Affiliation(s)
- Maryna V Kryvokhyzha
- a Institute of Cell Biology and Genetic Engineering , National Academy of Sciences of Ukraine , Kiev , Ukraine
| | - Konstantin V Krutovsky
- b Department of Forest Genetics and Forest Tree Breeding , Georg-August University of Göttingen , Göttingen , Germany.,c Vavilov Institute of General Genetics , Russian Academy of Sciences , Moscow , Russia.,d Genome Research and Education Center , Siberian Federal University , Krasnoyarsk , Russia.,e Department of Ecosystem Science and Management , Texas A&M University , College Station , TX , USA
| | - Namik M Rashydov
- a Institute of Cell Biology and Genetic Engineering , National Academy of Sciences of Ukraine , Kiev , Ukraine
| |
Collapse
|
24
|
A review of radiation genomics: integrating patient radiation response with genomics for personalised and targeted radiation therapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2018. [DOI: 10.1017/s1460396918000547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AbstractBackgroundThe success of radiation therapy for cancer patients is dependent on the ability to deliver a total tumouricidal radiation dose capable of eradicating all cancer cells within the clinical target volume, however, the radiation dose tolerance of the surrounding healthy tissues becomes the main dose-limiting factor. The normal tissue adverse effects following radiotherapy are common and significantly impact the quality of life of patients. The likelihood of developing these adverse effects following radiotherapy cannot be predicted based only on the radiation treatment parameters. However, there is evidence to suggest that some common genetic variants are associated with radiotherapy response and the risk of developing adverse effects. Radiation genomics is a field that has evolved in recent years investigating the association between patient genomic data and the response to radiation therapy. This field aims to identify genetic markers that are linked to individual radiosensitivity with the potential to predict the risk of developing adverse effects due to radiotherapy using patient genomic information. It also aims to determine the relative radioresponse of patients using their genetic information for the potential prediction of patient radiation treatment response.Methods and materialsThis paper reports on a review of recent studies in the field of radiation genomics investigating the association between genomic data and patients response to radiation therapy, including the investigation of the role of genetic variants on an individual’s predisposition to enhanced radiotherapy radiosensitivity or radioresponse.ConclusionThe potential for early prediction of treatment response and patient outcome is critical in cancer patients to make decisions regarding continuation, escalation, discontinuation, and/or change in treatment options to maximise patient survival while minimising adverse effects and maintaining patients’ quality of life.
Collapse
|
25
|
Mothersill C, Seymour C. Old Data-New Concepts: Integrating "Indirect Effects" Into Radiation Protection. HEALTH PHYSICS 2018; 115:170-178. [PMID: 29787443 DOI: 10.1097/hp.0000000000000876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
PURPOSE To address the following key question, what are the consequences of nontargeted and delayed effects for linear nonthreshold models of radiation risk? This paper considers low-dose "indirect" or nontargeted effects and how they might impact radiation protection, particularly at the level of the environment. Nontargeted effects refer to effects in cells, tissues, or organisms that were not targeted by irradiation and that did not receive direct energy deposition. They include genomic instability and lethal mutations in progeny of irradiated cells and bystander effects in neighboring cells, tissues, or organisms. Low-dose hypersensitivity and adaptive responses are sometimes included under the nontargeted effects umbrella, but these are not considered in this paper. Some concepts emerging in the nontargeted effects field that could be important include historic dose. This suggests that the initial exposure to radiation initiates the instability phenotype which is passed to progeny leading to a transgenerational radiation-response phenotype, which suggests that the system response rather than the individual response is critical in determining outcome. CONCLUSION Nontargeted effects need to be considered, and modeling, experimental, and epidemiological approaches could all be used to determine the impact of nontargeted effects on the currently used linear nonthreshold model in radiation protection.
Collapse
Affiliation(s)
- Carmel Mothersill
- 1Medical Physics and Applied Radiation Sciences Department, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences Department, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
26
|
Bonisoli-Alquati A, Ostermiller S, Beasley DAE, Welch SM, Møller AP, Mousseau TA. Faster Development Covaries with Higher DNA Damage in Grasshoppers (Chorthippus albomarginatus) from Chernobyl. Physiol Biochem Zool 2018; 91:776-787. [DOI: 10.1086/696005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Hurem S, Gomes T, Brede DA, Lindbo Hansen E, Mutoloki S, Fernandez C, Mothersill C, Salbu B, Kassaye YA, Olsen AK, Oughton D, Aleström P, Lyche JL. Parental gamma irradiation induces reprotoxic effects accompanied by genomic instability in zebrafish (Danio rerio) embryos. ENVIRONMENTAL RESEARCH 2017; 159:564-578. [PMID: 28892785 DOI: 10.1016/j.envres.2017.07.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
Gamma radiation represents a potential health risk to aquatic and terrestrial biota, due to its ability to ionize atoms and molecules in living tissues. The effects of exposure to 60Co gamma radiation in zebrafish (Danio rerio) were studied during two sensitive life stages: gametogenesis (F0: 53 and 8.7mGy/h for 27 days, total doses 31 and 5.2Gy) and embryogenesis (9.6mGy/h for 65h; total dose 0.62Gy). Progeny of F0 exposed to 53mGy/h showed 100% mortality occurring at the gastrulation stage corresponding to 8h post fertilization (hpf). Control and F0 fish exposed to 8.7mGy/h were used to create four lines in the first filial generation (F1): control, G line (irradiated during parental gametogenesis), E line (irradiated during embryogenesis) and GE line (irradiated during parental gametogenesis and embryogenesis). A statistically significant cumulative mortality of GE larva (9.3%) compared to controls was found at 96 hpf. E line embryos hatched significantly earlier compared to controls, G and GE (48-72 hpf). The deformity frequency was higher in G and GE, but not E line compared to controls at 72 hpf. One month after parental irradiation, the formation of reactive oxygen species (ROS) was increased in the G line, but did not significantly differ from controls one year after parental irradiation, while at the same time point it was significantly increased in the directly exposed E and GE lines from 60 to 120 hpf. Lipid peroxidation (LPO) was significantly increased in the G line one year after parental irradiation, while significant increase in DNA damage was detected in both the G and GE compared to controls and E line at 72 hpf. Radiation-induced bystander effects, triggered by culture media from tissue explants and observed as influx of Ca2+ ions through the cellular membrane of the reporter cells, were significantly increased in 72 hpf G line progeny one month after irradiation of the parents. One year after parental irradiation, the bystander effects were increased in the E line compared to controls, but not in progeny of irradiated parents (G and GE lines). Overall, this study showed that irradiation of parents can result in multigenerational oxidative stress and genomic instability in irradiated (GE) and non-irradiated (G) progeny of irradiated parents, including increases in ROS formation, LPO, DNA damage and bystander effects. The results therefore highlight the necessity for multi- and transgenerational studies to assess the environmental impact of gamma radiation.
Collapse
Affiliation(s)
- Selma Hurem
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway.
| | - Tânia Gomes
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian Institute for Water research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Dag A Brede
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Elisabeth Lindbo Hansen
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian Radiation Protection Authority (NRPA), Postboks 55, 1332 Østerås, Norway
| | - Stephen Mutoloki
- Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Cristian Fernandez
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern, Switzerland
| | - Carmel Mothersill
- McMaster University, Department of Biology, 1280 Main St. West Hamilton, Ontario, Canada
| | - Brit Salbu
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Yetneberk A Kassaye
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Ann-Karin Olsen
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian Institute of Public Health (NIPH), PO Box 4404 Nydalen, 0403 Oslo, Norway
| | - Deborah Oughton
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Peter Aleström
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Jan L Lyche
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| |
Collapse
|
28
|
Lampe N, Breton V, Sarramia D, Sime‐Ngando T, Biron DG. Understanding low radiation background biology through controlled evolution experiments. Evol Appl 2017; 10:658-666. [PMID: 28717386 PMCID: PMC5511359 DOI: 10.1111/eva.12491] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/27/2017] [Indexed: 12/31/2022] Open
Abstract
Biological experiments conducted in underground laboratories over the last decade have shown that life can respond to relatively small changes in the radiation background in unconventional ways. Rapid changes in cell growth, indicative of hormetic behaviour and long-term inheritable changes in antioxidant regulation have been observed in response to changes in the radiation background that should be almost undetectable to cells. Here, we summarize the recent body of underground experiments conducted to date, and outline potential mechanisms (such as cell signalling, DNA repair and antioxidant regulation) that could mediate the response of cells to low radiation backgrounds. We highlight how multigenerational studies drawing on methods well established in studying evolutionary biology are well suited for elucidating these mechanisms, especially given these changes may be mediated by epigenetic pathways. Controlled evolution experiments with model organisms, conducted in underground laboratories, can highlight the short- and long-term differences in how extremely low-dose radiation environments affect living systems, shining light on the extent to which epimutations caused by the radiation background propagate through the population. Such studies can provide a baseline for understanding the evolutionary responses of microorganisms to ionizing radiation, and provide clues for understanding the higher radiation environments around uranium mines and nuclear disaster zones, as well as those inside nuclear reactors.
Collapse
Affiliation(s)
- Nathanael Lampe
- Laboratoire de Physique CorpusculaireCNRS/IN2P3Université Clermont AuvergneClermont‐FerrandFrance
| | - Vincent Breton
- Laboratoire de Physique CorpusculaireCNRS/IN2P3Université Clermont AuvergneClermont‐FerrandFrance
| | - David Sarramia
- Laboratoire de Physique CorpusculaireCNRS/IN2P3Université Clermont AuvergneClermont‐FerrandFrance
| | - Télesphore Sime‐Ngando
- Laboratoire Microorganismes Génome et EnvironnementUMR CNRS 6023Université Clermont AuvergneAubière CedexFrance
| | - David G. Biron
- Laboratoire Microorganismes Génome et EnvironnementUMR CNRS 6023Université Clermont AuvergneAubière CedexFrance
| |
Collapse
|
29
|
Kovalchuk A, Kolb B. Low dose radiation effects on the brain - from mechanisms and behavioral outcomes to mitigation strategies. Cell Cycle 2017; 16:1266-1270. [PMID: 28656797 DOI: 10.1080/15384101.2017.1320003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Based on the most recent estimates by the Canadian Cancer Society, 2 in 5 Canadians will develop cancer in their lifetimes. More than half of all cancer patients receive some type of radiation therapy, and all patients undergo radiation-based diagnostics. While radiation is one of the most important diagnostic and treatments modalities, high-dose cranial radiation therapy causes numerous central nervous system side-effects, including declines in cognitive function, memory, and attention. While the mechanisms of these effects have been studies, they still need to be further elucidated. On the other hand, the effects of low dose radiation as well as indirect radiation bystander effects on the brain remain elusive. We pioneered analysis of the molecular and cellular effects of low dose direct, bystander and scatter radiation on the brain. Using a rat model, we showed that low dose radiation exposures cause molecular and cellular changes in the brain and impacts animal behavior. Here we reflect upon our recent findings and current state of knowledge in the field, and suggest novel radiation effect biomarkers and means of prevention. We propose strategies and interventions to prevent and mitigate radiation effects on the brain.
Collapse
Affiliation(s)
- Anna Kovalchuk
- a Department of Neuroscience , University of Lethbridge , Lethbridge , AB , Canada.,b Canadian Institute for Advanced Research , Toronto , ON , Canada.,c Alberta Epigenetics Network , AB , Canada
| | - Bryan Kolb
- a Department of Neuroscience , University of Lethbridge , Lethbridge , AB , Canada.,b Canadian Institute for Advanced Research , Toronto , ON , Canada.,c Alberta Epigenetics Network , AB , Canada
| |
Collapse
|
30
|
Hurem S, Martín LM, Brede DA, Skjerve E, Nourizadeh-Lillabadi R, Lind OC, Christensen T, Berg V, Teien HC, Salbu B, Oughton DH, Aleström P, Lyche JL. Dose-dependent effects of gamma radiation on the early zebrafish development and gene expression. PLoS One 2017; 12:e0179259. [PMID: 28628668 PMCID: PMC5476279 DOI: 10.1371/journal.pone.0179259] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/27/2017] [Indexed: 01/07/2023] Open
Abstract
Ionizing radiation from natural sources or anthropogenic activity has the potential to cause oxidative stress or genetic damage in living organisms, through the ionization and excitation of molecules and the subsequent production of free radicals and reactive oxygen species (ROS). The present work focuses on radiation-induced biological effects using the zebrafish (Danio rerio) vertebrate model. Changes in developmental traits and gene expression in zebrafish were assessed after continuous external gamma irradiation (0.4, 3.9, 15 and 38 mGy/h) with corresponding controls, starting at 2.5 hours post fertilization (hpf) and lasting through embryogenesis and the early larval stage. The lowest dose rate corresponded to recommended benchmarks at which adverse effects are not expected to occur in aquatic ecosystems (2-10 mGy/day). The survival observed at 96 hours post fertilization (hpf) in the 38 mGy/h group was significantly lower, while other groups showed no significant difference compared to controls. The total hatching was significantly lower from controls in the 15 mGy/h group and a delay in hatching onset in the 0.4 mGy/h group was observed. The deformity frequency was significantly increased by prolonged exposure duration at dose rates ≥ 0.4 mGy/h. Molecular responses analyzed by RNA-seq at gastrulation (5.5 hpf transcriptome) indicate that the radiation induced adverse effects occurred during the earliest stages of development. A dose-response relationship was found in the numbers of differentially regulated genes in exposure groups compared to controls at a total dose as low as 1.62 mGy. Ingenuity Pathway Analysis identified retinoic acid receptor activation, apoptosis, and glutathione mediated detoxification signaling as the most affected pathways in the lower dose rate (0.54 mGy/h), while eif2 and mTOR, i.e., involved in the modulation of angiogenesis, were most affected in higher dose rates (5.4 and 10.9 mGy/h). By comparing gene expression data, myc was found to be the most significant upstream regulator, followed by tp53, TNF, hnf4a, TGFb1 and cebpa, while crabp2b and vegfab were identified as most frequent downstream target genes. These genes are associated with various developmental processes. The present findings show that continuous gamma irradiation (≥ 0.54 mGy/h) during early gastrula causes gene expression changes that are linked to developmental defects in zebrafish embryos.
Collapse
Affiliation(s)
- Selma Hurem
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| | - Leonardo Martín Martín
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
- University of Camagüey Ignacio Agramonte y Loynaz (UC), Faculty of Agropecuary Sciences, Camagüey, Cuba
| | - Dag Anders Brede
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Eystein Skjerve
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| | - Rasoul Nourizadeh-Lillabadi
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| | - Ole Christian Lind
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Terje Christensen
- Norwegian Radiation Protection Authority (NRPA), CERAD CoE, Østerås, Norway
| | - Vidar Berg
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| | - Hans-Christian Teien
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Brit Salbu
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Deborah Helen Oughton
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Peter Aleström
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| | - Jan Ludvig Lyche
- Norwegian University of Life Sciences (NMBU), CERAD CoE, Faculty of Veterinary Medicine and Biosciences, Oslo, Norway
| |
Collapse
|
31
|
Kong EY, Cheng SH, Yu KN. Zebrafish as an In Vivo Model to Assess Epigenetic Effects of Ionizing Radiation. Int J Mol Sci 2016; 17:ijms17122108. [PMID: 27983682 PMCID: PMC5187908 DOI: 10.3390/ijms17122108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/01/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022] Open
Abstract
Exposure to ionizing radiations (IRs) is ubiquitous in our environment and can be categorized into “targeted” effects and “non-targeted” effects. In addition to inducing deoxyribonucleic acid (DNA) damage, IR exposure leads to epigenetic alterations that do not alter DNA sequence. Using an appropriate model to study the biological effects of radiation is crucial to better understand IR responses as well as to develop new strategies to alleviate exposure to IR. Zebrafish, Danio rerio, is a scientific model organism that has yielded scientific advances in several fields and recent studies show the usefulness of this vertebrate model in radiation biology. This review briefly describes both “targeted” and “non-targeted” effects, describes the findings in radiation biology using zebrafish as a model and highlights the potential of zebrafish to assess the epigenetic effects of IR, including DNA methylation, histone modifications and miRNA expression. Other in vivo models are included to compare observations made with zebrafish, or to illustrate the feasibility of in vivo models when the use of zebrafish was unavailable. Finally, tools to study epigenetic modifications in zebrafish, including changes in genome-wide DNA methylation, histone modifications and miRNA expression, are also described in this review.
Collapse
Affiliation(s)
- Eva Yi Kong
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China.
| | - Shuk Han Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Kwan Ngok Yu
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
32
|
Koturbash I, Merrifield M, Kovalchuk O. Fractionated exposure to low doses of ionizing radiation results in accumulation of DNA damage in mouse spleen tissue and activation of apoptosis in a p53/Atm-independent manner. Int J Radiat Biol 2016; 93:148-155. [PMID: 27758128 DOI: 10.1080/09553002.2017.1231943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE While the effects of high doses of ionizing radiation (IR) are relatively well characterized, the molecular mechanisms underlying cellular responses to prolonged exposure to low doses of radiation remain largely under-investigated. MATERIALS AND METHODS Here, we addressed the DNA damage and apoptotic response in the spleen tissue of C57BL/6 male mice after fractionated exposure to X-rays within the 0.1-0.5 Gy dose range. RESULTS The response to initial exposure to 0.1 Gy of IR was characterized by increased DNA damage and elevated levels of apoptosis. Subsequent exposures (cumulative doses of 0.2 and 0.3 Gy) resulted in adaptive response-like changes, represented as increased proliferation and apoptotic response. Cumulative doses of 0.4 and 0.5 Gy were characterized by accumulation of DNA damage and reactivation of apoptosis and apoptosis-related proteins. Additionally, spleen cells with irreversible damage caused by radiation can undergo apoptosis via activation of p38, which does not necessarily involve the Atm/p53 pathway. CONCLUSIONS Fractionated exposure to low doses of X-rays resulted in accumulation of DNA damage in the murine spleen and induction of apoptotic response in p53/Atm-independent manner. Further studies are needed to understand the outcomes and molecular mechanisms underlying cellular responses and early induction of p38 in response to prolonged exposure to IR.
Collapse
Affiliation(s)
- Igor Koturbash
- a Department of Biological Sciences , University of Lethbridge , Lethbridge , Alberta , Canada
| | - Matt Merrifield
- a Department of Biological Sciences , University of Lethbridge , Lethbridge , Alberta , Canada
| | - Olga Kovalchuk
- a Department of Biological Sciences , University of Lethbridge , Lethbridge , Alberta , Canada
| |
Collapse
|
33
|
Temelie M, Stroe D, Petcu I, Mustaciosu C, Moisoi N, Savu D. Bystander effects and compartmental stress response to X-ray irradiation in L929 cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:371-379. [PMID: 27025606 DOI: 10.1007/s00411-016-0649-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Bystander effects are indirect consequences of radiation and many other stress factors. They occur in cells that are not directly exposed to these factors, but receive signals from affected cells either by gap junctions or by molecules released in the medium. Characterizing these effects and deciphering the underlying mechanisms involved in radiation-induced bystander effects are relevant for cancer radiotherapy and radioprotection. At doses of X-ray radiation 0.5 and 1 Gy, we detected bystander effects as increased numbers of micronuclei shortly after the treatment, through medium transfer and by co-cultures. Interestingly, bystander cells did not exhibit long-term adverse changes in viability. Evaluation of several compartmental stress markers (CHOP, BiP, mtHsp60, cytHsp70) by qRT-PCR did not reveal expression changes at transcriptional level. We investigated the involvement of ROS and NO in this process by addition of specific scavengers of these molecules, DMSO or c-PTIO in the transferred medium. This approach proved that ROS but not NO is involved in the induction of lesions in the acceptor cells. These results indicate that L929 cells are susceptible to stress effects of radiation-induced bystander signaling.
Collapse
Affiliation(s)
- Mihaela Temelie
- Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN-HH, 30 Reactorului St., P.O. BOX MG-6, Magurele, Bucharest, Romania
| | - Daniela Stroe
- The Oncologic Radiotherapy Clinic, The Coltea Bucharest Hospital, No. 1-3, I. C. Bratianu Boulevard, District 3, Bucharest, Romania
| | - Ileana Petcu
- Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN-HH, 30 Reactorului St., P.O. BOX MG-6, Magurele, Bucharest, Romania
| | - Cosmin Mustaciosu
- Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN-HH, 30 Reactorului St., P.O. BOX MG-6, Magurele, Bucharest, Romania
| | - Nicoleta Moisoi
- Neuroscience Psychology and Behaviour Department, University of Leicester, Maurice Shock Building, University Road, Leicester, LE1 9HN, UK
- Faculty of Health and Life Sciences, Leicester School of Pharmacy, The Gateway, De Montfort University, Leicester, LE1 9BH, UK
| | - Diana Savu
- Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN-HH, 30 Reactorului St., P.O. BOX MG-6, Magurele, Bucharest, Romania.
| |
Collapse
|
34
|
Ghosh S, Sinha JK, Raghunath M. Epigenomic maintenance through dietary intervention can facilitate DNA repair process to slow down the progress of premature aging. IUBMB Life 2016; 68:717-21. [PMID: 27364681 DOI: 10.1002/iub.1532] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/15/2016] [Indexed: 12/27/2022]
Abstract
DNA damage caused by various sources remains one of the most researched topics in the area of aging and neurodegeneration. Increased DNA damage causes premature aging. Aging is plastic and is characterised by the decline in the ability of a cell/organism to maintain genomic stability. Lifespan can be modulated by various interventions like calorie restriction, a balanced diet of macro and micronutrients or supplementation with nutrients/nutrient formulations such as Amalaki rasayana, docosahexaenoic acid, resveratrol, curcumin, etc. Increased levels of DNA damage in the form of double stranded and single stranded breaks are associated with decreased longevity in animal models like WNIN/Ob obese rats. Erroneous DNA repair can result in accumulation of DNA damage products, which in turn result in premature aging disorders such as Hutchinson-Gilford progeria syndrome. Epigenomic studies of the aging process have opened a completely new arena for research and development of drugs and therapeutic agents. We propose here that agents or interventions that can maintain epigenomic stability and facilitate the DNA repair process can slow down the progress of premature aging, if not completely prevent it. © 2016 IUBMB Life, 68(9):717-721, 2016.
Collapse
Affiliation(s)
- Shampa Ghosh
- Endocrinology and Metabolism Division, National Institute of Nutrition (NIN), Indian Council of Medical Research (ICMR), Hyderabad, 500007, India
| | - Jitendra Kumar Sinha
- Endocrinology and Metabolism Division, National Institute of Nutrition (NIN), Indian Council of Medical Research (ICMR), Hyderabad, 500007, India.,Epigenetics and Neuropsychiatric Disease Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Manchala Raghunath
- Endocrinology and Metabolism Division, National Institute of Nutrition (NIN), Indian Council of Medical Research (ICMR), Hyderabad, 500007, India
| |
Collapse
|
35
|
Testi S, Azzarà A, Giovannini C, Lombardi S, Piaggi S, Facioni MS, Scarpato R. Vincristine-induced bystander effect in human lymphocytes. Mutat Res 2016; 789:39-47. [PMID: 27050754 DOI: 10.1016/j.mrfmmm.2016.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/11/2016] [Accepted: 03/24/2016] [Indexed: 06/05/2023]
Abstract
Bystander effect is a known radiobiological effect, widely described using ionizing radiations and which, more recently, has also been related to chemical mutagens. In this study, we aimed to assess whether or not a bystander response can be induced in cultured human peripheral lymphocytes by vincristine, a chemotherapeutic mutagen acting as spindle poison, and by mitomycin-C, an alkylating agent already known to induce this response in human lymphoblastoid cells. Designing a modified ad hoc protocol for the cytokinesis blocked micronucleus (MN) assay, we detected the presence of a dose-dependent bystander response in untreated cultures receiving the conditioned medium (CM) from mitomycin-C (MMC) or vincristine (VCR) treated cultures. In the case of MMC, MN frequencies, expressed as micronucleated binucleates, were: 13.5±1.41 at 6μM, 22±2.12 at 12μM or 28.25±5.13 at 15μM vs. a control value of 4.75±1.59. MN levels for VCR, expressed as micronucleated mononucleates were: 2.75±0.88 at 0.0μM, 27.25±2.30 at 0.4μM, 46.25±1.94 at 0.8μM, 98.25±7.25 at 1.6μM. To verify that no mutagen residual was transferred to recipient cultures together with the CM, we evaluated MN levels in cultures receiving the medium immediately after three washings following the chemical treatment (unconditioned medium). We further confirmed these results using a cell-mixing approach where untreated lymphocytes were co-cultured with donor cells treated with an effect-inducing dose of MMC or VCR. A distinct production pattern of both reactive oxygen species and soluble mediator proteins by treated cells may account for the differences observed in the manifestation of the bystander effect induced by VCR. In fact, we observed an increased level of ROS, IL-32 and TGF-β in the CM from VCR treated cultures, not present in MMC treated cultures.
Collapse
Affiliation(s)
- Serena Testi
- Unità di Genetica, Dipartimento di Biologia, Pisa University, Via Derna 1, 56126 Pisa, Italy
| | - Alessia Azzarà
- Unità di Genetica, Dipartimento di Biologia, Pisa University, Via Derna 1, 56126 Pisa, Italy
| | - Caterina Giovannini
- Unità di Genetica, Dipartimento di Biologia, Pisa University, Via Derna 1, 56126 Pisa, Italy
| | - Sara Lombardi
- Unità di Genetica, Dipartimento di Biologia, Pisa University, Via Derna 1, 56126 Pisa, Italy
| | - Simona Piaggi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Pisa University, Via Savi 10, 56126 Pisa, Italy
| | - Maria Sole Facioni
- Unità di Genetica, Dipartimento di Biologia, Pisa University, Via Derna 1, 56126 Pisa, Italy
| | - Roberto Scarpato
- Unità di Genetica, Dipartimento di Biologia, Pisa University, Via Derna 1, 56126 Pisa, Italy; Research Center of Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy.
| |
Collapse
|
36
|
Abstract
The aim of this work is to review the uses of laser microirradiation and ion microbeam techniques within the scope of radiobiological research. Laser microirradiation techniques can be used for many different purposes. In a specific condition, through the use of pulsed lasers, cell lysis can be produced for subsequent separation of different analytes. Microsurgery allows for the identification and isolation of tissue sections, single cells and subcellular components, using different types of lasers. The generation of different types of DNA damage, via this type of microirradiation, allows for the investigation of DNA dynamics. Ion microbeams are important tools in radiobiological research. There are only a limited number of facilities worldwide where radiobiological experiments can be performed. In the beginning, research was mostly focused on the bystander effect. Nowadays, with more sophisticated molecular and cellular biological techniques, ion microirradiation is used to unravel molecular processes in the field of radiobiology. These include DNA repair protein kinetics or chromatin modifications at the site of DNA damage. With the increasing relevance of charged particles in tumour therapy and new concepts on how to generate them, ion microbeam facilities are able to address unresolved questions concerning particle tumour therapy.
Collapse
Affiliation(s)
- Guido A Drexler
- 1Department of Radiation Oncology, University of Munich, Schillerstr. 42, 80336, Munich, Germany,
| | | |
Collapse
|
37
|
Garazha A, Ivanova A, Suntsova M, Malakhova G, Roumiantsev S, Zhavoronkov A, Buzdin A. New bioinformatic tool for quick identification of functionally relevant endogenous retroviral inserts in human genome. Cell Cycle 2016; 14:1476-84. [PMID: 25853282 PMCID: PMC4612461 DOI: 10.1080/15384101.2015.1022696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Endogenous retroviruses (ERVs) and LTR retrotransposons (LRs) occupy ∼8% of human genome. Deep sequencing technologies provide clues to understanding of functional relevance of individual ERVs/LRs by enabling direct identification of transcription factor binding sites (TFBS) and other landmarks of functional genomic elements. Here, we performed the genome-wide identification of human ERVs/LRs containing TFBS according to the ENCODE project. We created the first interactive ERV/LRs database that groups the individual inserts according to their familial nomenclature, number of mapped TFBS and divergence from their consensus sequence. Information on any particular element can be easily extracted by the user. We also created a genome browser tool, which enables quick mapping of any ERV/LR insert according to genomic coordinates, known human genes and TFBS. These tools can be used to easily explore functionally relevant individual ERV/LRs, and for studying their impact on the regulation of human genes. Overall, we identified ∼110,000 ERV/LR genomic elements having TFBS. We propose a hypothesis of “domestication” of ERV/LR TFBS by the genome milieu including subsequent stages of initial epigenetic repression, partial functional release, and further mutation-driven reshaping of TFBS in tight coevolution with the enclosing genomic loci.
Collapse
Affiliation(s)
- Andrew Garazha
- a Group for Genomic Regulation of Cell Signaling Systems ; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry ; Moscow , Russia
| | | | | | | | | | | | | |
Collapse
|
38
|
Yang L, Yang J, Li G, Li Y, Wu R, Cheng J, Tang Y. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury. Mol Neurobiol 2016; 54:1022-1032. [PMID: 26797684 PMCID: PMC5310567 DOI: 10.1007/s12035-015-9628-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022]
Abstract
The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.
Collapse
Affiliation(s)
- Lianhong Yang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jianhua Yang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China
| | - Guoqian Li
- Department of Neurology, Fujian Provincical Quanzhou First Hospital, Quanzhou, Fujian Province, China
| | - Yi Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China
| | - Rong Wu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jinping Cheng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China. .,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
39
|
Zakhvataev VE. Possible scenarios of the influence of low-dose ionizing radiation on neural functioning. Med Hypotheses 2015; 85:723-35. [PMID: 26526727 DOI: 10.1016/j.mehy.2015.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/05/2015] [Accepted: 10/20/2015] [Indexed: 12/30/2022]
Abstract
Possible scenarios of the influence of ionizing radiation on neural functioning and the CNS are suggested. We argue that the radiation-induced bystander mechanisms associated with Ca(2+) flows, reactive nitrogen and oxygen species, and cytokines might lead to modulation of certain neuronal signaling pathways. The considered scenarios of conjugation of the bystander signaling and the neuronal signaling might result in modulation of certain synaptic receptors, neurogenesis, neurotransmission, channel conductance, synaptic signaling, different forms of neural plasticity, memory formation and storage, and learning. On this basis, corresponding new possible strategies for treating neurodegenerative deceases and mental disorders are proposed. The mechanisms considered might also be associated with neuronal survival and relevant to the treatment for brain injuries. At the same time, these mechanisms might be associated with detrimental effects and might facilitate the development of some neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Vladimir E Zakhvataev
- Neuroinformatics Department, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; Laboratory of Biological Action of Low-Intensity Factors, Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia.
| |
Collapse
|
40
|
Chandel N, Ayasolla KS, Lan X, Sultana-Syed M, Chawla A, Lederman R, Vethantham V, Saleem MA, Chander PN, Malhotra A, Singhal PC. Epigenetic Modulation of Human Podocyte Vitamin D Receptor in HIV Milieu. J Mol Biol 2015; 427:3201-3215. [PMID: 26210663 PMCID: PMC4586951 DOI: 10.1016/j.jmb.2015.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/09/2015] [Accepted: 07/14/2015] [Indexed: 01/08/2023]
Abstract
HIV (human immunodeficiency virus) has been reported to induce podocyte injury through down regulation of vitamin D receptor (VDR) and activation of renin angiotensin system; however, the involved mechanism is not clear. Since HIV has been reported to modulate gene expression via epigenetic phenomena, we asked whether epigenetic factors contribute to down regulation of VDR. Kidney cells in HIV transgenic mice and HIV-infected podocytes (HIV/HPs) displayed enhanced expression of SNAIL, a repressor of VDR. To elucidate the mechanism, we studied the effect of HIV on expression of molecules involved in SNAIL repressor complex formation and demonstrated that HIV enhances expression of the histone deacetylase HDAC1 and DNA methyl transferases DNMT3b and DNMT1. 293T cells, when stably transfected with SNAIL (SNAIL/293T), displayed suppressed transcription and translation of VDR. In SNAIL/293T cells, co-immunoprecipitation studies revealed the association of HDAC1, DNMT3b, DNMT1, and mSin3A with SNAIL. Chromatin immunoprecipitation experiments confirmed the presence of the SNAIL repressor complex at the VDR promoter. Consistent with the enhanced DNA methyl transferase expression in HIV/HPs, there was an increased CpG methylation at the VDR promoter. Chromatin immunoprecipitation assay confirmed occurrence of H3K4 trimethylation on SNAIL promoter. Neither a VDR agonist (VDA) nor an HDAC inhibitor (HDACI) nor a demethylating agent (DAC) individually could optimally up regulate VDR in HIV milieu. However, VDA and HDACI when combined were successful in de-repressing VDR expression. Our findings demonstrate that SNAIL recruits multiple chromatin enzymes to form a repressor complex in HIV milieu that down regulates VDR expression.
Collapse
Affiliation(s)
- Nirupama Chandel
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; Hofstra North Shore LIJ Medical School, Hempstead, NY 11549-1000, USA
| | - Kameshwar S Ayasolla
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; Hofstra North Shore LIJ Medical School, Hempstead, NY 11549-1000, USA
| | - Xiqian Lan
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; Hofstra North Shore LIJ Medical School, Hempstead, NY 11549-1000, USA
| | - Maria Sultana-Syed
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; Hofstra North Shore LIJ Medical School, Hempstead, NY 11549-1000, USA
| | - Amrita Chawla
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; Hofstra North Shore LIJ Medical School, Hempstead, NY 11549-1000, USA
| | - Rivka Lederman
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; Hofstra North Shore LIJ Medical School, Hempstead, NY 11549-1000, USA
| | - Vasupradha Vethantham
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; Hofstra North Shore LIJ Medical School, Hempstead, NY 11549-1000, USA
| | - Moin A Saleem
- Renal Academic Unit, University of Bristol, City of Bristol BS8 1TH, United Kingdom
| | - Praveen N Chander
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA
| | - Ashwani Malhotra
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; Hofstra North Shore LIJ Medical School, Hempstead, NY 11549-1000, USA
| | - Pravin C Singhal
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; Hofstra North Shore LIJ Medical School, Hempstead, NY 11549-1000, USA.
| |
Collapse
|
41
|
Tian W, Yin X, Wang L, Wang J, Zhu W, Cao J, Yang H. The key role of miR-21-regulated SOD2 in the medium-mediated bystander responses in human fibroblasts induced by α-irradiated keratinocytes. Mutat Res 2015; 780:77-85. [PMID: 26302379 DOI: 10.1016/j.mrfmmm.2015.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 07/24/2015] [Accepted: 08/10/2015] [Indexed: 12/22/2022]
Abstract
Radiation-induced bystander effect (RIBE) is well accepted in the radiation research field by now, but the underlying molecular mechanisms for better understanding this phenomenon caused by intercellular communication and intracellular signal transduction are still incomplete. Although our previous study has demonstrated an important role of miR-21 of unirradiated bystander cells in RIBEs, the direct evidence for the hypothesis that RIBE is epigenetically regulated is still limited and how miR-21 mediates RIBEs is unknown. Reactive oxygen species (ROS) have been demonstrated to be involved in RIBEs, however, the roles of anti-oxidative stress system of cells in RIBEs are unclear. Using transwell insert co-culture system, we investigated medium-mediated bystander responses in WS1 human fibroblasts after co-culture with HaCaT keratinocytes traversed by α-particles. Results showed that the ROS levels in unirradiated bystander WS1 cells were significantly elevated after 30min of co-culture, and 53BP1 foci, a surrogate marker of DNA damage, were obviously induced after 3h of co-culture. This indicates the occurrence of oxidative stress and DNA damage in bystander WS1 cells after co-culture with irradiated keratinocytes. Furthermore, the expression of miR-21 was increased in bystander WS1 cells, downregulation of miR-21 eliminated the bystander responses, overexpression of miR-21 alone could induce bystander-like oxidative stress and DNA damage in WS1 cells. These data indicate an important mediating role of miR-21 in RIBEs. In addition, MnSOD or SOD2 in WS1 cells was involved in the bystander effects, overexpression of SOD2 abolished the bystander oxidative stress and DNA damage, indicating that SOD2 was critical to the induction of RIBEs. Moreover, we found that miR-21 regulated SOD2, suggesting that miR-21 might mediate bystander responses through its regulation on SOD2. In conclusion, this study revealed a profound role of miR-21-regulated SOD2 of unirradiated WS1 cells in bystander effects induced by α-irradiated HaCaT keratinocytes.
Collapse
Affiliation(s)
- Wenqian Tian
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China
| | - Xiaoming Yin
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China
| | - Longxiao Wang
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China
| | - Jingdong Wang
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China
| | - Wei Zhu
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China
| | - Hongying Yang
- School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China; Institute of Radiotherapy & Oncology, Soochow University.
| |
Collapse
|
42
|
Radiation quality-dependence of bystander effect in unirradiated fibroblasts is associated with TGF-β1-Smad2 pathway and miR-21 in irradiated keratinocytes. Sci Rep 2015; 5:11373. [PMID: 26080011 PMCID: PMC4468817 DOI: 10.1038/srep11373] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/21/2015] [Indexed: 01/02/2023] Open
Abstract
Traditional radiation biology states that radiation causes damage only in cells traversed by ionizing radiation. But radiation-induced bystander effect (RIBE), which refers to the biological responses in unirradiated cells when the neighboring cells are exposed to radiation, challenged this old dogma and has become a new paradigm of this field. By nature, RIBEs are the consequences of intercellular communication between irradiated and unirradiated cells. However, there are still some important questions remain unanswered such as whether RIBE is dependent on radiation quality, what are the determining factors if so, etc. Using a transwell co-culture system, we found that HaCaT keratinocytes irradiated with α-particles but not X-rays could induce bystander micronucleus formation in unirradiated WS1 fibroblasts after co-culture. More importantly, the activation of TGF-β1-Smad2 pathway and the consistent decrease of miR-21 level in α-irradiated HaCaT cells were essential to the micronucleus induction in bystander WS1 cells. On the other hand, X-irradiation did not induce bystander effect in unirradiated WS1 cells, accompanied by lack of Smad2 activation and consistent decrease of miR-21 in X-irradiated HaCaT cells. Taken together, these results suggest that the radiation quality-dependence of bystander effect may be associated with the TGF-β1-Smad2 pathway and miR-21 in irradiated cells.
Collapse
|
43
|
Alyamkina EA, Nikolin VP, Popova NA, Minkevich AM, Kozel AV, Dolgova EV, Efremov YR, Bayborodin SI, Andrushkevich OM, Taranov OS, Omigov VV, Rogachev VA, Proskurina AS, Vereschagin EI, Kiseleva EV, Zhukova MV, Ostanin AA, Chernykh ER, Bogachev SS, Shurdov MA. Combination of cyclophosphamide and double-stranded DNA demonstrates synergistic toxicity against established xenografts. Cancer Cell Int 2015; 15:32. [PMID: 25798073 PMCID: PMC4369063 DOI: 10.1186/s12935-015-0180-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 02/24/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Extracellular double-stranded DNA participates in various processes in an organism. Here we report the suppressive effects of fragmented human double-stranded DNA along or in combination with cyclophosphamide on solid and ascites grafts of mouse Krebs-2 tumor cells and DNA preparation on human breast adenocarcinoma cell line MCF-7. METHODS Apoptosis and necrosis were assayed by electrophoretic analysis (DNA nucleosomal fragmentation) and by measurements of LDH levels in ascitic fluid, respectively. DNA internalization into MCF-7 was analyzed by flow cytometry and fluorescence microscopy. RESULTS Direct cytotoxic activity of double-stranded DNA (along or in combination with cyclophosphamide) on a solid transplant was demonstrated. This resulted in delayed solid tumor proliferation and partial tumor lysis due to necrosis of the tumor and adjacent tissues. In the case of ascites form of tumor, extensive apoptosis and secondary necrosis were observed. Similarly, MCF-7 cells showed induction of massive apoptosis (up to 45%) as a result of treatments with double-stranded DNA preparation. CONCLUSIONS Double-stranded DNA (along or in combination with cyclophosphamide) induces massive apoptosis of Krebs-2 ascite cells and MCF-7 cell line (DNA only). In treated mice it reduces the integrity of gut wall cells and contributes to the development of systemic inflammatory reaction.
Collapse
Affiliation(s)
- Ekaterina A Alyamkina
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
| | - Valeriy P Nikolin
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
| | - Nelly A Popova
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
- />Novosibirsk State University, Novosibirsk, 630090 Russia
| | - Alexandra M Minkevich
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
| | - Artem V Kozel
- />Novosibirsk State University, Novosibirsk, 630090 Russia
| | - Evgenia V Dolgova
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
| | - Yaroslav R Efremov
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
- />Novosibirsk State University, Novosibirsk, 630090 Russia
| | - Sergey I Bayborodin
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
- />Novosibirsk State University, Novosibirsk, 630090 Russia
| | - Oleg M Andrushkevich
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
- />Novosibirsk State University, Novosibirsk, 630090 Russia
| | - Oleg S Taranov
- />The State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk region 630559 Russia
| | - Vladimir V Omigov
- />The State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk region 630559 Russia
| | - Vladimir A Rogachev
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
| | - Anastasia S Proskurina
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
| | | | - Elena V Kiseleva
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
| | - Maria V Zhukova
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
| | - Alexandr A Ostanin
- />Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, 630099 Russia
| | - Elena R Chernykh
- />Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, 630099 Russia
| | - Sergey S Bogachev
- />Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva ave, 630090 Novosibirsk, Russia
| | | |
Collapse
|
44
|
Protracted Oxidative Alterations in the Mechanism of Hematopoietic Acute Radiation Syndrome. Antioxidants (Basel) 2015; 4:134-52. [PMID: 26785342 PMCID: PMC4665569 DOI: 10.3390/antiox4010134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/07/2015] [Accepted: 02/02/2015] [Indexed: 11/30/2022] Open
Abstract
The biological effects of high-dose total body ionizing irradiation [(thereafter, irradiation (IR)] are attributed to primary oxidative breakage of biomolecule targets, mitotic, apoptotic and necrotic cell death in the dose-limiting tissues, clastogenic and epigenetic effects, and cascades of functional and reactive responses leading to radiation sickness defined as the acute radiation syndrome (ARS). The range of remaining and protracted injuries at any given radiation dose as well as the dynamics of post-IR alterations is tissue-specific. Therefore, functional integrity of the homeostatic tissue barriers may decline gradually within weeks in the post-IR period culminating with sepsis and failure of organs and systems. Multiple organ failure (MOF) leading to moribundity is a common sequela of the hemotapoietic form of ARS (hARS). Onset of MOF in hARS can be presented as “two-hit phenomenon” where the “first hit” is the underlying consequences of the IR-induced radiolysis in cells and biofluids, non-septic inflammation, metabolic up-regulation of pro-oxidative metabolic reactions, suppression of the radiosensitive hematopoietic and lymphoid tissues and the damage to gut mucosa and vascular endothelium. While the “second hit” derives from bacterial translocation and spread of the bacterial pathogens and inflammagens through the vascular system leading to septic inflammatory, metabolic responses and a cascade of redox pro-oxidative and adaptive reactions. This sequence of events can create a ground for development of prolonged metabolic, inflammatory, oxidative, nitrative, and carbonyl, electrophilic stress in crucial tissues and thus exacerbate the hARS outcomes. With this perspective, the redox mechanisms, which can mediate the IR-induced protracted oxidative post-translational modification of proteins, oxidation of lipids and carbohydrates and their countermeasures in hARS are subjects of the current review. Potential role of ubiquitous, radioresistant mesenchymal stromal cells in the protracted responses to IR and IR-related septicemia is also discussed.
Collapse
|
45
|
Szumiel I. From radioresistance to radiosensitivity: In vitro evolution of L5178Y lymphoma. Int J Radiat Biol 2015; 91:465-71. [PMID: 25651039 DOI: 10.3109/09553002.2014.996263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE To discuss the possible reasons for the loss of tumourigenicity and the acquisition of new phenotypic features (among them, sensitivity to X and UVC radiations) as a result of in vitro cultivation of L5178Y lymphoma cells. RESULTS Ten years ago the phenotypic differences between LY-R (original L5178Y maintained in vivo and examined in vitro) and LY-S lines were reviewed in detail by the author. The loss of tumourigenicity of LY-R cells upon in vitro cultivation accompanying the acquirement of the LY-S phenotype had been described earlier by Beer et al. (1983). In spite of their common origin, the sublines were shown to differ in their relative sensitivity to a number of DNA damaging agents and in numerous other features. Here, selected differences between LY-R and LY-S lines are briefly reviewed. It is proposed that Wallace's concept (2010a) that mitochondria are the interface between environmental conditions and the genome may explain the LY-R-LY-S conversion under prolonged in vitro cultivation. CONCLUSION The differences between the LY lines were probably of epigenetic rather than genetic character. The properties of LY-R cells changed as a result of exposure to an oxic in vitro milieu. The changes could be preconditioned by heteroplasmy and the selection of cells endowed with mitochondria best fitted to a high oxygen-low carbon dioxide environment.
Collapse
Affiliation(s)
- Irena Szumiel
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology , Warsaw , Poland
| |
Collapse
|
46
|
Huumonen K, Korkalainen M, Viluksela M, Lahtinen T, Naarala J, Juutilainen J. Role of microRNAs and DNA Methyltransferases in Transmitting Induced Genomic Instability between Cell Generations. Front Public Health 2014; 2:139. [PMID: 25309892 PMCID: PMC4163984 DOI: 10.3389/fpubh.2014.00139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/26/2014] [Indexed: 12/17/2022] Open
Abstract
There is limited understanding of how radiation or chemicals induce genomic instability, and how the instability is epigenetically transmitted to the progeny of exposed cells or organisms. Here, we measured the expression of microRNAs (miRNAs) and DNA methyltransferases (DNMTs) in murine embryonal fibroblasts exposed to ionizing radiation or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which were previously shown to induce genomic instability in this cell line. Cadmium was used as a reference agent that does not induce genomic instability in our experimental model. Measurements at 8 and 15 days after exposure did not identify any such persistent changes that could be considered as signals transmitting genomic instability to the progeny of exposed cells. However, measurements at 2 days after exposure revealed findings that may reflect initial stages of genomic instability. Changes that were common to TCDD and two doses of radiation (but not to cadmium) included five candidate signature miRNAs and general up-regulation of miRNA expression. Expression of DNMT3a, DNMT3b, and DNMT2 was suppressed by cadmium but not by TCDD or radiation, consistently with the hypothesis that sufficient expression of DNMTs is necessary in the initial phase of induced genomic instability.
Collapse
Affiliation(s)
- Katriina Huumonen
- Department of Environmental Science, University of Eastern Finland , Kuopio , Finland
| | - Merja Korkalainen
- Department of Environmental Health, National Institute for Health and Welfare , Kuopio , Finland
| | - Matti Viluksela
- Department of Environmental Science, University of Eastern Finland , Kuopio , Finland ; Department of Environmental Health, National Institute for Health and Welfare , Kuopio , Finland
| | - Tapani Lahtinen
- Cancer Center, Kuopio University Hospital , Kuopio , Finland
| | - Jonne Naarala
- Department of Environmental Science, University of Eastern Finland , Kuopio , Finland
| | - Jukka Juutilainen
- Department of Environmental Science, University of Eastern Finland , Kuopio , Finland
| |
Collapse
|
47
|
Diet-induced obesity modulates epigenetic responses to ionizing radiation in mice. PLoS One 2014; 9:e106277. [PMID: 25171162 PMCID: PMC4149562 DOI: 10.1371/journal.pone.0106277] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/05/2014] [Indexed: 01/16/2023] Open
Abstract
Both exposure to ionizing radiation and obesity have been associated with various pathologies including cancer. There is a crucial need in better understanding the interactions between ionizing radiation effects (especially at low doses) and other risk factors, such as obesity. In order to evaluate radiation responses in obese animals, C3H and C57BL/6J mice fed a control normal fat or a high fat (HF) diet were exposed to fractionated doses of X-rays (0.75 Gy ×4). Bone marrow micronucleus assays did not suggest a modulation of radiation-induced genotoxicity by HF diet. Using MSP, we observed that the promoters of p16 and Dapk genes were methylated in the livers of C57BL/6J mice fed a HF diet (irradiated and non-irradiated); Mgmt promoter was methylated in irradiated and/or HF diet-fed mice. In addition, methylation PCR arrays identified Ep300 and Socs1 (whose promoters exhibited higher methylation levels in non-irradiated HF diet-fed mice) as potential targets for further studies. We then compared microRNA regulations after radiation exposure in the livers of C57BL/6J mice fed a normal or an HF diet, using microRNA arrays. Interestingly, radiation-triggered microRNA regulations observed in normal mice were not observed in obese mice. miR-466e was upregulated in non-irradiated obese mice. In vitro free fatty acid (palmitic acid, oleic acid) administration sensitized AML12 mouse liver cells to ionizing radiation, but the inhibition of miR-466e counteracted this radio-sensitization, suggesting that the modulation of radiation responses by diet-induced obesity might involve miR-466e expression. All together, our results suggested the existence of dietary effects on radiation responses (especially epigenetic regulations) in mice, possibly in relationship with obesity-induced chronic oxidative stress.
Collapse
|
48
|
Szumiel I. Intraclonal recovery of 'slow clones'-a manifestation of genomic instability: are mitochondria the key to an explanation? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:479-484. [PMID: 24638149 DOI: 10.1007/s00411-014-0532-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
Intraclonal recovery following X-irradiation in an in vitro study of L5178Y-S murine leukaemic cells is reviewed. This phenomenon was first described in 1994 occurring in the slowly growing clones ('slow clones') present among the survivors in irradiated cell populations. An attempt to explain these experimental data is given in terms of the present knowledge of the role of mitochondria in nontargeted radiation effects, with the focus on genomic instability and mtDNA-related epigenetic modifications of the nuclear genome. An understanding of this intraclonal recovery may be important in preventing tumour regrowth following radiotherapy, as well as in decreasing the risk of secondary radiation-induced malignancies.
Collapse
Affiliation(s)
- Irena Szumiel
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195, Warsaw, Poland,
| |
Collapse
|
49
|
Jiang Y, Chen X, Tian W, Yin X, Wang J, Yang H. The role of TGF-β1-miR-21-ROS pathway in bystander responses induced by irradiated non-small-cell lung cancer cells. Br J Cancer 2014; 111:772-80. [PMID: 24992582 PMCID: PMC4134503 DOI: 10.1038/bjc.2014.368] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/23/2014] [Accepted: 06/06/2014] [Indexed: 12/18/2022] Open
Abstract
Background: Many studies have indicated an important implication of radiation-induced bystander effects (RIBEs) in cancer radiotherapy, but the detailed signalling remains unclear. Methods: The roles of tumour growth factor-beta1 (TGF-β1) and miR-21 in medium-mediated RIBEs in H1299 non-small-cell lung cancer cells were investigated using DNA damage, changes in proliferation and levels of reactive oxygen species (ROS) as end points. SB431542, a specific inhibitor of TGF-β type 1 receptor kinases, was used to inhibit TGF-β1 pathways in irradiated and bystander cells. Exogenous miR-21 regulation was achieved through inhibitor or mimic transfection. Results: Compared with relative sham-radiation-conditioned medium, radiation-conditioned medium (RCM) from irradiated cells 1 h post radiation (1-h RCM) caused an increase in ROS levels and DNA damage in bystander cells, while 18-h RCM induced cell cycle delay and proliferation inhibition. All these effects were eliminated by TGF-βR1 inhibition. One-hour RCM upregulated miR-21 expression in bystander cells, and miR-21 inhibitor abolished bystander oxidative stress and DNA damage. Eighteen-hour RCM downregulated miR-21 of bystander cells, and miR-21 mimic eliminated bystander proliferation inhibition. Furthermore, the dysregulation of miR-21 was attenuated by TGF-βR1 inhibition. Conclusions: The TGF-β1–miR-21–ROS pathway of bystander cells has an important mediating role in RIBEs in H1299 cells.
Collapse
Affiliation(s)
- Y Jiang
- 1] School of Radiation Medicine and Protection, Medical College of Soochow University/School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China [2] Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - X Chen
- 1] School of Radiation Medicine and Protection, Medical College of Soochow University/School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China [2] Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - W Tian
- 1] School of Radiation Medicine and Protection, Medical College of Soochow University/School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China [2] Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - X Yin
- 1] School of Radiation Medicine and Protection, Medical College of Soochow University/School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China [2] Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - J Wang
- 1] School of Radiation Medicine and Protection, Medical College of Soochow University/School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China [2] Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - H Yang
- 1] School of Radiation Medicine and Protection, Medical College of Soochow University/School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China [2] Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| |
Collapse
|
50
|
Yang C, Gu L, Deng D. Distinct susceptibility of induction of methylation of p16ink4a and p19arf CpG islands by X-radiation and chemical carcinogen in mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 768:42-50. [DOI: 10.1016/j.mrgentox.2014.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/17/2014] [Accepted: 04/19/2014] [Indexed: 11/26/2022]
|