1
|
Api AM, Bartlett A, Belsito D, Botelho D, Bruze M, Bryant-Freidrich A, Burton GA, Cancellieri MA, Chon H, Dagli ML, Dekant W, Deodhar C, Farrell K, Fryer AD, Jones L, Joshi K, Lapczynski A, Lavelle M, Lee I, Moustakas H, Muldoon J, Penning TM, Ritacco G, Sadekar N, Schember I, Schultz TW, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, 4-isopropyl-1-methylcyclohexene, CAS registry number 29350-67-2. Food Chem Toxicol 2024; 192 Suppl 1:115001. [PMID: 39276909 DOI: 10.1016/j.fct.2024.115001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Bartlett
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel for Fragrance Safety, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel for Fragrance Safety, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - A Bryant-Freidrich
- Member Expert Panel for Fragrance Safety, Pharmaceutical Sciences, Wayne State University, 42 W. Warren Ave., Detroit, M, 48202, USA
| | - G A Burton
- Member Expert Panel for Fragrance Safety, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - H Chon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel for Fragrance Safety, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - W Dekant
- Member Expert Panel for Fragrance Safety, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Farrell
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel for Fragrance Safety, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Muldoon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel for Fragrance Safety, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Schember
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel for Fragrance Safety, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel for Fragrance Safety, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
2
|
Calabrese EJ, Selby PB. Comet assay and hormesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122929. [PMID: 37979647 DOI: 10.1016/j.envpol.2023.122929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
The paper provides the first assessment of the occurrence of hormetic dose responses using the Comet assay, a genotoxic assay. Using a priori evaluative criteria based on the Hormetic Database on peer-reviewed comet assay experimental findings, numerous examples of hormetic dose responses were obtained. These responses occurred in a large and diverse range of cell types and for agents from a broad range of chemical classes. Limited attempts were made to estimate the frequency of hormesis within comet assay experimental studies using a priori entry and evaluative criteria, with results suggesting a frequency in the 40% range. These findings are important as they show that a wide range of genotoxic chemicals display evidence that is strongly suggestive of hormetic dose responses. These findings have significant implications for study design issues, including the number of doses selected, dose range and spacing. Likewise, the widespread occurrence of hormetic dose responses in this genotoxic assay has important risk assessment implications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Paul B Selby
- Retired from Oak Ridge National Laboratory at Oak Ridge, TN. Home Address: 4088 Nottinghill Gate Road, Upper Arlington, OH, 43220, USA.
| |
Collapse
|
3
|
Barta P, Nachtigal P, Maixnerova J, Zemankova L, Trejtnar F. Validation of Freshly Isolated Rat Renal Cells as a Tool for Preclinical Assessment of Radiolabeled Receptor-Specific Peptide Uptake in the Kidney. Pharmaceuticals (Basel) 2023; 16:ph16050696. [PMID: 37242479 DOI: 10.3390/ph16050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The synthetic analogs of regulatory peptides radiolabeled with adequate radionuclides are perspective tools in nuclear medicine. However, undesirable uptake and retention in the kidney limit their application. Specific in vitro methods are used to evaluate undesirable renal accumulation. Therefore, we investigated the usefulness of freshly isolated rat renal cells for evaluating renal cellular uptake of receptor-specific peptide analogs. Special attention was given to megalin as this transport system is an important contributor to the active renal uptake of the peptides. Freshly isolated renal cells were obtained from native rat kidneys by the collagenase method. Compounds with known accumulation in renal cells were used to verify the viability of cellular transport systems. Megalin expressions in isolated rat renal cells were compared to two other potential renal cell models by Western blotting. Specific tubular cell markers were used to confirm the presence of proximal tubular cells expressing megalin in isolated rat renal cell preparations by immunohistochemistry. Colocalization experiments on isolated rat kidney cells confirmed the presence of proximal tubular cells bearing megalin in preparations. The applicability of the method was tested by an accumulation study with several analogs of somatostatin and gastrin labeled with indium-111 or lutetium-177. Therefore, isolated rat renal cells may be an effective screening tool for in vitro analyses of renal uptake and comparative renal accumulation studies of radiolabeled peptides or other radiolabeled compounds with potential nephrotoxicity.
Collapse
Affiliation(s)
- Pavel Barta
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Kralové, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralové, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Jana Maixnerova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralové, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Lenka Zemankova
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Frantisek Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralové, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Wu DD, Dai LJ, Tan HW, Zhao XY, Wei QY, Zhong QH, Ji YC, Yin XH, Yu FY, Jin DY, Li SQ, Lau AT, Xu YM. Transcriptional upregulation of MAPK15 by NF-κB signaling boosts the efficacy of combination therapy with cisplatin and TNF-α. iScience 2022; 25:105459. [PMID: 36425765 PMCID: PMC9678736 DOI: 10.1016/j.isci.2022.105459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022] Open
Abstract
The efficacy of cisplatin in treating advanced non-small cell lung cancer is limited mainly because of insensitivity and/or acquired resistance. MAPK15, previously shown by us to enhance the sensitivity of the anti-cancer drug arsenic trioxide, could also enhance the sensitivity of other anti-cancer drugs. Here, we explore the potential role of MAPK15 in chemosensitivity to cisplatin in human lung cancer cells. Our results indicated that the expression level of MAPK15 was positively correlated with cisplatin sensitivity through affecting the DNA repair capacity of cisplatin-treated cells. The expression of MAPK15 was transcriptionally regulated by the TNF-α-activated NF-κB signaling pathway, and TNF-α synergized with cisplatin, in a MAPK15-dependent manner, to exert cytotoxicity in vitro and in vivo. Therefore, levels of TNF-α dictate the responsiveness/sensitivity of lung cancer cells to cisplatin by transcriptionally upregulating MAPK15 to enhance chemosensitivity, suggesting manipulation of MAPK15 as a strategy to improve the therapeutic efficacy of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Dan-Dan Wu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Li-Juan Dai
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Xiao-Yun Zhao
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Qi-Yao Wei
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Qiu-Hua Zhong
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Yan-Chen Ji
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Xiao-Hui Yin
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Fei-Yuan Yu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Sheng-Qing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, People’s Republic of China
| | - Andy T.Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, People’s Republic of China
| |
Collapse
|
5
|
Hayes AW, Clemens RA, Pressman P. The absence of genotoxicity of a mixture of aloin A and B and a commercial aloe gel beverage. Toxicol Mech Methods 2022; 32:385-394. [PMID: 34979868 DOI: 10.1080/15376516.2021.2023828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Aloe products are increasingly valued as ingredients in food supplements and as flavoring agents. The global Aloe vera market is varied, large, growing, and increasingly important in food, cosmetics, and medicines. Aloin, an anthraquinone glycoside, is one of the major components by weight of the anthraquinone derivatives of Aloe vera gel. Principal metabolites, aloe emodin and emodin, are a source of debate concerning toxic vs salutary effects, hence the accurate toxicological characterization of these compounds has become increasingly important. The purpose of this study was to determine the genotoxic profile of a stabilized Aloe vera juice product derived from the inner filet and marketed as a beverage currently sold in the European Union containing 8 to 10 ppm aloin and a mixture of purified aloin A and B. The present data confirm that a commercial stabilized Aloe vera gel intended for consumption as a juice beverage is not genotoxic. Furthermore, both aloin A and B were negative in the same assays and therefore are also not genotoxic. These results are consistent with the work of other groups and contrast with data obtained using products containing the Aloe vera latex hydroxyanthracene derivatives (HADs).
Collapse
Affiliation(s)
- A Wallace Hayes
- College of Public Health, University of South Florida, Tampa, FL, USA
| | - Roger A Clemens
- School of Pharmacy, International Center for Regulatory and Quality Science, University of Southern California, Los Angeles, CA, USA
| | - Peter Pressman
- Saba University School of Medicine, Caribbean Netherlands
| |
Collapse
|
6
|
Api AM, Belsito D, Botelho D, Bruze M, Burton GA, Buschmann J, Cancellieri MA, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler DC, Moustakas H, Na M, Penning TM, Ritacco G, Romine J, Sadekar N, Schultz TW, Selechnik D, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, dl-limonene (racemic), CAS Registry Number 138-86-3. Food Chem Toxicol 2021; 161 Suppl 1:112764. [PMID: 34896183 DOI: 10.1016/j.fct.2021.112764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE, 20502, Sweden
| | - G A Burton
- Member Expert Panel, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - J Buschmann
- Member Expert Panel, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- Member Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Kumar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Na
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - D Selechnik
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel, The Journal of Dermatological Science (JDS), Editor-in-Chief, Professor and Chairman, Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
7
|
Bellavia D, Caradonna F, Dimarco E, Costa V, Carina V, De Luca A, Raimondi L, Gentile C, Alessandro R, Fini M, Giavaresi G. Terpenoid treatment in osteoporosis: this is where we have come in research. Trends Endocrinol Metab 2021; 32:846-861. [PMID: 34481733 DOI: 10.1016/j.tem.2021.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/30/2023]
Abstract
Lower bone resistance to load is due to the imbalance of bone homeostasis, where excessive bone resorption, compared with bone formation, determines a progressive osteopenia, leading to a high risk of fractures and consequent pain and functional limitations. Terpenoids, with their activities against bone resorption, have recently received increased attention from researchers. They are potentially more suitable for long-term use compared with traditional therapeutics. In this review of the literature of the past 5 years, we provide comprehensive information on terpenoids, with their anti-osteoporotic effects, highlighting molecular mechanisms that are often in epigenetic key and a possible pharmacological use in osteoporosis prevention and treatment.
Collapse
Affiliation(s)
- Daniele Bellavia
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy.
| | - Fabio Caradonna
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, Palermo, Italy
| | - Eufrosina Dimarco
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, Palermo, Italy
| | - Viviana Costa
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Valeria Carina
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Lavinia Raimondi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Carla Gentile
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, Palermo, Italy
| | - Riccardo Alessandro
- University of Palermo, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, Palermo, Italy; Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR), Palermo, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| |
Collapse
|
8
|
Alkenylbenzenes in Foods: Aspects Impeding the Evaluation of Adverse Health Effects. Foods 2021; 10:foods10092139. [PMID: 34574258 PMCID: PMC8469824 DOI: 10.3390/foods10092139] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Alkenylbenzenes are naturally occurring secondary plant metabolites, primarily present in different herbs and spices, such as basil or fennel seeds. Thus, alkenylbenzenes, such as safrole, methyleugenol, and estragole, can be found in different foods, whenever these herbs and spices (or extracts thereof) are used for food production. In particular, essential oils or other food products derived from the aforementioned herbs and spices, such as basil-containing pesto or plant food supplements, are often characterized by a high content of alkenylbenzenes. While safrole or methyleugenol are known to be genotoxic and carcinogenic, the toxicological relevance of other alkenylbenzenes (e.g., apiol) regarding human health remains widely unclear. In this review, we will briefly summarize and discuss the current knowledge and the uncertainties impeding a conclusive evaluation of adverse effects to human health possibly resulting from consumption of foods containing alkenylbenzenes, especially focusing on the genotoxic compounds, safrole, methyleugenol, and estragole.
Collapse
|
9
|
Galli CL, Cinelli S, Ciliutti P, Melzi G, Marinovich M. Aloe-emodin, a hydroxyanthracene derivative, is not genotoxic in an in vivo comet test. Regul Toxicol Pharmacol 2021; 124:104967. [PMID: 34062205 DOI: 10.1016/j.yrtph.2021.104967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/28/2021] [Accepted: 05/26/2021] [Indexed: 01/12/2023]
Abstract
Aloe-emodin, one of the molecules belonging to the group of hydroxyanthracene derivatives, was recently described as genotoxic in vivo. Indeed, the EFSA judged that aloe-emodin, together with other similar molecules (emodin and danthron) and extracts from the leaf of Aloe species containing hydroxyanthracene derivatives, could represent a risk factor for colorectal cancer mediated by a genotoxic effect. Given the marked uncertainty regarding the conclusions in the opinion of the EFSA ANS Panel and conflicts in the epidemiological data on which the opinion is based, a new in vivo study (in vivo alkaline comet assay in mice - OECD 489) was conducted to test the potential genotoxicity of aloe-emodin at doses of 250, 500, 1000 and 2000 mg/kg bw/day on preparations of single cells from the kidney and colon of treated male mice. Following treatment with the test item, no clinical signs were observed in animals in any treatment group. Slight body-weight loss was randomly observed in all groups treated with the test item and was more evident in the groups dosed at 1000 and 2000 mg/kg bw/day. Under these experimental conditions, aloe-emodin showed no genotoxic activity. Possible oxidative damage to colon tissues could not be excluded based on the results obtained after repair enzyme treatment.
Collapse
Affiliation(s)
- Corrado L Galli
- Department of Pharmacological and Biomolecular Sciences (DISFeB), Section of Toxicology and Risk Assessment, University of Milan, Milan, Italy.
| | - Serena Cinelli
- European Research Biology Center ERBC, Pomezia, Rome, Italy
| | - Paola Ciliutti
- European Research Biology Center ERBC, Pomezia, Rome, Italy
| | - Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences (DISFeB), Section of Toxicology and Risk Assessment, University of Milan, Milan, Italy
| | - Marina Marinovich
- Department of Pharmacological and Biomolecular Sciences (DISFeB), Section of Toxicology and Risk Assessment, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Li XL, Guo XQ, Wang HR, Chen T, Mei N. Aristolochic Acid-Induced Genotoxicity and Toxicogenomic Changes in Rodents. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2020; 6:12-25. [PMID: 32258091 PMCID: PMC7110418 DOI: 10.4103/wjtcm.wjtcm_33_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aristolochic acid (AA) is a group of structurally related nitrophenanthrene carboxylic acids found in many plants that are widely used by many cultures as traditional herbal medicines. AA is a causative agent for Chinese herbs nephropathy, a term replaced later by AA nephropathy. Evidence indicates that AA is nephrotoxic, genotoxic, and carcinogenic in humans; and it also induces tumors in the forestomach, kidney, renal pelvis, urinary bladder, and lung of rats and mice. Therefore, plants containing AA have been classified as carcinogenic to humans (Group 1) by the International Agency for Research on Cancer. In our laboratories, we have conducted a series of genotoxicity and toxicogenomic studies in the rats exposed to AA of 0.1–10 mg/kg for 12 weeks. Our results demonstrated that AA treatments induced DNA adducts and mutations in the kidney, liver, and spleen of rats, as well as significant alteration of gene expression in both its target and nontarget tissues. AA treatments altered mutagenesis- or carcinogenesis-related microRNA expression in rat kidney and resulted in significant changes in protein expression profiling. We also applied benchmark dose (BMD) modeling to the 3-month AA-induced genotoxicity data. The obtained BMDL10 (the lower 95% confidence interval of the BMD10 that is a 10% increase over the background level) for AA-induced mutations in the kidney of rats was about 7 μg/kg body weight per day. This review constitutes an overview of our investigations on AA-induced genotoxicity and toxicogenomic changes including gene expression, microRNA expression, and proteomics; and presents updated information focused on AA-induced genotoxicity in rodents.
Collapse
Affiliation(s)
- Xi-Lin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Xiao-Qing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Hai-Rong Wang
- Tianjin Center for New Drug Safety Assessment and Research, Tianjin, China
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
11
|
FEMA GRAS assessment of natural flavor complexes: Citrus-derived flavoring ingredients. Food Chem Toxicol 2018; 124:192-218. [PMID: 30481573 DOI: 10.1016/j.fct.2018.11.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 01/06/2023]
Abstract
In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients. This publication is the first in a series and summarizes the evaluation of 54 Citrus-derived NFCs using the procedure outlined in Smith et al. (2005) and updated in Cohen et al. (2018) to evaluate the safety of naturally-occurring mixtures for their intended use as flavoring ingredients. The procedure relies on a complete chemical characterization of each NFC intended for commerce and organization of each NFC's chemical constituents into well-defined congeneric groups. The safety of the NFC is evaluated using the well-established and conservative threshold of toxicological concern (TTC) concept in addition to data on absorption, metabolism and toxicology of members of the congeneric groups and the NFC under evaluation. As a result of the application of the procedure, 54 natural flavor complexes derived from botanicals of the Citrus genus were affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavoring ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.
Collapse
|
12
|
Kobets T, Duan JD, Brunnemann KD, Iatropoulos MJ, Etter S, Hickey C, Smith B, Williams GM. In ovo testing of flavor and fragrance materials in Turkey Egg Genotoxicity Assay (TEGA), comparison of results to in vitro and in vivo data. Food Chem Toxicol 2018; 115:228-243. [DOI: 10.1016/j.fct.2018.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
|
13
|
Nesslany F. The current limitations of in vitro genotoxicity testing and their relevance to the in vivo situation. Food Chem Toxicol 2017; 106:609-615. [DOI: 10.1016/j.fct.2016.08.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/12/2016] [Accepted: 08/30/2016] [Indexed: 11/29/2022]
|
14
|
Bhagat J. Combinations of genotoxic tests for the evaluation of group 1 IARC carcinogens. J Appl Toxicol 2017; 38:81-99. [PMID: 28695982 DOI: 10.1002/jat.3496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/10/2023]
Abstract
Many of the known human carcinogens are potent genotoxins that are efficiently detected as carcinogens in human populations but certain types of compounds such as immunosuppressants, sex hormones, etc. act via non-genotoxic mechanism. The absence of genotoxicity and the diversity of modes of action of non-genotoxic carcinogens make predicting their carcinogenic potential extremely challenging. There is evidence that combinations of different short-term tests provide a better and efficient prediction of human genotoxic and non-genotoxic carcinogens. The purpose of this study is to summarize the in vivo and in vitro comet assay (CMT) results of group 1 carcinogens selected from the International Agency for Research on Cancer and to discuss the utility of the comet assay along with other genotoxic assays such as Ames, in vivo micronucleus (MN), and in vivo chromosomal aberration (CA) test. Of the 62 agents for which valid genotoxic data were available, 38 of 61 (62.3%) were Ames test positive, 42 of 60 (70%) were in vivo MN test positive and 36 of 45 (80%) were positive for the in vivo CA test. Higher sensitivity was seen in in vivo CMT (90%) and in vitro CMT (86.9%) assay. Combination of two tests has greater sensitivity than individual tests: in vivo MN + in vivo CA (88.6%); in vivo MN + in vivo CMT (92.5%); and in vivo MN + in vitro CMT (95.6%). Combinations of in vivo or in vitro CMT with other tests provided better sensitivity. In vivo CMT in combination with in vivo CA provided the highest sensitivity (96.7%).
Collapse
Affiliation(s)
- Jacky Bhagat
- Department of Zoology, Goa University, Taleigao Plateau, Goa 403206, India
| |
Collapse
|
15
|
Pfuhler S, Downs TR, Allemang AJ, Shan Y, Crosby ME. Weak silica nanomaterial-induced genotoxicity can be explained by indirect DNA damage as shown by the OGG1-modified comet assay and genomic analysis. Mutagenesis 2016; 32:5-12. [DOI: 10.1093/mutage/gew064] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
da Silva Cardoso V, Vermelho AB, Ribeiro de Lima CA, Mendes de Oliveira J, Freire de Lima ME, Pinto da Silva LH, Direito GM, Miranda Danelli MDG. Antigenotoxic Effect of Piperine in Broiler Chickens Intoxicated with Aflatoxin B1. Toxins (Basel) 2016; 8:E316. [PMID: 27809242 PMCID: PMC5127113 DOI: 10.3390/toxins8110316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/19/2016] [Accepted: 10/27/2016] [Indexed: 12/01/2022] Open
Abstract
Piperine is an abundant amide extracted from black pepper seeds which has been shown to have protective effects against cytotoxic and genotoxic carcinogenesis induced by certain chemical carcinogens and aflatoxin B₁ (AFB₁) in vitro. The aim of this work was to study, in vivo, the antigenotoxic potential of feed-added piperine on broiler chickens experimentally intoxicated with AFB₁, using micronucleus and comet assays. The antigenotoxicity assessment of 9-day-old chicks was performed on a total of 60 chickens divided into four groups of 15 broilers each: (C) control, (P) 60 mg·piperine kg-1 feed, (A) 0.5 mg·AFB₁·kg-1 body weight, (daily by oral route), and (P + A) co-treatment with piperine and AFB₁. The experiment was conducted for 26 days. Chicks intoxicated with AFB₁ showed significant genotoxic effects in the first 24 h post intoxication, and the effects remained in the other periods analyzed (48, 72, and 96 h and 26 days of treatment). The DNA damage in peripheral blood cells, the number of erythrocytes with micronuclei, and polychromatic-to-normochromatic erythrocyte ratio were significantly reduced or absent in the piperine/AFB₁ group. No significant differences were observed between the group piperine/AFB₁ and the control and piperine-alone groups. The addition 60 mg·kg-1 of piperine to the diet of the broiler chicks was safe, promoting beneficial effects in poultry health with respect to the toxic effects 0.5 mg·AFB₁·kg-1 body weight.
Collapse
Affiliation(s)
- Verônica da Silva Cardoso
- BIOINOVAR-Biotecnologia, Unidade de Biocatálise, Bioprodutos e Bioenergia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil.
| | - Alane Beatriz Vermelho
- BIOINOVAR-Biotecnologia, Unidade de Biocatálise, Bioprodutos e Bioenergia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil.
| | | | - Jéssica Mendes de Oliveira
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ 23890-000, Brazil.
| | | | | | - Glória Maria Direito
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ 23890-000, Brazil.
| | | |
Collapse
|
17
|
Kirkland D, Kasper P, Martus HJ, Müller L, van Benthem J, Madia F, Corvi R. Updated recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 795:7-30. [DOI: 10.1016/j.mrgentox.2015.10.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/09/2023]
|
18
|
Mendonça LM, Machado CDS, Teixeira CCC, Freitas LAPD, Bianchi MLP, Antunes LMG. Comparative study of curcumin and curcumin formulated in a solid dispersion: Evaluation of their antigenotoxic effects. Genet Mol Biol 2015; 38:490-8. [PMID: 26537603 PMCID: PMC4763312 DOI: 10.1590/s1415-475738420150046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/28/2015] [Indexed: 01/20/2023] Open
Abstract
Curcumin (CMN) is the principal active component derived from the rhizome of
Curcuma longa (Curcuma longa L.). It is a
liposoluble polyphenolic compound that possesses great therapeutic potential. Its
clinical application is, however, limited by the low concentrations detected
following oral administration. One key strategy for improving the solubility and
bioavailability of poorly water-soluble drugs is solid dispersion, though it is not
known whether this technique might influence the pharmacological effects of CMN.
Thus, in this study, we aimed to evaluate the antioxidant and antigenotoxic effects
of CMN formulated in a solid dispersion (CMN SD) compared to unmodified CMN delivered
to Wistar rats. Cisplatin (cDDP) was used as the damage-inducing agent in these
evaluations. The comet assay results showed that CMN SD was not able to reduce the
formation of cDDP-DNA crosslinks, but it decreased the formation of micronuclei
induced by cDDP and attenuated cDDP-induced oxidative stress. Furthermore, at a dose
of 50 mg/kg b.w. both CMN SD and unmodified CMN increased the expression of
Tp53 mRNA. Our results showed that CMN SD did not alter the
antigenotoxic effects observed for unmodified CMN and showed effects similar to those
of unmodified CMN for all of the parameters evaluated. In conclusion, CMN SD
maintained the protective effects of unmodified CMN with the advantage of being
chemically water soluble, with maximization of absorption in the gastrointestinal
tract. Thus, the optimization of the physical and chemical properties of CMN SD may
increase the potential for the therapeutic use of curcumin.
Collapse
Affiliation(s)
- Leonardo Meneghin Mendonça
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Carla da Silva Machado
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Cristiane Cardoso Correia Teixeira
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis Alexandre Pedro de Freitas
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Lourdes Pires Bianchi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lusânia Maria Greggi Antunes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
19
|
Roles of ROS mediated oxidative stress and DNA damage in 3-methyl-2-quinoxalin benzenevinylketo-1, 4-dioxide-induced immunotoxicity of Sprague–Dawley rats. Regul Toxicol Pharmacol 2015; 73:587-94. [DOI: 10.1016/j.yrtph.2015.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022]
|
20
|
Etter S, Birrell L, Cahill P, Scott H, Billinton N, Walmsley RM, Smith B. The ‘BlueScreen HC’ assay as a decision making test in the genotoxicity assessment of flavour and fragrance materials. Toxicol In Vitro 2015; 29:1425-35. [DOI: 10.1016/j.tiv.2015.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 05/01/2015] [Accepted: 05/03/2015] [Indexed: 11/28/2022]
|
21
|
Kraynak A, Barnum J, Cunningham C, Ng A, Ykoruk B, Bennet B, Stoffregen D, Merschman M, Freeland E, Galloway S. Alkaline comet assay in liver and stomach, and micronucleus assay in bone marrow, from rats treated with 2-acetylaminofluorene, azidothymidine, cisplatin, or isobutyraldehyde. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015. [DOI: 10.1016/j.mrgentox.2015.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Ogawa I, Hagioa S, Furukawa S, Abe M, Kuroda Y, Hayashi S, Wako Y, Kawasako K. Evaluation of repeated dose micronucleus assays of the liver using N-nitrosopyrrolidine: a report of the collaborative study by CSGMT/JEMS.MMS. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 780-781:25-30. [PMID: 26065307 DOI: 10.1016/j.mrgentox.2014.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The repeated dose liver micronucleus (RDLMN) assay has the potential to detect liver carcinogens, and can be integrated into a general toxicological study. To assess the performance of the assay, N-nitrosopyrrolidine (NPYR), a genotoxic hepatocarcinogen, was tested in 14- or 28-day RDLMN assays. NPYR was orally administered to rats at a daily dose of 25, 50 or 100 mg/kg. One day after the last administration, a portion of the liver was removed and hepatocyte micronucleus (MN) specimens were prepared by the new method recently established by Narumi et al. In addition, a bone marrow MN assay and a histopathological examination of the liver were conducted. The detection of Phospho-Histone H3 was performed by immunohistochemistry to evaluate the proliferation rate of hepatocytes. The results showed significant increase in the number of micronucleated hepatocytes and Phospho-Histone H3-positive cells from the lowest dose in both 14- and 28-day RDLMN assays. On the other hand, the bone marrow MN assay yielded a negative result, which was in accordance with the existing report of the bone marrow MN assay using mice. Upon histopathological examination, inflammatory lesions and hypertrophy were noted, which may explain the increase in the hepatocyte proliferation and the enhancement of MN induction by NPYR. Our findings indicate that the RDLMN assay could be a useful tool for comprehensive risk assessment of carcinogenicity by providing information on both genotoxicity and histopathology when integrated into a general repeat dosing toxicity assay.
Collapse
|
23
|
Critical issues with the in vivo comet assay: A report of the comet assay working group in the 6th International Workshop on Genotoxicity Testing (IWGT). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 783:6-12. [DOI: 10.1016/j.mrgentox.2014.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 02/06/2023]
|
24
|
Uno Y, Kojima H, Omori T, Corvi R, Honma M, Schechtman LM, Tice RR, Beevers C, De Boeck M, Burlinson B, Hobbs CA, Kitamoto S, Kraynak AR, McNamee J, Nakagawa Y, Pant K, Plappert-Helbig U, Priestley C, Takasawa H, Wada K, Wirnitzer U, Asano N, Escobar PA, Lovell D, Morita T, Nakajima M, Ohno Y, Hayashi M. JaCVAM-organized international validation study of the in vivo rodent alkaline comet assay for detection of genotoxic carcinogens: II. Summary of definitive validation study results. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015. [PMID: 26212295 DOI: 10.1016/j.mrgentox.2015.04.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The in vivo rodent alkaline comet assay (comet assay) is used internationally to investigate the in vivo genotoxic potential of test chemicals. This assay, however, has not previously been formally validated. The Japanese Center for the Validation of Alternative Methods (JaCVAM), with the cooperation of the U.S. NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM)/the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), the European Centre for the Validation of Alternative Methods (ECVAM), and the Japanese Environmental Mutagen Society/Mammalian Mutagenesis Study Group (JEMS/MMS), organized an international validation study to evaluate the reliability and relevance of the assay for identifying genotoxic carcinogens, using liver and stomach as target organs. The ultimate goal of this exercise was to establish an Organisation for Economic Co-operation and Development (OECD) test guideline. The study protocol was optimized in the pre-validation studies, and then the definitive (4th phase) validation study was conducted in two steps. In the 1st step, assay reproducibility was confirmed among laboratories using four coded reference chemicals and the positive control ethyl methanesulfonate. In the 2nd step, the predictive capability was investigated using 40 coded chemicals with known genotoxic and carcinogenic activity (i.e., genotoxic carcinogens, genotoxic non-carcinogens, non-genotoxic carcinogens, and non-genotoxic non-carcinogens). Based on the results obtained, the in vivo comet assay is concluded to be highly capable of identifying genotoxic chemicals and therefore can serve as a reliable predictor of rodent carcinogenicity.
Collapse
Affiliation(s)
| | | | | | - Raffaella Corvi
- Joint Research Centre of the European Commission, Ispra, Italy
| | | | | | - Raymond R Tice
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | | | | | | | | | | | - Yuzuki Nakagawa
- Hatano Research Institute, Food Drug Safety Center, Kanagawa, Japan
| | | | | | | | | | - Kunio Wada
- The Institute of Environmental Toxicology, Ibaraki, Japan
| | | | | | | | | | | | | | - Yasuo Ohno
- National Institute of Health Sciences, Tokyo, Japan
| | - Makoto Hayashi
- Biosafety Research Center, Foods, Drugs and Pesticides, Shizuoka, Japan
| |
Collapse
|
25
|
Scientific Opinion on Flavouring Group Evaluation 78, Revision 2 (FGE.78Rev2): Consideration of aliphatic and alicyclic and aromatic hydrocarbons evaluated by JECFA (63rd meeting) structurally related to aliphatic hydrocarbons evaluated by EFSA in FGE.25Rev3. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
26
|
Scientific opinion on Flavouring Group Evaluation 25, Revision 3 (FGE.25Rev3): Aliphatic hydrocarbons from chemical group 31. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
27
|
Yu M, Wang D, Yang W, Xu M, Liu Y, Xu S, Yao P, Yan H, Liu L. Mechanisms of Nrf2/HO-1 pathway up-regulation induced by pu-erh black tea extract supplementation for quinocetone-treated Sprague-Dawley rats. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
28
|
van der Leede BJ, Doherty A, Guérard M, Howe J, O’Donovan M, Plappert-Helbig U, Thybaud V. Performance and data interpretation of the in vivo comet assay in pharmaceutical industry: EFPIA survey results. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 775-776:81-8. [DOI: 10.1016/j.mrgentox.2014.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 11/27/2022]
|
29
|
Le Hégarat L, Takakura N, Simar S, Nesslany F, Fessard V. The in vivo genotoxicity studies on nivalenol and deoxynivalenol. ACTA ACUST UNITED AC 2014. [DOI: 10.2903/sp.efsa.2014.en-697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- L Le Hégarat
- ANSES – French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of contaminants Unit France
| | - N Takakura
- ANSES – French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of contaminants Unit France
| | - S Simar
- Institut Pasteur de Lille, Laboratory of Toxicology France
| | - F Nesslany
- Institut Pasteur de Lille, Laboratory of Toxicology France
| | - V Fessard
- ANSES – French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of contaminants Unit France
| |
Collapse
|
30
|
Yu M, Wang D, Xu M, Liu Y, Wang X, Liu J, Yang X, Yao P, Yan H, Liu L. Quinocetone-induced Nrf2/HO-1 pathway suppression aggravates hepatocyte damage of Sprague-Dawley rats. Food Chem Toxicol 2014; 69:210-219. [PMID: 24795230 DOI: 10.1016/j.fct.2014.04.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 11/30/2022]
Abstract
Quinocetone (3-methyl-2-quinoxalin benzenevinylketo-1,4-dioxide, QCT) is a widely used veterinary drug in PR China that promotes feed efficiency and growth of various animals. However, its potential toxicity has been concerned recently. In the present study, we investigated QCT-induced hepatocyte changes and its related mechanism, especially the expression of Nrf2/HO-1 pathway. Oxidative stress induced by QCT in hepatocyte led to DNA damage, inflammation and apoptosis. Nevertheless, hepatocyte has a self-repair system to protect itself from oxidative stress. In the 50 mg/kg/day QCT group, the morphology and function of liver were approximately maintained on normal level, which indicated that the damaged cell might have a self-repair mechanism. Notably, nuclear factor-erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway plays a critical role in protecting cells against reactive oxygen species (ROS) generation. However, higher doses of QCT (800 mg/kg/day and 2400 mg/kg/day) inhibited the expression of Nrf2/HO-1 pathway, which resulted in excessive ROS generation and irreversible oxidative DNA damage, inflammation and apoptosis. In conclusion, although QCT-induced oxidative stress activates the expression of Nrf2/HO-1 pathway initially, persistent QCT exposure will inhibit this expression and aggravate hepatocyte damage. Simultaneously, inflammation and apoptosis continues to progress, liver dysfunction and tissue damage will be occurred eventually.
Collapse
Affiliation(s)
- Miao Yu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Di Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Mengjing Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Xia Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jun Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Hong Yan
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| |
Collapse
|
31
|
Hagio S, Furukawa S, Abe M, Kuroda Y, Hayashi S, Ogawa I. Repeated dose liver micronucleus assay using adult mice with multiple genotoxicity assays concurrently performed as a combination test. J Toxicol Sci 2014; 39:437-45. [DOI: 10.2131/jts.39.437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Soichiro Hagio
- Biological Research Laboratories, Nissan Chemical Industries, Ltd
| | - Satoshi Furukawa
- Biological Research Laboratories, Nissan Chemical Industries, Ltd
| | - Masayoshi Abe
- Biological Research Laboratories, Nissan Chemical Industries, Ltd
| | - Yusuke Kuroda
- Biological Research Laboratories, Nissan Chemical Industries, Ltd
| | - Seigo Hayashi
- Biological Research Laboratories, Nissan Chemical Industries, Ltd
| | - Izumi Ogawa
- Biological Research Laboratories, Nissan Chemical Industries, Ltd
| |
Collapse
|
32
|
Bhalli JA, Ding W, Shaddock JG, Pearce MG, Dobrovolsky VN, Heflich RH. Evaluating the weak in vivo micronucleus response of a genotoxic carcinogen, Aristolochic acids. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 753:82-92. [DOI: 10.1016/j.mrgentox.2013.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/01/2013] [Accepted: 03/03/2013] [Indexed: 02/08/2023]
|
33
|
Nrf2/ARE is the potential pathway to protect Sprague-Dawley rats against oxidative stress induced by quinocetone. Regul Toxicol Pharmacol 2013; 66:279-85. [PMID: 23624349 DOI: 10.1016/j.yrtph.2013.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 11/23/2022]
Abstract
3-methyl-2-quinoxalin benzenevinylketo-1, 4-dioxide (Quinocetone, QCT) is a newly used veterinary drug which has been proven to promote feed efficiency and growth of animals; however, its potential toxicity can't be ignored. Therefore, the present study was aimed to investigate the nephrotoxicity of QCT and the oxidative stress induced by it. Sprague-Dawley rats (SD rats) were randomly divided into four groups with doses of 2400, 800, 50 and 0mg/kg/day with administration of QCT for 4 weeks. Results proved that QCT could induce nephrotoxicity and this phenomenon had dose dependent manner. Simultaneously, this phenomenon was accompanied by intracellular reactive oxygen species (ROS) accumulation, enhanced lipid peroxidation and inhibited antioxidant system, i.e. glutathione S-transferase (GST), glutathione peroxidase (GPx) and glutathione reductase (GSH). Additionally, the higher expression of Nrf2 in QCT treated groups illustrated that QCT-induced oxidative stress would be partly mitigated by the induction of phase II detoxifying enzymes via increasing Nrf2 expression.
Collapse
|
34
|
Serpeloni JM, Batista BL, Angeli JPF, Barcelos GRM, Bianchi MDLP, Barbosa F, Antunes LMG. Antigenotoxic properties of chlorophyll b against cisplatin-induced DNA damage and its relationship with distribution of platinum and magnesium in vivo. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:345-353. [PMID: 23557233 DOI: 10.1080/15287394.2012.755485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The chemotherapeutic agent cisplatin (cDDP) is widely used to treat a variety of solid and hematological tumors. However, cDDP exerts severe side effects, such as nephrotoxicity, neurotoxicity, and bone-marrow suppression. The use of some dietary compounds to protect organs that are not targets in association with chemotherapy has been encouraged. This study evaluated the protective effects of chlorophyll b (CLb) on DNA damage induced by cDDP by use of single-cell gel electrophoresis (SCGE) assays. Further, this investigation also determined platinum (Pt) and magnesium (Mg) bioaccumulation in mice tissues after treatment with CLb alone and/or in association of cDDP (simultaneous treatment) by inductively coupled plasma-mass spectroscopy (ICP-MS). All parameters were studied in peripheral blood cells (PBC), kidneys, and liver of mice after administration of CLb (0.2 or 0.5 mg/kg of body weight [b.w.]), cDDP (6 mg/kg b.w.), and the combination CLb 0.2 plus cDDP or CLb 0.5 plus cDDP. Pt accumulation in liver and kidneys was higher than that found in PBC, while DNA damage was higher in kidneys and liver than in PBC. Further, treatment with CLb alone did not induce DNA damage. Evidence indicates that genotoxic effects produced by cDDP may not be related to Pt accumulation and distribution. In combined treatments, CLb decreased DNA damage in tissues, but the PT contents did not change and these treatments also showed that CLb may be an important source of Mg. Thus, our results indicate that consumption of CLb-rich foods may diminish the adverse health effects induced by cDDP exposure.
Collapse
Affiliation(s)
- Juliana Mara Serpeloni
- Department of Clinical, Toxicologic, and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Spassova MA, Miller DJ, Eastmond DA, Nikolova NS, Vulimiri SV, Caldwell J, Chen C, White PD. Dose-response analysis of bromate-induced DNA damage and mutagenicity is consistent with low-dose linear, nonthreshold processes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:19-35. [PMID: 23015362 DOI: 10.1002/em.21737] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/21/2012] [Accepted: 08/21/2012] [Indexed: 06/01/2023]
Abstract
Mutagenic agents have long been inferred to act through low-dose linear, nonthreshold processes. However, there is debate about this assumption, with various studies interpreting datasets as showing thresholds for DNA damage and mutation. We have applied rigorous statistical analyses to investigate the shape of dose-response relationships for a series of in vitro and in vivo genotoxicity studies using potassium bromate (KBrO(3) ), a water ozonation byproduct that is bioactivated to a reactive species causing oxidative damage to DNA. We analyzed studies of KBrO(3) genotoxicity where no-effect/threshold levels were reported as well as other representative datasets. In all cases, the data were consistent with low-dose linear models. In the majority of cases, the data were fit either by a linear (straight line) model or a model which was linear at low doses and showed a saturation-like downward curvature at high doses. Other datasets with apparent upward curvature were still adequately represented by models that were linear at low dose. Sensitivity analysis of datasets showing upward curvature revealed that both low-dose linear and nonlinear models provide adequate fits. Additionally, a simple biochemical model of selected key processes in bromate-induced DNA damage was developed and illustrated a situation where response for early primary events suggested an apparent threshold while downstream events were linear. Overall, the statistical analyses of DNA damage and mutations induced by KBrO(3) are consistent with a low-dose linear response and do not provide convincing evidence for the presence of a threshold.
Collapse
Affiliation(s)
- Maria A Spassova
- National Center for Environmental Assessment (NCEA), Office of Research and Development (ORD), U.S. Environmental Protection Agency (U.S.EPA), Washington, DC, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Switalla S, Knebel J, Ritter D, Dasenbrock C, Krug N, Braun A, Sewald K. Determination of genotoxicity by the Comet assay applied to murine precision-cut lung slices. Toxicol In Vitro 2012; 27:798-803. [PMID: 23274917 DOI: 10.1016/j.tiv.2012.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 12/30/2022]
Abstract
Precision-cut lung slices (PCLSs) are an organotypic lung model that is widely used in pharmacological, physiological, and toxicological studies. Genotoxicity testing, as a pivotal part of early risk assessment, is currently established in vivo in various organs including lung, brain, or liver, and in vitro in cell lines or primary cells. The aim of the present study was to provide the three-dimensional organ culture PCLS as a new ex vivo model for determination of genotoxicity using the Comet assay. Murine PCLS were exposed to increasing concentrations of ethyl methane sulfonate 'EMS' (0.03-0.4%) and formalin (0.5-5mM). Tissue was subsequently dissociated, and DNA single-strand breaks were quantified using the Comet assay. Number of viable dissociated lung cells was between 4×10(5) and 6.7×10(5)cells/slice. Even treatment with EMS did not induce toxicity compared to untreated tissue control. As expected, DNA single-strand breaks were increased dose-dependently and significantly after exposure to EMS. Here, tail length rose from 24μm to 75μm. In contrast, formalin resulted in a significant induction of DNA cross-links. The effects induced by EMS and formalin demonstrate the usefulness of PCLS as a new ex vivo lung model for genotoxicity testing in the early risk assessment of airborne substances in the future.
Collapse
Affiliation(s)
- S Switalla
- Fraunhofer Institute for Toxicology and Experimental Medicine, Airway Immunology, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Bazin E, Huet S, Jarry G, Le Hégarat L, Munday JS, Humpage AR, Fessard V. Cytotoxic and genotoxic effects of cylindrospermopsin in mice treated by gavage or intraperitoneal injection. ENVIRONMENTAL TOXICOLOGY 2012; 27:277-84. [PMID: 20725938 DOI: 10.1002/tox.20640] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 06/28/2010] [Accepted: 06/30/2010] [Indexed: 05/11/2023]
Abstract
Cylindrospermopsin (CYN), a cyanobacterial hepatotoxin mainly produced by Cylindrospermopsis raciborskii, has been involved in human intoxications and livestock deaths. The widespread occurrence of CYN in the water supplies lead us to investigate its genotoxicity to assess potential chronic effects. This study reports evaluation of CYN-induced in vivo DNA damage in mice using alkaline comet assay (ACA) and micronucleus assay (MNA) concomittantly. ACA measures DNA breakage from single and double strand breaks as well as alkali labile sites. Conversely, MNA detects chromosome damage events such as chromosomal breakage and numeric alterations. Male Swiss mice were treated with CYN concentrations of 50, 100, and 200 μg/kg by a single intraperitoneal (ip) injection or with 1, 2, and 4 mg/kg by gavage. Methyl methane sulfonate (MMS) was used as positive control at 80 mg/kg. Twenty-four hours after treatment, samples of liver, blood, bone marrow, kidney, intestine, and colon were taken to perform ACA, the bone marrow and the colon were also used for MNA. Parameters used to quantify DNA damage were % Tail DNA for ACA and both micronucleated immature erythrocytes and epithelial colon cells for MNA. DNA breaks and chromosome damage were significantly increased by MMS in all the organs evaluated. Significant DNA damage was detected within the colon by ACA after ip injection of 100 and 200 μg/kg CYN (P < 0.01). DNA damage was also detected in colon samples after 4 mg/kg oral administration of CYN and in bone marrow after 1 and 2 mg/kg of orally administered CYN. Histological examination showed foci of cell death within the liver and the kidney from mice that received the two highest doses of CYN by either route of administration.
Collapse
Affiliation(s)
- Emmanuelle Bazin
- Agence Française de Sécurité Sanitaire des Aliments, Unité de Toxicologie Génétique des Contaminants Alimentaires, BP 90 203, 35302 Fougères Cedex, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Recio L, Kissling GE, Hobbs CA, Witt KL. Comparison of Comet assay dose-response for ethyl methanesulfonate using freshly prepared versus cryopreserved tissues. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:101-113. [PMID: 22069077 DOI: 10.1002/em.20694] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
The National Toxicology Program (NTP) is using the Comet assay to evaluate genotoxic potential, and is investigating the integration of this assay into repeat-dose toxicity studies. To reduce sample-to-sample variability, address logistical concerns associated with evaluating multiple tissues from many animals, and accommodate sample collection at geographically distant testing facilities, tissue samples collected for Comet analysis by the NTP are routinely flash-frozen in liquid nitrogen and stored in a -80°C freezer until evaluation. To compare data obtained from frozen tissues to data from freshly isolated tissues, we conducted a dose-response study in male Sprague Dawley rats. Rats (5 per treatment group) were administered ethyl methanesulfonate (EMS; 0, 25, 50, 100, or 200 mg/kg) by gavage twice at an interval of 21 hr; blood, liver, stomach, and colon tissues were harvested 3 hr after the second treatment. Single-cell preparations from each of the four tissues were put into Hank's balanced salt solution with 10% fresh dimethyl sulfoxide. One aliquot of each tissue preparation was used for immediate analysis, while additional aliquots were flash-frozen in liquid nitrogen and stored in a -80°C freezer for 1 or 8 weeks. One set of 8-week frozen samples was shipped roundtrip via air courier from Research Triangle Park, NC to Rochester, NY prior to analysis. For all four tissues, results from frozen, nontransported samples showed a similar dose-response pattern for EMS-induced genotoxicity. We also demonstrated that for three tissues (blood, liver, stomach), air transport did not alter the sensitivity of the Comet assay for detecting DNA damage.
Collapse
Affiliation(s)
- Leslie Recio
- Genetic and Molecular Toxicology Division, ILS, Research Triangle Park, NC, USA.
| | | | | | | |
Collapse
|
39
|
Andersen FA. Annual Review of Cosmetic Ingredient Safety Assessments: 2007-2010. Int J Toxicol 2011; 30:73S-127S. [DOI: 10.1177/1091581811412618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
40
|
Improvement of in vivo genotoxicity assessment: Combination of acute tests and integration into standard toxicity testing. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 723:108-20. [DOI: 10.1016/j.mrgentox.2010.12.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 12/10/2010] [Indexed: 01/15/2023]
|
41
|
Hernández LG, Slob W, van Steeg H, van Benthem J. Can carcinogenic potency be predicted from in vivo genotoxicity data?: a meta-analysis of historical data. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:518-528. [PMID: 21542028 DOI: 10.1002/em.20651] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 05/30/2023]
Abstract
Genotoxicity is generally a parameter used for hazard identification, however, the applicability of using in vivo genotoxicity tests for hazard characterization has never been thoroughly investigated in a quantitative manner. Genotoxicity assays could be useful for the determination of cancer potency parameters given that genotoxicty tests measure mutations and/or chromosomal aberrations which are strongly associated with carcinogenesis. A detailed literature survey was performed in search for dose-response data in various in vivo genotoxicity and carcinogenicity studies. The benchmark dose (BMD) approach was applied using the dose-response modeling program PROAST. Dose-response data were available from 18 compounds in the micronucleus assay (MN), the in vivo transgenic rodent mutation assay (TG) and the comet assay, and their BMD(10) values were compared to the BMD(10) from carcinogenicity studies in mice. Of the 18 compounds, 15 had acceptable dose-response data from the MN and the TG, but only 4 from the comet assay. A major limitation in our analysis was the lack of proper dose-response studies using the recommended protocols. Nevertheless, our findings are promising because even with these suboptimal studies, a positive correlation was observed when the lowest BMD(10) from the genotoxicity tests (MN and TG) was compared to the tissue-matched carcinogenicity BMD(10) . It is evident that more compounds need to be analyzed with proper dose-response schemes to further validate our initial findings. Experimental designs of genotoxicity assays need to shift from focusing only on hazard identification where positive and negative results are reported, to a more quantitative, dose-response assessment.
Collapse
Affiliation(s)
- Lya G Hernández
- Laboratory of Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | | | | | | |
Collapse
|
42
|
Scientific Opinion on Flavouring Group Evaluation 25, Revision 2 (FGE.25Rev2): Aliphatic and aromatic hydrocarbons from chemical group 31. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2177] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
43
|
Scientific Opinion on Flavouring Group Evaluation 78, Revision 1 (FGE.78Rev1): Consideration of aliphatic and alicyclic and aromatic hydrocarbons evaluated by JECFA (63rd meeting) structurally related to aliphatic and aromatic hydrocarbons evaluated by EF. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2178] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
44
|
Pu-erh black tea supplementation decreases quinocetone-induced ROS generation and oxidative DNA damage in Balb/c mice. Food Chem Toxicol 2011; 49:477-84. [DOI: 10.1016/j.fct.2010.11.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 10/15/2010] [Accepted: 11/20/2010] [Indexed: 11/21/2022]
|
45
|
Mutagenicity and genotoxicity of isatin in mammalian cells in vivo. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 719:47-51. [DOI: 10.1016/j.mrgentox.2010.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/09/2010] [Accepted: 11/18/2010] [Indexed: 11/22/2022]
|
46
|
Serpeloni JM, Grotto D, Mercadante AZ, de Lourdes Pires Bianchi M, Antunes LMG. Lutein improves antioxidant defense in vivo and protects against DNA damage and chromosome instability induced by cisplatin. Arch Toxicol 2010; 84:811-22. [DOI: 10.1007/s00204-010-0576-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/14/2010] [Indexed: 11/28/2022]
|
47
|
Mendonça LM, dos Santos GC, dos Santos RA, Takahashi CS, Bianchi MDLP, Antunes LMG. Evaluation of curcumin and cisplatin-induced DNA damage in PC12 cells by the alkaline comet assay. Hum Exp Toxicol 2010; 29:635-43. [PMID: 20051457 DOI: 10.1177/0960327109358731] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A very appropriate method for antigenotoxicity evaluation of antioxidants is the comet assay, since this analytical method detects initial DNA lesions that are still subject to repair; in other words, lesions that are very associated to damages resulting from the generation and subsequent action of reactive species. However, a solid evaluation should be developed in order to avoid inexact interpretations. In our study, besides the association of curcumin with cisplatin, curcumin and cisplatin agents were also tested separately. Classical genotoxic compounds, when tested by the comet assay, present an increase in the nucleoid tail; however, the cisplatin treatment has resulted in a decrease of DNA migration. This was an expected effect, as the cross-links between cisplatin and DNA decrease the DNA electrophoretic mobility. A similar effect was observed with the curcumin treatment, which decreased the nucleoid tail. Such effect was not expected and reinforced the necessity of including in the study, separate treatment groups with potentially antigenotoxic substances. The comet assay results have been analyzed using specific software for image analysis, as well as the classical visual analysis, and we have observed that the effect of decrease in DNA electrophoretic mobility was more easily observed when the data were analyzed by the software.
Collapse
Affiliation(s)
- Leonardo Meneghin Mendonça
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
48
|
Evaluation of the genotoxic and antigenotoxic effects after acute and subacute treatments with açai pulp (Euterpe oleracea Mart.) on mice using the erythrocytes micronucleus test and the comet assay. Mutat Res 2009; 695:22-8. [PMID: 19892033 DOI: 10.1016/j.mrgentox.2009.10.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 09/25/2009] [Accepted: 10/20/2009] [Indexed: 11/20/2022]
Abstract
Açai, the fruit of a palm native to the Amazonian basin, is widely distributed in northern South America, where it has considerable economic importance. Whereas individual polyphenolics compounds in açai have been extensively evaluated, studies of the intact fruit and its biological properties are lacking. Therefore, the present study was undertaken to investigate the in vivo genotoxicity of açai and its possible antigenotoxicity on doxorubicin (DXR)-induced DNA damage. The açai pulp doses selected were 3.33, 10.0 and 16.67g/kg b.w. administered by gavage alone or prior to DXR (16mg/kg b.w.) administered by intraperitoneal injection. Swiss albino mice were distributed in eight groups for acute treatment with açai pulp (24h) and eight groups for subacute treatment (daily for 14 consecutive days) before euthanasia. The negative control groups were treated in a similar way. The results of chemical analysis suggested the presence of carotenoids, anthocyanins, phenolic, and flavonoids in açai pulp. The endpoints analyzed were micronucleus induction in bone marrow and peripheral blood cells polychromatic erythrocytes, and DNA damage in peripheral blood, liver and kidney cells assessed using the alkaline (pH >13) comet assay. There were no statistically significant differences (p>0.05) between the negative control and the groups treated with the three doses of açai pulp alone in all endpoints analyzed, demonstrating the absence of genotoxic effects. The protective effects of açai pulp were observed in both acute and subacute treatments, when administered prior to DXR. In general, subacute treatment provided greater efficiency in protecting against DXR-induced DNA damage in liver and kidney cells. These protective effects can be explained as the result of the phytochemicals present in açai pulp. These results will be applied to the developmental of food with functional characteristics, as well as to explore the characteristics of açai as a health promoter.
Collapse
|
49
|
Hartmann A, Speit G. Comet Assay – Protocols and Testing Strategies. THE COMET ASSAY IN TOXICOLOGY 2009. [DOI: 10.1039/9781847559746-00373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Andreas Hartmann
- Novartis Pharma AG Preclinical Safety WKL105.4. 09 CH-4002 Basel Switzerland
| | - Günter Speit
- Universität Ulm Institut für Humangenetik D-89069 Ulm Germany
| |
Collapse
|
50
|
Platel A, Nesslany F, Gervais V, Marzin D. Study of oxidative DNA damage in TK6 human lymphoblastoid cells by use of the in vitro micronucleus test: Determination of No-Observed-Effect Levels. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 678:30-7. [DOI: 10.1016/j.mrgentox.2009.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/22/2009] [Accepted: 06/05/2009] [Indexed: 11/29/2022]
|