1
|
Zhou G, Williams A, LeBlanc DPM, Douglas GR, Yauk CL, Marchetti F. Temporal analyses of germ cell mutations using the MutaMouse model support the recommended design in OECD test guideline 488. Arch Toxicol 2025:10.1007/s00204-025-04085-1. [PMID: 40399496 DOI: 10.1007/s00204-025-04085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 05/07/2025] [Indexed: 05/23/2025]
Abstract
The Organisation for Economic Co-operation and Development test guideline (TG) 488 uses transgenic rodent models to assess in vivo mutagenesis. TG 488 recommends 28 consecutive days of exposure with sampling of germ cells from seminiferous tubules 28 days post-exposure (i.e., 28 + 28d). We analyzed mutant frequencies (MF) in male germ cells up to 70 days post-exposure to determine whether designs other than 28 + 28d are necessary for assessing germ cell mutagenicity. Adult MutaMouse males received various doses of benzo(a)pyrene (BaP), N-ethyl-N-nitrosourea (ENU), isopropyl methanesulfonate (iPMS), or procarbazine (PRC) alongside vehicle controls for 28 days orally. Germ cells were collected from seminiferous tubules at + 3d, + 28d, + 42d, or + 70d post-exposure and MF quantified using the lacZ assay. Significant increases in lacZ MF were observed for all four chemicals at 28 + 28d. No further increases occurred at later sampling times. There was no significant effect with BaP at 28 + 3d, and a significantly stronger response with ENU and BaP at 28 + 28d compared to 28 + 3d. PRC produced the strongest response at 28 + 3d, while there was no impact of different sampling times for iPMS. Both these chemicals significantly reduced testis weight at 28 + 3d and 28 + 28d. Finally, benchmark dose modeling generated overlapping confidence intervals among the four sampling times for ENU, iPMS, and PRC. However, for BaP, the confidence interval was significantly greater at 28 + 3d than at the other sampling times. These results support the use of the 28 + 28d design as the recommended experimental design for germ cells in TG 488 and that later sampling times are not necessary.
Collapse
Affiliation(s)
- Gu Zhou
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, 251 Sir Frederick Banting Driveway, Ottawa, Health CanadaON, K1A 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, 251 Sir Frederick Banting Driveway, Ottawa, Health CanadaON, K1A 0K9, Canada
| | - Danielle P M LeBlanc
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, 251 Sir Frederick Banting Driveway, Ottawa, Health CanadaON, K1A 0K9, Canada
| | - George R Douglas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, 251 Sir Frederick Banting Driveway, Ottawa, Health CanadaON, K1A 0K9, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, 251 Sir Frederick Banting Driveway, Ottawa, Health CanadaON, K1A 0K9, Canada.
| |
Collapse
|
2
|
Wang Y, Le Y, Harris KL, Chen Y, Li X, Faske J, Wynne RA, Mittelstaedt RA, Cao X, Miranda-Colon J, Elkins L, Muskhelishvili L, Davis K, Mei N, Sun W, Robison TW, Heflich RH, Parsons BL. Repeat treatment of organotypic airway cultures with ethyl methanesulfonate causes accumulation of somatic cell mutations without expansion of bronchial-carcinoma-specific cancer driver mutations. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503786. [PMID: 39054009 DOI: 10.1016/j.mrgentox.2024.503786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
The human in vitro organotypic air-liquid-interface (ALI) airway tissue model is structurally and functionally similar to the human large airway epithelium and, as a result, is being used increasingly for studying the toxicity of inhaled substances. Our previous research demonstrated that DNA damage and mutagenesis can be detected in human airway tissue models under conditions used to assess general and respiratory toxicity endpoints. Expanding upon our previous proof-of-principle study, human airway epithelial tissue models were treated with 6.25-100 µg/mL ethyl methanesulfonate (EMS) for 28 days, followed by a 28-day recovery period. Mutagenesis was evaluated by Duplex Sequencing (DS), and clonal expansion of bronchial-cancer-specific cancer-driver mutations (CDMs) was investigated by CarcSeq to determine if both mutation-based endpoints can be assessed in the same system. Additionally, DNA damage and tissue-specific responses were analyzed during the treatment and following the recovery period. EMS exposure led to time-dependent increases in mutagenesis over the 28-day treatment period, without expansion of clones containing CDMs; the mutation frequencies remained elevated following the recovery. EMS also produced an increase in DNA damage measured by the CometChip and MultiFlow assays and the elevated levels of DNA damage were reduced (but not eliminated) following the recovery period. Cytotoxicity and most tissue-function changes induced by EMS treatment recovered to control levels, the exception being reduced proliferating cell frequency. Our results indicate that general, respiratory-tissue-specific and genotoxicity endpoints increased with repeat EMS dosing; expansion of CDM clones, however, was not detected using this repeat treatment protocol. DISCLAIMER: This article reflects the views of its authors and does not necessarily reflect those of the U.S. Food and Drug Administration. Any mention of commercial products is for clarification only and is not intended as approval, endorsement, or recommendation.
Collapse
Affiliation(s)
- Yiying Wang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Yuan Le
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Kelly L Harris
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Ying Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jennifer Faske
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Rebecca A Wynne
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Roberta A Mittelstaedt
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xuefei Cao
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jaime Miranda-Colon
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Lana Elkins
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | | | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Wei Sun
- Division of Pharmacology/Toxicology for Immunology & Inflammation, Office of Immunology and Inflammation, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Timothy W Robison
- Division of Pharmacology/Toxicology for Immunology & Inflammation, Office of Immunology and Inflammation, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Barbara L Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
3
|
Lynch AM, Howe J, Hildebrand D, Harvey JS, Burman M, Harte DSG, Chen L, Kmett C, Shi W, McHugh CF, Patel KK, Junnotula V, Kenny J, Haworth R, Wills JW. N-Nitrosodimethylamine investigations in Muta™Mouse define point-of-departure values and demonstrate less-than-additive somatic mutant frequency accumulations. Mutagenesis 2024; 39:96-118. [PMID: 38183622 DOI: 10.1093/mutage/geae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/05/2024] [Indexed: 01/08/2024] Open
Abstract
The N-nitrosamine, N-nitrosodimethylamine (NDMA), is an environmental mutagen and rodent carcinogen. Small levels of NDMA have been identified as an impurity in some commonly used drugs, resulting in several product recalls. In this study, NDMA was evaluated in an OECD TG-488 compliant Muta™Mouse gene mutation assay (28-day oral dosing across seven daily doses of 0.02-4 mg/kg/day) using an integrated design that assessed mutation at the transgenic lacZ locus in various tissues and at the endogenous Pig-a gene-locus, along with micronucleus frequencies in peripheral blood. Liver pathology was determined together with NDMA exposure in blood and liver. The additivity of mutation induction was assessed by including two acute single-dose treatment groups (i.e. 5 and 10 mg/kg dose on Day 1), which represented the same total dose as two of the repeat dose treatment groups. NDMA did not induce statistically significant increases in mean lacZ mutant frequency (MF) in bone marrow, spleen, bladder, or stomach, nor in peripheral blood (Pig-a mutation or micronucleus induction) when tested up to 4 mg/kg/day. There were dose-dependent increases in mean lacZ MF in the liver, lung, and kidney following 28-day repeat dosing or in the liver and kidney after a single dose (10 mg/kg). No observed genotoxic effect levels (NOGEL) were determined for the positive repeat dose-response relationships. Mutagenicity did not exhibit simple additivity in the liver since there was a reduction in MF following NDMA repeat dosing compared with acute dosing for the same total dose. Benchmark dose modelling was used to estimate point of departure doses for NDMA mutagenicity in Muta™Mouse and rank order target organ tissue sensitivity (liver > kidney or lung). The BMD50 value for liver was 0.32 mg/kg/day following repeat dosing (confidence interval 0.21-0.46 mg/kg/day). In addition, liver toxicity was observed at doses of ≥ 1.1 mg/kg/day NDMA and correlated with systemic and target organ exposure. The integration of these results and their implications for risk assessment are discussed.
Collapse
Affiliation(s)
- Anthony M Lynch
- Genetic Toxicology & Photosafety, GSK R&D, Stevenage, SG1 2NY, United Kingdom
| | - Jonathan Howe
- Genetic Toxicology & Photosafety, GSK R&D, Stevenage, SG1 2NY, United Kingdom
| | | | - James S Harvey
- Genetic Toxicology & Photosafety, GSK R&D, Stevenage, SG1 2NY, United Kingdom
| | - Mark Burman
- Genetic Toxicology & Photosafety, GSK R&D, Stevenage, SG1 2NY, United Kingdom
| | - Danielle S G Harte
- Genetic Toxicology & Photosafety, GSK R&D, Stevenage, SG1 2NY, United Kingdom
| | - Liangfu Chen
- DMPK, GSK R&D, Upper Providence, Collegeville, PA, United States
| | - Casey Kmett
- DMPK, GSK R&D, Upper Providence, Collegeville, PA, United States
| | - Wei Shi
- DMPK, GSK R&D, Upper Providence, Collegeville, PA, United States
| | - Charles F McHugh
- DMPK, GSK R&D, Upper Providence, Collegeville, PA, United States
| | - Kinnari K Patel
- BIB, GSK R&D, Upper Providence, Collegeville, PA, United States
| | | | - Julia Kenny
- TPPS, GSK R&D, Stevenage, SG1 2NY, United Kingdom
| | | | - John W Wills
- Genetic Toxicology & Photosafety, GSK R&D, Stevenage, SG1 2NY, United Kingdom
| |
Collapse
|
4
|
Beal MA, Chen G, Dearfield KL, Gi M, Gollapudi B, Heflich RH, Horibata K, Long AS, Lovell DP, Parsons BL, Pfuhler S, Wills J, Zeller A, Johnson G, White PA. Interpretation of in vitro concentration-response data for risk assessment and regulatory decision-making: Report from the 2022 IWGT quantitative analysis expert working group meeting. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023. [PMID: 38115239 DOI: 10.1002/em.22582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/15/2023] [Accepted: 12/16/2023] [Indexed: 12/21/2023]
Abstract
Quantitative risk assessments of chemicals are routinely performed using in vivo data from rodents; however, there is growing recognition that non-animal approaches can be human-relevant alternatives. There is an urgent need to build confidence in non-animal alternatives given the international support to reduce the use of animals in toxicity testing where possible. In order for scientists and risk assessors to prepare for this paradigm shift in toxicity assessment, standardization and consensus on in vitro testing strategies and data interpretation will need to be established. To address this issue, an Expert Working Group (EWG) of the 8th International Workshop on Genotoxicity Testing (IWGT) evaluated the utility of quantitative in vitro genotoxicity concentration-response data for risk assessment. The EWG first evaluated available in vitro methodologies and then examined the variability and maximal response of in vitro tests to estimate biologically relevant values for the critical effect sizes considered adverse or unacceptable. Next, the EWG reviewed the approaches and computational models employed to provide human-relevant dose context to in vitro data. Lastly, the EWG evaluated risk assessment applications for which in vitro data are ready for use and applications where further work is required. The EWG concluded that in vitro genotoxicity concentration-response data can be interpreted in a risk assessment context. However, prior to routine use in regulatory settings, further research will be required to address the remaining uncertainties and limitations.
Collapse
Affiliation(s)
- Marc A Beal
- Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Guangchao Chen
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Utrecht, the Netherlands
| | - Kerry L Dearfield
- Retired from US Environmental Protection Agency and US Department of Agriculture, Washington, DC, USA
| | - Min Gi
- Department of Environmental Risk Assessment, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | | | - Robert H Heflich
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Katsuyoshi Horibata
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Alexandra S Long
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - David P Lovell
- St George's Medical School, University of London, London, UK
| | - Barbara L Parsons
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Stefan Pfuhler
- Global Product Stewardship - Human Safety, Procter & Gamble, Cincinnati, Ohio, USA
| | - John Wills
- Genetic Toxicology and Photosafety, GSK Research & Development, Stevenage, UK
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
| | - George Johnson
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Paul A White
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Yamada M, Suzuki T, Kohara A, Honma M. Carcinogenic risk of food additive AF-2 banned in Japan: a case study on reassessment of genotoxicity. Genes Environ 2023; 45:33. [PMID: 38053221 PMCID: PMC10696715 DOI: 10.1186/s41021-023-00292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Carcinogenic risk assessment studies have been repeatedly improved and are still being debated to find a goal. Evaluation might be changed if new approaches would be applied to some chemicals which means that new approaches may change the final assessment. In this paper, the risk assessment of a chemical, in particular the proper carcinogenicity, is examined using the long-banned food additive, 2-(2-furyl)-3-(5-nitro-2-furyl)-acrylamide, AF-2, as a case study. RESULTS First, Ames tests were carried out using strains TA1535, TA100, TA1538, and TA98 and their nitroreductase-deficient strains YG7127, YG7128, YG7129, and YG7130. The results showed that mutagenic activity was reduced by about 50% in the nitroreductase-deficient strains, indicating that part of the mutagenic activity shown in Ames test was due to bacterial metabolism. Second, in vivo genotoxicity tests were conducted, including the one that had not been developed in 1970's. Both a micronucleus test and a gene mutation assay using transgenic mice were negative. Third, assuming it is a genotoxic carcinogen, the virtual safety dose of 550 μg/day was calculated from the TD50 in rats with a probability of 10-5. CONCLUSION AF-2 has been shown to be carcinogenic to rodents and has previously been indicated to be genotoxic in vitro. However, the present in vivo genotoxicity study, it was negative in the forestomach, a target organ for cancer, particularly in the gene mutation assay in transgenic mice. Considering the daily intake of AF-2 in the 1970s and its virtually safety dose, the carcinogenic risk of AF-2 could be considered acceptable.
Collapse
Affiliation(s)
- Masami Yamada
- Department of Applied Chemistry, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka, Kanagawa, 239-8686, Japan.
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki city, Kanagawa, 210-9501, Japan.
| | - Takayoshi Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki city, Kanagawa, 210-9501, Japan
| | - Arihiro Kohara
- JCRB Cell Bank, National Institute of Biomedical Innovation, 7-6-8, Saito-asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Masamitsu Honma
- Division of General Affairs, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki city, Kanagawa, 210-9501, Japan
| |
Collapse
|
6
|
Bercu JP, Zhang S, Sobol Z, Escobar PA, Van P, Schuler M. Comparison of the transgenic rodent mutation assay, error corrected next generation duplex sequencing, and the alkaline comet assay to detect dose-related mutations following exposure to N-nitrosodiethylamine. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503685. [PMID: 37770142 DOI: 10.1016/j.mrgentox.2023.503685] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023]
Abstract
N-Nitrosodiethylamine (NDEA), a well-studied N-nitrosamine, was tested in rats to compare the dose-response relationship of three genotoxicity endpoints. Mutant / mutation frequencies were determined using the transgenic rodent (TGR) gene mutation assay and error corrected next generation sequencing (ecNGS) (i.e., duplex sequencing (DS)), and genetic damage was detected by the alkaline comet assay. Big Blue® (cII Locus) animals (n = 6 per dose group) were administered doses of 0.001, 0.01, 0.1, 1, 3 mg/kg/day NDEA by oral gavage. Samples were collected for cII mutation and DS analyses following 28-days of exposure and 3 days recovery. In a separate study, male Sprague-Dawley (SD) rats (n = 6 per dose group) were administered the same doses by oral gavage for two consecutive days and then samples collected for the alkaline comet assay. A dose-related increase in mutant / mutation frequencies of the liver but not duodenum was observed using the TGR assay and DS with DS resulting in a slightly more sensitive response, with a lower benchmark dose (BMD). In addition, a dose-related increase in percent tail DNA was observed in the liver using the alkaline comet assay. Therefore, DS and comet assays showed good utility for hazard identification and dose-response analysis of a representative N-nitrosamine comparable to the TGR gene mutation assay.
Collapse
Affiliation(s)
- Joel P Bercu
- Gilead Sciences, Inc., Nonclinical Safety and Pathobiology (NSP), Foster City, CA 94404, USA.
| | - Shaofei Zhang
- Pfizer Research, Development, and Medical, Groton, CT, USA.
| | | | | | - Phu Van
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Maik Schuler
- Pfizer Research, Development, and Medical, Groton, CT, USA
| |
Collapse
|
7
|
Martus HJ, Zeller A, Kirkland D. International Workshops on Genotoxicity Testing (IWGT): Origins, achievements and ambitions. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108469. [PMID: 37777464 DOI: 10.1016/j.mrrev.2023.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/26/2023] [Indexed: 10/02/2023]
Abstract
Over the past thirty years, the International Workshops on Genotoxicity Testing (IWGT) became one of the leading groups in the field of regulatory genotoxicology, not only due to the diversity of participants with respect to geography and professional affiliation, but also due to the unique setup of recurring IWGT meetings every four years. The hallmarks of the IWGT process have been diligent initial planning approaches of the working groups, collection of data so as to stimulate data-driven discussions and debate, and striving to reach consensus recommendations. The scientific quality of the Working Groups (WGs) has been exceptional due to the selection of highly regarded experts on each topic. As a result, the IWGT working group reports have become important documents. The deliberations and publications have provided guidance on test systems and testing protocols that have influenced the development or revision of test guidelines of the Organisation for Economic Co-operation and Development (OECD), guidance by the International Council for Harmonisation (ICH), and strategic testing or data analysis approaches in general. This article summarizes the history of the IWGT, identifies some of its major achievements, and provides an outlook for the future.
Collapse
Affiliation(s)
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - David Kirkland
- Kirkland Consulting, P O Box 79, Tadcaster LS24 0AS, United Kingdom
| |
Collapse
|
8
|
Douglas GR, Beevers C, Gollapudi B, Keig‐Shevlin Z, Kirkland D, O'Brien JM, van Benthem J, Yauk CL, Young RR, Marchetti F. Impact of sampling time on the detection of mutations in rapidly proliferating tissues using transgenic rodent gene mutation models: A review. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:376-388. [PMID: 36271823 PMCID: PMC10099936 DOI: 10.1002/em.22514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The OECD Test Guideline 488 (TG 488) for the Transgenic Rodent Gene Mutation Assay has undergone several revisions to update the recommended design for studying mutations in somatic tissues and male germ cells. The recently revised TG recommends a single sampling time of 28 days following 28 days of exposure (i.e., 28 + 28 days) for all tissues, irrespective of proliferation rates. An alternative design (i.e., 28 + 3 days) is appropriate when germ cell data is not required, nor considered. While the 28 + 28 days design is clearly preferable for slowly proliferating somatic tissues and germ cells, there is still uncertainty about the impact of extending the sampling time to 28 days for rapidly somatic tissues. Here, we searched the available literature for evidence supporting the applicability and utility of the 28 + 28 days design for rapidly proliferating tissues. A total of 79 tests were identified. When directly comparing results from both designs in the same study, there was no evidence that the 28 + 28 days regimen resulted in a qualitatively different outcome from the 28 + 3 days design. Studies with a diverse range of agents that employed only a 28 + 28 days protocol provide further evidence that this design is appropriate for rapidly proliferating tissues. Benchmark dose analyses demonstrate high quantitative concordance between the 28 + 3 and 28 + 28 days designs for rapidly proliferating tissues. Accordingly, our review confirms that the 28 + 28 days design is appropriate to assess mutagenicity in both slowly and rapidly proliferating somatic tissues, and germ cells, and provides further support for the recommended design in the recently adopted TG 488.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jan van Benthem
- National Institute for the Netherlands Public Health and the EnvironmentBilthovenThe Netherlands
| | | | | | | |
Collapse
|
9
|
Nakamura JL. Considerations for carcinogenesis countermeasure development using mouse models. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:158-162. [PMID: 36336361 DOI: 10.1016/j.lssr.2022.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
Activities in space will expose humans to profoundly new environments, challenging human performance and will require innovative supportive technologies. Among these environmental variables, exposure to ionizing radiation is a major concern for astronauts, as the long-term effects of exposure on diverse tissues are poorly understood. This need however creates opportunities for novel approaches, particularly in the development of countermeasures against the effects of ionizing radiation exposure. Carcinogenesis presents a unique challenge as a disease process, due to the inherent complexities of the process and the challenges of obtaining a large volume of clinical evidence. Thus, developing the countermeasures to address potential effects of ionizing radiation exposure will require understanding biological underpinnings to design countermeasures effectively in conjunction with highly robust modeling approaches to test and examine in vivo. This review will highlight specific considerations for accelerated development of space radiation countermeasures against carcinogenesis.
Collapse
Affiliation(s)
- Jean L Nakamura
- University of California, San Francisco, Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, United States.
| |
Collapse
|
10
|
Diaz G S, LeBlanc DP, Gagné R, Behan NA, Wong A, Marchetti F, MacFarlane AJ. Folate Intake Alters Mutation Frequency and Profiles in a Tissue- and Dose-Specific Manner in MutaMouse Male Mice. J Nutr 2021; 151:800-809. [PMID: 33693772 DOI: 10.1093/jn/nxaa402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/09/2020] [Accepted: 11/20/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND While cancer is common, its incidence varies widely by tissue. These differences are attributable to variable risk factors, such as environmental exposure, genetic inheritance, and lifetime number of stem cell divisions in a tissue. Folate deficiency is generally associated with increased risk for colorectal cancer (CRC) and acute lymphocytic leukemia (ALL). Conversely, high folic acid (FA) intake has also been associated with higher CRC risk. OBJECTIVE Our objective was to compare the effect of folate intake on mutant frequency (MF) and types of mutations in the colon and bone marrow of mice. METHODS Five-week-old MutaMouse male mice were fed a deficient (0 mg FA/kg), control (2 mg FA/kg), or supplemented (8 mg FA/kg) diet for 20 wk. Tissue MF was assessed using the lacZ mutant assay and comparisons made by 2-factor ANOVA. LacZ mutant plaques were sequenced using next-generation sequencing, and diet-specific mutation profiles within each tissue were compared by Fisher's exact test. RESULTS In the colon, the MF was 1.5-fold and 1.3-fold higher in mice fed the supplemented diet compared with mice fed the control (P = 0.001) and deficient (P = 0.008) diets, respectively. This contrasted with the bone marrow MF in the same mice where the MF was 1.7-fold and 1.6-fold higher in mice fed the deficient diet compared with mice fed the control (P = 0.02) and supplemented (P = 0.03) diets, respectively. Mutation profiles and signatures (mutation context) were tissue-specific. CONCLUSIONS Our data indicate that dietary folate intake affects mutagenesis in a tissue- and dose-specific manner in mice. Mutation profiles were generally tissue- but not dose-specific, suggesting that altered cellular folate status appears to interact with endogenous mutagenic mechanisms in each tissue to create a permissive context in which specific mutation types accumulate. These data illuminate potential mechanisms underpinning differences in observed associations between folate intake/status and cancer.
Collapse
Affiliation(s)
- Stephanie Diaz G
- Nutrition Research Division, Health Canada, Ottawa, Canada.,Department of Biology, Carleton University, Ottawa, Canada
| | | | - Remi Gagné
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Alex Wong
- Department of Biology, Carleton University, Ottawa, Canada
| | - Francesco Marchetti
- Department of Biology, Carleton University, Ottawa, Canada.,Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Amanda J MacFarlane
- Nutrition Research Division, Health Canada, Ottawa, Canada.,Department of Biology, Carleton University, Ottawa, Canada
| |
Collapse
|
11
|
Marchetti F, Zhou G, LeBlanc D, White PA, Williams A, Yauk CL, Douglas GR. The 28 + 28 day design is an effective sampling time for analyzing mutant frequencies in rapidly proliferating tissues of MutaMouse animals. Arch Toxicol 2021; 95:1103-1116. [PMID: 33506374 PMCID: PMC7904718 DOI: 10.1007/s00204-021-02977-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Abstract
The Organisation for Economic Co-Operation and Development Test Guideline 488 (TG 488) uses transgenic rodent models to generate in vivo mutagenesis data for regulatory submission. The recommended design in TG 488, 28 consecutive daily exposures with tissue sampling three days later (28 + 3d), is optimized for rapidly proliferating tissues such as bone marrow (BM). A sampling time of 28 days (28 + 28d) is considered more appropriate for slowly proliferating tissues (e.g., liver) and male germ cells. We evaluated the impact of the sampling time on mutant frequencies (MF) in the BM of MutaMouse males exposed for 28 days to benzo[a]pyrene (BaP), procarbazine (PRC), isopropyl methanesulfonate (iPMS), or triethylenemelamine (TEM) in dose-response studies. BM samples were collected + 3d, + 28d, + 42d or + 70d post exposure and MF quantified using the lacZ assay. All chemicals significantly increased MF with maximum fold increases at 28 + 3d of 162.9, 6.6, 4.7 and 2.8 for BaP, PRC, iPMS and TEM, respectively. MF were relatively stable over the time period investigated, although they were significantly increased only at 28 + 3d and 28 + 28d for TEM. Benchmark dose (BMD) modelling generated overlapping BMD confidence intervals among the four sampling times for each chemical. These results demonstrate that the sampling time does not affect the detection of mutations for strong mutagens. However, for mutagens that produce small increases in MF, sampling times greater than 28 days may produce false-negative results. Thus, the 28 + 28d protocol represents a unifying protocol for simultaneously assessing mutations in rapidly and slowly proliferating somatic tissues and male germ cells.
Collapse
Affiliation(s)
- Francesco Marchetti
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Gu Zhou
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Danielle LeBlanc
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Paul A White
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - George R Douglas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| |
Collapse
|
12
|
Walker VE, Walker DM, Ghanayem BI, Douglas GR. Analysis of Biomarkers of DNA Damage and Mutagenicity in Mice Exposed to Acrylonitrile. Chem Res Toxicol 2020; 33:1623-1632. [PMID: 32529832 DOI: 10.1021/acs.chemrestox.0c00154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acrylonitrile (ACN), which is a widely used industrial chemical, induces cancers in the mouse via unresolved mechanisms. For this report, complementary and previously described methods were used to assess in vivo genotoxicity and/or mutagenicity of ACN in several mouse models, including (i) female mice devoid of cytochrome P450 2E1 (CYP2E1), which yields the epoxide intermediate cyanoethylene oxide (CEO), (ii) male lacZ transgenic mice, and (iii) female (wild-type) B6C3F1 mice. Exposures of wild-type mice and CYP2E1-null mice to ACN at 0, 2.5 (wild-type mice only), 10, 20, or 60 (CYP2E1-null mice only) mg/kg body weight by gavage for 6 weeks (5 days/week) produced no elevations in the frequencies of micronucleated erythrocytes, but induced significant dose-dependent increases in DNA damage, detected by the alkaline (pH >13) Comet assay, in one target tissue (forestomach) and one nontarget tissue (liver) of wild-type mice only. ACN exposures by gavage also caused significant dose-related elevations in the frequencies of mutations in the hypoxanthine-guanine phosphoribosyltransferase (Hprt) reporter gene of T-lymphocytes from spleens of wild-type mice; however, Hprt mutant frequencies were significantly increased in CYP2E1-null mice only at a high dose of ACN (60 mg/kg) that is lethal to wild-type mice. Similarly, drinking water exposures of lacZ transgenic mice to 0, 100, 500, or 750 ppm ACN for 4 weeks caused significant dose-dependent elevations in Hprt mutant frequencies in splenic T-cells; however, these ACN exposures did not increase the frequency of lacZ transgene mutations above spontaneous background levels in several tissues from the same animals. Together, the Comet assay and Hprt mutant frequency data from these studies indicate that oxidative metabolism of ACN by CYP2E1 to CEO is central to the induction of the majority of DNA damage and mutations in ACN-exposed mice, but ACN itself also may contribute to the carcinogenic modes of action via mechanisms involving direct and/or indirect DNA reactivity.
Collapse
Affiliation(s)
- Vernon E Walker
- Wadsworth Center, New York State Department of Health, Albany, New York 12201, United States.,Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont 05405, United States.,The Burlington HC Research Group, Inc., Jericho, Vermont 05465, United States
| | - Dale M Walker
- The Burlington HC Research Group, Inc., Jericho, Vermont 05465, United States.,Experimental Pathology Laboratories, Sterling, Virginia 20167, United States
| | - Burhan I Ghanayem
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - George R Douglas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| |
Collapse
|
13
|
Thongararm P, Fedeles BI, Khumsubdee S, Armijo AL, Kim L, Thiantanawat A, Promvijit J, Navasumrit P, Ruchirawat M, Croy RG, Essigmann JM. Modulation of N-Methyl- N-nitrosourea Mutagenesis in Mouse Embryo Fibroblasts Derived from the gpt Delta Mouse by an Inhibitor of the O6-Methylguanine Methyltransferase, MGMT. Chem Res Toxicol 2020; 33:625-633. [PMID: 31841318 PMCID: PMC7033946 DOI: 10.1021/acs.chemrestox.9b00444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA methylating agents are abundant in the environment and are sometimes used in cancer chemotherapy. They react with DNA to form methyl-DNA adducts and byproduct lesions that can be both toxic and mutagenic. Foremost among the mutagenic lesions is O6-methylguanine (m6G), which base pairs with thymine during replication to cause GC → AT mutations. The gpt delta C57BL/6J mouse strain of Nohmi et al. (Mol. Mutagen 1996, 28, 465-70) reliably produces mutational spectra of many DNA damaging agents. In this work, mouse embryo fibroblasts (MEFs) were made from gpt delta C57BL/6J mice and evaluated as a screening tool to determine the qualitative and quantitative features of mutagenesis by N-methyl-N-nitrosourea (MNU), a direct-acting DNA alkylator that serves as a model for environmental N-nitrosamines, such as N-nitrosodimethylamine and therapeutic agents such as Temozolomide. The DNA repair protein MGMT (O6-methylguanine DNA methyltransferase) protects against environmental mutagenesis by DNA methylating agents and, by removing m6G, limits the therapeutic potential of Temozolomide in cancer therapy. The gpt delta MEFs were treated with MNU to establish dose-dependent toxicity. In parallel, MNU mutagenicity was determined in the presence and absence of the MGMT inhibitor AA-CW236 (4-(2-(5-(chloromethyl)-4-(4-(trifluoromethoxy)phenyl)-1H-1,2,3-triazol-1-yl)ethyl)-3,5-dimethylisoxazole). With and without the inhibitor, the principal mutagenic event of MNU was GC → AT, but more mutations were observed when the inhibitor was present. Evidence that the mutagenic lesion was m6G was based on mass spectral data collected using O6-methyl-d3-guanine as an internal standard; m6G levels were higher in AA-CW236 treated MEFs by an amount proportional to the higher mutation frequency seen in the same cells. This work establishes gpt delta MEFs as a versatile tool for probing mutagenesis by environmental and therapeutic agents and as a cell culture model in which chemical genetics can be used to determine the impact of DNA repair on biological responses to DNA damaging agents.
Collapse
Affiliation(s)
- Pennapa Thongararm
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Bogdan I. Fedeles
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sakunchai Khumsubdee
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Amanda L. Armijo
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Lina Kim
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | - Robert G. Croy
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - John M. Essigmann
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
14
|
Chen R, Zhou C, Cao Y, Xi J, Ohira T, He L, Huang P, You X, Liu W, Zhang X, Ma S, Xie T, Chang Y, Luan Y. Assessment of Pig-a, Micronucleus, and Comet Assay Endpoints in Tg.RasH2 Mice Carcinogenicity Study of Aristolochic Acid I. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:266-275. [PMID: 31443125 DOI: 10.1002/em.22325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
A newly developed in vivo Pig-a gene mutation assay displays great potential for integration into genotoxicity tests. To obtain more evidence for application of the Pig-a assay, we integrated this assay, micronucleus test in peripheral blood (MN-pb test) and bone marrow (MN-bm test), as well as a Comet assay into a transgenic RasH2 mice carcinogenicity study. Fourteen male RasH2 mice and five wild-type (WT) mice were treated with a strong mutagen aristolochic acid I at a dose of 5 mg/kg/day for 4 consecutive weeks. Mice recovered in 5 weeks. Peripheral bloods were collected for Pig-a assay, MN-pb test, and Comet assay at several time points, while bone marrow and target organs were harvested for the MN-bm test and pathological diagnosis after mice were euthanized. Finally, 13 of the 14 RasH2 mice developed squamous cell carcinomas in the forestomach, while there were no carcinomas in the WT mice. Pig-a mutant frequencies (MFs) consecutively increased throughout the study to a maximum value of approximately 63-fold more than background. These frequencies were relative to the incidence, size, and malignant degree of tumors. Micronucleated reticulocytes increased from Day 1 to Day 49, before returning to background levels. No positive responses were observed in either the MN-bm test or the Comet assay. Results suggested that, when compared with the other two tests, the Pig-a assay persistently contributed to sustaining MFs, enhanced detection sensitivity due to the accumulation of Pig-a mutations, and demonstrated better predictability for tumorigenicity. Environ. Mol. Mutagen. 61:266-275, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ruixue Chen
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Changhui Zhou
- Shanghai InnoStar Bio-Tech Co., Ltd., National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, People's Republic of China
| | - Yiyi Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jing Xi
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Toko Ohira
- Shanghai InnoStar Bio-Tech Co., Ltd., National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, People's Republic of China
| | - Liang He
- Shanghai InnoStar Bio-Tech Co., Ltd., National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, People's Republic of China
| | - Pengcheng Huang
- Shanghai InnoStar Bio-Tech Co., Ltd., National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, People's Republic of China
| | - Xinyue You
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Weiying Liu
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xinyu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Shuangcheng Ma
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- National Institutes for Food and Drug Control, Beijing, China
| | - Tianpei Xie
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Standard Technology Co., Ltd., Shanghai, People's Republic of China
| | - Yan Chang
- Shanghai InnoStar Bio-Tech Co., Ltd., National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, People's Republic of China
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Kirkland D, Levy DD, LeBaron MJ, Aardema MJ, Beevers C, Bhalli J, Douglas GR, Escobar PA, Farabaugh CS, Guerard M, Johnson GE, Kulkarni R, Le Curieux F, Long AS, Lott J, Lovell DP, Luijten M, Marchetti F, Nicolette JJ, Pfuhler S, Roberts DJ, Stankowski LF, Thybaud V, Weiner SK, Williams A, Witt KL, Young R. A comparison of transgenic rodent mutation and in vivo comet assay responses for 91 chemicals. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 839:21-35. [PMID: 30744809 PMCID: PMC6697155 DOI: 10.1016/j.mrgentox.2019.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
Abstract
A database of 91 chemicals with published data from both transgenic rodent mutation (TGR) and rodent comet assays has been compiled. The objective was to compare the sensitivity of the two assays for detecting genotoxicity. Critical aspects of study design and results were tabulated for each dataset. There were fewer datasets from rats than mice, particularly for the TGR assay, and therefore, results from both species were combined for further analysis. TGR and comet responses were compared in liver and bone marrow (the most commonly studied tissues), and in stomach and colon evaluated either separately or in combination with other GI tract segments. Overall positive, negative, or equivocal test results were assessed for each chemical across the tissues examined in the TGR and comet assays using two approaches: 1) overall calls based on weight of evidence (WoE) and expert judgement, and 2) curation of the data based on a priori acceptability criteria prior to deriving final tissue specific calls. Since the database contains a high prevalence of positive results, overall agreement between the assays was determined using statistics adjusted for prevalence (using AC1 and PABAK). These coefficients showed fair or moderate to good agreement for liver and the GI tract (predominantly stomach and colon data) using WoE, reduced agreement for stomach and colon evaluated separately using data curation, and poor or no agreement for bone marrow using both the WoE and data curation approaches. Confidence in these results is higher for liver than for the other tissues, for which there were less data. Our analysis finds that comet and TGR generally identify the same compounds (mainly potent mutagens) as genotoxic in liver, stomach and colon, but not in bone marrow. However, the current database content precluded drawing assay concordance conclusions for weak mutagens and non-DNA reactive chemicals.
Collapse
Affiliation(s)
| | - Dan D Levy
- US Food and Drug Administration Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Matthew J LeBaron
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, Midland, MI, USA
| | - Marilyn J Aardema
- Marilyn Aardema Consulting LLC, 5315 Oakbrook Dr., Fairfield, OH 45014, USA
| | | | - Javed Bhalli
- MilliporeSigma, BioReliance Toxicology Testing Services, Rockville, MD, USA
| | - George R Douglas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, K1A 0K9, Canada
| | | | | | - Melanie Guerard
- Roche Innovation Center Basel, pRed, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Rohan Kulkarni
- MilliporeSigma, BioReliance Toxicology Testing Services, Rockville, MD, USA
| | | | - Alexandra S Long
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, K1A 0K9, Canada
| | - Jasmin Lott
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - David P Lovell
- St George's Medical School, University of London, London, UK
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, K1A 0K9, Canada
| | | | - Stefan Pfuhler
- Procter & Gamble, Global Product Stewardship, Mason, OH 45040, USA
| | | | | | | | - Sandy K Weiner
- Janssen Research & Development, Spring House, PA 19477, USA
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, K1A 0K9, Canada
| | - Kristine L Witt
- National Institute of Environmental Health Sciences/Division of the National Toxicology Program, Research Triangle Park, NC, USA
| | - Robert Young
- MilliporeSigma, BioReliance Toxicology Testing Services, Rockville, MD, USA
| |
Collapse
|
16
|
Integration of micronucleus tests with a gene mutation assay in F344 gpt delta transgenic rats using benzo[a]pyrene. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 837:1-7. [PMID: 30595204 DOI: 10.1016/j.mrgentox.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 11/20/2022]
Abstract
Reduction of the number of animals used in in vivo genotoxicity tests is encouraged. For this purpose, we conducted integrated toxicity tests combining gene mutation assays with multiple-organ micronucleus (MN) tests (peripheral blood, bone marrow, liver, and colon) in F344 gpt delta transgenic (Tg) rats. Seven-week-old male F344 gpt delta rats were orally administered 62.5 or 125 mg/kg/day benzo[a]pyrene (B[a]P) for 28 days. One day after the final day of treatment (day 29) and three days after the final treatment (day 31), bone marrow, liver, and colon samples were collected, and mutation assays and MN tests were performed. The gpt mutant frequency (MF) significantly increased in bone marrow, liver and colon but MN induction was only significant in bone marrow but not in liver and colon. Similarly MN induction was only observed in bone marrow in non-Tg F344 rats. In peripheral blood obtained on day 4, 15, 29, 31, a time-dependent increase was observed in reticulocyte MN frequency during the treatment. Thus, our integrated method successfully detected both gene mutations and MN induction caused by B[a]P. In addition, no significant differences were observed between sampling times (day 29 versus 31), suggesting that sampling on day 29 is also valid to evaluate gene mutations. On the other hand, MN results in bone marrow and peripheral blood were different depending on the sampling day. An appropriate sampling day should be designated according to which assays are integrated. We confirmed that integration of the MN test with a gene mutation assay using F344 gpt delta Tg rats is useful to evaluate different endpoints related to genotoxicity using the same animals and to reduce animal use.
Collapse
|
17
|
Marchetti F, Aardema MJ, Beevers C, van Benthem J, Godschalk R, Williams A, Yauk CL, Young R, Douglas GR. Identifying germ cell mutagens using OECD test guideline 488 (transgenic rodent somatic and germ cell gene mutation assays) and integration with somatic cell testing. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 832-833:7-18. [DOI: 10.1016/j.mrgentox.2018.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 01/15/2023]
|
18
|
Abstract
A number of transgenic animal models and mutation detection systems have been developed for mutagenicity testing of carcinogens in mammalian cells. Of these, transgenic mice and the Lambda (λ) Select cII Mutation Detection System have been employed for mutagenicity experiments by many research groups worldwide. Here, we describe a detailed protocol for the Lambda Select cII mutation assay, which can be applied to cultured cells of transgenic mice/rats or the corresponding animals treated with a chemical/physical agent of interest. The protocol consists of the following steps: (1) isolation of genomic DNA from the cells or organs/tissues of transgenic animals treated in vitro or in vivo, respectively, with a test compound; (2) recovery of the lambda shuttle vector carrying a mutational reporter gene (i.e., cII transgene) from the genomic DNA; (3) packaging of the rescued vectors into infectious bacteriophages; (4) infecting a host bacteria and culturing under selective conditions to allow propagation of the induced cII mutations; and (5) scoring the cII-mutants and DNA sequence analysis to determine the cII mutant frequency and mutation spectrum, respectively.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California;
| | - Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California
| |
Collapse
|
19
|
Zeller A, Pfuhler S, Albertini S, Bringezu F, Czich A, Dietz Y, Fautz R, Hewitt NJ, Kirst A, Kasper P. A critical appraisal of the sensitivity of in vivo genotoxicity assays in detecting human carcinogens. Mutagenesis 2018; 33:179-193. [DOI: 10.1093/mutage/gey005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse, Basel, Switzerland
| | - Stefan Pfuhler
- Procter & Gamble, Global Product Stewardship, Human Safety, Mason Business Centre, Mason, OH, USA
| | - Silvio Albertini
- Pharmaceutical Sciences, pRED Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse, Basel, Switzerland
| | | | - Andreas Czich
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt, Germany
| | - Yasmin Dietz
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt, Germany
| | | | | | | | - Peter Kasper
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee, Bonn, Germany
| |
Collapse
|
20
|
Besaratinia A, Zheng A, Bates SE, Tommasi S. Mutation Analysis in Cultured Cells of Transgenic Rodents. Int J Mol Sci 2018; 19:E262. [PMID: 29337872 PMCID: PMC5796208 DOI: 10.3390/ijms19010262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
To comply with guiding principles for the ethical use of animals for experimental research, the field of mutation research has witnessed a shift of interest from large-scale in vivo animal experiments to small-sized in vitro studies. Mutation assays in cultured cells of transgenic rodents constitute, in many ways, viable alternatives to in vivo mutagenicity experiments in the corresponding animals. A variety of transgenic rodent cell culture models and mutation detection systems have been developed for mutagenicity testing of carcinogens. Of these, transgenic Big Blue® (Stratagene Corp., La Jolla, CA, USA, acquired by Agilent Technologies Inc., Santa Clara, CA, USA, BioReliance/Sigma-Aldrich Corp., Darmstadt, Germany) mouse embryonic fibroblasts and the λ Select cII Mutation Detection System have been used by many research groups to investigate the mutagenic effects of a wide range of chemical and/or physical carcinogens. Here, we review techniques and principles involved in preparation and culturing of Big Blue® mouse embryonic fibroblasts, treatment in vitro with chemical/physical agent(s) of interest, determination of the cII mutant frequency by the λ Select cII assay and establishment of the mutation spectrum by DNA sequencing. We describe various approaches for data analysis and interpretation of the results. Furthermore, we highlight representative studies in which the Big Blue® mouse cell culture model and the λ Select cII assay have been used for mutagenicity testing of diverse carcinogens. We delineate the advantages of this approach and discuss its limitations, while underscoring auxiliary methods, where applicable.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| | - Albert Zheng
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| | - Steven E Bates
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | - Stella Tommasi
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| |
Collapse
|
21
|
Nakayama T, Sawai T, Masuda I, Kaneko S, Yamauchi K, Blyth BJ, Shimada Y, Tachibana A, Kakinuma S. Tissue-specific and time-dependent clonal expansion of ENU-induced mutant cells in gpt delta mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:592-606. [PMID: 28921690 DOI: 10.1002/em.22132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
DNA mutations play a crucial role in the origins of cancer, and the clonal expansion of mutant cells is one of the fundamental steps in multistage carcinogenesis. In this study, we correlated tumor incidence in B6C3F1 mice during the period after exposure to N-ethyl-N-nitrosourea (ENU) with the persistence of ENU-induced mutant clones in transgenic gpt delta B6C3F1 mice. The induced gpt mutations afforded no selective advantage in the mouse cells and could be distinguished by a mutational spectrum that is characteristic of ENU treatment. The gpt mutations were passengers of the mutant cell of origin and its daughter cells and thus could be used as neutral markers of clones that arose and persisted in the tissues. Female B6C3F1 mice exposed for 1 month to 200 ppm ENU in the drinking water developed early thymic lymphomas and late liver and lung tumors. To assay gpt mutations, we sampled the thymus, liver, lung, and small intestine of female gpt delta mice at 3 days, 4 weeks, and 8 weeks after the end of ENU exposure. Our results reveal that, in all four tissues, the ENU-induced gpt mutations persisted for weeks after the end of mutagen exposure. Clonal expansion of mutant cells was observed in the thymus and small intestine, with the thymus showing larger clone sizes. These results indicate that the clearance of mutant cells and the potential for clonal expansion during normal tissue growth depends on tissue type and that these factors may affect the sensitivity of different tissues to carcinogenesis. Environ. Mol. Mutagen. 58:592-606, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Takafumi Nakayama
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555, Japan
- Department of Biological Sciences, College of Science, Ibaraki University, Mito, Ibaraki, 310-8512, Japan
| | - Tomoko Sawai
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555, Japan
| | - Ikuko Masuda
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555, Japan
- Department of Biological Sciences, College of Science, Ibaraki University, Mito, Ibaraki, 310-8512, Japan
| | - Shinya Kaneko
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555, Japan
- Department of Biological Sciences, College of Science, Ibaraki University, Mito, Ibaraki, 310-8512, Japan
| | - Kazumi Yamauchi
- Department of Radiobiology, Institute for Environmental Sciences, Hacchazawa, Takahoko, Rokkasho, Kamikita, Aomori, 039-3213, Japan
| | - Benjamin J Blyth
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555, Japan
| | - Yoshiya Shimada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555, Japan
| | - Akira Tachibana
- Department of Biological Sciences, College of Science, Ibaraki University, Mito, Ibaraki, 310-8512, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555, Japan
- Department of Biological Sciences, College of Science, Ibaraki University, Mito, Ibaraki, 310-8512, Japan
| |
Collapse
|
22
|
Manjanatha MG, Shelton SD, Chen Y, Parsons BL, Myers MB, McKim KL, Gollapudi BB, Moore NP, Haber LT, Allen B, Moore MM. Dose and temporal evaluation of ethylene oxide-induced mutagenicity in the lungs of male big blue mice following inhalation exposure to carcinogenic concentrations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:122-134. [PMID: 28326610 DOI: 10.1002/em.22080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/13/2017] [Indexed: 06/06/2023]
Abstract
Ethylene oxide (EO) is a direct acting alkylating agent; in vitro and in vivo studies indicate that it is both a mutagen and a carcinogen. However, it remains unclear whether the mode of action (MOA) for cancer for EO is a mutagenic MOA, specifically via point mutation. To investigate the MOA for EO-induced mouse lung tumors, male Big Blue (BB) B6C3F1 mice (10/group) were exposed to EO by inhalation, 6 hr/day, 5 days/week for 4 (0, 10, 50, 100, or 200 ppm EO), 8, or 12 weeks (0, 100, or 200 ppm EO). Lung DNA samples were analyzed for cII mutant frequency (MF) at 4, 8 and 12 weeks of exposure; the mutation spectrum was analyzed for mutants from control and 200 ppm EO treatments. Although EO-induced cII MFs were 1.5- to 2.7-fold higher than the concurrent controls at 4 weeks, statistically significant increases in the cII MF were found only after 8 and 12 weeks of exposure and only at 200 ppm EO (P ≤ 0.05), which is twice the highest concentration used in the cancer bioassay. Consistent with the positive response, DNA sequencing of cII mutants showed a significant shift in the mutational spectra between control and 200 ppm EO following 8 and 12 week exposures (P ≤ 0.035), but not at 4 weeks. Thus, EO mutagenic activity in vivo was relatively weak and required higher than tumorigenic concentrations and longer than 4 weeks exposure durations. These data do not follow the classical patterns for a MOA mediated by point mutations. Environ. Mol. Mutagen. 58:122-134, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mugimane G Manjanatha
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, Arkansas
| | - Sharon D Shelton
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, Arkansas
| | - Ying Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, Arkansas
| | - Barbara L Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, Arkansas
| | - Meagan B Myers
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, Arkansas
| | - Karen L McKim
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, Arkansas
| | - B Bhaskar Gollapudi
- Toxicology and Environmental Research and Consulting, Dow Chemical Company, Midland, Michigan
| | - Nigel P Moore
- Toxicology and Environmental Research and Consulting, Dow Europe GmbH, Horgen, Switzerland
| | - Lynne T Haber
- Environmental Health, Toxicology Excellence for Risk Assessment, Cincinnati, Ohio
| | - Bruce Allen
- Independent Consultant, Chapel Hill, North Carolina
| | - Martha M Moore
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US FDA, Jefferson, Arkansas
| |
Collapse
|
23
|
White PA, Douglas GR, Phillips DH, Arlt VM. Quantitative relationships between lacZ mutant frequency and DNA adduct frequency in Muta™Mouse tissues and cultured cells exposed to 3-nitrobenzanthrone. Mutagenesis 2017; 32:299-312. [PMID: 28096451 PMCID: PMC5638019 DOI: 10.1093/mutage/gew067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/13/2016] [Indexed: 02/07/2023] Open
Abstract
The frequency of stable DNA adducts in a target tissue can be used to assess biologically effective dose; however, the utility of the metric in a risk assessment context depends on the likelihood that the DNA damage will be manifested as mutation. Previously, we employed the Muta™Mouse system to examine the induction of lacZ mutants and DNA adducts following exposure to the well-studied mutagenic carcinogen 3-nitrobenzanthrone (3-NBA). In this follow-up work, we examined the empirical relationships between total adduct frequency and mutant frequency (MF) in tissues and cultured cells following acute 3-NBA exposure. The results show a significant induction of DNA damage and lacZ mutants in liver, colon and bone marrow, as well as FE1 pulmonary epithelial cells. In contrast, lung and small intestine samples had low, but significantly elevated adduct levels, with no significant increases in lacZ MF. Additional analyses showed a significant relationship between the mutagenic efficiency of total adducts, measured as the slope of the relationships between MF and total adduct frequency, and tissue-specific mitotic index (MI). The lack of mutation response in lung, in contrast to the high in vitro MF in FE-1 lung cells, is likely related to the 100-fold difference in MI. The lack of small intestine mutagenic response may be related to limited metabolic capacity, differences in DNA repair, and /or chemically induced apoptosis that has been observed for other potent mutagens. The results indicate that interpretation of adduct frequency values in a risk assessment context can be improved by considering the MI of the target tissue; however, more generalised interpretation is hampered by tissue-specific variations in metabolic capacity and damage processing. The work provides a proof of principle regarding the use of the Muta™Mouse system to critically examine the health risks associated with tissue-specific adduct loads.
Collapse
Affiliation(s)
- Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Tunney’s Pasture, Colombine Driveway, Ottawa, Ontario, Canada
| | - George R Douglas
- Environmental Health Science and Research Bureau, Health Canada, Tunney’s Pasture, Colombine Driveway, Ottawa, Ontario, Canada
| | - David H Phillips
- King’s College London, Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, Franklin-Wilkins Building, London, UK
| | - Volker M Arlt
- King’s College London, Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, Franklin-Wilkins Building, London, UK
| |
Collapse
|
24
|
MacGregor JT. Biomarkers of Cancer Risk and Therapeutic Benefit: New Technologies, New Opportunities, and Some Challenges. Toxicol Pathol 2016; 32 Suppl 1:99-105. [PMID: 15209409 DOI: 10.1080/01926230490425067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The biotechnology revolution offers unprecedented opportunities for identification of mechanistically-based biomarkers that report and predict cancer and other pathologies. The combination of genomic technologies with a knowledge of gene sequence and sequence conservation has made available markers that facilitate the correlation of genetic variation with biological outcomes, and “-omic” technologies allow efficient biochemical characterization of functional pathways—providing new markers of the susceptibility of individuals to cancer development, and of tumor susceptibility to specific therapies. New therapeutic agents targeted to individuals with specific genetic or biochemical characteristics already exist. The powerful -omic technologies allow efficient monitoring of gene transcripts, proteins, and intermediary metabolites, making it possible to monitor a large number of key cellular pathways simultaneously. This has enabled the identification of key biomarkers and signaling molecules associated with cell growth, cell death, and cellular metabolism. These new markers are facilitating monitoring of functional disturbance, molecular and cellular damage, and damage-response. Improved imaging technologies have made it feasible to image some of these molecular events noninvasively. To meet the challenge of evaluating and developing consensus criteria for the application of these new technologies and biomarkers, consortium approaches are being increasingly undertaken to share resources and to build a common understanding among the research, industry, and regulatory communities. These developments promise more efficient pharmaceutical product development, safer and more efficacious drugs, and provide clinical practitioners with new and better biomarkers for cancer screening, patient monitoring, and choice of therapy.
Collapse
Affiliation(s)
- James T MacGregor
- FDA National Center for Toxicological Research, Rockville, Maryland 20857, USA.
| |
Collapse
|
25
|
Narumi K, Fujiishi Y, Okada E, Ohyama W. Detection of Pig-a gene mutants in rat peripheral blood following a single urethane treatment: A comparison of the RBC Pig-a and PIGRET assays. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:129-134. [PMID: 27931806 DOI: 10.1016/j.mrgentox.2016.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
Abstract
The rat red blood cell (RBC) Pig-a assay has been recommended by an expert working group of the International Workshop on Genotoxicity Testing as a potential new method to evaluate in vivo gene mutations in regulatory genotoxicity risk assessments. In a collaborative study in Japan, an improved Pig-a assay using reticulocytes (PIGRET assay) with magnetic enrichment of CD71-positive cells was evaluated, and it was revealed that this assay could detect the mutagenicity of chemicals earlier than the RBC Pig-a assay could. To verify further the suitability of the PIGRET assay for an in vivo short-term genotoxicity screening test, a joint research study was conducted by the Japanese Environmental Mutagen Society, and 24 compounds were evaluated. One of the compounds evaluated in this study was urethane, a multi-organ rodent carcinogen. Urethane (250, 500, and 1000mg/kg body weight) was orally administered once to 8-week-old male Crl:CD (SD) rats. Blood samples were collected at 1, 2, and 4 weeks after the administration and processed for the RBC Pig-a and PIGRET assays. In the PIGRET assay, the Pig-a mutant frequency (MF) significantly increased at both 2 and 4 weeks after the treatment of 1000mg/kg of urethane. However, in the RBC Pig-a assay, a significant increase in the Pig-a MF was observed only at 1 week after the treatment with 500mg/kg, but the MF value was within our historical control range; therefore, it was judged to be negative. These results suggest that the PIGRET assay might be useful for evaluating the in vivo mutagenicity more clearly than the RBC Pig-a assay after a single treatment of test compounds.
Collapse
Affiliation(s)
- Kazunori Narumi
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan.
| | - Yohei Fujiishi
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Emiko Okada
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Wakako Ohyama
- Yakult Central Institute, Yakult Honsha Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| |
Collapse
|
26
|
Nohmi T. Past, Present and Future Directions of gpt delta Rodent Gene Mutation Assays. Food Saf (Tokyo) 2016; 4:1-13. [PMID: 32231899 PMCID: PMC6989157 DOI: 10.14252/foodsafetyfscj.2015024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/21/2015] [Indexed: 01/28/2023] Open
Abstract
Genotoxicity is a critical endpoint of toxicity to regulate environmental chemicals. Genotoxic chemicals are believed to have no thresholds for the action and impose genotoxic risk to humans even at very low doses. Therefore, genotoxic carcinogens, which induce tumors via genotoxic mechanisms, are regulated more strictly than non-genotoxic carcinogens, which induce tumors through non-genotoxic mechanisms such as hormonal effects, cell proliferation and cell toxicity. Although Ames bacterial mutagenicity assay is the gold standard to identify genotoxicity of chemicals, the genotoxicity should be further examined in rodents because Ames positive chemicals are not necessarily genotoxic in vivo. To better evaluate the genotoxicity of chemicals in a whole body system, gene mutation assays with gpt delta transgenic mice and rats have been developed. A feature of the assays is to detect point mutations and deletions by two distinct selection methods, ie, gpt and Spi- assays, respectively. The Spi- assay is unique in that it allows analyses of deletions and complex DNA rearrangements induced by double-strand breaks in DNA. Here, I describe the concept of gpt delta gene mutation assays and the application in food safety research, and discuss future perspectives of genotoxicity assays in vivo.
Collapse
Affiliation(s)
- Takehiko Nohmi
- Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
27
|
Abstract
Attrition due to nonclinical safety represents a major issue for the productivity of pharmaceutical research and development (R&D) organizations, especially during the compound optimization stages of drug discovery and the early stages of clinical development. Focusing on decreasing nonclinical safety-related attrition is not a new concept, and various approaches have been experimented with over the last two decades. Front-loading testing funnels in Discovery with in vitro toxicity assays designed to rapidly identify unfavorable molecules was the approach adopted by most pharmaceutical R&D organizations a few years ago. However, this approach has also a non-negligible opportunity cost. Hence, significant refinements to the "fail early, fail often" paradigm have been proposed recently to reflect the complexity of accurately categorizing compounds with early data points without taking into account other important contextual aspects, in particular efficacious systemic and tissue exposures. This review provides an overview of toxicology approaches and models that can be used in pharmaceutical Discovery at the series/lead identification and lead optimization stages to guide and inform chemistry efforts, as well as a personal view on how to best use them to meet nonclinical safety-related attrition objectives consistent with a sustainable pharmaceutical R&D model. The scope of this review is limited to small molecules, as large molecules are associated with challenges that are quite different. Finally, a perspective on how several emerging technologies may impact toxicity evaluation is also provided.
Collapse
Affiliation(s)
- Eric A G Blomme
- Global Preclinical Safety, AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Yvonne Will
- Drug Safety Research and Development, Pfizer , Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
28
|
Beal MA, Gagné R, Williams A, Marchetti F, Yauk CL. Characterizing Benzo[a]pyrene-induced lacZ mutation spectrum in transgenic mice using next-generation sequencing. BMC Genomics 2015; 16:812. [PMID: 26481219 PMCID: PMC4617527 DOI: 10.1186/s12864-015-2004-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 10/03/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The transgenic rodent mutation reporter assay provides an efficient approach to identify mutagenic agents in vivo. A major advantage of this assay is that mutant reporter transgenes can be sequenced to provide information on the mode of action of a mutagen and to identify clonally expanded mutations. However, conventional DNA sequence analysis is laborious and expensive for long transgenes, such as lacZ (3096 bp), and is not normally implemented in routine screening. METHODS We developed a high-throughput next-generation sequencing (NGS) approach to simultaneously sequence large numbers of barcoded mutant lacZ transgenes from different animals. We collected 3872 mutants derived from the bone marrow DNA of six Muta™Mouse males exposed to the well-established mutagen benzo[a]pyrene (BaP) and six solvent-exposed controls. Mutants within animal samples were pooled, barcoded, and then sequenced using NGS. RESULTS We identified 1652 mutant sequences from 1006 independent mutations that underwent clonal expansion. This deep sequencing analysis of mutation spectrum demonstrated that BaP causes primarily guanine transversions (e.g. G:C → T:A), which is highly consistent with previous studies employing Sanger sequencing. Furthermore, we identified novel mutational hotspots in the lacZ transgene that were previously uncharacterized by Sanger sequencing. Deep sequencing also allowed for an unprecedented ability to correct for clonal expansion events, improving the sensitivity of the mutation reporter assay by 50 %. CONCLUSION These results demonstrate that the high-throughput nature and reduced costs offered by NGS provide a sensitive and fast approach for elucidating and comparing mutagenic mechanisms of various agents among tissues and enabling improved evaluation of genotoxins.
Collapse
Affiliation(s)
- Marc A Beal
- Carleton University, Ottawa, ON, K1S 5B6, Canada.
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Rémi Gagné
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
29
|
Bemis JC, Labash C, Avlasevich SL, Carlson K, Berg A, Torous DK, Barragato M, MacGregor JT, Dertinger SD. Rat Pig-a mutation assay responds to the genotoxic carcinogen ethyl carbamate but not the non-genotoxic carcinogen methyl carbamate. Mutagenesis 2015; 30:343-7. [PMID: 25833916 PMCID: PMC4422867 DOI: 10.1093/mutage/geu084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Determination of the mode of action of carcinogenic agents is an important factor in risk assessment and regulatory practice. To assess the ability of the erythrocyte-based Pig-a mutation assay to discriminate between genotoxic and non-genotoxic modes of action, the mutagenic response of Sprague Dawley rats exposed to methyl carbamate (MC) or ethyl carbamate (EC) was investigated. EC, a potent carcinogen, is believed to induce DNA damage through the formation of a DNA-reactive epoxide group, whereas the closely structurally related compound, MC, cannot form this epoxide and its weaker carcinogenic activity is thought to be secondary to inflammation and promotion of cell proliferation. The frequency of Pig-a mutant phenotype cells was monitored before, during, and after 28 consecutive days of oral gavage exposure to either MC (doses ranging from 125 to 500 mg/kg/day) or EC (250 mg/kg/day). Significant increases in the frequency of mutant reticulocytes were observed from Days 15 through 43, with a peak mean frequency of 19.9×10(-6) on Day 29 (i.e. 24.9-fold increase relative to mean vehicle control across all four sampling times). As expected, mutant erythrocyte responses lagged behind mutant reticulocyte responses, with a maximal mean frequency of 8.2×10(-6) on Day 43 (i.e. 16.4-fold increase). No mutagenic effects were observed with MC. A second indicator of in vivo genotoxicity, peripheral blood micronucleated reticulocytes, was also studied. This endpoint was responsive to EC (3.3-fold mean increase), but not to MC. These results support the hypothesis that genotoxicity contributes to the carcinogenicity of EC but not of MC, and illustrates the value of the Pig-a assay for discriminating between genotoxic and non-genotoxic modes of action.
Collapse
Affiliation(s)
- Jeffrey C Bemis
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| | - Carson Labash
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| | - Svetlana L Avlasevich
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| | - Kristine Carlson
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| | - Ariel Berg
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| | - Dorothea K Torous
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| | - Matthew Barragato
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| | | | - Stephen D Dertinger
- Litron Laboratories, 3500 Winton Place, Rochester, NY 14620, USA andToxicology Consulting Services, Bonita Springs, FL, USA
| |
Collapse
|
30
|
Stankowski LF, Aardema MJ, Lawlor TE, Pant K, Roy S, Xu Y, Elbekai R. Integration of Pig-a, micronucleus, chromosome aberration and comet assay endpoints in a 28-day rodent toxicity study with urethane. Mutagenesis 2015; 30:335-42. [PMID: 25934985 PMCID: PMC4506322 DOI: 10.1093/mutage/gev013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As part of the international Pig-a validation trials, we examined the induction of Pig-a mutant reticulocytes and red blood cells (RET(CD59-) and RBC(CD59-), respectively) in peripheral blood of male Sprague Dawley(®) rats treated with urethane (25, 100 and 250mg/kg/day) or saline by oral gavage for 29 days. Additional endpoints integrated into this study were: micronucleated reticulocytes (MN-RET) in peripheral blood; chromosome aberrations (CAb) and DNA damage (%tail intensity via the comet assay) in peripheral blood lymphocytes (PBL); micronucleated polychromatic erythrocytes (MN-PCE) in bone marrow; and DNA damage (comet) in various organs at termination (the 29th dose was added for the comet endpoint at sacrifice). Ethyl methanesulfonate (EMS; 200mg/kg/day on Days 3, 4, 13, 14, 15, 27, 28 and 29) was evaluated as the concurrent positive control (PC). All animals survived to termination and none exhibited overt toxicity, but there were significant differences in body weight and body weight gain in the 250-mg/kg/day urethane group, as compared with the saline control animals. Statistically significant, dose-dependent increases were observed for urethane for: RET(CD59-) and RBC(CD59-) (on Days 15 and 29); MN-RET (on Days 4, 15 and 29); and MN-PCE (on Day 29). The comet assay yielded positive results in PBL (Day 15) and liver (Day 29), but negative results for PBL (Days 4 and 29) and brain, kidney and lung (Day 29). No significant increases in PBL CAb were observed at any sample time. Except for PBL CAb (likely due to excessive cytotoxicity), EMS-induced significant increases in all endpoints/tissues. These results compare favorably with earlier in vivo observations and demonstrate the utility and sensitivity of the Pig-a in vivo gene mutation assay, and its ability to be easily integrated, along with other standard genotoxicity endpoints, into 28-day rodent toxicity studies.
Collapse
Affiliation(s)
| | - Marilyn J Aardema
- BioReliance Corporation, Rockville, MD 20850, USA, Marilyn Aardema Consulting LLC, Fairfield, OH 45014, USA
| | | | - Kamala Pant
- BioReliance Corporation, Rockville, MD 20850, USA
| | - Shambhu Roy
- BioReliance Corporation, Rockville, MD 20850, USA
| | - Yong Xu
- BioReliance Corporation, Rockville, MD 20850, USA
| | - Reem Elbekai
- BioReliance Corporation, Rockville, MD 20850, USA
| |
Collapse
|
31
|
Aiba née Kaneko M, Hirota M, Kouzuki H, Mori M. Prediction of genotoxic potential of cosmetic ingredients by an in silico battery system consisting of a combination of an expert rule-based system and a statistics-based system. J Toxicol Sci 2015; 40:77-98. [DOI: 10.2131/jts.40.77] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
32
|
Kawamura Y, Hayashi H, Masumura K, Numazawa S, Nohmi T. Genotoxicity of phenacetin in the kidney and liver of Sprague-Dawley gpt delta transgenic rats in 26-week and 52-week repeated-dose studies. Toxicology 2014; 324:10-7. [PMID: 25047350 DOI: 10.1016/j.tox.2014.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/09/2014] [Accepted: 07/09/2014] [Indexed: 12/28/2022]
Abstract
Transgenic rat mutation assays can be used to assess genotoxic properties of chemicals in target organs for carcinogenicity. Mutations in transgenes are genetically neutral and accumulate during a treatment period; thus, assays are suitable for assessing the genotoxic risk of chemicals using a repeated-dose treatment paradigm. However, only a limited number of such studies have been conducted. To examine the utility of transgenic rat assays in repeated-dose studies, we fed male and female Sprague-Dawley gpt delta rats with a 0.5% phenacetin-containing diet for 26 and 52 weeks. A long-term feeding of phenacetin is known to induce renal cancer in rats. Phenacetin administration for 52 weeks in males significantly increased gpt (point mutations) mutant frequency (MF) in the kidney, the target organ of carcinogenesis. In the liver, the nontarget organ of carcinogenesis, gpt MFs were significantly elevated in phenacetin treatment groups of both genders during 26- and 52-week treatments. Furthermore, sensitive to P2 interference (Spi(-)deletions) MF increased in the liver of both genders following 52-week treatment. MFs were higher after treatment for 52 weeks than after treatment for 26 weeks. Frequencies of phenacetin-induced mutations were higher in the liver than in the kidney, suggesting that the intensity of genotoxicity does not necessarily correlate with the induction of tumor formation. Results from gpt delta rat assays of repeated-dose treatments are extremely useful to elucidate the relationship between gene mutations and carcinogenesis in the target organ induced by cancer-causing agents.
Collapse
Affiliation(s)
- Yuji Kawamura
- Toxicology Laboratory, Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd. 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan; Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Hiroyuki Hayashi
- Research Planning & Management, R&D Planning & Management Department, Meiji Seika Pharma Co., Ltd. 2-4-16 Kyobashi, Chuo-ku, Tokyo 104-8002, Japan
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
33
|
Gunther WC, Coffing SL, Dickinson DA, Engel ME, Fiedler RD, O'Lone SD, Sanok KE, Thiffeault CJ, Shutsky TJ, Schuler MJ, Dobo KL. Evaluation of the Pig-a, micronucleus, and comet assay endpoints in a 28-day study with ethyl methanesulfonate. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:492-499. [PMID: 24599777 DOI: 10.1002/em.21863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
Ethyl methanesulfonate (EMS) was evaluated as part of the validation effort for the rat Pig-a mutation assay and compared with other well-established in vivo genotoxicity endpoints. Male Sprague-Dawley (SD) rats were given a daily dose of 0, 6.25, 12.5, 25, 50, or 100 mg/kg/day EMS for 28 days, and evaluated for a variety of genotoxicity endpoints in peripheral blood, liver, and colon. Blood was sampled pre-dose (Day 1) and at various time points up to Day 105. Pig-a mutant frequencies were determined in total red blood cells (RBCs) and reticulocytes (RETs) as RBC(CD59-) and RET(CD59-) frequencies. The first statistically significant increases in mutant frequencies were seen in RETs on Day 15 and in RBCs on Day 29 with the maximum RET(CD59-) on Day 29 and of RBC(CD59-) on Day 55. The lowest dose producing a statistically significant increase of RET(CD59-) was 12.5 mg/kg on Day 55 and 25 mg/kg for RBC(CD59-) on Day 55. EMS also induced significant increases in % micronucleated RETs (MN-RETs) in peripheral blood on Days 3, 15, and 28. No statistically significant increases in micronuclei were seen in liver or colon. Results from the in vivo Comet assay on Day 29 showed generally weak increases in DNA damage in all tissues evaluated with little evidence for accumulation of damage seen over time. The results with EMS indicate that the assessment of RBC(CD59-) and/or RET(CD59-) in the Pig-a assay could be a useful and sensitive endpoint for a repeat dose protocol and complements other genotoxicity endpoints.
Collapse
Affiliation(s)
- William C Gunther
- Pfizer Global Research and Development, Genetic Toxicology, Groton, Connecticut
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cao X, Mittelstaedt RA, Pearce MG, Allen BC, Soeteman-Hernández LG, Johnson GE, Bigger CAH, Heflich RH. Quantitative dose-response analysis of ethyl methanesulfonate genotoxicity in adult gpt-delta transgenic mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:385-99. [PMID: 24535894 DOI: 10.1002/em.21854] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 05/25/2023]
Abstract
The assumption that mutagens have linear dose-responses recently has been challenged. In particular, ethyl methanesulfonate (EMS), a DNA-reactive mutagen and carcinogen, exhibited sublinear or thresholded dose-responses for LacZ mutation in transgenic Muta™Mouse and for micronucleus (MN) frequency in CD1 mice (Gocke E and Müller L [2009]: Mutat Res 678:101-107). In order to explore variables in establishing genotoxicity dose-responses, we characterized the genotoxicity of EMS using gene mutation assays anticipated to have lower spontaneous mutant frequencies (MFs) than Muta™Mouse. Male gpt-delta transgenic mice were treated daily for 28 days with 5 to 100 mg/kg EMS, and measurements were made on: (i) gpt MFs in liver, lung, bone marrow, kidney, small intestine, and spleen; and (ii) Pig-a MFs in peripheral blood reticulocytes (RETs) and total red blood cells. MN induction also was measured in peripheral blood RETs. These data were used to calculate Points of Departure (PoDs) for the dose responses, i.e., no-observed-genotoxic-effect-levels (NOGELs), lower confidence limits of threshold effect levels (Td-LCIs), and lower confidence limits of 10% benchmark response rates (BMDL10 s). Similar PoDs were calculated from the published EMS dose-responses for LacZ mutation and CD1 MN induction. Vehicle control gpt and Pig-a MFs were 13-40-fold lower than published vehicle control LacZ MFs. In general, the EMS genotoxicity dose-responses in gpt-delta mice had lower PoDs than those calculated from the Muta™Mouse and CD1 mouse data. Our results indicate that the magnitude and possibly the shape of mutagenicity dose responses differ between in vivo models, with lower PoDs generally detected by gene mutation assays with lower backgrounds.
Collapse
Affiliation(s)
- Xuefei Cao
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Manjanatha MG, Cao X, Shelton SD, Mittelstaedt RA, Heflich RH. In vivo cII, gpt, and Spi⁻ gene mutation assays in transgenic mice and rats. Methods Mol Biol 2014; 1044:97-119. [PMID: 23896873 DOI: 10.1007/978-1-62703-529-3_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Transgenic mutation assays are used to identify and characterize genotoxic hazards and for determining the mode of action for carcinogens. The three most popular transgenic mutational models are Big Blue® (rats or mice), Muta™ mouse (mice), and gpt-delta (rats or mice). The Big Blue® and Muta™ mouse models use the cII gene as a reporter of mutation whereas gpt-delta rodents use the gpt gene and the red/gam genes (Spi⁻ selection) as mutation reporter genes. Here we describe methodology for conducting mutation assays with these transgenes. Transgenes recovered from tissue DNA are packaged into infectious lambda phage, bacteria are infected with the phage, and cII-mutant and Spi⁻ plaques and gpt-mutant colonies are isolated using selective conditions and quantified. Selected mutants can be further analyzed for identification of small sequence alterations in the cII and gpt genes and large deletions at the Spi⁻ locus.
Collapse
Affiliation(s)
- Mugimane G Manjanatha
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | | | | | | | | |
Collapse
|
36
|
Prtenjaca A, Tarnowski HE, Marr AM, Heney MA, Creamer L, Sathiamoorthy S, Hill KA. Relatively high rates of G:C → A:T transitions at CpG sites were observed in certain epithelial tissues including pancreas and submaxillary gland of adult big blue® mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:51-63. [PMID: 24105921 DOI: 10.1002/em.21816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Abstract
With few exceptions, spontaneous mutation frequency and pattern are similar across tissue types and relatively constant in young to middle adulthood in wild type mice. Underrepresented in surveys of spontaneous mutations across murine tissues is the diversity of epithelial tissues. For the first time, spontaneous mutations were detected in pancreas and submaxillary gland and compared with kidney, lung, and male germ cells from five adult male Big Blue® mice. Mutation load was assessed quantitatively through measurement of mutant and mutation frequency and qualitatively through identification of mutations and characterization of recurrent mutations, multiple mutations, mutation pattern, and mutation spectrum. A total of 9.6 million plaque forming units were screened, 226 mutants were collected, and 196 independent mutations were identified. Four novel mutations were discovered. Spontaneous mutation frequency was low in pancreas and high in the submaxillary gland. The submaxillary gland had multiple recurrent mutations in each of the mice and one mutant had two independent mutations. Mutation patterns for epithelial tissues differed from that observed in male germ cells with a striking bias for G:C to A:T transitions at CpG sites. A comprehensive review of lacI spontaneous mutation patterns in young adult mice and rats identified additional examples of this mutational bias. An overarching observation about spontaneous mutation frequency in adult tissues of the mouse remains one of stability. A repeated observation in certain epithelial tissues is a higher rate of G:C to A:T transitions at CpG sites and the underlying mechanisms for this bias are not known.
Collapse
Affiliation(s)
- Anita Prtenjaca
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Kawamura Y, Hayashi H, Kurata Y, Hiratsuka K, Masumura K, Nohmi T. Evaluation of the genotoxicity of tamoxifen in the liver and kidney of F344 gpt delta transgenic rat in 3-week and 13-week repeated dose studies. Toxicology 2013; 312:56-62. [PMID: 23907062 DOI: 10.1016/j.tox.2013.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/12/2013] [Accepted: 07/20/2013] [Indexed: 12/18/2022]
Abstract
Transgenic rat gene mutation assays can be used to assess genotoxicity of chemicals in target organs for carcinogenicity. Mutations in transgenes are genetically neutral and accumulate during a treatment period; thus, the assays are suitable for assessment of the genotoxicity risk of chemicals using a repeated-dose treatment paradigm. However, few such studies have been conducted. To examine the utility of the transgenic rat assays in repeated-dose studies, we treated female F344 gpt delta rats with tamoxifen (TAM) at 20 and 40mg/kg, or toremifene (TOR) at 40mg/kg by gavage daily for 3 weeks. We also fed gpt delta rats with TAM at either 250ppm (15.4-17.6mg/kg) or 500ppm (30.0-32.9mg/kg) for 13 weeks. TAM is carcinogenic in the rat liver and TOR is not carcinogenic. TAM administration significantly increased gpt (point mutations) and Spi(-) (deletions) mutant frequencies (MFs) in the liver, the target organ of carcinogenesis; MFs were higher after treatment for 13 weeks than after treatment for 3 weeks. The MFs in the kidney did not increase in any of the TAM treatment groups. TOR had no effect on MFs (gpt and Spi(-)) in either the liver or the kidney. We conclude that the gpt delta rat assay in the repeated-dose treatment paradigm is sensitive enough to detect gene mutations induced by TAM in the target organ for carcinogenesis. Furthermore, the assay can be integrated into a 13-week dose-finding study for a 2-year cancer bioassay.
Collapse
Affiliation(s)
- Yuji Kawamura
- Toxicology Laboratory, Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Murphey P, McLean DJ, McMahan CA, Walter CA, McCarrey JR. Enhanced genetic integrity in mouse germ cells. Biol Reprod 2013; 88:6. [PMID: 23153565 DOI: 10.1095/biolreprod.112.103481] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genetically based diseases constitute a major human health burden, and de novo germline mutations represent a source of heritable genetic alterations that can cause such disorders in offspring. The availability of transgenic rodent systems with recoverable, mutation reporter genes has been used to assess the occurrence of spontaneous point mutations in germline cells. Previous studies using the lacI mutation reporter transgenic mouse system showed that the frequency of spontaneous mutations is significantly lower in advanced male germ cells than in somatic cell types from the same individuals. Here we used this same mutation reporter transgene system to show that female germ cells also display a mutation frequency that is lower than that in corresponding somatic cells and similar to that seen in male germ cells, indicating this is a common feature of germ cells in both sexes. In addition, we showed that statistically significant differences in mutation frequencies are evident between germ cells and somatic cells in both sexes as early as mid-fetal stages in the mouse. Finally, a comparison of the mutation frequency in a general population of early type A spermatogonia with that in a population enriched for Thy-1-positive spermatogonia suggests there is heterogeneity among the early spermatogonial population such that a subset of these cells are predestined to form true spermatogonial stem cells. Taken together, these results support the disposable soma theory, which posits that genetic integrity is normally maintained more stringently in the germ line than in the soma and suggests that this is achieved by minimizing the initial occurrence of mutations in early germline cells and their subsequent gametogenic progeny relative to that in somatic cells.
Collapse
Affiliation(s)
- Patricia Murphey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | |
Collapse
|
40
|
The Evolution, Scientific Reasoning and Use of ICH S2 Guidelines for Genotoxicity Testing of Pharmaceuticals. GLOBAL APPROACH IN SAFETY TESTING 2013. [DOI: 10.1007/978-1-4614-5950-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
41
|
Suzuki Y, Umemura T, Ishii Y, Hibi D, Inoue T, Jin M, Sakai H, Kodama Y, Nohmi T, Yanai T, Nishikawa A, Ogawa K. Possible involvement of sulfotransferase 1A1 in estragole-induced DNA modification and carcinogenesis in the livers of female mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 749:23-8. [DOI: 10.1016/j.mrgentox.2012.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 11/29/2022]
|
42
|
The application of hepatic P450 reductase null gpt delta mice in studying the role of hepatic P450 in genotoxic carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced mutagenesis. Arch Toxicol 2012; 86:1753-61. [PMID: 22710403 DOI: 10.1007/s00204-012-0891-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
Abstract
The cytochrome P450 (P450 or CYP) is involved in both detoxification and metabolic activation of many carcinogens. In order to identify the role of hepatic P450 in the mutagenesis of genotoxic carcinogens, we generated a novel hepatic P450 reductase null (HRN) gpt delta mouse model, which lacks functional hepatic P450 on a gpt delta mouse background. In this study, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) was used to treat HRN gpt delta mice and control littermates. Gene mutations in the liver and lungs were detected, and mutation spectra were analyzed. Pharmacokinetic analyses were performed, and tissue levels of NNK and metabolite were determined. NNK-induced mutant frequencies (MFs) were equivalent to spontaneous MFs in the liver, but increased more than 3 times in the lungs of HRN gpt delta mice compared to control mice. NNK-induced mutation spectra showed no difference between HRN gpt delta mice and control littermates. Toxicokinetic studies revealed reduced clearance of NNK with elevated tissue concentrations in HRN gpt delta mice. To our knowledge, these are the first data demonstrating that NNK cannot induce mutagenesis in the liver without P450 metabolic activation, but can induce mutagenesis in lungs by a hepatic P450-independent mechanism. Moreover, our data show that hepatic P450 plays a major role in the systemic clearance of NNK, thereby protecting the lungs against NNK-induced mutagenesis. Our model will be useful in establishing the role of hepatic versus extrahepatic P450-mediated mutagenesis, and the relative contributions of P450 compared to other biotransformation enzymes in the genotoxic carcinogens' activation.
Collapse
|
43
|
McDaniel LP, Ding W, Dobrovolsky VN, Shaddock JG, Mittelstaedt RA, Doerge DR, Heflich RH. Genotoxicity of furan in Big Blue rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 742:72-8. [DOI: 10.1016/j.mrgentox.2011.12.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 01/01/2023]
|
44
|
Kimoto T, Chikura S, Suzuki-Okada K, Kobayashi XM, Itano Y, Miura D, Kasahara Y. Effective use of the Pig-a gene mutation assay for mutagenicity screening: measuring CD59-deficient red blood cells in rats treated with genotoxic chemicals. J Toxicol Sci 2012; 37:943-55. [DOI: 10.2131/jts.37.943] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
45
|
Takeiri A, Tanaka K, Shioda A, Harada A, Yano M, Kawase A, Yamaguchi K, Mitsui T, Mishima M. Lack of Mutagenicity of SMD-502, a New Vitamin D3 Analog for Topical Application, in Skin and Liver of gpt delta Transgenic Mice and in GDL1 Cells. Genes Environ 2012. [DOI: 10.3123/jemsge.34.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
46
|
Kawamura Y, Hayashi H, Tajima O, Yamada S, Takayanagi T, Hori H, Fujii W, Masumura K, Nohmi T. Evaluation of the Genotoxicity of Aristolochic Acid in the Kidney and Liver of F344 gpt delta Transgenic Rat Using a 28-Day Repeated-dose Protocol: A Collaborative Study of the gpt delta Transgenic Rat Mutation Assay. Genes Environ 2012. [DOI: 10.3123/jemsge.34.18] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
47
|
Kamigaito T, Noguchi T, Narumi K, Takashima R, Hamada S, Sanada H, Hasuko M, Hayashi H, Masumura K, Nohmi T. Evaluation of the in vivo Mutagenicity of Nickel Subsulfide in the Lung of F344 gpt delta Transgenic Rats Exposed by Intratracheal Instillation: A Collaborative Study for the gpt delta Transgenic Rat Mutation Assay. Genes Environ 2012. [DOI: 10.3123/jemsge.34.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
48
|
Sui H, Ohta R, Shiragiku T, Akahori A, Suzuki K, Nakajima M, Hayashi H, Masumura K, Nohmi T. Evaluation of In Vivo Mutagenicity by 2,4-Diaminotoluene and 2,6-Diaminotoluene in Liver of F344 gpt delta Transgenic Rat Dosed for 28 Days: A Collaborative Study of the gpt delta Transgenic Rat Mutation Assay. Genes Environ 2012. [DOI: 10.3123/jemsge.34.25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
49
|
Shane BS, Zeiger E, Piegorsch WW, Booth ED, Goodman JI, Peffer RC. Re-evaluation of the Big Blue® mouse assay of propiconazole suggests lack of mutagenicity. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:1-9. [PMID: 22329022 DOI: 10.1002/em.20689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Propiconazole (PPZ) is a conazole fungicide that is not mutagenic, clastogenic, or DNA damaging in standard in vitro and in vivo genetic toxicity tests for gene mutations, chromosome aberrations, DNA damage, and cell transformation. However, it was demonstrated to be a male mouse liver carcinogen when administered in food for 24 months only at a concentration of 2,500 ppm that exceeded the maximum tolerated dose based on increased mortality, decreased body weight gain, and the presence of liver necrosis. PPZ was subsequently tested for mutagenicity in the Big Blue® transgenic mouse assay at the 2,500 ppm dose, and the result was reported as positive by Ross et al. ([2009]: Mutagenesis 24:149-152). Subsets of the mutants from the control and PPZ-exposed groups were sequenced to determine the mutation spectra and a multivariate clustering analysis method purportedly substantiated the increase in mutant frequency with PPZ (Ross and Leavitt. [2010]: Mutagenesis 25:231-234). However, as reported here, the results of the analysis of the mutation spectra using a conventional method indicated no treatment-related differences in the spectra. In this article, we re-examine the Big Blue® mouse findings with PPZ and conclude that the compound does not act as a mutagen in vivo.
Collapse
|
50
|
Dean S. Transgenic animal mutation models: a review of the models and how they function. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2011; 817:377-97. [PMID: 22147581 DOI: 10.1007/978-1-61779-421-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In regulatory genetic toxicology, the endpoints available for routine study in vivo have been limited to looking at chromosomal damage or unscheduled DNA synthesis in a very limited number of tissues. With the development of transgenic gene mutation systems in rodents came the opportunity to investigate a new endpoint. The better-known λLacI and λLacZ are covered in some detail and the less well established models do receive mention with appropriate references for those wishing more information. Using a recommended experimental design it is now possible to look at the ability of a compound to induce gene mutation following in vivo exposure, in any tissue from which suitable DNA can be isolated.
Collapse
|