1
|
Asaduddin M, Kim EY, Park SH. SPINNED: Simulation-based physics-informed neural network for deconvolution of dynamic susceptibility contrast MRI perfusion data. Magn Reson Med 2024; 92:1205-1218. [PMID: 38623911 DOI: 10.1002/mrm.30095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE To propose the simulation-based physics-informed neural network for deconvolution of dynamic susceptibility contrast (DSC) MRI (SPINNED) as an alternative for more robust and accurate deconvolution compared to existing methods. METHODS The SPINNED method was developed by generating synthetic tissue residue functions and arterial input functions through mathematical simulations and by using them to create synthetic DSC MRI time series. The SPINNED model was trained using these simulated data to learn the underlying physical relation (deconvolution) between the DSC-MRI time series and the arterial input functions. The accuracy and robustness of the proposed SPINNED method were assessed by comparing it with two common deconvolution methods in DSC MRI data analysis, circulant singular value decomposition, and Volterra singular value decomposition, using both simulation data and real patient data. RESULTS The proposed SPINNED method was more accurate than the conventional methods across all SNR levels and showed better robustness against noise in both simulation and real patient data. The SPINNED method also showed much faster processing speed than the conventional methods. CONCLUSION These results support that the proposed SPINNED method can be a good alternative to the existing methods for resolving the deconvolution problem in DSC MRI. The proposed method does not require any separate ground-truth measurement for training and offers additional benefits of quick processing time and coverage of diverse clinical scenarios. Consequently, it will contribute to more reliable, accurate, and rapid diagnoses in clinical applications compared with the previous methods including those based on supervised learning.
Collapse
Affiliation(s)
- Muhammad Asaduddin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Eung Yeop Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
2
|
Senger KPS, Kesavadas C, Thomas B, Singh A, Multani GS, AN D, Label M, Suchandrima B, Shin D. Experimenting with ASL-based arterialized cerebral blood volume as a novel imaging biomarker in grading glial neoplasms. Neuroradiol J 2023; 36:728-735. [PMID: 37548164 PMCID: PMC10649543 DOI: 10.1177/19714009231193163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Perfusion imaging is one of the methods used to grade glial neoplasms, and in this study we evaluated the role of ASL perfusion in grading brain glioma. PURPOSE The aim is to evaluate the role of arterialized cerebral blood volume (aCBV) of multi-delay ASL perfusion for grading glial neoplasm. MATERIALS AND METHODS This study is a prospective observational study of 56 patients with glial neoplasms of the brain who underwent surgery, and only cases with positive diagnosis of glioma are included to evaluate the novel diagnostic parameter. RESULTS In the study, ASL-derived normalized aCBV (naCBV) and T2*DSC-derived normalized CBV (nCBV) are showing very high correlation (Pearson's correlation coefficient value of 0.94) in grading glial neoplasms. naCBV and nCBF are also showing very high correlation (Pearson's correlation coefficient value of 0.876). The study also provides cutoff values for differentiating LGG from HGG for normalized aCBV(naCBV) of ASL, normalized CBV (nCBV), and normalized nCBF derived from T2* DCS as 1.12, 1.254, and 1.31, respectively. ASL-derived aCBV also shows better diagnostic accuracy than ASL-derived CBF. CONCLUSION This study is one of its kind to the best of our knowledge where multi-delay ASL perfusion-derived aCBV is used as a novel imaging biomarker for grading glial neoplasms, and it has shown high statistical correlation with T2* DSC-derived perfusion parameters.
Collapse
Affiliation(s)
- Krishna Pratap Singh Senger
- 1Department of Imaging Sciences and Interventional Radiology, Sree Chita Institute of Medical Sciences and Technology, Trivandrum, Kerala, India
| | - C Kesavadas
- 1Department of Imaging Sciences and Interventional Radiology, Sree Chita Institute of Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Bejoy Thomas
- 1Department of Imaging Sciences and Interventional Radiology, Sree Chita Institute of Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Ankita Singh
- Department of Research, Army Hospital Research and Referral, New Delhi, India
| | - Gurpreet Singh Multani
- 1Department of Imaging Sciences and Interventional Radiology, Sree Chita Institute of Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Deepti AN
- 1Department of Imaging Sciences and Interventional Radiology, Sree Chita Institute of Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Marc Label
- Department of Research and Development, GEHealthcare, Calgary, AB, Canada
| | | | - David Shin
- Department of Research and Development, GEHealthcare, Calgary, AB, Canada
| |
Collapse
|
3
|
Xu H, Han H, Liu Y, Huo R, Lang N, Yuan H, Wang T, Zhao X. Perioperative cerebral blood flow measured by arterial spin labeling with different postlabeling delay in patients undergoing carotid endarterectomy: a comparison study with CT perfusion. Front Neurosci 2023; 17:1200273. [PMID: 37781254 PMCID: PMC10536277 DOI: 10.3389/fnins.2023.1200273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Background Arterial spin labeling (ASL) is a non-invasive technique for measuring cerebral perfusion. Its accuracy is affected by the arterial transit time. This study aimed to (1) evaluate the accuracy of ASL in measuring the cerebral perfusion of patients who underwent carotid endarterectomy (CEA) and (2) determine a better postlabeling delay (PLD) for pre- and postoperative perfusion imaging between 1.5 and 2.0 s. Methods A total of 24 patients scheduled for CEA due to severe carotid stenosis were included in this study. All patients underwent ASL with two PLDs (1.5 and 2.0 s) and computed tomography perfusion (CTP) before and after surgery. Cerebral blood flow (CBF) values were measured on the registered CBF images of ASL and CTP. The correlation in measuring perioperative relative CBF (rCBF) and difference ratio of CBF (DRCBF) between ASL with PLD of 1.5 s (ASL1.5) or 2.0 s (ASL2.0) and CTP were also determined. Results There were no significant statistical differences in preoperative rCBF measurements between ASL1.5 and CTP (p = 0.17) and between ASL2.0 and CTP (p = 0.42). Similarly, no significant differences were found in rCBF between ASL1.5 and CTP (p = 0.59) and between ASL2.0 and CTP (p = 0.93) after CEA. The DRCBF measured by CTP was found to be marginally lower than that measured by ASL2.0_1.5 (p = 0.06) and significantly lower than that measured by ASL1.5_1.5 (p = 0.01), ASL2.0_2.0 (p = 0.03), and ASL1.5_2.0 (p = 0.007). There was a strong correlation in measuring perioperative rCBF and DRCBF between ASL and CTP (r = 0.67-0.85, p < 0.001). Using CTP as the reference standard, smaller bias can be achieved in measuring rCBF by ASL2.0 (-0.02) than ASL1.5 (-0.07) before CEA. In addition, the same bias (0.03) was obtained by ASL2.0 and ASL1.5 after CEA. The bias of ASL2.0_2.0 (0.31) and ASL2.0_1.5 (0.32) on DRCBF measurement was similar, and both were smaller than that of ASL1.5_1.5 (0.60) and ASL1.5_2.0 (0.60). Conclusion Strong correlation can be found in assessing perioperative cerebral perfusion between ASL and CTP. During perioperative ASL imaging, the PLD of 2.0 s is better than 1.5 s for preoperative scan, and both 1.5 and 2.0 s are suitable for postoperative scan.
Collapse
Affiliation(s)
- Huimin Xu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Hualu Han
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing, China
| | - Ying Liu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Ran Huo
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Ning Lang
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Xihai Zhao
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Vu C, Xu B, González-Zacarías C, Shen J, Baas KPA, Choi S, Nederveen AJ, Wood JC. Sinusoidal CO 2 respiratory challenge for concurrent perfusion and cerebrovascular reactivity MRI. Front Physiol 2023; 14:1102983. [PMID: 36846345 PMCID: PMC9948030 DOI: 10.3389/fphys.2023.1102983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction: Deoxygenation-based dynamic susceptibility contrast (dDSC) has previously leveraged respiratory challenges to modulate blood oxygen content as an endogenous source of contrast alternative to gadolinium injection in perfusion-weighted MRI. This work proposed the use of sinusoidal modulation of end-tidal CO2 pressures (SineCO 2 ), which has previously been used to measure cerebrovascular reactivity, to induce susceptibility-weighted gradient-echo signal loss to measure brain perfusion. Methods: SineCO 2 was performed in 10 healthy volunteers (age 37 ± 11, 60% female), and tracer kinetics model was applied in the frequency domain to calculate cerebral blood flow, cerebral blood volume, mean transit time, and temporal delay. These perfusion estimates were compared against reference techniques, including gadolinium-based DSC, arterial spin labeling, and phase contrast. Results: Our results showed regional agreement between SineCO 2 and the clinical comparators. SineCO 2 was able to generate robust CVR maps in conjunction to baseline perfusion estimates. Discussion: Overall, this work demonstrated feasibility of using sinusoidal CO2 respiratory paradigm to simultaneously acquire both cerebral perfusion and cerebrovascular reactivity maps in one imaging sequence.
Collapse
Affiliation(s)
- Chau Vu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- Division of Cardiology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Botian Xu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- Division of Cardiology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Clio González-Zacarías
- Division of Cardiology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, United States
| | - Jian Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- Division of Cardiology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Koen P. A. Baas
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| | - Soyoung Choi
- Division of Cardiology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, United States
| | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| | - John C. Wood
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- Division of Cardiology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Vu C, Chai Y, Coloigner J, Nederveen AJ, Borzage M, Bush A, Wood JC. Quantitative perfusion mapping with induced transient hypoxia using BOLD MRI. Magn Reson Med 2020; 85:168-181. [PMID: 32767413 DOI: 10.1002/mrm.28422] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Gadolinium-based dynamic susceptibility contrast (DSC) is commonly used to characterize blood flow in patients with stroke and brain tumors. Unfortunately, gadolinium contrast administration has been associated with adverse reactions and long-term accumulation in tissues. In this work, we propose an alternative deoxygenation-based DSC (dDSC) method that uses a transient hypoxia gas paradigm to deliver a bolus of paramagnetic deoxygenated hemoglobin to the cerebral vasculature for perfusion imaging. METHODS Through traditional DSC tracer kinetic modeling, the MR signal change induced by this hypoxic bolus can be used to generate regional perfusion maps of cerebral blood flow, cerebral blood volume, and mean transit time. This gas paradigm and blood-oxygen-level-dependent (BOLD)-MRI were performed concurrently on a cohort of 66 healthy and chronically anemic subjects (age 23.5 ± 9.7, female 64%). RESULTS Our results showed reasonable global and regional agreement between dDSC and other flow techniques, such as phase contrast and arterial spin labeling. CONCLUSION In this proof-of-concept study, we demonstrated the feasibility of using transient hypoxia to generate a contrast bolus that mimics the effect of gadolinium and yields reasonable perfusion estimates. Looking forward, optimization of the hypoxia boluses and measurement of the arterial-input function is necessary to improve the accuracy of dDSC. Additionally, a cross-validation study of dDSC and DSC in brain tumor and ischemic stroke subjects is warranted to evaluate the clinical diagnostic utility of this approach.
Collapse
Affiliation(s)
- Chau Vu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Yaqiong Chai
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,Department of Radiology, CIBORG Laboratory, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Julie Coloigner
- Department of Radiology, CIBORG Laboratory, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Univ Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, Empenn ERL U 1228, Rennes, France
| | - Aart J Nederveen
- Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Matthew Borzage
- Division of Neonatology, Fetal and Neonatal Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Adam Bush
- Department of Radiology, Stanford University, Stanford, CA, USA.,Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - John C Wood
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,Division of Cardiology, Department of Pediatrics and Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Kim JY, Park JE, Jo Y, Shim WH, Nam SJ, Kim JH, Yoo RE, Choi SH, Kim HS. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro Oncol 2020; 21:404-414. [PMID: 30107606 DOI: 10.1093/neuonc/noy133] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pseudoprogression is a diagnostic challenge in early posttreatment glioblastoma. We therefore developed and validated a radiomics model using multiparametric MRI to differentiate pseudoprogression from early tumor progression in patients with glioblastoma. METHODS The model was developed from the enlarging contrast-enhancing portions of 61 glioblastomas within 3 months after standard treatment with 6472 radiomic features being obtained from contrast-enhanced T1-weighted imaging, fluid-attenuated inversion recovery imaging, and apparent diffusion coefficient (ADC) and cerebral blood volume (CBV) maps. Imaging features were selected using a LASSO (least absolute shrinkage and selection operator) logistic regression model with 10-fold cross-validation. Diagnostic performance for pseudoprogression was compared with that for single parameters (mean and minimum ADC and mean and maximum CBV) and single imaging radiomics models using the area under the receiver operating characteristics curve (AUC). The model was validated with an external cohort (n = 34) imaged on a different scanner and internal prospective registry data (n = 23). RESULTS Twelve significant radiomic features (3 from conventional, 2 from diffusion, and 7 from perfusion MRI) were selected for model construction. The multiparametric radiomics model (AUC, 0.90) showed significantly better performance than any single ADC or CBV parameter (AUC, 0.57-0.79, P < 0.05), and better than a single radiomics model using conventional MRI (AUC, 0.76, P = 0.012), ADC (AUC, 0.78, P = 0.014), or CBV (AUC, 0.80, P = 0.43). The multiparametric radiomics showed higher performance in the external validation (AUC, 0.85) and internal validation (AUC, 0.96) than any single approach, thus demonstrating robustness. CONCLUSIONS Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improved diagnostic performance for identifying pseudoprogression and showed robustness in a multicenter setting.
Collapse
Affiliation(s)
- Jung Youn Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Youngheun Jo
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Woo Hyun Shim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Soo Jung Nam
- Deparment of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jeong Hoon Kim
- Deparment of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Roh-Eul Yoo
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
7
|
Patch-based super-resolution of arterial spin labeling magnetic resonance images. Neuroimage 2019; 189:85-94. [DOI: 10.1016/j.neuroimage.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 11/22/2022] Open
|
8
|
Kellner E, Mader I, Reisert M, Urbach H, Kiselev VG. Arterial input function in a dedicated slice for cerebral perfusion measurements in humans. MAGMA (NEW YORK, N.Y.) 2018; 31:439-448. [PMID: 29224052 DOI: 10.1007/s10334-017-0663-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/02/2017] [Accepted: 11/13/2017] [Indexed: 11/30/2022]
Abstract
OBJECT We aimed to modify our previously published method for arterial input function measurements for evaluation of cerebral perfusion (dynamic susceptibility contrast MRI) such that it can be applied in humans in a clinical setting. MATERIALS AND METHODS Similarly to our previous work, a conventional measurement sequence for dynamic susceptibility contrast MRI is extended with an additional measurement slice at the neck. Measurement parameters at this slice were optimized for the blood signal (short echo time, background suppression, magnitude and phase images). Phase-based evaluation of the signal in the carotid arteries is used to obtain quantitative arterial input functions. RESULTS In all pilot measurements, quantitative arterial input functions were obtained. The resulting absolute perfusion parameters agree well with literature values (gray and white matter mean values of 46 and 24 mL/100 g/min, respectively, for cerebral blood flow and 3.0% and 1.6%, respectively, for cerebral blood volume). CONCLUSIONS The proposed method has the potential to quantify arterial input functions in the carotid arteries from a direct measurement without any additional normalization.
Collapse
Affiliation(s)
- Elias Kellner
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Breisacher Str. 60a, 79115, Freiburg, Germany.
| | - Irina Mader
- Department of Neuroradiology, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Breisacher Str. 60a, Freiburg, 79115, Germany
| | - Marco Reisert
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Breisacher Str. 60a, 79115, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Breisacher Str. 60a, Freiburg, 79115, Germany
| | - Valerij Gennadevic Kiselev
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Breisacher Str. 60a, 79115, Freiburg, Germany
| |
Collapse
|
9
|
Soni N, Dhanota DPS, Kumar S, Jaiswal AK, Srivastava AK. Perfusion MR imaging of enhancing brain tumors: Comparison of arterial spin labeling technique with dynamic susceptibility contrast technique. Neurol India 2017; 65:1046-1052. [PMID: 28879895 DOI: 10.4103/neuroindia.ni_871_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Arterial spin labeling (ASL) magnetic resonance (MR) perfusion is a noninvasive and repeatable method for quantitatively measuring cerebral blood flow (CBF). This study aims to compare measurements of ASL-derived CBF with dynamic susceptibility contrast (DSC) MRI in the assessment of enhancing brain tumors (primary and metastatic), with an aim to use ASL as an alternative to DSC. MATERIALS AND METHODS Thirty patients with newly diagnosed brain tumors (16 meningiomas, 6 gliomas, 3 metastases, 2 cerebellopontine angle schwannoma, 1 central neurocytoma, and 2 low-grade gliomas) were examined using a 3T MR scanner. Values of CBF, regional cerebral blood flow (rCBF), and regional cerebral blood volume (rCBV) were determined in the tumor (T) as well as in the contralateral normal gray matter (GM) and white matter (WM). Tumor-to-GM or WM CBF, rCBF, and rCBV ratios were calculated to estimate normalized perfusion values (i.e., ASL normalized tumor blood flow [nTBF], DSC nTBF, and DSC normalized tumor blood volume [nTBV]) from the ASL and DSC techniques. ASL and DSC MRI derived perfusion parameters were compared using paired t-test and correlated using Pearson correlation coefficient. RESULTS Mean values for ASL nTBF and DSC nTBF using contralateral GM as the reference point were 2.98 ± 1.67and 2.91 ± 1.43, respectively. A very strong correlation coefficient was found between ASL nTBF and DSC nTBF with contralateral GM as the reference region (r = 0.903; R2= 0.813). Mean DSC nTBF and DSC nTBV also showed strong correlation (r = 0.83; R2= 0.701). CONCLUSION Our study results suggested that measurement of CBF from ASL possesses the potential for a noninvasive assessment of blood flow in intracranial tumors as an alternate to DSC MRI, in those patients requiring multiple follow-up imaging and in patients with impaired renal functions.
Collapse
Affiliation(s)
- Neetu Soni
- Department of Radiodiagnosis, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Devender Pal S Dhanota
- Department of Radiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Sunil Kumar
- Department of Radiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Awadhesh K Jaiswal
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Arun K Srivastava
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
10
|
Armitage PA, Skipper N, Connolly DJA, Griffiths PD. A qualitative comparison of arterial spin labelling and dynamic susceptibility contrast MRI in 52 children with a range of neurological conditions. Br J Radiol 2017; 90:20160495. [PMID: 27858468 PMCID: PMC5605026 DOI: 10.1259/bjr.20160495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To assess the usefulness of arterial spin labelling (ASL) compared with dynamic susceptibility contrast (DSC) perfusion MRI for typical paediatric neuroimaging applications at 1.5 T. METHODS 52 children (age: 4 months-17 years) with a variety of neurological disorders were scanned using three-dimensional ASL and echoplanar imaging DSC sequences. All images were reviewed by an experienced neuroradiologist; image quality was recorded as "good", "acceptable" or "poor" and diagnostic value was noted as being "greater", "similar" or "less" for ASL when compared with DSC. RESULTS ASL cerebral blood flow (CBF) images were judged to be acceptable in 89% of cases, poor in 11% of cases and good in 0% of cases, while DSC CBF images were acceptable in 88% of cases, poor in 12% of cases and good in 0% of cases. ASL images were judged to have better diagnostic value than DSC images in 28% of cases, about the same in 58% of cases and worse in 14% of cases. CONCLUSION The results of this study suggest that ASL offers a realistic alternative to DSC in the paediatric setting for the majority of cases encountered in this study. However, there are some situations where DSC outperforms ASL; so, care is required to choose the most appropriate technique for the pathology under investigation. A larger study is required to corroborate these preliminary findings. Advances in knowledge: ASL is a relatively new perfusion imaging technique whose use has not been explored extensively in the paediatric setting. This work is a preliminary study to evaluate its usefulness in paediatric neuroimaging.
Collapse
Affiliation(s)
- Paul A Armitage
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Nicholas Skipper
- Department of Radiology, Sheffield Children's Hospital, Sheffield, UK
| | | | - Paul D Griffiths
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
Manias KA, Gill SK, MacPherson L, Foster K, Oates A, Peet AC. Magnetic resonance imaging based functional imaging in paediatric oncology. Eur J Cancer 2016; 72:251-265. [PMID: 28011138 DOI: 10.1016/j.ejca.2016.10.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/26/2016] [Accepted: 10/30/2016] [Indexed: 12/16/2022]
Abstract
Imaging is central to management of solid tumours in children. Conventional magnetic resonance imaging (MRI) is the standard imaging modality for tumours of the central nervous system (CNS) and limbs and is increasingly used in the abdomen. It provides excellent structural detail, but imparts limited information about tumour type, aggressiveness, metastatic potential or early treatment response. MRI based functional imaging techniques, such as magnetic resonance spectroscopy, diffusion and perfusion weighted imaging, probe tissue properties to provide clinically important information about metabolites, structure and blood flow. This review describes the role of and evidence behind these functional imaging techniques in paediatric oncology and implications for integrating them into routine clinical practice.
Collapse
Affiliation(s)
- Karen A Manias
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Department of Paediatric Oncology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK.
| | - Simrandip K Gill
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Department of Paediatric Oncology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK.
| | - Lesley MacPherson
- Department of Radiology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK.
| | - Katharine Foster
- Department of Radiology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK.
| | - Adam Oates
- Department of Radiology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK.
| | - Andrew C Peet
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Department of Paediatric Oncology, Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, UK.
| |
Collapse
|
12
|
Hart J, Novak V, Saunders C, Gremaud PA. Transcranial Doppler-Based Surrogates for Cerebral Blood Flow: A Statistical Study. PLoS One 2016; 11:e0165536. [PMID: 27880813 PMCID: PMC5120791 DOI: 10.1371/journal.pone.0165536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/13/2016] [Indexed: 11/18/2022] Open
Abstract
It is commonly assumed that perfusion in a given cerebral territory can be inferred from Blood Flow Velocity (BFV) measurements in the corresponding stem artery. In order to test this hypothesis, we construct a cerebral blood flow (CBF) estimator based on transcranial Doppler (TCD) blood flow velocity and ten other easily available patient characteristics and clinical parameters. A total of 261 measurements were collected from 88 older patients. The estimator is based on local regression (Random Forest). Its performance is analyzed against baseline CBF from 3-D pseudocontinuous arterial spin labeling (pCASL) magnetic resonance imaging (MRI). Patient specific CBF predictions are of poor quality (r = 0.41 and p-value = 4.5 × 10−12); the hypothesis is thus not clearly supported by evidence.
Collapse
Affiliation(s)
- Joseph Hart
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Vera Novak
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Charles Saunders
- Engineering and the Environment, University of Southampton, Southampton, United Kingdom
| | - Pierre A. Gremaud
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
13
|
Greig M, Tesfaye S, Selvarajah D, Wilkinson ID. Insights into the pathogenesis and treatment of painful diabetic neuropathy. HANDBOOK OF CLINICAL NEUROLOGY 2016; 126:559-78. [PMID: 25410244 DOI: 10.1016/b978-0-444-53480-4.00037-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Painful diabetic distal symmetrical polyneuropathy (painful DPN) is a puzzle with two important missing pieces: Firstly we still do not understand why only some patients with neuropathy experience painful symptoms; Secondly we still do not have a complete understanding of how nociception generated in the peripheral nervous system is processed by the central nervous system (CNS). Available treatments offer only symptom relief and there is currently no effective treatment based on arresting or reversing the progression of disease. Therefore the management of painful DPN remains less than optimal because the complex pathophysiology of nociception and pain perception in health and disease is incompletely understood. Studies of the peripheral nervous system are investigating the molecular processes involved in signal transduction that have the potential to be interrupted or modified to ease pain. Magnetic resonance imaging techniques are helping to elucidate central pain processing pathways and describe the translation of nociception to pain. Combining the knowledge from these two streams of enquiry we will soon be able to predict accurately who will develop painful DPN, how we can halt or reverse the condition, or who will respond to symptomatic treatments. Future developments in the treatment of painful DPN will be underpinned by decoding the peripheral and central mechanisms of pain. Research is focusing on these areas of enquiry in the hope that answers will lead to effective treatments to alleviate pain and reverse pathology for those suffering from painful DPN.
Collapse
Affiliation(s)
- Marni Greig
- Diabetes Department, Royal Hallamshire Hospital, Sheffield, UK
| | - Solomon Tesfaye
- Diabetes Department, Royal Hallamshire Hospital, Sheffield, UK.
| | | | - Iain D Wilkinson
- Academic Radiology, Department of Cardiovascular Science, Royal Hallamshire Hospital, Sheffield, UK
| |
Collapse
|
14
|
Ata ES, Turgut M, Eraslan C, Dayanır YÖ. Comparison between dynamic susceptibility contrast magnetic resonance imaging and arterial spin labeling techniques in distinguishing malignant from benign brain tumors. Eur J Radiol 2016; 85:1545-53. [PMID: 27501887 DOI: 10.1016/j.ejrad.2016.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 04/30/2016] [Accepted: 05/24/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The purpose of this study was to preliminarily compare unenhanced arterial spin-labeled (ASL) imaging, dynamic susceptibility contrast-enhanced cerebral blood volume (DSCE-CBV) magnetic resonance imaging (MRI) for evaluation of tumor perfusion in patients with brain tumors. MATERIALS AND METHODS A total of 27 patients with brain tumors were examined in 1,5T MRI. Single phase and multiphase ASL, DSCE-CBV examinations were assessed by both qualitative and quantitative analysis for the detection of malignancy. Imaging results were correlated with a histopathology or follow-up. RESULTS Based on 31 studies in 27 patients with brain tumors, the visual inspection sensitivities for ASL and dynamic DSC perfusion imaging were 88% and 94%, respectively, with 100% specificity for both. On qualitative evaluation, sensitivities for ASL and DSC perfusion imaging perfusions were 88% and 94%, respectively, with 100% specificity for both. The highest sensitivity values for quantitative ASL imaging were obtained using a normalized cut-off ratio of 1.65, resulting in sensitivity of 94% for ASL imaging and cut-off ratio of 1.95 and sensitivity 94% for DSCE-CBV imaging. CONCLUSION The present study revealed similar sensitivity and specificity for both multhiphase ASL and DSC MRI. Thus, we suggest that ASL perfusion can be used in daily clinical practice.
Collapse
Affiliation(s)
- Emine Sevcan Ata
- Department of Radiology, Adnan Menderes University Faculty of Medicine, 09010, Aydın, Turkey; Department of Radiology, Usak State Hospital, 33940, Uşak, Turkey.
| | - Mehmet Turgut
- Department of Neurosurgery, Adnan Menderes University Faculty of Medicine, 09010, Aydın, Turkey.
| | - Cenk Eraslan
- Department of Radiology, Adnan Menderes University Faculty of Medicine, 09010, Aydın, Turkey; Department of Radiology, Ege University Faculty of Medicine, 35100, Bornova, Izmir, Turkey.
| | - Yelda Özsunar Dayanır
- Department of Radiology, Adnan Menderes University Faculty of Medicine, 09010, Aydın, Turkey.
| |
Collapse
|
15
|
Yoo RE, Yun TJ, Cho YD, Rhim JH, Kang KM, Choi SH, Kim JH, Kim JE, Kang HS, Sohn CH, Park SW, Han MH. Utility of arterial spin labeling perfusion magnetic resonance imaging in prediction of angiographic vascularity of meningiomas. J Neurosurg 2016; 125:536-43. [PMID: 26824378 DOI: 10.3171/2015.8.jns151211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Arterial spin labeling perfusion-weighted imaging (ASL-PWI) enables quantification of tissue perfusion without contrast media administration. The aim of this study was to explore whether cerebral blood flow (CBF) from ASL-PWI can reliably predict angiographic vascularity of meningiomas. METHODS Twenty-seven patients with intracranial meningiomas, who had undergone preoperative ASL-PWI and digital subtraction angiography prior to resection, were included. Angiographic vascularity was assessed using a 4-point grading scale and meningiomas were classified into 2 groups: low vascularity (Grades 0 and 1; n = 11) and high vascularity (Grades 2 and 3; n = 16). Absolute CBF, measured at the largest section of the tumor, was normalized to the contralateral gray matter. Correlation between the mean normalized CBF (nCBF) and angiographic vascularity was determined and the mean nCBF values of the 2 groups were compared. Diagnostic performance of the nCBF for differentiating between the 2 groups was assessed. RESULTS The nCBF had a significant positive correlation with angiographic vascularity (ρ = 0.718; p < 0.001). The high-vascularity group had a significantly higher nCBF than the low-vascularity group (3.334 ± 2.768 and 0.909 ± 0.468, respectively; p = 0.003). At the optimal nCBF cutoff value of 1.733, sensitivity and specificity for the differential diagnosis of the 2 groups were 69% (95% CI 41%-89%) and 100% (95% CI 72%-100%), respectively. The area under the receiver operating characteristic curve was 0.875 (p < 0.001). CONCLUSIONS ASL-PWI may provide a reliable and noninvasive means of predicting angiographic vascularity of meningiomas. It may thus assist in selecting potential candidates for preoperative digital subtraction angiography and embolization in clinical practice.
Collapse
Affiliation(s)
- Roh-Eul Yoo
- Departments of 1 Radiology and.,Department of Radiology, Seoul National University College of Medicine
| | - Tae Jin Yun
- Departments of 1 Radiology and.,Department of Radiology, Seoul National University College of Medicine
| | - Young Dae Cho
- Departments of 1 Radiology and.,Department of Radiology, Seoul National University College of Medicine
| | | | - Koung Mi Kang
- Departments of 1 Radiology and.,Department of Radiology, Seoul National University College of Medicine
| | - Seung Hong Choi
- Departments of 1 Radiology and.,Department of Radiology, Seoul National University College of Medicine;,Institute of Radiation Medicine, Seoul National University Medical Research Center; and
| | - Ji-Hoon Kim
- Departments of 1 Radiology and.,Department of Radiology, Seoul National University College of Medicine
| | | | | | - Chul-Ho Sohn
- Departments of 1 Radiology and.,Department of Radiology, Seoul National University College of Medicine;,Institute of Radiation Medicine, Seoul National University Medical Research Center; and
| | - Sun-Won Park
- Department of Radiology, Seoul National University College of Medicine;,Department of Radiology, Boramae Medical Center, Seoul, Korea
| | - Moon Hee Han
- Departments of 1 Radiology and.,Department of Radiology, Seoul National University College of Medicine;,Institute of Radiation Medicine, Seoul National University Medical Research Center; and
| |
Collapse
|
16
|
Zhang J. How far is arterial spin labeling MRI from a clinical reality? Insights from arterial spin labeling comparative studies in Alzheimer's disease and other neurological disorders. J Magn Reson Imaging 2015; 43:1020-45. [PMID: 26250802 DOI: 10.1002/jmri.25022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/16/2015] [Accepted: 07/19/2015] [Indexed: 12/26/2022] Open
Affiliation(s)
- Jing Zhang
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| |
Collapse
|
17
|
Dillon C, Roemer R, Payne A. Magnetic resonance temperature imaging-based quantification of blood flow-related energy losses. NMR IN BIOMEDICINE 2015; 28:840-851. [PMID: 25973583 PMCID: PMC4510856 DOI: 10.1002/nbm.3318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/03/2015] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
This study presents a new approach for evaluating bioheat transfer equation (BHTE) models used in treatment planning, control and evaluation of all thermal therapies. First, 3D magnetic resonance temperature imaging (MRTI) data are used to quantify blood flow-related energy losses, including the effects of perfusion and convection. Second, this information is used to calculate parameters of a BHTE model: in this paper the widely used Pennes BHTE. As a self-consistency check, the BHTE parameters are utilized to predict the temperatures from which they were initially derived. The approach is evaluated with finite-difference simulations and implemented experimentally with focused ultrasound heating of an ex vivo porcine kidney perfused at 0, 20 and 40 ml/min (n = 4 each). The simulation results demonstrate accurate quantification of blood flow-related energy losses, except in regions of sharp blood flow discontinuities, where the transitions are spatially smoothed. The smoothed transitions propagate into estimates of the Pennes perfusion parameter but have limited effect on the accuracy of temperature predictions using these estimates. Longer acquisition time periods mitigate the effects of MRTI noise, but worsen the effect of flow discontinuities. For the no-flow kidney experiments the estimates of a uniform, constant Pennes perfusion parameter are approximately zero, and at 20 and 40 ml/min the average estimates increase with flow rate to 3.0 and 4.2 kg/m(3) /s, respectively. When Pennes perfusion parameter values are allowed to vary spatially, but remain temporally constant, BHTE temperature predictions are more accurate than when using spatially uniform, constant Pennes perfusion values, with reductions in RMSE values of up to 79%. Locations with large estimated perfusion values correspond to high flow regions of the kidney observed in T1 -weighted MR images. This novel, MRTI-based technique holds promise for improving understanding of thermal therapy biophysics and for evaluating biothermal models.
Collapse
Affiliation(s)
| | - Robert Roemer
- University of Utah, Mechanical Engineering, Salt Lake City, UT, USA
| | - Allison Payne
- University of Utah, Radiology, Salt Lake City, UT, USA
| |
Collapse
|
18
|
Yin J, Yang J, Guo Q. Automatic determination of the arterial input function in dynamic susceptibility contrast MRI: comparison of different reproducible clustering algorithms. Neuroradiology 2015; 57:535-43. [PMID: 25633539 PMCID: PMC4412433 DOI: 10.1007/s00234-015-1493-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/15/2015] [Indexed: 11/30/2022]
Abstract
Introduction Arterial input function (AIF) plays an important role in the quantification of cerebral hemodynamics. The purpose of this study was to select the best reproducible clustering method for AIF detection by comparing three algorithms reported previously in terms of detection accuracy and computational complexity. Methods First, three reproducible clustering methods, normalized cut (Ncut), hierarchy (HIER), and fast affine propagation (FastAP), were applied independently to simulated data which contained the true AIF. Next, a clinical verification was performed where 42 subjects participated in dynamic susceptibility contrast MRI (DSC-MRI) scanning. The manual AIF and AIFs based on the different algorithms were obtained. The performance of each algorithm was evaluated based on shape parameters of the estimated AIFs and the true or manual AIF. Moreover, the execution time of each algorithm was recorded to determine the algorithm that operated more rapidly in clinical practice. Results In terms of the detection accuracy, Ncut and HIER method produced similar AIF detection results, which were closer to the expected AIF and more accurate than those obtained using FastAP method; in terms of the computational efficiency, the Ncut method required the shortest execution time. Conclusion Ncut clustering appears promising because it facilitates the automatic and robust determination of AIF with high accuracy and efficiency.
Collapse
Affiliation(s)
- Jiandong Yin
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | | | | |
Collapse
|
19
|
Bonekamp D, Deike K, Wiestler B, Wick W, Bendszus M, Radbruch A, Heiland S. Association of overall survival in patients with newly diagnosed glioblastoma with contrast-enhanced perfusion MRI: Comparison of intraindividually matched T1 - and T2 (*) -based bolus techniques. J Magn Reson Imaging 2014; 42:87-96. [PMID: 25244574 DOI: 10.1002/jmri.24756] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/27/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND To compare intraindividual dynamic susceptibility contrast (DSC) and dynamic contrast enhanced (DCE) MR perfusion parameters and determine the association of DCE parameters with overall survival (OS) with the established predictive DSC parameter cerebral blood volume (CBV) in patients with newly diagnosed glioblastoma. METHODS Perfusion data were analyzed retrospectively, and included scans performed preoperatively at 3.0 Tesla in 37 patients (25 males, 12 females, 39-83 years, median 65) later diagnosed with glioblastoma. All patients received standard treatment consisting of surgery and radiochemotherapy. Images were spatially coregistered and maximum region of interest-based DCE and DSC parameter measurements compared and thresholds identified using multivariate linear regression, Pearson's correlation coefficients and using receiver operating characteristic analysis. Survival analysis was performed using Kaplan-Meier curves. RESULTS While both, elevated volume transfer constant (K(trans) ) (>0.29 min(-1) ; P = 0.041) and CBV (>23.7 mL/100 mL; P < 0.001) were significantly associated with OS, elevated CBV was associated with worse OS compared with elevated K(trans) . K(trans) was significantly correlated with the leakage correction factor K2 but not with CBV. CONCLUSION The combined use of DSC and DCE MR perfusion may provide additional information of prognostic value for glioblastoma patient survival prediction. As K(trans) was not tightly coupled to CBV, both parameters may reflect different stages in the pathogenetic sequence of glioblastoma growth.
Collapse
Affiliation(s)
- David Bonekamp
- Department of Neuroradiology, University Hospital Heidelberg, Germany.,Division of Experimental Radiology, Department of Neuroradiology, University Hospital Heidelberg, Germany
| | - Katerina Deike
- Department of Neuroradiology, University Hospital Heidelberg, Germany
| | - Benedikt Wiestler
- Department of Neurooncology, University Hospital Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurooncology, University Hospital Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Germany
| | - Alexander Radbruch
- Department of Neuroradiology, University Hospital Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabine Heiland
- Division of Experimental Radiology, Department of Neuroradiology, University Hospital Heidelberg, Germany
| |
Collapse
|
20
|
Yin J, Yang J, Guo Q. Evaluating the feasibility of an agglomerative hierarchy clustering algorithm for the automatic detection of the arterial input function using DSC-MRI. PLoS One 2014; 9:e100308. [PMID: 24932638 PMCID: PMC4059756 DOI: 10.1371/journal.pone.0100308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/26/2014] [Indexed: 12/02/2022] Open
Abstract
During dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI), it has been demonstrated that the arterial input function (AIF) can be obtained using fuzzy c-means (FCM) and k-means clustering methods. However, due to the dependence on the initial centers of clusters, both clustering methods have poor reproducibility between the calculation and recalculation steps. To address this problem, the present study developed an alternative clustering technique based on the agglomerative hierarchy (AH) method for AIF determination. The performance of AH method was evaluated using simulated data and clinical data based on comparisons with the two previously demonstrated clustering-based methods in terms of the detection accuracy, calculation reproducibility, and computational complexity. The statistical analysis demonstrated that, at the cost of a significantly longer execution time, AH method obtained AIFs more in line with the expected AIF, and it was perfectly reproducible at different time points. In our opinion, the disadvantage of AH method in terms of the execution time can be alleviated by introducing a professional high-performance workstation. The findings of this study support the feasibility of using AH clustering method for detecting the AIF automatically.
Collapse
Affiliation(s)
- Jiandong Yin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiawen Yang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- * E-mail:
| |
Collapse
|
21
|
Bonekamp D, Barker PB, Leigh R, van Zijl PCM, Li X. Susceptibility-based analysis of dynamic gadolinium bolus perfusion MRI. Magn Reson Med 2014; 73:544-54. [PMID: 24604343 DOI: 10.1002/mrm.25144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/29/2013] [Accepted: 01/04/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE An algorithm is developed for the reconstruction of dynamic, gadolinium (Gd) bolus MR perfusion images of the human brain, based on quantitative susceptibility mapping (QSM). METHODS The method is evaluated in five perfusion scans obtained from four different patients scanned at 3 Tesla, and compared with the conventional analysis based on changes in the transverse relaxation rate ΔR2 * and to theoretical predictions. QSM images were referenced to ventricular cerebrospinal fluid (CSF) for each dynamic of the perfusion sequence. RESULTS Images of cerebral blood flow and blood volume were successfully reconstructed from the QSM-analysis, and were comparable to those reconstructed using ΔR2 *. The magnitudes of the Gd-associated susceptibility effects in gray and white matter were consistent with theoretical predictions. CONCLUSION QSM-based analysis may have some theoretical advantages compared with ΔR2 *, including a simpler relationship between signal change and Gd concentration. However, disadvantages are its much lower contrast-to-noise ratio, artifacts due to respiration and other effects, and more complicated reconstruction methods. More work is required to optimize data acquisition protocols for QSM-based perfusion imaging.
Collapse
Affiliation(s)
- David Bonekamp
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; FM Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | | | | | | | | |
Collapse
|
22
|
Yin J, Sun H, Yang J, Guo Q. Comparison of K-means and fuzzy c-means algorithm performance for automated determination of the arterial input function. PLoS One 2014; 9:e85884. [PMID: 24503700 PMCID: PMC3913570 DOI: 10.1371/journal.pone.0085884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/07/2013] [Indexed: 11/19/2022] Open
Abstract
The arterial input function (AIF) plays a crucial role in the quantification of cerebral perfusion parameters. The traditional method for AIF detection is based on manual operation, which is time-consuming and subjective. Two automatic methods have been reported that are based on two frequently used clustering algorithms: fuzzy c-means (FCM) and K-means. However, it is still not clear which is better for AIF detection. Hence, we compared the performance of these two clustering methods using both simulated and clinical data. The results demonstrate that K-means analysis can yield more accurate and robust AIF results, although it takes longer to execute than the FCM method. We consider that this longer execution time is trivial relative to the total time required for image manipulation in a PACS setting, and is acceptable if an ideal AIF is obtained. Therefore, the K-means method is preferable to FCM in AIF detection.
Collapse
Affiliation(s)
- Jiandong Yin
- Sino-dutch Biomedical and Information Engineering School of Northeastern University, Shenyang, Liaoning, China
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiawen Yang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- * E-mail:
| |
Collapse
|
23
|
Rajendran R, Huang W, Tang AMY, Liang JM, Choo S, Reese T, Hentze H, van Boxtel S, Cliffe A, Rogers K, Henry B, Chuang KH. Early detection of antiangiogenic treatment responses in a mouse xenograft tumor model using quantitative perfusion MRI. Cancer Med 2014; 3:47-60. [PMID: 24403176 PMCID: PMC3930389 DOI: 10.1002/cam4.177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/15/2013] [Accepted: 11/08/2013] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis plays a major role in tumor growth and metastasis, with tumor perfusion regarded as a marker for angiogenesis. To evaluate antiangiogenic treatment response in vivo, we investigated arterial spin labeling (ASL) magnetic resonance imaging (MRI) to measure tumor perfusion quantitatively. Chronic and 24-h acute treatment responses to bevacizumab were assessed by ASL and dynamic-contrast-enhanced (DCE) MRI in the A498 xenograft mouse model. After the MRI, tumor vasculature was assessed by CD34 staining. After 39 days of chronic treatment, tumor perfusion decreased to 44.8 ± 16.1 mL/100 g/min (P < 0.05), compared to 92.6 ± 42.9 mL/100 g/min in the control group. In the acute treatment study, tumor perfusion in the treated group decreased from 107.2 ± 32.7 to 73.7 ± 27.8 mL/100 g/min (P < 0.01; two-way analysis of variance), as well as compared with control group post dosing. A significant reduction in vessel density and vessel size was observed after the chronic treatment, while only vessel size was reduced 24 h after acute treatment. The tumor perfusion correlated with vessel size (r = 0.66; P < 0.005) after chronic, but not after acute treatment. The results from DCE-MRI also detected a significant change between treated and control groups in both chronic and acute treatment studies, but not between 0 and 24 h in the acute treatment group. These results indicate that tumor perfusion measured by MRI can detect early vascular responses to antiangiogenic treatment. With its noninvasive and quantitative nature, ASL MRI would be valuable for longitudinal assessment of tumor perfusion and in translation from animal models to human.
Collapse
Affiliation(s)
- Reshmi Rajendran
- MRI Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Knutsson L, Lindgren E, Ahlgren A, van Osch MJP, Bloch KM, Surova Y, Ståhlberg F, van Westen D, Wirestam R. Dynamic susceptibility contrast MRI with a prebolus contrast agent administration design for improved absolute quantification of perfusion. Magn Reson Med 2013; 72:996-1006. [PMID: 24285621 DOI: 10.1002/mrm.25006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 11/11/2022]
Abstract
PURPOSE Arterial partial-volume effects (PVEs) often hamper reproducible absolute quantification of cerebral blood flow (CBF) and cerebral blood volume (CBV) obtained by dynamic susceptibility contrast MRI (DSC-MRI). The aim of this study was to examine whether arterial PVEs in DSC-MRI data can be minimized by rescaling the arterial input function (AIF) using a sagittal-sinus venous output function obtained following a prebolus administration of a low dose of contrast agent. METHODS The study was carried out as a test-retest experiment in 20 healthy volunteers to examine the repeatability of the CBF and CBV estimates. All subjects were scanned twice with 7-20 days between investigations. RESULTS DSC-MRI returned an overestimated average whole-brain CBF of 220 ± 44 mL/100 g/min (mean ± SD) before correction and 44 ± 15 mL/100 g/min when applying the prebolus design, averaged over all scans. Average whole-brain CBV was 20 ± 2.0 mL/100 g before correction and 4.0 ± 1.0 mL/100 g after prebolus correction. CONCLUSION Quantitative estimates of CBF and CBV, obtained with the proposed prebolus DSC-MRI technique, approached those typically obtained by other perfusion modalities. The CBF and CBV estimates showed good repeatability.
Collapse
Affiliation(s)
- Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yamamoto T, Kinoshita K, Kosaka N, Sato Y, Shioura H, Takeuchi H, Kimura H. Monitoring of extra-axial brain tumor response to radiotherapy using pseudo-continuous arterial spin labeling images: Preliminary results. Magn Reson Imaging 2013; 31:1271-7. [DOI: 10.1016/j.mri.2013.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 04/27/2013] [Accepted: 04/27/2013] [Indexed: 10/26/2022]
|
26
|
Wong AM, Yan FX, Liu HL. Comparison of three-dimensional pseudo-continuous arterial spin labeling perfusion imaging with gradient-echo and spin-echo dynamic susceptibility contrast MRI. J Magn Reson Imaging 2013; 39:427-33. [PMID: 23677620 DOI: 10.1002/jmri.24178] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/27/2013] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To compare the relative cerebral blood flow (CBF) obtained by pseudo-continuous arterial spin labeling sequence incorporated with volumetric fast spin-echo readout (3D-PCASL) with those by gradient-echo (GE) and spin-echo (SE) dynamic susceptibility contrast (DSC) MRI. MATERIALS AND METHODS Thirty patients with various neurological diseases participated in this study. In addition to 3D-PCASL, 15 patients received GE-DSC and the others received SE-DSC imaging on a 3 Tesla scanner. A cortical gray matter (GM) to white matter (WM) and a thalamus (TM) to WM CBF ratio were determined from each perfusion scan. In addition, histograms of relative CBF distributions were obtained from each method for comparison. RESULTS Significant correlations of CBF ratios were found between 3D-PCASL and the two DSC methods (P < 0.05). The 3D-PCASL resulted in GM/WM CBF ratios similar to SE-DSC but significantly smaller than GE-DSC (P = 2.3 × 10(-7) ). TM/WM CBF ratio obtained by 3D-PCASL was significantly smaller than those by GE- and SE-DSC (P = 4.1 × 10(-7) and 1.2 × 10(-6) , respectively). The histogram of relative CBF maps obtained from SE-DSC, after applied spatial smoothing, agreed well with that from 3D-PCASL. CONCLUSION This study suggested that perfusion images obtained from 3D-PCASL exhibited significant correlations with DSC-MRI, with greater microvascular weighting like SE-DSC.
Collapse
Affiliation(s)
- Alex M Wong
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Keelung, Linkou Medical Center, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | | |
Collapse
|
27
|
Peruzzo D, Castellaro M, Calabrese M, Veronese E, Rinaldi F, Bernardi V, Favaretto A, Gallo P, Bertoldo A. Heterogeneity of cortical lesions in multiple sclerosis: an MRI perfusion study. J Cereb Blood Flow Metab 2013; 33:457-63. [PMID: 23250108 PMCID: PMC3587819 DOI: 10.1038/jcbfm.2012.192] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) was used to quantify the cerebral blood flow (CBF), the cerebral blood volume (CBV), and the mean transit time (MTT) and to analyze the changes in cerebral perfusion associated with the cortical lesions in 44 patients with relapsing-remitting multiple sclerosis. The cortical lesions showed a statistically significant reduction in CBF and CBV compared with the normal-appearing gray matter, whereas there were no significant changes in the MTT. The reduced perfusion suggests a reduction of metabolism because of the loss of cortical neurons. A small population of outliers showing an increased CBF and/or CBV has also been detected. The presence of hyperperfused outliers may imply that perfusion could evolve during inflammation. These findings show that perfusion is altered in cortical lesions and that DSC-MRI can be a useful tool to investigate more deeply the evolution of cortical lesions in multiple sclerosis.
Collapse
Affiliation(s)
- Denis Peruzzo
- Department of Information Engineering, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mehndiratta A, MacIntosh BJ, Crane DE, Payne SJ, Chappell MA. A control point interpolation method for the non-parametric quantification of cerebral haemodynamics from dynamic susceptibility contrast MRI. Neuroimage 2012; 64:560-70. [PMID: 22975158 DOI: 10.1016/j.neuroimage.2012.08.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 08/10/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022] Open
Abstract
DSC-MRI analysis is based on tracer kinetic theory and typically involves the deconvolution of the MRI signal in tissue with an arterial input function (AIF), which is an ill-posed inverse problem. The current standard singular value decomposition (SVD) method typically underestimates perfusion and introduces non-physiological oscillations in the resulting residue function. An alternative vascular model (VM) based approach permits only a restricted family of shapes for the residue function, which might not be appropriate in pathologies like stroke. In this work a novel deconvolution algorithm is presented that can estimate both perfusion and residue function shape accurately without requiring the latter to belong to a specific class of functional shapes. A control point interpolation (CPI) method is proposed that represents the residue function by a number of control points (CPs), each having two degrees of freedom (in amplitude and time). A complete residue function shape is then generated from the CPs using a cubic spline interpolation. The CPI method is shown in simulation to be able to estimate cerebral blood flow (CBF) with greater accuracy giving a regression coefficient between true and estimated CBF of 0.96 compared to 0.83 for VM and 0.71 for the circular SVD (oSVD) method. The CPI method was able to accurately estimate the residue function over a wide range of simulated conditions. The CPI method has also been demonstrated on clinical data where a marked difference was observed between the residue function of normally appearing brain parenchyma and infarcted tissue. The CPI method could serve as a viable means to examine the residue function shape under pathological variations.
Collapse
Affiliation(s)
- Amit Mehndiratta
- Institute of Biomedical Engineering, University of Oxford, United Kingdom.
| | | | | | | | | |
Collapse
|
29
|
Amann M, Achtnichts L, Hirsch JG, Naegelin Y, Gregori J, Weier K, Thöni A, Mueller-Lenke N, Radue EW, Günther M, Kappos L, Gass A. 3D GRASE arterial spin labelling reveals an inverse correlation of cortical perfusion with the white matter lesion volume in MS. Mult Scler 2012; 18:1570-6. [PMID: 22466702 DOI: 10.1177/1352458512441984] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND We hypothesized that in multiple sclerosis (MS) patients, reduced cortical perfusion is associated with chronic white matter injury. OBJECTIVE To investigate the influence of different clinical and magnetic resonance imaging characteristics on cortical perfusion. METHODS Cerebral blood flow (CBF) was assessed by applying a pulsed arterial spin labelling (ASL) technique combined with single-shot 3D-GRASE (gradient-spin echo) in a cohort of 165 MS patients with a relapsing-remitting (n=123) or secondary progressive disease course (n=42). Mean age was 45.4 years (20-68 years), mean disease duration was 14.2 years (1-48 years). RESULTS Mean cortical CBF was 45.6 ml/100g per min (SD: 7.8 ml/100g per min). Stepwise multiple linear regression models were calculated to investigate the relationship between different factor sets and mean CBF. The model with the highest adjusted coefficient of determination included T2 lesion load, age, gender and disease duration as significant factors. Post-hoc Spearman rank correlation revealed significant correlation of adjusted CBF with T2 lesion load (ρ=-0.35, p=1*10(-6)), with age (ρ=-0.34, p=4*10(-6)), and with disease duration (ρ=0.16, p=0.03), while Expanded Disability Status Scale (EDSS) did not reach significance in either model. CONCLUSION This study suggests that the amount of white matter lesions indicates a reduced metabolic demand and reduced perfusion at a cortical level.
Collapse
Affiliation(s)
- Michael Amann
- Department of Neuroradiology, University Hospital Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Papadaki EZ, Mastorodemos VC, Amanakis EZ, Tsekouras KC, Papadakis AE, Tsavalas ND, Simos PG, Karantanas AH, Plaitakis A, Maris TG. White matter and deep gray matter hemodynamic changes in multiple sclerosis patients with clinically isolated syndrome. Magn Reson Med 2012; 68:1932-42. [PMID: 22367604 DOI: 10.1002/mrm.24194] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/02/2012] [Accepted: 01/12/2012] [Indexed: 11/12/2022]
Abstract
The dynamic susceptibility contrast magnetic resonance imaging perfusion technique was used to investigate possible hemodynamic changes in normal appearing white matter and deep gray matter (DGM) of 30 patients with clinically isolated syndrome (CIS) and 30 patients with relapsing-remitting multiple sclerosis. Thirty normal volunteers were studied as controls. Cerebral blood volume, cerebral blood flow (CBF), and mean transit time values were estimated. Normalization was achieved for each subject with respect to average values of CBF and mean transit time of the hippocampi's dentate gyrus. Measurements concerned three regions of normal white matter of normal volunteers, normal appearing white matter of CIS and patients with relapsing-remitting multiple sclerosis, and DGM regions, bilaterally. All measured normal appearing white matter and DGM regions of the patients with CIS had significantly higher cerebral blood volume and mean transit time values, while averaged DGM regions had significantly lower CBF values, compared to those of normal volunteers (P < 0.001). Regarding patients with relapsing-remitting multiple sclerosis, all measured normal appearing white matter and DGM regions showed lower CBF values than those of normal volunteers and lower cerebral blood volume and CBF values compared to patients with CIS (P < 0.001). These data provide strong evidence that hemodynamic changes--affecting both white and DGM--may occur even at the earliest stage of multiple sclerosis, with CIS patients being significantly different than relapsing-remitting multiple sclerosis patients.
Collapse
|
31
|
Donahue MJ, Strother MK, Hendrikse J. Novel MRI approaches for assessing cerebral hemodynamics in ischemic cerebrovascular disease. Stroke 2012; 43:903-15. [PMID: 22343644 DOI: 10.1161/strokeaha.111.635995] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Changes in cerebral hemodynamics underlie a broad spectrum of ischemic cerebrovascular disorders. An ability to accurately and quantitatively measure hemodynamic (cerebral blood flow and cerebral blood volume) and related metabolic (cerebral metabolic rate of oxygen) parameters is important for understanding healthy brain function and comparative dysfunction in ischemia. Although positron emission tomography, single-photon emission tomography, and gadolinium-MRI approaches are common, more recently MRI approaches that do not require exogenous contrast have been introduced with variable sensitivity for hemodynamic parameters. The ability to obtain hemodynamic measurements with these new approaches is particularly appealing in clinical and research scenarios in which follow-up and longitudinal studies are necessary. The purpose of this review is to outline current state-of-the-art MRI methods for measuring cerebral blood flow, cerebral blood volume, and cerebral metabolic rate of oxygen and provide practical tips to avoid imaging pitfalls. MRI studies of cerebrovascular disease performed without exogenous contrast are synopsized in the context of clinical relevance and methodological strengths and limitations.
Collapse
Affiliation(s)
- Manus J Donahue
- Department of Radiology, Vanderbilt University, Nashville, TN, USA.
| | | | | |
Collapse
|
32
|
Henriksen OM, Larsson HB, Hansen AE, Grüner JM, Law I, Rostrup E. Estimation of intersubject variability of cerebral blood flow measurements using MRI and positron emission tomography. J Magn Reson Imaging 2012; 35:1290-9. [DOI: 10.1002/jmri.23579] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/12/2011] [Indexed: 11/05/2022] Open
|
33
|
Bulte DP, Kelly M, Germuska M, Xie J, Chappell MA, Okell TW, Bright MG, Jezzard P. Quantitative measurement of cerebral physiology using respiratory-calibrated MRI. Neuroimage 2011; 60:582-91. [PMID: 22209811 DOI: 10.1016/j.neuroimage.2011.12.017] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/08/2011] [Accepted: 12/11/2011] [Indexed: 11/26/2022] Open
Abstract
Functional magnetic resonance imaging typically measures signal increases arising from changes in the transverse relaxation rate over small regions of the brain and associates these with local changes in cerebral blood flow, blood volume and oxygen metabolism. Recent developments in pulse sequences and image analysis methods have improved the specificity of the measurements by focussing on changes in blood flow or changes in blood volume alone. However, FMRI is still unable to match the physiological information obtainable from positron emission tomography (PET), which is capable of quantitative measurements of blood flow and volume, and can indirectly measure resting metabolism. The disadvantages of PET are its cost, its availability, its poor spatial resolution and its use of ionising radiation. The MRI techniques introduced here address some of these limitations and provide physiological data comparable with PET measurements. We present an 18-minute MRI protocol that produces multi-slice whole-brain coverage and yields quantitative images of resting cerebral blood flow, cerebral blood volume, oxygen extraction fraction, CMRO(2), arterial arrival time and cerebrovascular reactivity of the human brain in the absence of any specific functional task. The technique uses a combined hyperoxia and hypercapnia paradigm with a modified arterial spin labelling sequence.
Collapse
Affiliation(s)
- D P Bulte
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Peruzzo D, Bertoldo A, Zanderigo F, Cobelli C. Automatic selection of arterial input function on dynamic contrast-enhanced MR images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2011; 104:e148-e157. [PMID: 21458099 DOI: 10.1016/j.cmpb.2011.02.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 01/27/2011] [Accepted: 02/21/2011] [Indexed: 05/30/2023]
Abstract
Dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) data analysis requires the knowledge of the arterial input function (AIF) to quantify the cerebral blood flow (CBF), volume (CBV) and the mean transit time (MTT). AIF can be obtained either manually or using automatic algorithms. We present a method to derive the AIF on the middle cerebral artery (MCA). The algorithm draws a region of interest (ROI) where the MCA is located. Then, it uses a recursive cluster analysis on the ROI to select the arterial voxels. The algorithm had been compared on simulated data to literature state of art automatic algorithms and on clinical data to the manual procedure. On in silico data, our method allows to reconstruct the true AIF and it is less affected by partial volume effect bias than the other methods. In clinical data, automatic AIF provides CBF and MTT maps with a greater contrast level compared to manual AIF ones. Therefore, AIF obtained with the proposed method improves the estimate reliability and provides a quantitatively reliable physiological picture.
Collapse
Affiliation(s)
- Denis Peruzzo
- University of Padova, Department of Information Engineering, Via Gradenigo 6/B, 35131 Padova, Italy
| | | | | | | |
Collapse
|
35
|
ZHANG YUDONG, WANG SHUIHUA, HUO YUANKAI, WU LENAN, LIU AIJUN. FEATURE EXTRACTION OF BRAIN MRI BY STATIONARY WAVELET TRANSFORM AND ITS APPLICATIONS. J BIOL SYST 2011. [DOI: 10.1142/s0218339010003652] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Wavelet transform is widely used in feature extraction of magnetic resonance imaging. However, the traditional discrete wavelet transform (DWT) suffers from translation variant property, which may extract significantly different features from two images of the same subject with only slight movement. In order to solve this problem, this paper utilizes stationary wavelet transform (SWT) to extract features instead of DWT. Experiments on a normal brain MRI demonstrate that wavelet coefficients via SWT are superior to those via DWT, in terms of translation invariant property. In addition, we applied SWT to normal and abnormal brain classification. The results demonstrate that SWT-based classifier is more accurate than that of DWT.
Collapse
Affiliation(s)
- YUDONG ZHANG
- School of Information Science and Engineering, Southeast University, Nanjing 210096, China
| | - SHUIHUA WANG
- School of Information Science and Engineering, Southeast University, Nanjing 210096, China
| | - YUANKAI HUO
- School of Information Science and Engineering, Southeast University, Nanjing 210096, China
| | - LENAN WU
- School of Information Science and Engineering, Southeast University, Nanjing 210096, China
| | - AIJUN LIU
- State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400030, China
| |
Collapse
|
36
|
Correlation between arterial blood volume obtained by arterial spin labelling and cerebral blood volume in intracranial tumours. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2011; 24:211-23. [PMID: 21594585 DOI: 10.1007/s10334-011-0255-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/30/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To compare measurements of the arterial blood volume (aBV), a perfusion parameter calculated from arterial spin labelling (ASL), and cerebral blood volume (CBV), calculated from dynamic susceptibility contrast (DSC) MRI. In the clinic, CBV is used for grading of intracranial tumours. MATERIALS AND METHODS Estimates of aBV from the model-free ASL technique quantitative STAR labelling of arterial regions (QUASAR) experiment and of DSC-CBV were obtained at 3T in ten patients with eleven tumours (three grade III gliomas, four glioblastomas and four meningiomas, two in one patient). Parametric values of aBV and CBV were determined in the tumour as well as in normal grey matter (GM), and tumour-to-GM aBV and CBV ratios were calculated. RESULTS In a 4-pixel ROI representing maximal tumour values, the coefficient of determination R (2) was 0.61 for the comparison of ASL-based aBV tumour-to-GM ratios and DSC-MRI-based CBV tumour-to-GM ratios and 0.29 for the comparison of parametric values of ASL-aBV and DSC-CBV, under the assumption of proportionality. Both aBV and CBV showed a non-significant tendency to increase when going from grade III gliomas to glioblastomas to meningiomas. CONCLUSION These results suggest that measurement of aBV is a potential tool for non-invasive assessment of blood volume in intracranial tumours.
Collapse
|
37
|
Donahue MJ, Sideso E, MacIntosh BJ, Kennedy J, Handa A, Jezzard P. Absolute arterial cerebral blood volume quantification using inflow vascular-space-occupancy with dynamic subtraction magnetic resonance imaging. J Cereb Blood Flow Metab 2010; 30:1329-42. [PMID: 20145656 PMCID: PMC2949227 DOI: 10.1038/jcbfm.2010.16] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 01/15/2010] [Accepted: 01/20/2010] [Indexed: 12/30/2022]
Abstract
In patients with steno-occlusive disease of the internal carotid artery (ICA), cerebral blood flow may be maintained by autoregulatory increases in arterial cerebral blood volume (aCBV). Therefore, characterizing aCBV may be useful for understanding hemodynamic compensation strategies. A new 'inflow vascular-space-occupancy with dynamic subtraction (iVASO-DS)' MRI approach is presented where aCBV (mL blood/100 mL parenchyma) is quantified without contrast agents using the difference between images with and without inflowing blood water signal. The iVASO-DS contrast mechanism is investigated (3.0 T, spatial resolution=2.4 x 2.4 x 5 mm(3)) in healthy volunteers (n=8; age=29+/-5 years), and patients with mild (n=7; age=72+/-8 years) and severe (n=10; age=73+/-8 years) ICA stenoses. aCBV was quantified in right and left hemispheres in controls, and, alongside industry standard dynamic susceptibility contrast (DSC), contralateral (cont), and ipsilateral (ips) to maximum stenosis in patients. iVASO contrast significantly correlated (R=0.67, P<0.01) with DSC-CBV after accounting for transit time discrepancies. Gray matter aCBV (mL/100 mL) was 1.60+/-0.10 (right) versus 1.61+/-0.20 (left) in controls, 1.59+/-0.38 (cont) and 1.65+/-0.37 (ips) in mild stenosis patients, and 1.72+/-0.18 (cont) and 1.58+/-0.20 (ips) in severe stenosis patients. aCBV was asymmetric (P<0.01) in 41% of patients whereas no asymmetry was found in any control. The potential of iVASO-DS for autoregulation studies is discussed in the context of existing hemodynamic literature.
Collapse
Affiliation(s)
- Manus J Donahue
- Department of Clinical Neurology, FMRIB Centre, University of Oxford, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Tumor angiogenesis and the ability of cancer cells to induce neovasculature continue to be a fascinating area of research. As the delivery network that provides substrates and nutrients, as well as chemotherapeutic agents to cancer cells, but allows cancer cells to disseminate, the tumor vasculature is richly primed with targets and mechanisms that can be exploited for cancer cure or control. The spatial and temporal heterogeneity of tumor vasculature, and the heterogeneity of response to targeting, make noninvasive imaging essential for understanding the mechanisms of tumor angiogenesis, tracking vascular targeting, and detecting the efficacy of antiangiogenic therapies. With its noninvasive characteristics, exquisite spatial resolution and range of applications, magnetic resonance imaging (MRI) techniques have provided a wealth of functional and molecular information on tumor vasculature in applications spanning from "bench to bedside". The integration of molecular biology and chemistry to design novel imaging probes ensures the continued evolution of the molecular capabilities of MRI. In this review, we have focused on developments in the characterization of tumor vasculature with functional and molecular MRI.
Collapse
|
39
|
Järnum H, Steffensen EG, Knutsson L, Fründ ET, Simonsen CW, Lundbye-Christensen S, Shankaranarayanan A, Alsop DC, Jensen FT, Larsson EM. Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging. Neuroradiology 2009; 52:307-17. [PMID: 19841916 DOI: 10.1007/s00234-009-0616-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 10/08/2009] [Indexed: 01/18/2023]
Abstract
INTRODUCTION The purpose of this study was to compare the non-invasive 3D pseudo-continuous arterial spin labelling (PC ASL) technique with the clinically established dynamic susceptibility contrast perfusion magnetic resonance imaging (DSC-MRI) for evaluation of brain tumours. METHODS A prospective study of 28 patients with contrast-enhancing brain tumours was performed at 3 T using DSC-MRI and PC ASL with whole-brain coverage. The visual qualitative evaluation of signal enhancement in tumour was scored from 0 to 3 (0 = no signal enhancement compared with white matter, 3 = pronounced signal enhancement with equal or higher signal intensity than in grey matter/basal ganglia). The extent of susceptibility artefacts in the tumour was scored from 0 to 2 (0 = no susceptibility artefacts and 2 = extensive susceptibility artefacts (maximum diameter > 2 cm)). A quantitative analysis was performed with normalised tumour blood flow values (ASL nTBF, DSC nTBF): mean value for region of interest (ROI) in an area with maximum signal enhancement/the mean value for ROIs in cerebellum. RESULTS There was no difference in total visual score for signal enhancement between PC ASL and DSC relative cerebral blood flow (p = 0.12). ASL had a lower susceptibility-artefact score than DSC-MRI (p = 0.03). There was good correlation between DSC nTBF and ASL nTBF values with a correlation coefficient of 0.82. CONCLUSION PC ASL is an alternative to DSC-MRI for the evaluation of perfusion in brain tumours. The method has fewer susceptibility artefacts than DSC-MRI and can be used in patients with renal failure because no contrast injection is needed.
Collapse
Affiliation(s)
- Hanna Järnum
- Department of Radiology, Aalborg Hospital/Arhus University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|