1
|
Jha AN. Eco-genotoxicology: A personal reflection. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025:108535. [PMID: 40210508 DOI: 10.1016/j.mrrev.2025.108535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/01/2025] [Indexed: 04/12/2025]
Abstract
This reflective commentary provides a personal viewpoint of developments, over the last 3 decades, in the relatively new, multidisciplinary field of 'eco-genotoxicology,' also called 'genetic ecotoxicology'. It aims to outline the scope of the subject area in relation to the historical development of the discipline, critically categorising accomplishments made, taking into account the available information. It also recognises limitations of the existing information and difficulties encountered in this challenging field. Where appropriate, the article makes comparisons to the advances made in human genetic toxicology and radiation biology. The article critically covers the applications of prevailing and emerging tools being used in the field, such as omics, in vitro methodologies, modelling approaches, and artificial intelligence (AI). It also identifies potential areas of development and attempts to credit some of the important personal contributions made in this exciting and challenging subject in relation to human and environmental health.
Collapse
Affiliation(s)
- Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| |
Collapse
|
2
|
Bucking C, Bury NR, Sundh H, Wood CM. Making in vitro conditions more reflective of in vivo conditions for research on the teleost gastrointestinal tract. J Exp Biol 2024; 227:jeb246440. [PMID: 39392112 PMCID: PMC11529878 DOI: 10.1242/jeb.246440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
To date, the majority of in vitro or ex vivo fish gastrointestinal research has been conducted under unrealistic conditions. In a living fish, ionic conditions, as well as levels of ammonia, pH, HCO3- and PCO2 differ considerably between the different regions of the gastrointestinal tract. These factors also differ from those of the saline often used in gut research. Furthermore, the oxygen gradient from the serosa to the gut lumen is rarely considered: in contrast to the serosa, the lumen is a hypoxic/anoxic environment. In addition, the gut microbiome plays a significant role in gut physiology, increasing the complexity of the in vivo gut, but replicating the microbial community for in vitro studies is exceptionally difficult. However, there are ways in which we can begin to overcome these challenges. Firstly, the luminal chemistry and PO2 in each gut compartment must be carefully considered. Secondly, although microbiological culture techniques are improving, we must learn how to maintain the microbiome diversity seen in vivo. Finally, for ex vivo studies, developing mucosal (luminal) solutions that more closely mimic the in vivo conditions will better replicate physiological processes. Within the field of mammalian gut physiology, great advances in 'gut-on-chip' devices are providing the tools to better replicate in vivo conditions; adopting and adapting this technology may assist in fish gut research initiatives. This Commentary aims to make fish gut physiologists aware of the various issues in replicating the in vivo conditions and identifies solutions as well as those areas that require further improvement.
Collapse
Affiliation(s)
- Carol Bucking
- Department of Biology, Farquharson Life Science Building, York University, Toronto, ON, M3J 1P3, Canada
| | - Nic R. Bury
- School of Ocean and Earth Sciences, University of Southampton, National Oceanographic Centre, Waterfront Campus, Southampton, Hampshire, SO14 3ZH, UK
| | - Henrik Sundh
- Department of Biological & Environmental Sciences, University of Gothenburg, Medicinaregatan 7 B, 41390 Göteborg, Sweden
| | - Chris M. Wood
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T1Z4, Canada
| |
Collapse
|
3
|
Zeb R, Yin X, Chen F, Wang KJ. Sex-specific divergent responses of marine medaka (Oryzias melastigma) towards long-term benzo[a]pyrene exposure revealed stronger resilience and recoverability in female fish. CHEMOSPHERE 2024; 364:143077. [PMID: 39134182 DOI: 10.1016/j.chemosphere.2024.143077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Benzo[a]pyrene (BaP), a representative five-membered polycyclic aromatic hydrocarbon, has been extensively studied as a pollutant for decades. Despite this, sex-specific responses to BaP exposure remain poorly understood. This study employed a life-cycle exposure approach to investigate the effects of prolonged BaP exposure on marine medaka (Oryzias melastigma), highlighting sex-specific responses. After a 90-day exposure period, significant variations in biometric measurements and oxidative stress markers were observed between male and female fish. BaP exposure resulted in weak detoxification defense in males, while females exhibited an opposite response. Transcriptomic analysis revealed 13 significantly enriched pathways in males and 11 in females, with varying numbers of differentially expressed genes between the sexes, highlighting distinct biological responses. Host resistance assay showed higher mortality rates among BaP-exposed males, and suppressed immune gene expressions and lysozyme activity, while females demonstrated enhanced immune genes and lysozyme activity post-challenge, indicating a more resilient defense response. Furthermore, after a one-month depuration period following BaP exposure, male medaka demonstrated slower recoverability compared to females. These findings underscore sex-specific effects of BaP exposure on fish, with females displaying stronger resilience. Understanding these distinctions are crucial for accurately assessing the impact of environmental pollutants on the aquatic population and ecosystem maintenance.
Collapse
Affiliation(s)
- Rabia Zeb
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Xiaohan Yin
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
4
|
Zarei S, Ghafouri H, Vahdatiraad L, Heidari B, Sohrabi T. Enhancing resistance and cell survival in Acipenser ruthenus liver, gill, and kidney cells: The potential of heat shock protein inducers against PAH-benzo[a]pyrene stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9445-9460. [PMID: 38191735 DOI: 10.1007/s11356-024-31884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
The Caspian Sea has faced many environmental challenges, such as oil pollution. Heat shock proteins (HSPs) play a critical role in stress conditions and physiological changes caused by disease or injury. By evaluating the effects of various HSP inducers (HSPi), including Pro-Tex® (NOP: 800 mM), amygdalin (AMG: 80 mM), and a novel synthetic compound derived from pirano piranazole (SZ: 80 µm) on isolated cells from Sterlet Sturgeon (Acipenser ruthenus) treated with 75% IC50 PAH-benzo[a]pyrene (BaP; B75). This study examines whether there is a correlation between exposure to the BaP pollutant and HSPs in fish. In vitro, after culturing cells from the liver, kidney, and gills, they were treated with HSPi compounds in the presence and absence of BaP. Western blotting was used to assess HSP27, HSP70, and HSP90 expression patterns. A variety of enzyme activities were measured before (without treatment) and after treatment with HSPis and HSPi + B75, including cytochrome P450 (CYP450) activity, specific enzyme activity for acetylcholinesterase (AChE), antioxidant capacity, liver indicator enzymes, cortisol levels, and immunity parameters. When compared to the control group, cells treated with B75 showed the lowest AChE enzyme activity (p < 0.0001). CYP450 activity was highest in group B75, while HSPi caused the opposite effect (p < 0.0001). HSPi + B75 increased HSP levels and antioxidant parameters while decreasing cortisol and liver indicator enzymes (p < 0.0001). HSPi may be a powerful and reliable method for enhancing the resistance of A. ruthenus to BaP stresses before exposure. Treating cells with HSP-inducing compounds, such as NOP, AMG, and SZ, can assist them in managing stress and increase HSP (27, 70, and 90) protein expression. Furthermore, the study findings suggest that HSPis can also mitigate the adverse effects of stress, ultimately increasing cell survival and resistance.
Collapse
Affiliation(s)
- Sevda Zarei
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
- Department of Marine Sciences, the Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Leila Vahdatiraad
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Behrooz Heidari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
- Department of Marine Sciences, the Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran
| | - Tooraj Sohrabi
- International Sturgeon Research Institute, Agricultural Research Education and Organization (AREEO), Iranian Fisheries Sciences Research Institute, Tehran, Iran
| |
Collapse
|
5
|
Løkka G, Gamil AAA, Evensen Ø, Kortner TM. Establishment of an In Vitro Model to Study Viral Infections of the Fish Intestinal Epithelium. Cells 2023; 12:1531. [PMID: 37296652 PMCID: PMC10252704 DOI: 10.3390/cells12111531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Viral infections are still a major concern for the aquaculture industry. For salmonid fish, even though breeding strategies and vaccine development have reduced disease outbreaks, viral diseases remain among the main challenges having a negative impact on the welfare of fish and causing massive economic losses for the industry. The main entry port for viruses into the fish is through mucosal surfaces including that of the gastrointestinal tract. The contradictory functions of this surface, both creating a barrier towards the external environment and at the same time being responsible for the uptake of nutrients and ion/water regulation make it particularly vulnerable. The connection between dietary components and viral infections in fish has been poorly investigated and until now, a fish intestinal in vitro model to investigate virus-host interactions has been lacking. Here, we established the permissiveness of the rainbow trout intestinal cell line RTgutGC towards the important salmonid viruses-infectious pancreatic necrosis virus (IPNV), salmonid alphavirus (subtype 3, SAV3) and infectious salmon anemia virus (ISAV)-and explored the infection mechanisms of the three different viruses in these cells at different virus to cell ratios. Cytopathic effect (CPE), virus replication in the RTgutGC cells, antiviral cell responses and viral effects on the barrier permeability of polarized cells were investigated. We found that all virus species infected and replicated in RTgutGC cells, although with different replication kinetics and ability to induce CPE and host responses. The onset and progression of CPE was more rapid at high multiplicity of infection (MOI) for IPNV and SAV3 while the opposite was true of ISAV. A positive correlation between the MOI used and the induction of antiviral responses was observed for IPNV while a negative correlation was detected for SAV3. Viral infections compromised barrier integrity at early time points prior to observations of CPE microscopically. Further, the replication of IPNV and ISAV had a more pronounced effect on barrier function than SAV3. The in vitro infection model established herein can thus provide a novel tool to generate knowledge about the infection pathways and mechanisms used to surpass the intestinal epithelium in salmonid fish, and to study how a virus can potentially compromise gut epithelial barrier functions.
Collapse
Affiliation(s)
- Guro Løkka
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; (A.A.A.G.); (Ø.E.); (T.M.K.)
| | | | | | | |
Collapse
|
6
|
Segner H, Rehberger K, Bailey C, Bo J. Assessing Fish Immunotoxicity by Means of In Vitro Assays: Are We There Yet? Front Immunol 2022; 13:835767. [PMID: 35296072 PMCID: PMC8918558 DOI: 10.3389/fimmu.2022.835767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 11/28/2022] Open
Abstract
There is growing awareness that a range of environmental chemicals target the immune system of fish and may compromise the resistance towards infectious pathogens. Existing concepts to assess chemical hazards to fish, however, do not consider immunotoxicity. Over recent years, the application of in vitro assays for ecotoxicological hazard assessment has gained momentum, what leads to the question whether in vitro assays using piscine immune cells might be suitable to evaluate immunotoxic potentials of environmental chemicals to fish. In vitro systems using primary immune cells or immune cells lines have been established from a wide array of fish species and basically from all immune tissues, and in principal these assays should be able to detect chemical impacts on diverse immune functions. In fact, in vitro assays were found to be a valuable tool in investigating the mechanisms and modes of action through which environmental agents interfere with immune cell functions. However, at the current state of knowledge the usefulness of these assays for immunotoxicity screening in the context of chemical hazard assessment appears questionable. This is mainly due to a lack of assay standardization, and an insufficient knowledge of assay performance with respect to false positive or false negative signals for the different toxicant groups and different immune functions. Also the predictivity of the in vitro immunotoxicity assays for the in vivo immunotoxic response of fishes is uncertain. In conclusion, the currently available database is too limited to support the routine application of piscine in vitro assays as screening tool for assessing immunotoxic potentials of environmental chemicals to fish.
Collapse
Affiliation(s)
- Helmut Segner
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Kristina Rehberger
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Xiamen, China
| |
Collapse
|
7
|
Franco ME, Ramirez AJ, Johanning KM, Matson CW, Lavado R. In vitro-in vivo biotransformation and phase I metabolite profiling of benzo[a]pyrene in Gulf killifish (Fundulus grandis) populations with different exposure histories. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106057. [PMID: 34942459 DOI: 10.1016/j.aquatox.2021.106057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Chronic exposure to pollution may lead populations to display evolutionary adaptations associated with cellular and physiological mechanisms of defense against xenobiotics. This could result in differences in the way individuals of the same species, but inhabiting different areas, cope with chemical exposure. In the present study, we explore two Gulf killifish (Fundulus grandis) populations with different exposure histories for potential differences in the biotransformation of benzo[a]pyrene (BaP), and conduct a comparative evaluation of in vitro and in vivo approaches to describe the applicability of new approach methodologies (NAMs) for biotransformation assessments. Pollution-adapted and non-adapted F. grandis were subjected to intraperitoneal (IP) injections of BaP in time-course exposures, prior to measurements of CYP biotransformation activity, BaP liver concentrations, and the identification and quantification of phase I metabolites. Additionally, substrate depletion bioassays using liver S9 fractions were employed for measurements of intrinsic hepatic clearance and to evaluate the production of metabolites in vitro. Pollution-adapted F. grandis presented significantly lower CYP1A activity and intrinsic clearance rates that were 3 to 4 times lower than non-adapted fish. The metabolite profiling of BaP showed the presence of 1‑hydroxy-benzo[a]pyrene in both the in vitro and in vivo approaches but with no significant population differences. Contrarily, 9‑hydroxy-benzo[a]pyrene and benzo[a]pyrene-4,5-dihydrodiol, only identified through the in vivo approach, presented higher concentrations in the bile of pollution-adapted fish relative to non-adapted individuals. These observations further the understanding of the evolutionary adaptation of F. grandis inhabiting heavily polluted environments in the Houston Ship Channel, TX, USA, and highlight the need to consider the evolutionary history of populations of interest during the implementation of NAMs.
Collapse
Affiliation(s)
- Marco E Franco
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States
| | - Alejandro J Ramirez
- Mass Spectrometry Core Facility, Baylor University, Waco, TX, 76798, United States
| | | | - Cole W Matson
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, United States
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States.
| |
Collapse
|
8
|
Mai Y, Peng S, Li H, Gao Y, Lai Z. NOD-like receptor signaling pathway activation: A potential mechanism underlying negative effects of benzo(α)pyrene on zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108935. [PMID: 33161151 DOI: 10.1016/j.cbpc.2020.108935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/11/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Benzo(α)pyrene (BaP) is one of typical polycyclic aromatic hydrocarbons (PAHs) in aquatic environments and has been shown to cause toxic effects to aquatic animals. Although the negative effects of BaP have been investigated, the potential toxic mechanisms remain uncharacterized. To explore the potential mechanisms mediating the toxic effects of BaP, zebrafish (Danio rerio) were exposed to BaP for 15 days and the toxic effects of BaP in zebrafish liver were investigated using physiological and transcriptomic analyses. After 15-day BaP exposure, zebrafish liver exhibited abnormalities including increased cytoplasmic vacuolation, inflammatory cell infiltration, swelled nuclei and irregular pigmentation. BaP exposure also induced oxidative stress to the liver of zebrafish. Transcriptomic profiles revealed 5129 differentially expressed genes (DEGs) after 15-days of BaP exposure, and the vast majority of DEGs were up-regulated under BaP treatment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggest that genes related to immune response were significantly dysregulated. Furthermore, the nucleotide-binding, oligomerization domain (NOD)-like receptor signaling pathway was significantly enriched and most of the genes in this pathway exhibited enhanced expression after BaP exposure. These results partially explained the mechanisms underlying the toxic effects of BaP on zebrafish liver. In conclusion, BaP has the potential to induce physiological responses in zebrafish liver through altering associated genes.
Collapse
Affiliation(s)
- Yongzhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, People's Republic of China
| | - Songyao Peng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, People's Republic of China
| | - Haiyan Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, People's Republic of China
| | - Yuan Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, People's Republic of China
| | - Zini Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, People's Republic of China; Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, People's Republic of China; Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou 510380, People's Republic of China.
| |
Collapse
|
9
|
Wang B, Wang H, Han D, Yin Y. Screening toxicological effects of different contaminants using hepatic homogenates-based ethoxyresorufin-O-deethylase in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135775. [PMID: 31806302 DOI: 10.1016/j.scitotenv.2019.135775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
In this paper, we demonstrated the potential of an in vitro method of liver homogenate-based ethoxyresorufin-O-deethylase (EROD) to determine the toxicological effects of multiple kinds of contaminants. We evaluated the in vitro impact of nine pharmaceutically active compounds (PhACs), 13 polycyclic aromatic hydrocarbons (PAHs), and three polychlorinated biphenyls (PCBs). There were different responses of EROD to these contaminants. The response of EROD to PhACs was quite complex, exhibiting both induction and inhibition effects. PAHs and PCBs elicited a strong inhibitory response on EROD activity at high concentrations in a dose-dependent manner. PAHs showed more inhibitory effects as the number of benzene rings increased. Our in vitro bioassay seems to be a potential method for toxicological screening of multiple types of contaminants.
Collapse
Affiliation(s)
- Biyan Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Haiyan Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Daxiong Han
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Yan Yin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| |
Collapse
|
10
|
Katagi T. In vitro metabolism of pesticides and industrial chemicals in fish. JOURNAL OF PESTICIDE SCIENCE 2020; 45:1-15. [PMID: 32110158 PMCID: PMC7024743 DOI: 10.1584/jpestics.d19-074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Metabolism is one of the most important factors in controlling the toxicity and bioaccumulation of pesticides in fish. In vitro systems using subcellular fractions, cell lines, hepatocytes and tissues of a specific organ, each of which is characterized by usability, enzyme activity and chemical transport via membrane, have been applied to investigate the metabolic profiles of pesticides. Not only species and organs but also the fishkeeping conditions are known to greatly affect the in vitro metabolism of pesticides. A comparison of the metabolic profiles of pesticides and industrial chemicals taken under similar conditions has shown that in vitro systems using a subcellular S9 fraction and hepatocytes qualitatively reproduce many in vivo metabolic reactions. More investigation of these in vitro systems for pesticides is necessary to verify their applicability to the estimation of pesticide metabolism in fish.
Collapse
Affiliation(s)
- Toshiyuki Katagi
- Bioscience Research Laboratory, Sumitomo Chemical Co., Ltd., 3–1–98 Kasugadenaka, Konohana-ku, Osaka 554–8558, Japan
| |
Collapse
|
11
|
Franco ME, Lavado R. Applicability of in vitro methods in evaluating the biotransformation of polycyclic aromatic hydrocarbons (PAHs) in fish: Advances and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:685-695. [PMID: 30939321 DOI: 10.1016/j.scitotenv.2019.03.394] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 05/24/2023]
Abstract
The biotransformation of polycyclic aromatic hydrocarbons (PAHs) and the biochemical mechanisms involved in such process continue to be intensively studied in the fields of environmental science and toxicology. The investigation of PAH biotransformation in fish is fundamental to understand how piscine species cope with PAH exposure, as these compounds are ubiquitous in aquatic ecosystems and impact different levels of biological organization. New approaches are continuously developed in the field of ecotoxicology, allowing live animal testing to be combined with and, in some cases, replaced with novel in vitro systems. Many in vitro techniques have been developed and effectively applied in the investigation of the biochemical pathways driving the biotransformation of PAH in fish. In vitro experimentation has been fundamental in the advancement of not only understanding PAH-mediated toxicity, but also in highlighting suitable cell-based models for such investigations. Therefore, the present review highlights the value and applicability of in vitro systems for PAH biotransformation studies, and provides up-to-date information on the use of in vitro fish models in the evaluation of PAH biotransformation, common biomarkers, and challenges encountered when developing and applying such systems.
Collapse
Affiliation(s)
- Marco E Franco
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA.
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA
| |
Collapse
|
12
|
Žegura B, Filipič M. The application of the Comet assay in fish cell lines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:72-84. [DOI: 10.1016/j.mrgentox.2019.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/28/2022]
|
13
|
Bussolaro D, Wright SL, Schnell S, Schirmer K, Bury NR, Arlt VM. Co-exposure to polystyrene plastic beads and polycyclic aromatic hydrocarbon contaminants in fish gill (RTgill-W1) and intestinal (RTgutGC) epithelial cells derived from rainbow trout (Oncorhynchus mykiss). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:706-714. [PMID: 30849588 PMCID: PMC6794159 DOI: 10.1016/j.envpol.2019.02.066] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 05/02/2023]
Abstract
Microscopic plastic (MP) particles are a ubiquitous contaminant in aquatic environments, which may bind hydrophobic chemicals, such as polycyclic aromatic hydrocarbons (PAHs), altering their environmental fate and interactions with biota. Using rainbow trout gill (RTgill-W1) and intestinal (RTgutGC) epithelial cells we investigated the effects of polystyrene microbeads (PS-MBs; 220 nm) on the cyto- and genotoxicity of the environmental pollutants benzo[a]pyrene (BaP) and 3-nitrobenzanthrone (3-NBA) over 48 h (0, 0.1, 1 and 10 μM). The Alamar Blue bioassay, used to assess cytotoxicity, showed that both pollutants significantly decreased cell viability by 10-20% at 10 μM in both cell lines after 48 h whereas PS-MBs (5 or 50 μg mL-1) were non-toxic. Cytotoxicity in cells treated with PS-MBs together with BaP or 3-NBA were similar to those observed after exposure to BaP or 3-NBA alone. Using the formamidopyrimidine-DNA glycosylase (FPG)-modified comet assay 3-NBA, but not BaP, induced DNA damage in RTgutGC cells at 10 μM (∼10% tail DNA in the absence and ∼15% tail DNA in the presence of FPG versus ∼1% in controls), whereas PS-MBs alone showed no detrimental effects. Interestingly, comet formation was substantially increased (∼4-fold) when RTgutGC cells were exposed to PS-MBs (50 μg mL-1) and 10 μM 3-NBA compared to cells treated with 3-NBA alone. Further, using 32P-postlabelling we observed strong DNA adduct formation in 3-NBA-exposed RTgutGC cells (∼900 adducts/108 nucleotides). 3-NBA-derived DNA adduct formation was significantly decreased (∼20%) when RTgutGC cells were exposed to MB and 3-NBA compared to cells treated with 3-NBA alone. Our results show that PS-MBs impact on the genotoxicity of 3-NBA, causing a significant increase in DNA damage as measured by the comet assay in the intestinal cell line, providing proof of principle that MPs may alter the genotoxic potential of PAHs in fish cells.
Collapse
Affiliation(s)
- Daniel Bussolaro
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, London, SE1 9NH, United Kingdom; Federal Institute of Education, Science and Technology of Paraná, Curitiba Campus, CEP: 80.230 - 150., Curitiba, PR, Brazil
| | - Stephanie L Wright
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, London, SE1 9NH, United Kingdom
| | - Sabine Schnell
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, London, SE1 9NH, United Kingdom
| | - Kristin Schirmer
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Nicolas R Bury
- School of Science, Technology and Engineering, University of Suffolk, James Hehir Building, Neptune Quay, Ipswich, IP4 1QJ, Suffolk, United Kingdom.
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, London, SE1 9NH, United Kingdom; NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, King's College London in partnership with Public Health England and Imperial College London, Franklin-Wilkins Building, London, SE1 9NH, United Kingdom
| |
Collapse
|
14
|
Pannetier P, Morin B, Clérandeau C, Lacroix C, Cabon J, Cachot J, Danion M. Comparative biomarker responses in Japanese medaka (Oryzias latipes) exposed to benzo[a]pyrene and challenged with betanodavirus at three different life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:964-976. [PMID: 30380501 DOI: 10.1016/j.scitotenv.2018.10.256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
It is now well documented that several contaminants can modulate the fish immune system, leading to disrupted host resistance against pathogens and increased incidence of disease. Since fish are usually co-exposed to chemicals and pathogens in the natural environment, analysis of the immunotoxic effects of pollutants is particularly relevant. The authorities in the European Union have recommended the development of toxicity assays on cell cultures and embryos, as an alternative to testing in vertebrates. This is why in our study, a fish immune challenge assay was developed for the early life stages of Japanese medaka to evaluate and compare the relevance of new biomarkers. Fish were exposed to benzo[a]pyrene (BaP), a model pollutant, for 8days at the embryonic stage, or for 48h at the larvae and juvenile stages, and fish were infected with betanodavirus by bath-challenge of 106TCID50/mL. Biometric changes and induction of malformations were observed after embryonic exposure. DNA damage and induction of EROD activity were recorded at the end of all chemical exposures. Viral infection increased the mortality rate significantly and disturbed the behavior of fish after light stimulation. While BaP exposure increased swimming speed, betanodavirus infection slowed swimming activity. In larvae co-exposed to BaP and the virus, the viral titer in the whole body was higher than in fish infected only with the virus. This study highlighted the sensitivity and usefulness of the immune challenge assay on the early life stages of Japanese medaka to evaluate the toxic effects of pollutants.
Collapse
Affiliation(s)
- Pauline Pannetier
- Bordeaux University, EPOC Laboratory, UMR 5805, F-33400 Talence, France
| | - Bénédicte Morin
- Bordeaux University, EPOC Laboratory, UMR 5805, F-33400 Talence, France
| | | | - Camille Lacroix
- Centre of Documentation, Research and Experimentation on Accidental Water Pollution (CEDRE), 715 Rue Alain Colas, 29200 Brest, France
| | - Joëlle Cabon
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jérôme Cachot
- Bordeaux University, EPOC Laboratory, UMR 5805, F-33400 Talence, France
| | - Morgane Danion
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
15
|
Langan LM, Owen SF, Jha AN. Establishment and long-term maintenance of primary intestinal epithelial cells cultured from the rainbow trout, Oncorhynchus mykiss. Biol Open 2018. [PMID: 29514825 PMCID: PMC5898270 DOI: 10.1242/bio.032870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A novel method for the establishment and long-term maintenance of ex vivo cultures from intestinal regions of the rainbow trout, Oncorhynchus mykiss (Walbaum), is reported. Adherence of cells was observed within hours, epithelial island formation recorded at 48 h and rapid proliferation with confluence achieved between 9-14 days. In addition to metabolic characterisation, basic morphology of growing cells was characterised using histology, immunofluorescence, transmission electron microscopy (TEM) and transepithelial electrical resistance (TEER). Regional differences in intestinal ethoxyresorufin-O-deethylase (EROD) and 7-ethoxycoumarin-O-deethylation (ECOD) activities in these primary grown enterocytes were compared following exposure to model inducers [i.e. α-NF, β-NF, B(a)P] which demonstrated significant differences. Regional differences in dietary uptake and metabolism of contaminants can therefore be studied in this in vitro system to increase our understanding of fundamental processes, while concurrently providing a means to reduce the number of fish required for biological studies in line with the principles of the 3Rs (Reduce, Refine and Replace). This article has an associated First Person interview with the first author of the paper. Summary: Understanding chemical uptake from the diet is difficult in live fish: we developed long-term intestinal cell cultures that enables the science and provides an alternative method.
Collapse
Affiliation(s)
- Laura M Langan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Stewart F Owen
- Global Sustainability, AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TF, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
16
|
Stadnicka-Michalak J, Weiss FT, Fischer M, Tanneberger K, Schirmer K. Biotransformation of Benzo[ a]pyrene by Three Rainbow Trout ( Onchorhynchus mykiss) Cell Lines and Extrapolation To Derive a Fish Bioconcentration Factor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3091-3100. [PMID: 29400055 DOI: 10.1021/acs.est.7b04548] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Permanent fish cell lines constitute a promising complement or substitute for fish in the environmental risk assessment of chemicals. We demonstrate the potential of a set of cell lines originating from rainbow trout ( Oncorhynchus mykiss) to aid in the prediction of chemical bioaccumulation in fish, using benzo[ a]pyrene (BaP) as a model chemical. We selected three cell lines from different tissues to more fully account for whole-body biotransformation in vivo: the RTL-W1 cell line, representing the liver as major site of biotransformation, and the RTgill-W1 (gill) and RTgutGC (intestine) cell lines, as important environment-organism interfaces, which likely influence chemical uptake. All three cell lines were found to effectively biotransform BaP. However, rates of in vitro clearance differed, with the RTL-W1 cell line being most efficient, followed by RTgutGC. Co-exposures with α-naphthoflavone as potent inhibitor of biotransformation, assessment of CYP1A catalytic activity, and the progression of cellular toxicity upon prolonged BaP exposure revealed that BaP is handled differently in the RTgill-W1 compared to the other two cell lines. Application of the cell-line-derived in vitro clearance rates into a physiology-based toxicokinetic model predicted a BaP bioconcentration factor (BCF) of 909-1057 compared to 920 reported for rainbow trout in vivo.
Collapse
Affiliation(s)
- Julita Stadnicka-Michalak
- Eawag , Überlandstrasse 133 , 8600 Dübendorf , Switzerland
- School of Architecture, Civil and Environmental Engineering , EPF Lausanne , 1015 Lausanne , Switzerland
| | - Frederik T Weiss
- Eawag , Überlandstrasse 133 , 8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , 8092 Zürich , Switzerland
| | | | - Katrin Tanneberger
- Eawag , Überlandstrasse 133 , 8600 Dübendorf , Switzerland
- Ecosens AG, 8304 Wallisellen , Switzerland
| | - Kristin Schirmer
- Eawag , Überlandstrasse 133 , 8600 Dübendorf , Switzerland
- School of Architecture, Civil and Environmental Engineering , EPF Lausanne , 1015 Lausanne , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , 8092 Zürich , Switzerland
| |
Collapse
|