1
|
Al-Saeed FA, Ali ME. Thyme and Oregano Oil Potential Therapeutics against Malathion Toxicity through Biochemical, Histological, and Cytochrome P450 1A2 Activities in Male Wistar Rats. Animals (Basel) 2024; 14:2914. [PMID: 39409863 PMCID: PMC11475483 DOI: 10.3390/ani14192914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The widespread use of malathion may offer several hazards to humans and animals; additionally, many medicinal plants provide what is known as a broad antitoxicity treatment. This study was carried out to investigate hazardous biochemical and histological reactions to MOP and evaluate the effectiveness of TEO and OEO essential oils in restoring normal physiological conditions after MOP exposure by measuring enzyme-specific activity for Cytochrome P450 1A2 (CYP1A2). One hundred and twenty rats were divided into six groups of twenty animals each: (i) C - MOP served as the control group, (ii) C + MOP treated with 5 mg/kg/BW of Malathion-D10, (iii) TEO treated with 100 mg/kg/BW of oregano essential oil, (iv) TEO treated with 100 mg/kg/BW of thyme essential oil, (v) MOP + OEO treated with 5 mg/kg/BW of Malathion-D10 and 100 mg/kg/BW of oregano essential oil, and (vi) MOP + TEO treated with 5 mg/kg/BW of Malathion-D10 and 100 mg/kg/BW of thyme essential oil. The results indicated the protective effects of OEO and TEO against MOP-induced weight loss. Additionally, there was a significant improvement in ALT, AST, and ALK-Ph after being treated with OEO and TEO, either alone or after MOP exposure. Also, treatment with OEO and TEO ameliorated these oxidative stress parameters, indicating their antioxidative properties. A histopathological examination of liver tissues showed reduced hepatocellular damage and improved liver architecture in the OEO and TEO, both alone and in combination with MOP, and protective effects were more pronounced in the TEO-treated groups. However, the results indicated that TEO was more effective than OEO in increasing CYP1A2 expression and alleviating MOP-induced toxicity. Specifically, TEO showed higher protein expression and therapeutic action in reducing liver damage. In conclusion, these findings suggest that OEO and TEO may be potent therapeutic agents against MOP toxicity, offering protective effects by enhancing CYP1A2 activity and mitigating organ damage. Such knowledge would be an important step toward developing potentially unique treatment options for natural antitoxins.
Collapse
Affiliation(s)
- Fatimah A. Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Montaser Elsayed Ali
- Department of Animal Productions, Faculty of Agriculture, Al-Azhar University, Assiut 71524, Egypt;
| |
Collapse
|
2
|
Al-Saeed FA, Abd-Elghfar SS, Ali ME. Efficiency of Thyme and Oregano Essential Oils in Counteracting the Hazardous Effects of Malathion in Rats. Animals (Basel) 2024; 14:2497. [PMID: 39272282 PMCID: PMC11394387 DOI: 10.3390/ani14172497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The widespread use of MLT may pose numerous hazards to animal breeding, health, and resilience due to the presence of MLT residues in animal feedstuffs, pastures, hay, and cereals. Many medicinal plants provide what is called a generalized anti-toxic remedy. The current study examined hazardous biochemical and histological reactions to MLT and the efficiency of ThEO and OEO essential oils as anti-toxic therapies to return to a natural state after MLT exposure. A total of 75 male albino rats were randomly assigned to two groups: (i) C - MLT, comprising 25 rats, served as the control group; and (ii) C + MLT, with 50 rats that were exposed to 5 mg/kg/BW. After exposure to MLT for 21 days, a return to normal status was determined by subdividing the C + MLT group into two equal groups: ThEO and OEO were used as treatments, with 100 mg/kg body weight of thyme and oregano essential oils, respectively, being administered for 21 days. The results showed a significant decrease in body weight gain (BWG) and final weight (FW) compared to C - MLT, while the therapeutic effects of ThEO and OEO enhanced FW and BWG. Our results indicated that MLT exposure resulted in deficient serum liver function, but that OEO and ThEO therapy brought about a significant improvement in liver enzyme function. Although there was no significant difference in serum aspartate transaminase (AST) or alkaline phosphatase (ALK-Ph) and a significant drop in alanine transaminase (ALT) and acetyl choline-esterase (AChE) levels, the C + MLT group showed hepatic fibrosis in the third stage. Furthermore, histological sections of the OEO and ThEO groups showed reduced hepatocellular damage, inflammation, and hepatic fibrosis. However, there was a significant increase in serum creatinine between the C + MLT and C - MLT groups following exposure to MLT. Histological sections of renal tissue from rats treated with OEO and ThEO showed reduced tubular damage, reduced interstitial inflammation, and preserved renal tissue architecture. In conclusion, OEO and ThEO are potential compounds for use as anti-toxic therapies to return to a natural state after MLT exposure. These compounds could serve as an experimental therapeutic approach against natural toxins, providing a solution to the problems of raising livestock that are exposed to nutritional toxicity.
Collapse
Affiliation(s)
- Fatimah A Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Montaser Elsayed Ali
- Department of Animal Productions, Faculty of Agriculture, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
3
|
Salman AS, Alkhatib SN, Ahmed FM, Hamouda RA. Chitosan Nanoparticles Loaded with Capparis cartilaginea Decne Extract: Insights into Characterization and Antigenotoxicity In Vivo. Pharmaceutics 2023; 15:2551. [PMID: 38004531 PMCID: PMC10675202 DOI: 10.3390/pharmaceutics15112551] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Plant-based foods may enhance the prevention of cancer. The present investigation aimed to assess the antigenotoxic effects of chitosan nanoparticles (CNPs) when loaded with the ethanol extract of C. cartilaginea (CNPs/Cc). Synthesis of CNPs and CNPs/Cc and their characterization were carried out using TEM, EDS, DSC, and Zeta potential. For in vivo experiments, animal groups were treated in the following groups: negative control, ethyl methanesulfonate (EMS) (240 mg/kg), CNPs (350 mg/kg), high and low doses of CNPs/Cc, CNPs plus EMS, high dose of CNPs/Cc plus EMS, and low dose of CNPs/Cc plus EMS. Bone marrow chromosomal aberrations and sperm shape abnormalities were examined. TEM results showed that CNPs and CNPs/Cc are spherical particles. CNPs' physical stability was observed to be lower than that of CNPs/Cc due to the presence of more positive charges on CNPs/Cc. EMS significantly enhanced chromosomal abnormalities and sperm shape abnormalities. CNPs showed powerful antigenotoxic properties. For the first time, it could be concluded that loading chitosan nanoparticles with C. cartilaginea extract significantly promotes its protective properties.
Collapse
Affiliation(s)
- Asmaa S. Salman
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.S.S.); (S.N.A.); (F.M.A.)
- Genetic and Cytology Department, Biotechnology Research Institute, National Research Center, Cairo 12622, Egypt
| | - Shaza N. Alkhatib
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.S.S.); (S.N.A.); (F.M.A.)
| | - Fatimah M. Ahmed
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.S.S.); (S.N.A.); (F.M.A.)
| | - Ragaa A. Hamouda
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.S.S.); (S.N.A.); (F.M.A.)
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt
| |
Collapse
|
4
|
El-Gendy KS, Osman KA, Ezz El-Din EM, El-Seedy AS. Evaluation of biochemical, hematological, and genotoxic parameters in mice exposed to individual and combined ethoprophos and cadmium. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:247-254. [PMID: 36892198 DOI: 10.1080/03601234.2023.2186682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Environmental contamination by complex mixtures of pesticides and metals is a major health problem in agriculture and industry. In real life scenarios, we are exposed to mixtures of chemicals rather than single chemicals, and therefore it is critical to assess their toxicity. The current work was conducted to assess the toxic effects of a low dose (2% median lethal dose) of ethoprophos (Etho, 0.16 mg kg-1 bw), and cadmium (Cd, 0.63 mg kg-1 bw); each alone or in combination on hematological, biochemical, and genotoxic parameters in male mice for one or four weeks. The tested toxicants resulted in a decline in body and organs weights, the most hematological indices, acetylcholine esterase activity, and the total protein content, while they significantly increased liver and kidney function parameters. Furthermore, they increased the mitotic index (MI), number of abnormal sperms, and chromosomes. In conclusion, Etho and Cd induce deleterious effects on all tested parameters in male mice which reflect more obvious impacts when both combined, particularly after 28 days of exposure. However, further research is needed to confirm toxicokinetic or toxicodynamic interactions between these two toxic compounds in the organisms.
Collapse
Affiliation(s)
- Kawther S El-Gendy
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Khaled A Osman
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Eslam M Ezz El-Din
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Ayman S El-Seedy
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
El Okle OS, Tohamy HG, Althobaiti SA, Soliman MM, Ghamry HI, Farrag F, Shukry M. Ornipural® Mitigates Malathion-Induced Hepato-Renal Damage in Rats via Amelioration of Oxidative Stress Biomarkers, Restoration of Antioxidant Activity, and Attenuation of Inflammatory Response. Antioxidants (Basel) 2022; 11:antiox11040757. [PMID: 35453442 PMCID: PMC9031224 DOI: 10.3390/antiox11040757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
The current study was instigated by investigating the ameliorative potential of Ornipural® solution against the hepato-renal toxicity of malathion. A total number of 35 male Wistar albino rats were divided equally into five groups. Group 1 served as control and received normal saline intraperitoneally. Group 2, the sham group, were administered only corn oil (vehicle of malathion) orally. Group 3 was orally intoxicated by malathion in corn oil at a dose of 135 mg/kg BW via intra-gastric gavage. Group 4 received malathion orally concomitantly with Ornipural® intraperitoneally. Group 5 was given Ornipural® solution in saline via intraperitoneal injection at a dose of (1 mL/kg BW). Animals received the treatment regime for 30 days. Histopathological examination revealed the harmful effect of malathion on hepatic and renal tissue. The results showed that malathion induced a significant decrease in body weight and marked elevation in the activity of liver enzymes, LDH, and ACP. In contrast, the activity of AchE and Paraoxonase was markedly decreased. Moreover, there was a significant increase in the serum content of bilirubin, cholesterol, and kidney injury markers. A significant elevation in malondialdehyde, nitric oxide (nitrite), and 8-hydroxy-2-deoxyguanosine was observed, along with a substantial reduction in antioxidant activity. Furthermore, malathion increased tumor necrosis factor-alpha, the upregulation of IL-1B, BAX, and IFN-β genes, and the downregulation of Nrf2, Bcl2, and HO-1 genes. Concurrent administration of Ornipural® with malathion attenuated the detrimental impact of malathion through ameliorating metabolic biomarkers, restoring antioxidant activity, reducing the inflammatory response, and improving pathologic microscopic alterations. It could be concluded that Ornipural® solution demonstrates hepatorenal defensive impacts against malathion toxicity at biochemical, antioxidants, molecular, and cellular levels.
Collapse
Affiliation(s)
- Osama S. El Okle
- Departement of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Hossam G. Tohamy
- Departement of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Saed A. Althobaiti
- Biology Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia;
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia;
| | - Heba I. Ghamry
- Department of Home Economics, College of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia;
| | - Foad Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Correspondence:
| |
Collapse
|
6
|
Hamouda RA, Salman AS, Alharbi AA, Alhasani RH, Elshamy MM. Assessment of the Antigenotoxic Effects of Alginate and ZnO/Alginate-Nanocomposites Extracted from Brown Alga Fucus vesiculosus in Mice. Polymers (Basel) 2021; 13:polym13213839. [PMID: 34771394 PMCID: PMC8587912 DOI: 10.3390/polym13213839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/01/2023] Open
Abstract
Mitomycin C (MMC) is an alkylating chemotherapy drug that could induce DNA damage and genetic alteration. It has been used as a model mutagen for in vivo and in vitro studies. The current study aimed to evaluate the protective role of Zinc oxide alginate–nanocomposites (ZnO-Alg/NCMs) against MMC–induced genotoxicity in mice. Animals were treated as follows: the control group, the groups treated with Algin (400 mg/kg b.w), the groups treated with ZnO-Alg/NCMs (400 mg/kg b.w), the group treated with MMC, and the groups treated with MMC plus Algin or ZnO-Alg/NCMs. Pre-treatment with Algin and ZnO-Alg/NCMs was repeated for one or seven days. Zinc oxide alginate-nanocomposites (ZnO-Alg/NCMs) were synthesized with the aim of incorporating the intrinsic properties of their constituents as an antigenotoxic substance. In this study, alginate was extracted from the brown marine alga Fucus vesiculosus, Zinc oxide nanoparticles were synthesized by using water extract of the same alga, and loaded in alginate to synthesize ZnO-Alg/NCMs. ZnO-NPs and ZnO-Alg/NCMs were characterized by TEM, SEM, EDX, and Zeta potential. The obtained results confirmed that by TEM and SEM, ZnO-NPs are rod shaped which modified, when loaded in alginate matrix, into spherical shape. The physical stability of ZnO-Alg/NCMs was reported to be higher than ZnO-NPs due to the presence of more negative charges on ZnO-Alg/NCMs. The EDX analysis indicated that the amount of zinc was higher in ZnO-NPs than ZnO-Alg/NCMs. The in vivo results showed that treatment with MMC induced genotoxic disturbances. The combined treatment with Algin and ZnO-Alg/NCMs succeeded in inducing significant protection against MMC. It could be concluded that ZnO-Algin/NCMs is a promising candidate to protect against MMC–induced genotoxicity.
Collapse
Affiliation(s)
- Ragaa A. Hamouda
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.S.S.); (A.A.A.)
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt
- Correspondence:
| | - Asmaa S. Salman
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.S.S.); (A.A.A.)
- Genetic and Cytology Department, National Research Center, Cairo 12622, Egypt
| | - Asrar A. Alharbi
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia; (A.S.S.); (A.A.A.)
| | - Reem Hasaballah Alhasani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 21961, Saudi Arabia;
| | - Maha M. Elshamy
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
7
|
Hathout HMR, Sobhy HM, Abou-Ghanima S, El-Garawani IM. Ameliorative role of ascorbic acid on the oxidative stress and genotoxicity induced by acetamiprid in Nile tilapia (Oreochromis niloticus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55089-55101. [PMID: 34121161 DOI: 10.1007/s11356-021-14856-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
On juveniles of Oreochromis niloticus, the protective potential of ascorbic acid (Asc) against oxidative stress and genotoxicity induced by acetamiprid (Aceta) sub-lethal concentrations was investigated in this study. Fishes were divided into six groups and exposed to either Asc (50 ppm), 10 and 20 ppm Aceta, 10 ppm (Aceta)+Asc, 20 ppm (Aceta)+Asc, or the unexposed control group. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities and their transcripts were assessed. DNA damage in erythrocytes, hepatocytes, and gill cells, in addition to the mitotic index (MI), and the existence of erythrocytic nuclear abnormalities (ENAs) were performed. The results showed that concentrations of Aceta (10 and 20 ppm) induced oxidative stress by altering the antioxidant enzyme activities and transcripts. There were genotoxic effects of Aceta exposure showed by the significant (P < 0.05) increase in DNA-damaged cells and ENA, meanwhile a decrease in MI. Co-exposure with Asc showed significant alleviations of oxidative status and genotoxicity. Thus, results suggest that Asc-combined exposure could be the effective treatment against Aceta-induced oxidative stress accompanied with genotoxicity in O. niloticus.
Collapse
Affiliation(s)
- Heba M R Hathout
- Department of Natural Resources, Faculty of African Post Graduate Studies, Cairo University, Cairo, 12613, Egypt
| | - Hassan M Sobhy
- Department of Natural Resources, Faculty of African Post Graduate Studies, Cairo University, Cairo, 12613, Egypt
| | | | - Islam M El-Garawani
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, 32511, Egypt.
| |
Collapse
|
8
|
Osman KA, Ezz El-Din EM, Ahmed NS, El-Seedy AS. Effect of N-acetylcysteine on attenuation of chlropyrifos and its methyl analogue toxicity in male rats. Toxicology 2021; 461:152904. [PMID: 34425170 DOI: 10.1016/j.tox.2021.152904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 02/01/2023]
Abstract
The attenuating effect of 150 mg/kg of N-acetylcysteine (NAC) against the oral administration of 7.88 and 202.07 mg/kg/day for 14 days of either chlropyrifos-ethyl (CPE-E) or chlropyrifos-methyl (CPF-M), respectively, in male rat was investigated using biochemical and genetic markers. Biomarkers such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), paraoxonase (PON), adenosine 5'-triphosphatase (ATP-ase), glutathione-S-transferase (GST), catalase (CAT), glutathione reduced (GSH) in serum showed a significant decline in their levels, while calcium (Ca+2), cytochrome C reduction (CYC-R), lipid peroxidation (LPO), nitric oxide (NO) levels showed a significant increase in serum of treated rats. Regarding the genotoxic parameters, when rats are treated either with CPE-E or CPF-M, liver DNA, chromosomal aberration (CA), and micronucleated polychromatic erythrocytes (MnPCE) significantly increased, while the mitotic index (MI) and polychromatic erythrocytes (PCE)/ normochromatic erythrocytes (NCE) ratio were significantly decreased. However, the administration of NAC following the intoxication of CPF-E or CPF-M attenuated the tested biochemical and genotoxic markers. It can be concluded that NAC can be used to ameliorate the toxicity of certain organophosphorus compounds such as CPF-E and CPF-M.
Collapse
Affiliation(s)
- Khaled A Osman
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt.
| | - Eslam M Ezz El-Din
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Nabila S Ahmed
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Ayman S El-Seedy
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Faculty of Agriculture, Alexandria University, P.O Box 21545, Alexandria, Egypt
| |
Collapse
|
9
|
Salman AS, Al-Shaikh TM, Hamza ZK, El-Nekeety AA, Bawazir SS, Hassan NS, Abdel-Wahhab MA. Matlodextrin-cinnamon essential oil nanoformulation as a potent protective against titanium nanoparticles-induced oxidative stress, genotoxicity, and reproductive disturbances in male mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39035-39051. [PMID: 33745051 DOI: 10.1007/s11356-021-13518-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Recently, bio-nanofabrication becomes one of the widest methods for synthesizing nanoparticles (NPs); however, there is scanty literature exploring the toxicity of these green NPs against living organisms. This study aimed to evaluate the potential protective role of encapsulated cinnamon oil (ECO) against titanium oxide nanoparticle (TiO2NP)-induced oxidative stress, DNA damage, chromosomal aberration, and reproductive disturbances in male mice. Sixty male Balb/c mice were distributed into six groups treated orally for 3 weeks and included control group, TiO2NP-treated group (25 mg/kg b.w), ECO at low or high dose-treated groups (50 or 100 mg/kg b.w), and the groups that received TiO2NPs plus ECO at a low or high dose. The results of GC-MS revealed the isolation of 21 compounds and the majority was cinnamaldehyde. The average size zeta potential of TiO2NPs and ECO were 28.9 and 321 nm and -33.97 and -17.35 mV, respectively. TiO2NP administration induced significant changes in liver and kidney function, decreased antioxidant capacity, and increased oxidative stress markers in liver and kidney, DNA damage in the hepatocytes, the number of chromosomal aberrations in the bone marrow and germ cells, and sperm abnormalities along with histological changes in the liver, kidney, and testis. Co-administration of TiO2NPs and ECO could alleviate these disturbances in a dose-dependent manner. It could be concluded that ECO is a promising and safe candidate for the protection against the health hazards of TiO2NPs.
Collapse
Affiliation(s)
- Asmaa S Salman
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
- Genetic and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Turki M Al-Shaikh
- Genetic and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Zeinab K Hamza
- Department of Food Toxicology & Contaminants, National Research Center, Dokki, Cairo, Egypt
| | - Aziza A El-Nekeety
- Department of Food Toxicology & Contaminants, National Research Center, Dokki, Cairo, Egypt
| | - Salwa S Bawazir
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Nabila S Hassan
- Department of Medical Pathology, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Department of Food Toxicology & Contaminants, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
10
|
El-Garawani IM, Khallaf EA, Alne-Na-Ei AA, Elgendy RG, Mersal GAM, El-Seedi HR. The role of ascorbic acid combined exposure on Imidacloprid-induced oxidative stress and genotoxicity in Nile tilapia. Sci Rep 2021; 11:14716. [PMID: 34282219 PMCID: PMC8289846 DOI: 10.1038/s41598-021-94020-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Imidacloprid (Imid), a systemic neonicotinoid insecticide, is broadly used worldwide. It is reported to contaminate aquatic systems. This study was proposed to evaluate oxidative stress and genotoxicity of Imid on Nile tilapia (Oreochromis niloticus) and the protective effect of ascorbic acid (Asc). O. niloticus juveniles (30.4 ± 9.3 g, 11.9 ± 1.3 cm) were divided into six groups (n = 10/replicate). For 21 days, two groups were exposed to sub-lethal concentrations of Imid (8.75 ppm, 1/20 of 72 h-LC50 and 17.5 ppm, 1/10 of 72 h-LC50); other two groups were exposed to Asc (50 ppm) in combination with Imid (8.75 and 17.5 ppm); one group was exposed to Asc (50 ppm) in addition to a group of unexposed fish which served as controls. Oxidative stress was assessed in the liver where the level of enzymatic activities including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in addition to mRNA transcripts and, Lipid peroxidation (LPO) were evaluated. Moreover, mitotic index (MI) and comet assay were performed, in addition, the erythrocytic micronucleus (MN), and nuclear abnormalities (NA) were observed to assess genotoxicity in fish. Imid exposure induced significant (p ˂ 0.05) changes in the antioxidant profile of the juveniles' liver by increasing the activities and gene expression of SOD, CAT and GPX as well as elevating the levels of LPO. DNA strand breaks in gill cells, erythrocytes and hepatocytes along with erythrocytic MN and NA were also significantly elevated in Imid-exposed groups. MI showed a significant (p ˂ 0.05) decrease associated with Imid exposure. Asc administration induced a significant amelioration towards the Imid toxicity (8.75 and 17.5 ppm). A significant protective potency against the genotoxic effects of Imid was evidenced in Asc co-treated groups. Collectively, results highlight the importance of Asc as a protective agent against Imid-induced oxidative stress and genotoxicity in O. niloticus juveniles.
Collapse
Affiliation(s)
- Islam M El-Garawani
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Menoufia, Egypt.
| | - Elsayed A Khallaf
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Menoufia, Egypt
| | - Alaa A Alne-Na-Ei
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Menoufia, Egypt
| | - Rehab G Elgendy
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Menoufia, Egypt
| | - Gaber A M Mersal
- Chemistry Department, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden.
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Menoufia, Egypt.
| |
Collapse
|
11
|
Mohafrash SMM, Hassan EE, El-Shaer NH, Mossa ATH. Detoxification gene expression, genotoxicity, and hepatorenal damage induced by subacute exposure to the new pyrethroid, imiprothrin, in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-13044-z. [PMID: 33638779 DOI: 10.1007/s11356-021-13044-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The pyrethroid imiprothrin is widely used worldwide for control of insects in the agriculture and public health sectors. No sufficient information is however available concerning detoxification gene expression, i.e., cytochrome P450 1A2 (CYP1A2) and metallothionein 1a gene, oxidative stress, lipid peroxidation, DNA damage, cytotoxicity, genotoxicity, and organ injury induced by imiprothrin in mammals. This study is designed to explain the mechanism of imiprothrin induced detoxification gene expression, DNA damage, cytotoxicity, genotoxicity, and organ toxicity in male rats. The benchmark dose (BMD) was calculated to find the best sensitive markers to imiprothrin toxicity. Imiprothrin was injected intraperitoneally (i.p.) into male rats once a day for 5 days with doses of 19, 38, and 75 mg/kg body weight (b.wt.). Imiprothrin caused a significant increase in lipid peroxidation and changes in oxidative stress biomarkers in treated rats. Significant dose-dependent changes in the liver and kidney biomarkers were observed. Histopathological alterations were seen in the liver and kidney tissue of male rats. Imiprothrin also significantly increased chromosomal aberrations (CA) and micronuclei in bone-marrow cells, and induced lipid peroxidation, oxidative stress, cytotoxicity, and liver and kidney dysfunction, and damage. Imiprothrin induced DNA damage and over detoxification gene expression of CYP1A2 and metallothionein 1a gene in hepatocytes of male rats. Imiprothrin thus shows clastogenic and genotoxic potential. The mechanism for hepatorenal toxicity and injury, genotoxicity/cytotoxicity of imiprothrin might be due to enhanced lipid peroxidation, and oxidative stress associated with overproduction of free radicals, especially reactive oxygen species, and an imbalance in redox status. From the BMD models, aspartate aminotransferase (AST), total protein, uric acid, superoxide dismutase (SOD), and micronuclei (MPEs) were very sensitive markers to imiprothrin toxicity.
Collapse
Affiliation(s)
- Samia M M Mohafrash
- Pesticide Chemistry Department, National Research Centre (NRC), 33 El Bohouth Street (former El Tahrir St.), P.O. 12622, Giza, Dokki, Egypt
| | - Entesar E Hassan
- Genetics and Cytology Department, National Research Centre (NRC), 33 El Bohouth Street (former El Tahrir St.), P.O. 12622, Giza, Dokki, Egypt
| | - Nahla H El-Shaer
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Abdel-Tawab H Mossa
- Pesticide Chemistry Department, National Research Centre (NRC), 33 El Bohouth Street (former El Tahrir St.), P.O. 12622, Giza, Dokki, Egypt.
| |
Collapse
|
12
|
Dimethoate Induces DNA Damage and Mitochondrial Dysfunction Triggering Apoptosis in Rat Bone-Marrow and Peripheral Blood Cells. TOXICS 2020; 8:toxics8040080. [PMID: 33019668 PMCID: PMC7712428 DOI: 10.3390/toxics8040080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022]
Abstract
Dimethoate (DM) is an organophosphorus (OP) pesticide with wide use in the pest control. Its persistence in crops and soils could possibly cause adverse health consequences in humans as well as other non-target species. Since molecular studies confirming potential genotoxicity of DM have not been previously reported, the acute in vivo toxicological impact was evaluated in Wistar rats. Significant micronuclei induction and metaphase chromosome abnormalities in bone marrow cells exposed to three different DM doses (20, 40 and 60 mg/kg-bw) at multiple treatment durations (24, 48 and 72 h) indicated positive dose response relationship, confirming its genotoxic and cytotoxic potential. Significant mitotic index decrease was seen in dosed animals compared to vehicle control. The study used peripheral blood comet assay, indicating DM-mediated damage to DNA at all exposure levels in a time responsive manner. These assays were found to be an effective, precise, and fast technique with applied value in biomonitoring studies. Cell cycle and apoptosis along with mitochondrial membrane potential (MMP) in flow cytometric analyses confirmed DM exposure decreased MMP, affected the cell cycle, and inflicted DNA damage, which led to cellular apoptosis of leukocytes culminating into immunotoxic effects. The in silico experiments consequently augmented that DM showed acceptable binding energy value for Cyclin A2, suggesting that it could inhibit the cell cycle progression by inhibiting cyclin A2.
Collapse
|
13
|
Bastos PL, Bastos AFTDL, Gurgel ADM, Gurgel IGD. Carcinogenicity and mutagenicity of malathion and its two analogues: a systematic review. CIENCIA & SAUDE COLETIVA 2020; 25:3273-3298. [PMID: 32785560 DOI: 10.1590/1413-81232020258.10672018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/11/2018] [Indexed: 11/22/2022] Open
Abstract
Malathion has been widely used worldwide in arbovirus control programs. In 2015, it was classified by the International Agency for Research on Cancer (IARC) as a probable carcinogen to humans. This work aimed to systematize the evidence of the carcinogenic and mutagenic effects associated with the exposure of malathion and its analogs, malaoxon and isomalathion. The search was carried out in Toxline, PubMed and Scopus databases for original papers published from 1983 to 2015. In all, 73 papers were selected from a total of 273 eligible papers. The results of in vitro and in vivo studies showed mainly genetic and chromosomal damages caused by malathion. The epidemiological studies evidenced significant positive associations for thyroid, breast, and ovarian cancers in menopausal women. This evidence of the carcinogenic effect of malathion should be considered before its use in arbovirus control programs.
Collapse
Affiliation(s)
- Priscilla Luna Bastos
- Secretaria Estadual de Saúde de Pernambuco. R. Dona Maria Augusta Nogueira 519, Bongi. 50751-530 Recife PE Brasil.
| | | | | | | |
Collapse
|
14
|
Abdel-Wahhab MA, El-Nekeety AA, Hathout AS, Salman AS, Abdel-Aziem SH, Sabry BA, Hassan NS, Abdel-Aziz MS, Aly SE, Jaswir I. Bioactive compounds from Aspergillus niger extract enhance the antioxidant activity and prevent the genotoxicity in aflatoxin B 1-treated rats. Toxicon 2020; 181:57-68. [PMID: 32353570 DOI: 10.1016/j.toxicon.2020.04.103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/18/2020] [Accepted: 04/25/2020] [Indexed: 01/19/2023]
Abstract
This study aimed to identify the bioactive compounds of the ethyl acetate extract of Aspergillus niger SH2-EGY using GC-MS and to evaluate their protective role against aflatoxin B1 (AFB1)-induced oxidative stress, genotoxicity and cytotoxicity in rats. Six groups of male Sprague-Dawley rats were treated orally for 4 weeks included the control group, AFB1-treated group (80 μg/kg b.w); fungal extract (FE)-treated groups at low (140) or high dose (280) mg/kg b.w and the groups treated with AFB1 plus FE at the two tested doses. The GC-MS analysis identified 26 compounds. The major compounds found were 1,2,3,4,6-Penta-trimethylsilyl Glucopyranose, Fmoc-L-3-(2-Naphthyl)-alanine, D-(-)-Fructopyranose, pentakis (trimethylsilyl) ether, bis (2-ethylhexyl) phthalate, trimethylsilyl ether-glucitol, and octadecanamide, N-(2- methylpropyl)-N-nitroso. The in vivo results showed that AFB1 significantly increased serum ALT, AST, creatinine, uric acid, urea, cholesterol, triglycerides, LDL, carcinoembryonic antigen, alpha-fetoprotein, interleukin-6, Malondialdehyde, nitric oxide, Bax, caspase-3 and P53 mRNA expression, chromosomal aberrations and DNA fragmentation. It decreased serum TP, albumin, HDL, Bcl-2 mRNA expression, hepatic and renal TAC, SOD and GPx content and induced histological changes in the liver and kidney. FE prevented these disturbances in a dosage-dependent manner. It could be concluded that A. niger SH2-EGY extract is safe a promising agent for pharmaceutical and food industries.
Collapse
Affiliation(s)
- Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Amal S Hathout
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Asmaa S Salman
- Genetic and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Bassem A Sabry
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Nabila S Hassan
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Soher E Aly
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Irwandi Jaswir
- International Institute for Halal Research & Training (INHART), International Islamic University Malaysia, Gombak, Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Badr AM. Organophosphate toxicity: updates of malathion potential toxic effects in mammals and potential treatments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26036-26057. [PMID: 32399888 DOI: 10.1007/s11356-020-08937-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Organophosphorus insecticides toxicity is still considered a major global health problem. Malathion is one of the most commonly used organophosphates nowadays, as being considered to possess relatively low toxicity compared with other organophosphates. However, widespread use may lead to excessive exposure from multiple sources. Mechanisms of MAL toxicity include inhibition of acetylcholinesterase enzyme, change of oxidants/antioxidants balance, DNA damage, and facilitation of apoptotic cell damage. Exposure to malathion has been associated with different toxicities that nearly affect every single organ in our bodies, with CNS toxicity being the most well documented. Malathion toxic effects on liver, kidney, testis, ovaries, lung, pancreas, and blood were also reported. Moreover, malathion was considered as a genotoxic and carcinogenic chemical compound. Evidence exists for adverse effects associated with prenatal and postnatal exposure in both animals and humans. This review summarizes the toxic data available about malathion in mammals and discusses new potential therapeutic modalities, with the aim to highlight the importance of increasing awareness about its potential risk and reevaluation of the allowed daily exposure level.
Collapse
Affiliation(s)
- Amira M Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11459, Saudi Arabia.
- Department of Pharmacology and Toxicology, College of Pharmacy, Ain Shams University, Heliopolis, Cairo, Egypt.
| |
Collapse
|
16
|
Assessment of malathion toxicity on cytophysiological activity, DNA damage and antioxidant enzymes in root of Allium cepa model. Sci Rep 2020; 10:886. [PMID: 31964992 PMCID: PMC6972773 DOI: 10.1038/s41598-020-57840-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/31/2019] [Indexed: 12/04/2022] Open
Abstract
The current study was emphasized to assess the effect of malathion on root system (cell division and kinetics of the root elongation) and stress related parameters in Allium cepa L. The roots were exposed to different concentrations (0.05, 0.13, 0.26, 0.39 and 0.52 g/L) of malathion for different treatment periods (4, 8 and 18 h). The results revealed that malathion application affected the growth rate and cell division in root tips. The root elongation kinetics were impaired at 0.13 to 0.52 g/L concentrations. Reduction in tissue water content (TWC) indicated the limited osmotic adjustment due to membrane damage. Further, a decrease in sucrose content was observed in contrast to the accumulation of proline (upto 0.39 g/L). Moreover, malathion exposure elevated the levels of lipid peroxidation followed by changes in antioxidant enzymes status. The activities of ascorbate peroxidase (APX) and glutathione reductase (GR) were down-regulated whereas the activities of catalase (CAT), glutathione-S-transferase (GST) and superoxide dismutase (SOD) were up-regulated except in 0.52 g/L malathion. The molecular docking study of malathion with CAT, GST, SOD, APX and GR also supported of above results for their activity. All these physiological responses varied with increasing malathion concentration and duration of treatment. The single cell gel electrophoresis results showed that all concentrations of malathion induced DNA damage in root cells. The findings depicted that malathion application induces cytotoxic and phytotoxic effects mediated through oxidative stress and subsequent injuries.
Collapse
|
17
|
Olakkaran S, Kizhakke Purayil A, Antony A, Mallikarjunaiah S, Hunasanahally Puttaswamygowda G. Oxidative stress-mediated genotoxicity of malathion in human lymphocytes. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 849:503138. [DOI: 10.1016/j.mrgentox.2020.503138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
|
18
|
El-Gendy K, Osman K, El-Din EE, El-Seedy A. Role of biomarkers in the evaluation of cadmium and ethoprophos combination in male mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 72:103267. [PMID: 31586869 DOI: 10.1016/j.etap.2019.103267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
This work aimed to study the risk assessment procedures of a combination of single and repeated dose of the widely used pesticide, ethoprophos (Etho) and heavy metal cadmium (Cd), on the hematological, biochemical, reproduction and cytogenetic parameters in male mice. The results revealed that the sub-lethal dose (1/50 LD50) of the tested toxic substances (Etho and/or Cd) reduced the body and organ weights, the most hematological profile and the activity of acetylcholine esterase (AChE). The tested pollutants significantly increased the parameters of liver function, including aspartate aminotransferase (AST) and alanine aminotransferase (ALT), as well as renal function tests, including creatinine and urea. In addition, they have deleterious effects on reproductive function tests by stimulating the number of sperm abnormalities (SA) and cytogenetic assays by increasing the frequency of chromosomal abnormalities (CA) and the mitotic index (MI). The overall results of this exploratory study suggest that the co-existence of the two tested compounds (Etho and Cd) had the propensity to cause a more pronounced effect than that of each compound alone on all the battery measured biomarkers, especially in the repeated treatment (14 doses) than that in the single one. Also, the combination of a range of simple and sensitive assays as endpoints gives a comprehensive picture and provides better insights to evaluate the potential effects of other commonly encountered environmental pollutants.
Collapse
Affiliation(s)
- Kawther El-Gendy
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt.
| | - Khaled Osman
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Eslam Ezz El-Din
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Ayman El-Seedy
- Department of Genetics, Faculty of Agriculture (El-Shatby), Alexandria University, Egypt
| |
Collapse
|
19
|
Kumar SS, Ghosh P, Malyan SK, Sharma J, Kumar V. A comprehensive review on enzymatic degradation of the organophosphate pesticide malathion in the environment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:288-329. [PMID: 31566482 DOI: 10.1080/10590501.2019.1654809] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A comprehensive review of available bioremediation technologies for the pesticide malathion is presented. This review article describes the usage and consequences of malathion in the environment, along with a critical discussion on modes of metabolism of malathion as a sole source of carbon, phosphorus, and sulfur for bacteria, and fungi along with the biochemical and molecular aspects involved in its biodegradation. Additionally, the recent approaches of genetic engineering are discussed for the manipulation of important enzymes and microorganisms for enhanced malathion degradation along with the challenges that lie ahead.
Collapse
Affiliation(s)
- Smita S Kumar
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Pooja Ghosh
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Sandeep K Malyan
- Institute of Soil, Water, and Environmental Sciences, Agricultural Research Organization (ARO), Volcani Research Centre, Bet Dagan, Israel
| | - Jyoti Sharma
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Vivek Kumar
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
20
|
Burgos-Aceves MA, Lionetti L, Faggio C. Multidisciplinary haematology as prognostic device in environmental and xenobiotic stress-induced response in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:1170-1183. [PMID: 31018433 DOI: 10.1016/j.scitotenv.2019.03.275] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
The variations of haematological parameters hematocrit, hemoglobin concentration, leukocyte and erythrocyte count have been used as pollution and physiological indicators of organic dysfunction in both environmental and aquaculture studies. These parameters are commonly applied as prognostic and diagnostic tools in fish health status. However, there are both extrinsic and intrinsic factors to consider when performing a blood test, because a major limitation for field researchers is that the "rules" for animal or human haematology do not always apply to wildlife. The main objective of this review is to show how some environmental and xenobiotic factors are capable to modulating the haematic cells. Visualizing the strengths and limitations of a haematological analysis in the health assessment of wild and culture fish. Finally, we point out the importance of the use of mitochondrial activities as part of haematological evaluations associated to environment or aquaculture stress.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Departament of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Lillà Lionetti
- Departament of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
21
|
Ali RI, Ibrahim MA. Malathion induced testicular toxicity and oxidative damage in male mice: the protective effect of curcumin. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2018. [DOI: 10.1186/s41935-018-0099-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
22
|
Ullah S, Li Z, Hasan Z, Khan SU, Fahad S. Malathion induced oxidative stress leads to histopathological and biochemical toxicity in the liver of rohu (Labeo rohita, Hamilton) at acute concentration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:270-280. [PMID: 29886314 DOI: 10.1016/j.ecoenv.2018.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Organophosphorus pesticides form a diverse group of chemicals, having a wide range of physicochemical properties with crucial toxicological actions and endpoints. These are extensively used to control pests of different food (fruits, vegetables, tea, etc.) and non-food (tobacco, cotton, etc.) crops. Malathion is an important widely used organophosphorus pesticide but its hepatotoxic effects on fish are not well studied. Therefore, the current study was designed to investigate the hepatotoxic effects of Malathion on rohu (Labeo rohita) fish in a semi-static system using different parameters. The LC50 of Malathion was found to be 5 µg/L for rohu for 96 h through Probit analysis and was used for further toxicity testing. To find the hepatotoxic effects of Malathion, changes in different biochemical indices including protein contents, Lipid Peroxidation (LPO), activities of four protein metabolic enzymes [Aspartate Aminotransferase (AAT), Lactate Dehydrogenase (LDH), Alanine Aminotransferase (AlAT), and Glutamate Dehydrogenase (GDH)], seven antioxidant enzymes [Catalase (CAT), Superoxide Dismutase (SOD), Peroxidase (POD), Glutathione (GSH), Glutathione Reductase (GR), Glutathione-s-transferase (GST), and Glutathione Peroxidase (GSH-Px)], DNA damage [in term of comet tail length, tail moment, DNA percentage in tail, and olive tail moment], reactive oxygen species (ROS), and Histopathological alterations were assayed. Malathion exposure led to a time-reliant significant (P < 0.05) decrease in protein contents and a significant (P < 0.05) increase in ROS, LPO, enzymatic activities, and DNA damage. The histopathological examination of the liver showed different changes including hepatic necrosis, fatty infiltration, hemorrhage vacuolation, glycogen vacuolation, congestion, and cellular swelling. The current study clearly revealed Malathion as a potent hepatotoxic pesticide; therefore the injudicious, indiscriminate and extensive use of Malathion should be prohibited or at least reduced and strictly monitored.
Collapse
Affiliation(s)
- Sana Ullah
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Zhongqiu Li
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| | - Zaigham Hasan
- Department of Zoology, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ullah Khan
- College of Plant Sciences and Technology/National Key Laboratory of Crop Genetics and Improvement Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shah Fahad
- College of Plant Sciences and Technology/National Key Laboratory of Crop Genetics and Improvement Huazhong Agricultural University, Wuhan 430070, PR China; Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
23
|
Bianchi J, Mantovani MS, Marin-Morales MA. Analysis of the genotoxic potential of low concentrations of Malathion on the Allium cepa cells and rat hepatoma tissue culture. J Environ Sci (China) 2015; 36:102-111. [PMID: 26456612 DOI: 10.1016/j.jes.2015.03.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 06/05/2023]
Abstract
Based on the concentration of Malathion used in the field, we evaluated the genotoxic potential of low concentrations of this insecticide on meristematic and F1 cells of Allium cepa and on rat hepatoma tissue culture (HTC cells). In the A. cepa, chromosomal aberrations (CAs), micronuclei (MN), and mitotic index (MI) were evaluated by exposing the cells at 1.5, 0.75, 0.37, and 0.18mg/mL of Malathion for 24 and 48hr of exposure and 48hr of recovery time. The results showed that all concentrations were genotoxic to A. cepa cells. However, the analysis of the MI has showed non-relevant effects. Chromosomal bridges were the CA more frequently induced, indicating the clastogenic action of Malathion. After the recovery period, the higher concentrations continued to induce genotoxic effects, unlike the observed for the lowest concentrations tested. In HTC cells, the genotoxicity of Malathion was evaluated by the MN test and the comet assay by exposing the cells at 0.09, 0.009, and 0.0009mg/5mL culture medium, for 24hr of exposure. In the comet assay, all the concentrations induced genotoxicity in the HTC cells. In the MN test, no significant induction of MN was observed. The genotoxicity induced by the low concentrations of Malathion presented in this work highlights the importance of studying the effects of low concentrations of this pesticide and demonstrates the efficiency of these two test systems for the detection of genetic damage promoted by Malathion.
Collapse
Affiliation(s)
- Jaqueline Bianchi
- Department of Biology, Institute of Biosciences, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, Brazil.
| | - Mario Sérgio Mantovani
- Department of General Biology, Biological Science Centre, Univ Estadual de Londrina, 86061990, Londrina, PR, 6001, Brazil
| | - Maria Aparecida Marin-Morales
- Department of Biology, Institute of Biosciences, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, Brazil.
| |
Collapse
|
24
|
Arslan M, Sevgiler Y, Buyukleyla M, Yardimci M, Yilmaz M, Rencuzogullari E. Sex-related effects of imidacloprid modulated by piperonyl butoxide and menadione in rats. Part II: genotoxic and cytotoxic potential. Drug Chem Toxicol 2015; 39:81-6. [DOI: 10.3109/01480545.2015.1029049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Omran OM, Omer OH. The effects of alpha-lipoic acid on breast of female albino rats exposed to malathion: Histopathological and immunohistochemical study. Pathol Res Pract 2015; 211:462-9. [DOI: 10.1016/j.prp.2015.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 02/15/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
|
26
|
Lajmanovich RC, Cabagna-Zenklusen MC, Attademo AM, Junges CM, Peltzer PM, Bassó A, Lorenzatti E. Induction of micronuclei and nuclear abnormalities in tadpoles of the common toad (Rhinella arenarum) treated with the herbicides Liberty® and glufosinate-ammonium. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 769:7-12. [DOI: 10.1016/j.mrgentox.2014.04.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 12/12/2013] [Accepted: 01/15/2014] [Indexed: 11/16/2022]
|
27
|
Yonar SM, Ural MŞ, Silici S, Yonar ME. Malathion-induced changes in the haematological profile, the immune response, and the oxidative/antioxidant status of Cyprinus carpio carpio: protective role of propolis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 102:202-209. [PMID: 24480596 DOI: 10.1016/j.ecoenv.2014.01.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 01/03/2014] [Accepted: 01/08/2014] [Indexed: 06/03/2023]
Abstract
The present study investigated the potential ameliorative effects of propolis against malathion toxicity in the blood and various tissues of carp. The fish were exposed to sublethal concentrations of malathion (0.5 and 1 mg/L) for 10 days, and propolis (10 mg/kg of fish weight) was simultaneously administered. Blood and tissue (liver, kidney, and gill) samples were collected at the end of the experiment and analysed to determine the haematological profile (red blood cell count, haemoglobin concentration, haematocrit level, and erythrocyte indices: mean corpuscular volume, mean corpuscular haemoglobin, and mean corpuscular haemoglobin concentration), immune response (white blood cell count, oxidative radical production, nitroblue tetrazolium (NBT) activity, total plasma protein and total immunoglobulin levels, and the phagocytic activity), and oxidant/antioxidant status (malondialdehyde and reduced glutathione levels and superoxide dismutase, catalase, and glutathione peroxidase activities) of the fish. The findings of this study demonstrate that malathion has a negative effect on the haematological parameters, immune response, and antioxidant enzyme activities of the fish. However, the administration of propolis ameliorated the malathion-induced toxic effects.
Collapse
Affiliation(s)
- Serpil Mişe Yonar
- Firat University, Fisheries Faculty, Department of Aquaculture and Fish Diseases, 23119 Elazig, Turkey.
| | - Mevlüt Şener Ural
- Firat University, College of Keban, Fisheries Programme, 23700 Elazig, Turkey
| | - Sibel Silici
- University of Erciyes, Seyrani Agricultural Faculty, Department of Agricultural Biotechnology, Kayseri, Turkey
| | - M Enis Yonar
- Firat University, Fisheries Faculty, Department of Aquaculture and Fish Diseases, 23119 Elazig, Turkey
| |
Collapse
|
28
|
Yonar SM. Toxic effects of malathion in carp, Cyprinus carpio carpio: protective role of lycopene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 97:223-229. [PMID: 23932509 DOI: 10.1016/j.ecoenv.2013.07.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/17/2013] [Accepted: 07/19/2013] [Indexed: 06/02/2023]
Abstract
The present study was carried out in order to investigate the potential protective effects of lycopene against malathion-induced toxicity in carp. The fish were exposed to sublethal concentrations of malathion (0.5 and 1mgL(-1)) for 14 days, and lycopene (10mgkg(-1) of fish weight) was simultaneously administered. Samples of the blood and tissue (liver, kidneys, and gills) were collected at the end of the experimental period and their haematological profiles [red blood cell (RBC) counts, haemoglobin (Hb) concentrations, haematocrit (Ht) levels, and erythrocyte indices, including the mean corpuscular volume (MCV), the mean corpuscular haemoglobin (MCH) and the mean corpuscular haemoglobin concentration (MCHC)], immune responses [white blood cell (WBC) counts, oxidative radical production (nitroblue tetrazolium (NBT) activity), total plasma protein (TP) and total immunoglobulin (TI) levels and phagocytic activities (PA)] and oxidant/antioxidant statuses [malondialdehyde (MDA) levels, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities, and reduced glutathione (GSH) concentrations] were analysed. The findings of the present study demonstrated that the exposure of carp to malathion resulted in alterations in the haematological profiles and immune responses, and lead to increased reactive oxygen species formation, resulting in oxidative damage and inhibition of the antioxidant capacities. However, the administration of lycopene prevented malathion-induced toxic effects.
Collapse
Affiliation(s)
- Serpil Mişe Yonar
- Firat University, Fisheries Faculty, Department of Aquaculture, 23119 Elazig, Turkey.
| |
Collapse
|
29
|
Vasimalai N, Abraham John S. Biopolymer capped silver nanoparticles as fluorophore for ultrasensitive and selective determination of malathion. Talanta 2013; 115:24-31. [DOI: 10.1016/j.talanta.2013.04.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 04/05/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
|
30
|
Liu Y, Shen D, Mo R, Zhong D, Tang F. Simultaneous determination of 15 multiresidue organophosphorous pesticides in camellia oil by MSPD-GC-MS. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 90:274-279. [PMID: 23248034 DOI: 10.1007/s00128-012-0932-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/11/2012] [Indexed: 06/01/2023]
Abstract
A one step method based on matrix solid-phase dispersion for simultaneous determination of 15 organophosphorous pesticide residues in camellia oil was developed. The sample preparation could finish in 5 min without extraction procedure, and then analyzed by gas chromatograph-mass spectrometer. Average recoveries ranged between 73.2 % and 108.6 %, with relative standard deviation values (intra-day and inter-day) lower than 16 % at two concentration levels. The method limit of detection was 5 ng/g, which could meet the regulatory maximum residue limits for the pesticides.
Collapse
Affiliation(s)
- Yihua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400, People's Republic of China
| | | | | | | | | |
Collapse
|
31
|
Singh B, Kaur J, Singh K. Microbial degradation of an organophosphate pesticide, malathion. Crit Rev Microbiol 2013; 40:146-54. [PMID: 23442144 DOI: 10.3109/1040841x.2013.763222] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Organophosphorus pesticide, malathion, is used in public health, residential, and agricultural settings worldwide to control the pest population. It is proven that exposure to malathion produce toxic effects in humans and other mammals. Due to high toxicity, studies are going on to design effective methods for removal of malathion and its associated compounds from the environment. Among various techniques available, degradation of malathion by microbes proves to be an effective and environment friendly method. Recently, research activities in this area have shown that a diverse range of microorganisms are capable of degrading malathion. Therefore, we aimed at providing an overview of research accomplishments on this subject and discussed the toxicity of malathion and its metabolites, various microorganisms involved in its biodegradation and effect of various environmental parameters on its degradation.
Collapse
Affiliation(s)
- Baljinder Singh
- Punjab Pollution Control Board , Patiala, Punjab , India and
| | | | | |
Collapse
|
32
|
Xu Y, Zhang H, Zhuang S, Yu M, Xiao H, Qian M. Different enantioselective degradation of pyraclofos in soils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:4173-4178. [PMID: 22494269 DOI: 10.1021/jf205189v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study investigated the enantioselective degradation behavior of pyraclofos in three soils (NC, HZ, and ZZ) under native and sterilized conditions. The absolute configuration of pyraclofos enantiomers has been determined by the combination of experimental and calculated electronic circular dichroism spectra. S-(+)- and R-(-)-Pyraclofos were separated and determined on a cellulose tri-(4-chloro-3-methylphenylcarbamate) (Lux Cellulose-4) chiral column by reversed-phase high-performance liquid chromatography-tandem mass spectrometry. Pyraclofos enantiomers were configurationally stable in three soils and no interconversion was observed during the incubation of enantiopure S-(+)- or R-(-)-pyraclofos under native conditions. The enantioselective degradation behavior of chiral pyraclofos was dramatically different in three soils under native conditions, with half-lives (t(1/2)) of pyraclofos in NC, HZ, and ZZ soils of 2.6, 13.4, and 7.8 days for S-(+)-pyraclofos and 9.2, 9.3, and 8.2 days for R-(-)-pyraclofos. Compared to the half-lives (t(1/2)) of rac-pyraclofos of 21.5, 55.9, and 14.4 days in sterilized NC, HZ and ZZ soils, the degradation velocity was greatly improved in native soils, indicating that degradation was greatly attributed to microbially mediated processes in agricultural cultivating soils.
Collapse
Affiliation(s)
- Yuxin Xu
- Environmental Resources and Soil Fertilizer Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | | | | | | | | | | |
Collapse
|
33
|
Uno S, Shintoyo A, Kokushi E, Yamamoto M, Nakayama K, Koyama J. Gas chromatography-mass spectrometry for metabolite profiling of Japanese medaka (Oryzias latipes) juveniles exposed to malathion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 19:2595-2605. [PMID: 22828887 DOI: 10.1007/s11356-012-0834-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/16/2012] [Indexed: 06/01/2023]
Abstract
PURPOSE We evaluate malathion toxicity to Japanese medaka (Oryzias latipes) juveniles by using a mass spectrometry combined with gas chromatography (GC/MS) metabolomics approach. METHODS Medaka were exposed to low (L) and high (H) concentrations (nominally 20 and 2,000 μg/L, respectively) of water-borne malathion. Metabolites were extracted from the fish, derivatized, and analyzed by GC/MS. Identified metabolites were subjected to one-way analysis of variance and principal component analysis (PCA). We examined the variations in the amounts of the metabolites during the exposure period. RESULTS AND DISCUSSION At 24 h, control, L, and H groups were separated along PC1, suggesting that the effects of malathion depended on exposure concentration. The PCA results at 96 h suggest that the metabolite profiles variations of the L and H groups differed, and thus that the effects of malathion in groups differed. At 24 h, the amounts of amino acids in both exposed groups were lower than the control group amounts, perhaps owing to accelerated protein synthesis. At 96 h, the amounts of almost all the amino acids increased in the L group but decreased in the H group relative to the control group amounts, suggesting the proteolysis occurred in the L group while protein synthesis continued in the H group, that the high malathion exposure affected the fish. In addition, at 96 h, gluconeogenesis may have been induced in the L group but not in H group. CONCLUSIONS Malathion exposure may have altered the balance between protein synthesis and degradation and induced gluconeogenesis in medaka. Our results suggest that metabolomics will be useful for comprehensive evaluation of toxicity.
Collapse
Affiliation(s)
- Seiichi Uno
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima, 890-0056, Japan.
| | | | | | | | | | | |
Collapse
|