1
|
Janbaz P, Behzadpour F, Ghanadan K. Evaluation of the Structural, Biological, and Bone Induction Properties of Sol-Gel-Derived Lithium-Doped 68S Bioactive Glass-An in Vitro Study on Human Dental Pulp Stem Cells. Clin Exp Dent Res 2025; 11:e70139. [PMID: 40304308 PMCID: PMC12042117 DOI: 10.1002/cre2.70139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
OBJECTIVES Calcium silicate-based bioactive glass shows enhanced ion release capabilities and promotes the formation of hydroxyapatite (HA). This study aimed to synthesize a sol-gel-derived 68S bioactive glass (BAG) incorporating lithium (Li) and evaluate its structural, biological, and osteoinductive properties using human dental pulp stem cells (hDPSCs). MATERIALS AND METHODS Two types of 68S BAG were synthesized using the sol-gel method: one containing 5 mol.% lithium nitrate (BGLi5) and a lithium-free control (BG). Structural characterization and HA formation were assessed using field emission scanning electron microscopy (FESEM) and Fourier-transform infrared spectroscopy (FTIR) before and after immersion in simulated body fluid (SBF) on Days 1, 3, and 7. The dissolution rates of the specimens were evaluated using inductively coupled plasma atomic emission spectroscopy (ICP-AES) and pH analysis. Biological activities were investigated through cell viability (MTT assay), alkaline phosphatase (ALP) enzyme activity, and alizarin red staining to assess mineralization. Additionally, the antimicrobial efficacy of the materials was tested against Streptococcus mutans (SM). RESULTS FTIR and FESEM analyses confirmed the formation of HA crystals in BGLi5 specimens by Day 3 and in BG specimens by Day 7. The MTT assay demonstrated enhanced cell viability in both BG and BGLi5 compared to the control group. ALP activity, a marker of cell differentiation, was significantly elevated in the BGLi5-DM group by Day 14. Alizarin red staining on Day 21 revealed a marked increase in mineralization in both BG and BGLi5, with the BGLi5-DM group showing the highest mineralization levels. Furthermore, both BG and BGLi5 demonstrated significant antimicrobial activity against SM. CONCLUSION The sol-gel-derived 68S BAG containing 5 mol.% Li is a biocompatible material that enhances cell proliferation, differentiation, and mineralization. The combination of BGLi5 with differentiation-specific culture medium synergistically promotes osteogenic differentiation and mineralization, making it a promising candidate for dental and bone tissue engineering applications.
Collapse
Affiliation(s)
- Pejman Janbaz
- Department of Oral and Maxillofacial Surgery, Faculty of DentistryQazvin University of Medical SciencesQazvinIran
| | - Faeze Behzadpour
- Department of pediatric, School of dentistry, Dental Research Center, Avicenna Institute of Clinical Sciences, Avicenna Health Research InstituteHamadan University of Medical SciencesHamadanIran
| | - Kiana Ghanadan
- Dental Caries Prevention Research CenterQazvin University of Medical SciencesQazvinIran
- Department of Operative Dentistry, Faculty of DentistryQazvin University of Medical SciencesQazvinIran
| |
Collapse
|
2
|
Lyyra I, Isomäki M, Huhtala H, Kellomäki M, Miettinen S, Massera J, Sartoneva R. Ionic Dissolution Products of Lithium-, Strontium-, and Boron-Substituted Silicate Glasses Influence the Viability and Proliferation of Adipose Stromal Cells, Fibroblasts, Urothelial and Endothelial Cells. ACS OMEGA 2024; 9:49348-49367. [PMID: 39713681 PMCID: PMC11656255 DOI: 10.1021/acsomega.4c06587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/11/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
While bioactive glasses (BaGs) have been studied mainly for bone applications, studies have also shown their potential for soft tissue engineering. Incorporating therapeutic ions, such as lithium (Li+), strontium (Sr2+), and boron (B3+) into the BaGs, has been found to promote angiogenesis and wound healing. However, a systematic study on the impact of Li+, Sr2+, B3+, and the other ions in the BaGs, has not been conducted on a wide range of cells. Although the interactions between the BaGs and cells have been studied, it is difficult to compare the results between studies and conclude the impact of BaGs between cell types due to the variability of culture conditions, cells, and materials. We aim to evaluate the dissolution behavior of Li-, Sr-, and B-substituted BaGs and the effects of their ionic dissolution products on the viability, proliferation, and morphology of multiple cell types: human adipose stromal cells (hASCs), human lung fibroblasts (cell line WI-38), human urothelial cells (hUCs), and human umbilical vein endothelial cells (HUVECs). In the dissolution study, the B-substituted glasses induced a higher increase in pH and released more ions than the silicate glasses. The undiluted BaG extracts supported the viability and proliferation of all the other cell types except the hUCs. Diluting the BaG extracts to 1:10 restored the viability of hUCs but induced distinctive morphological changes. Diluting the extracts more (1:100) almost fully restored the hUC morphology. To conclude, the ionic dissolution products of Li-, Sr-, and B-substituted BaGs seem beneficial for hASCs, WI-38, hUCs, and HUVECs, but attention must be paid to the ion concentrations.
Collapse
Affiliation(s)
- Inari Lyyra
- Faculty of
Medicine and Health Technology, Tampere
University, Korkeakoulunkatu 3, Tampere FI-33720, Finland
| | - Mari Isomäki
- Faculty of
Medicine and Health Technology, Tampere
University, Korkeakoulunkatu 3, Tampere FI-33720, Finland
| | - Heini Huhtala
- Faculty of
Social Sciences, Tampere University, Arvo Ylpön katu 34, Tampere FI-33520, Finland
| | - Minna Kellomäki
- Faculty of
Medicine and Health Technology, Tampere
University, Korkeakoulunkatu 3, Tampere FI-33720, Finland
| | - Susanna Miettinen
- Faculty of
Medicine and Health Technology, Tampere
University, Arvo Ylpön katu 34, Tampere FI-33520, Finland
- Research
and Development and Innovation, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Arvo Ylpön katu 6, Tampere FI-33521, Finland
| | - Jonathan Massera
- Faculty of
Medicine and Health Technology, Tampere
University, Korkeakoulunkatu 3, Tampere FI-33720, Finland
| | - Reetta Sartoneva
- Faculty of
Medicine and Health Technology, Tampere
University, Arvo Ylpön katu 34, Tampere FI-33520, Finland
- Research
and Development and Innovation, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Arvo Ylpön katu 6, Tampere FI-33521, Finland
- Department
of Obstetrics and Gynaecology, Seinäjoki Central Hospital, South Ostrobothnia Wellbeing Services County, Hanneksenrinne 7, Seinäjoki FI-60220, Finland
| |
Collapse
|
3
|
Gomez Gramajo F, Rivoira MA, Rodríguez V, Vargas G, Vera Mesones R, Zago MP, Boccaccini AR, Gorustovich A. Lithium-containing 45S5 Bioglass-derived glass-ceramics have antioxidant activity and induce new bone formation in a rat preclinical model of type 1 diabetes mellitus. Biomed Mater 2024; 20:015006. [PMID: 39564894 DOI: 10.1088/1748-605x/ad8c8b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024]
Abstract
Diabetes mellitus (DM) has been associated with complications that affect the skeletal system, such as alterations in bone repair, osteoporosis, and an increased risk of fractures. In this context, the use of biomaterials able to promote osteogenic differentiation and, at the same time, limit the oxidative stress induced by DM offers a novel perspective to ensure the repair of diabetic bone tissue. Since lithium (Li) has been recently identified as a biologically active ion with osteogenic and antioxidant properties, the localized and controlled release of Li ions from bioactive glass-ceramic materials represents a promising therapeutic alternative for the treatment of bone lesions in DM. Thus, the aim of this study was to evaluate the potential osteogenic and antioxidant effects of glass-ceramic microparticles derived from a 45S5-type bioactive glass (Bioglass) containing (% by weight) 45% SiO2, 24.5% Na2O, 24.5% CaO, and 6% P2O5, in which Na2O was partially substituted by 5% of Li2O (45S5.5Li), in an experimental model of type 1 DM (DM1). The results obtained demonstrate, for the first time, that both 45S5 and 45S5.5Li glass-ceramic microparticles possess antioxidant activity and stimulate bone formationin vivoboth under physiological conditions and under experimental DM1 in rats. In this sense, they would have potential application as inorganic osteogenic agents in different strategies of bone tissue regenerative medicine.
Collapse
Affiliation(s)
- Fátima Gomez Gramajo
- Cátedra de Biología del Desarrollo, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina
| | - María A Rivoira
- Laboratorio 'Dr Fernando Cañas', Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Valeria Rodríguez
- Laboratorio 'Dr Fernando Cañas', Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Gabriela Vargas
- Cátedra de Biología del Desarrollo, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina
| | - Rosa Vera Mesones
- Cátedra de Biología del Desarrollo, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina
| | - María P Zago
- Unidad de Conocimiento Traslacional Hospitalario, CONICET-Hospital Público Materno Infantil, Salta, Argentina
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alejandro Gorustovich
- Laboratorio de Biomateriales, Grupo Interdisciplinario en Materiales-IESIING, Universidad Católica de Salta, grupo vinculado al INTECIN UBA-CONICET, Salta, Argentina
| |
Collapse
|
4
|
Romanazzo S, Zhu Y, Sheikh R, Lin X, Liu H, He TC, Roohani I. Highly disordered and resorbable lithiated nanoparticles with osteogenic and angiogenic properties. J Mater Chem B 2024; 12:9575-9591. [PMID: 39210776 DOI: 10.1039/d4tb00978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In this study, we have developed unique bioresorbable lithiated nanoparticles (LiCP, d50 = 20 nm), demonstrating a versatile material for bone repair and regeneration applications. The LiCPs are biocompatible even at the highest concentration tested (1000 μg mL-1) where bone marrow derived mesenchymal stem cells (BM-MSCs) maintained over 90% viability compared to the control. Notably, LiCP significantly enhanced the expression of osteogenic and angiogenic markers in vitro; collagen I, Runx2, angiogenin, and EGF increased by 8-fold, 8-fold, 9-fold, and 7.5-fold, respectively. Additionally, LiCP facilitated a marked improvement in tubulogenesis in endothelial cells across all tested concentrations. Remarkably, in an ectopic mouse model, LiCP induced mature bone formation, outperforming both the control group and non-lithiated nanoparticles. These findings establish lithiated nanoparticles as a highly promising material for advancing bone repair and regeneration therapies, offering dual benefits in osteogenesis and angiogenesis. The results lay the groundwork for future studies and potential clinical applications, where precise modulation of lithium release could tailor therapeutic outcomes to meet specific patient needs in bone and vascular tissue engineering.
Collapse
Affiliation(s)
- Sara Romanazzo
- School of Chemistry, Australian Centre for Nanomedicine, University of New South Wales, Sydney NSW, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, NSW 2052, Australia
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rakib Sheikh
- School of Chemistry, Australian Centre for Nanomedicine, University of New South Wales, Sydney NSW, Australia
| | - Xiaoting Lin
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, City Road, Sydney, NSW 2006, Australia
| | - Hongwei Liu
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, City Road, Sydney, NSW 2006, Australia
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Iman Roohani
- School of Biomedical Engineering, University of Technology Sydney, Sydney NSW, Australia.
| |
Collapse
|
5
|
Piatti E, Miola M, Verné E. Tailoring of bioactive glass and glass-ceramics properties for in vitro and in vivo response optimization: a review. Biomater Sci 2024; 12:4546-4589. [PMID: 39105508 DOI: 10.1039/d3bm01574b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Bioactive glasses are inorganic biocompatible materials that can find applications in many biomedical fields. The main application is bone and dental tissue engineering. However, some applications in contact with soft tissues are emerging. It is well known that both bulk (such as composition) and surface properties (such as morphology and wettability) of an implanted material influence the response of cells in contact with the implant. This review aims to elucidate and compare the main strategies that are employed to modulate cell behavior in contact with bioactive glasses. The first part of this review is focused on the doping of bioactive glasses with ions and drugs, which can be incorporated into the bioceramic to impart several therapeutic properties, such as osteogenic, proangiogenic, or/and antibacterial ones. The second part of this review is devoted to the chemical functionalization of bioactive glasses using drugs, extra-cellular matrix proteins, vitamins, and polyphenols. In the third and final part, the physical modifications of the surfaces of bioactive glasses are reviewed. Both top-down (removing materials from the surface, for example using laser treatment and etching strategies) and bottom-up (depositing materials on the surface, for example through the deposition of coatings) strategies are discussed.
Collapse
Affiliation(s)
- Elisa Piatti
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Marta Miola
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Enrica Verné
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
6
|
Zhang X, Nan K, Zhang Y, Song K, Geng Z, Shang D, Guan X, Fan L. A novel injectable hydrogel prepared from phenylboronic acid modified gelatin and oxidized-dextran for bone tissue engineering. Int J Biol Macromol 2024; 261:129666. [PMID: 38272405 DOI: 10.1016/j.ijbiomac.2024.129666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Complicated fractures have always been challenging in orthopaedics. Designing a multifunctional biomaterial that can contribute to the treatment of fractures using a simple operation remains challenging. Here, we developed a trinity hydrogel system consisting of hydrogel prepared from phenylboronic acid modified gelatin and oxidized-dextran, lithium and cobalt co-doped mesoporous bioactive glass nanoparticles (MBGNs), and irisin. This hydrogel material exhibits considerable injectability, fat-to-shape, and self-healing characteristics. In addition, compared to hydrogel prepared from gelatin and oxidized-dextran, the hydrogel material presented a noticeable enhancement in compression stress and adhesion strength towards porcine bone fragments, which enables it more effectively splice bone fragments during surgery. Based on the various interactions between irisin and the hydrogel network, the system exhibited a clear sustained release of irisin. Based on the results of in vitro cell tests, the hydrogel material showed good cytocompatibility. And it also considerably enhanced the in vitro pro-osteogenic and pro-angiogenic capacities of bone marrow mesenchymal stromal cells (BMSCs) and human umbilical vein endothelial cells (HUVECs). In vivo experimental results indicated that this hydrogel considerably improved the repair of cranial defects in rats. The current study provides a feasible strategy for the treatment of bone fractures and stimulation of fracture healing.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China; Department of Orthopaedics, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, Shaanxi Province, China
| | - Kai Nan
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Yuankai Zhang
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Keke Song
- Department of Anesthesiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Zilong Geng
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Donglong Shang
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Xin Guan
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China
| | - Lihong Fan
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China.
| |
Collapse
|
7
|
Zhang X, Nan K, Zhang Y, Song K, Geng Z, Shang D, Fan L. Lithium and cobalt co-doped mesoporous bioactive glass nanoparticles promote osteogenesis and angiogenesis in bone regeneration. Front Bioeng Biotechnol 2024; 11:1288393. [PMID: 38239917 PMCID: PMC10794388 DOI: 10.3389/fbioe.2023.1288393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
Healing of severe fractures and bone defects involves many complex biological processes, including angiogenesis and osteogenesis, presenting significant clinical challenges. Biomaterials used for bone tissue engineering often possess multiple functions to meet these challenges, including proangiogenic, proosteogenic, and antibacterial properties. We fabricated lithium and cobalt co-doped mesoporous bioactive glass nanoparticles (Li-Co-MBGNs) using a modified sol-gel method. Physicochemical analysis revealed that the nanoparticles had high specific surface areas (>600 m2/g) and a mesoporous structure suitable for hydroxyapatite (HA) formation and sustained release of therapeutic ions. In vitro experiments with Li-Co-MBGNs showed that these promoted angiogenic properties in HUVECs and pro-osteogenesis abilities in BMSCs by releasing Co2+ and Li+ ions. We observed their antibacterial activity against Staphylococcus aureus and Escherichia coli, indicating their potential applications in bone tissue engineering. Overall, our findings indicate the feasibility of its application in bone tissue engineering.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi, China
| | - Kai Nan
- Department of Osteonecrosis and Joint Reconstruction Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuankai Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Keke Song
- Department of Anesthesiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zilong Geng
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Donglong Shang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lihong Fan
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
8
|
Rahmani R, Lopes SI, Prashanth KG. Selective Laser Melting and Spark Plasma Sintering: A Perspective on Functional Biomaterials. J Funct Biomater 2023; 14:521. [PMID: 37888186 PMCID: PMC10607885 DOI: 10.3390/jfb14100521] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Achieving lightweight, high-strength, and biocompatible composites is a crucial objective in the field of tissue engineering. Intricate porous metallic structures, such as lattices, scaffolds, or triply periodic minimal surfaces (TPMSs), created via the selective laser melting (SLM) technique, are utilized as load-bearing matrices for filled ceramics. The primary metal alloys in this category are titanium-based Ti6Al4V and iron-based 316L, which can have either a uniform cell or a gradient structure. Well-known ceramics used in biomaterial applications include titanium dioxide (TiO2), zirconium dioxide (ZrO2), aluminum oxide (Al2O3), hydroxyapatite (HA), wollastonite (W), and tricalcium phosphate (TCP). To fill the structures fabricated by SLM, an appropriate ceramic is employed through the spark plasma sintering (SPS) method, making them suitable for in vitro or in vivo applications following minor post-processing. The combined SLM-SPS approach offers advantages, such as rapid design and prototyping, as well as assured densification and consolidation, although challenges persist in terms of large-scale structure and molding design. The individual or combined application of SLM and SPS processes can be implemented based on the specific requirements for fabricated sample size, shape complexity, densification, and mass productivity. This flexibility is a notable advantage offered by the combined processes of SLM and SPS. The present article provides an overview of metal-ceramic composites produced through SLM-SPS techniques. Mg-W-HA demonstrates promise for load-bearing biomedical applications, while Cu-TiO2-Ag exhibits potential for virucidal activities. Moreover, a functionally graded lattice (FGL) structure, either in radial or longitudinal directions, offers enhanced advantages by allowing adjustability and control over porosity, roughness, strength, and material proportions within the composite.
Collapse
Affiliation(s)
- Ramin Rahmani
- CiTin—Centro de Interface Tecnológico Industrial, 4970-786 Arcos de Valdevez, Portugal;
- proMetheus, Instituto Politécnico de Viana do Castelo (IPVC), 4900-347 Viana do Castelo, Portugal
| | - Sérgio Ivan Lopes
- CiTin—Centro de Interface Tecnológico Industrial, 4970-786 Arcos de Valdevez, Portugal;
- ADiT-Lab, Instituto Politécnico de Viana do Castelo (IPVC), 4900-347 Viana do Castelo, Portugal
| | - Konda Gokuldoss Prashanth
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, 19086 Tallinn, Estonia;
- CBCMT, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 630014, Tamil Nadu, India
| |
Collapse
|
9
|
Simila HO, Boccaccini AR. Sol-gel synthesis of lithium doped mesoporous bioactive glass nanoparticles and tricalcium silicate for restorative dentistry: Comparative investigation of physico-chemical structure, antibacterial susceptibility and biocompatibility. Front Bioeng Biotechnol 2023; 11:1065597. [PMID: 37077228 PMCID: PMC10106781 DOI: 10.3389/fbioe.2023.1065597] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Introduction: The sol-gel method for production of mesoporous bioactive glass nanoparticles (MBGNs) has been adapted to synthesize tricalcium silicate (TCS) particles which, when formulated with other additives, form the gold standard for dentine-pulp complex regeneration. Comparison of TCS and MBGNs obtained by sol-gel method is critical considering the results of the first ever clinical trials of sol-gel BAG as pulpotomy materials in children. Moreover, although lithium (Li) based glass ceramics have been long used as dental prostheses materials, doping of Li ion into MBGNs for targeted dental applications is yet to be investigated. The fact that lithium chloride benefits pulp regeneration in vitro also makes this a worthwhile undertaking. Therefore, this study aimed to synthesize TCS and MBGNs doped with Li by sol-gel method, and perform comparative characterizations of the obtained particles.Methods: TCS particles and MBGNs containing 0%, 5%, 10% and 20% Li were synthesized and particle morphology and chemical structure determined. Powder concentrations of 15mg/10 mL were incubated in artificial saliva (AS), Hank’s balanced saline solution (HBSS) and simulated body fluid (SBF), at 37°C for 28 days and pH evolution and apatite formation, monitored. Bactericidal effects against S. aureus and E. coli, as well as possible cytotoxicity against MG63 cells were also evaluated through turbidity measurements.Results: MBGNs were confirmed to be mesoporous spheres ranging in size from 123 nm to 194 nm, while TCS formed irregular nano-structured agglomerates whose size was generally larger and variable. From ICP-OES data, extremely low Li ion incorporation into MBGNs was detected. All particles had an alkalinizing effect on all immersion media, but TCS elevated pH the most. SBF resulted in apatite formation for all particle types as early as 3 days, but TCS appears to be the only particle to form apatite in AS at a similar period. Although all particles had an effect on both bacteria, this was pronounced for undoped MBGNs. Whereas all particles are biocompatible, MBGNs showed better antimicrobial properties while TCS particles were associated with greater bioactivity.Conclusion: Synergizing these effects in dental biomaterials may be a worthwhile undertaking and realistic data on bioactive compounds targeting dental application may be obtained by varying the immersion media.
Collapse
|
10
|
Namdar A, Salahinejad E. Advances in ion-doping of Ca-Mg silicate bioceramics for bone tissue engineering. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Li S, Cui Y, Liu H, Tian Y, Wang G, Fan Y, Wang J, Wu D, Wang Y. Application of bioactive metal ions in the treatment of bone defects. J Mater Chem B 2022; 10:9369-9388. [PMID: 36378123 DOI: 10.1039/d2tb01684b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The treatment of bone defects is an important problem in clinical practice. The rapid development of bone tissue engineering (BTE) may provide a new method for bone defect treatment. Metal ions have been widely studied in BTE and demonstrated a significant effect in promoting bone tissue growth. Different metal ions can be used to treat bone defects according to specific conditions, including promoting osteogenic activity, inhibiting osteoclast activity, promoting vascular growth, and exerting certain antibacterial effects. Multiple studies have confirmed that metal ions-modified composite scaffolds can effectively promote bone defect healing. By studying current extensive research on metal ions in the treatment of bone defects, this paper reviews the mechanism of metal ions in promoting bone tissue growth, analyzes the loading mode of metal ions, and lists some specific applications of metal ions in different types of bone defects. Finally, this paper summarizes the advantages and disadvantages of metal ions and analyzes the future research trend of metal ions in BTE. This article can provide some new strategies and methods for future research and applications of metal ions in the treatment of bone defects.
Collapse
Affiliation(s)
- Shaorong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yuhang Tian
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Gan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yi Fan
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Jingwei Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Dankai Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yanbing Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| |
Collapse
|
12
|
Farmani AR, Nekoofar MH, Ebrahimi-Barough S, Azami M, Najafipour S, Moradpanah S, Ai J. Preparation and In Vitro Osteogenic Evaluation of Biomimetic Hybrid Nanocomposite Scaffolds Based on Gelatin/Plasma Rich in Growth Factors (PRGF) and Lithium-Doped 45s5 Bioactive Glass Nanoparticles. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 31:870-885. [PMID: 36373108 PMCID: PMC9638231 DOI: 10.1007/s10924-022-02615-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Bone tissue engineering is an emerging technique for repairing large bone lesions. Biomimetic techniques expand the use of organic-inorganic spongy-like nanocomposite scaffolds and platelet concentrates. In this study, a biomimetic nanocomposite scaffold was prepared using lithium-doped bioactive-glass nanoparticles and gelatin/PRGF. First, sol-gel method was used to prepare bioactive-glass nanoparticles that contain 0, 1, 3, and 5%wt lithium. The lithium content was then optimized based on antibacterial and MTT testing. By freeze-drying, hybrid scaffolds comprising 5, 10, and 20% bioglass were made. On the scaffolds, human endometrial stem cells (hEnSCs) were cultured for adhesion (SEM), survival, and osteogenic differentiation. Alkaline phosphatase activity and osteopontin, osteocalcin, and Runx2 gene expression were measured. The effect of bioactive-glass nanoparticles and PRGF on nanocomposites' mechanical characteristics and glass-transition temperature (T g) was also studied. An optimal lithium content in bioactive glass structure was found to be 3% wt. Nanoparticle SEM examination indicated grain deformation due to different sizes of lithium and sodium ions. Results showed up to 10% wt bioactive-glass and PRGF increased survival and cell adhesion. Also, Hybrid scaffolds revealed higher ALP-activity and OP, OC, and Runx2 gene expression. Furthermore, bioactive-glass has mainly increased ALP-activity and Runx2 expression, whereas PRGF increases the expression of OP and OC genes. Bioactive-glass increases scaffold modulus and T g continuously. Hence, the presence of both bioactive-glass and nanocomposite scaffold improves the expression of osteogenic differentiation biomarkers. Subsequently, it seems that hybrid scaffolds based on biopolymers, Li-doped bioactive-glass, and platelet extracts can be a good strategy for bone repair.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nekoofar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endodontics, School of Dentistry, Bahçeşehir University, Istanbul, Turkey
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sohrab Najafipour
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Microbiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Somayeh Moradpanah
- Department of Obstetrics and Gynecology, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Farmani AR, Salmeh MA, Golkar Z, Moeinzadeh A, Ghiasi FF, Amirabad SZ, Shoormeij MH, Mahdavinezhad F, Momeni S, Moradbeygi F, Ai J, Hardy JG, Mostafaei A. Li-Doped Bioactive Ceramics: Promising Biomaterials for Tissue Engineering and Regenerative Medicine. J Funct Biomater 2022; 13:162. [PMID: 36278631 PMCID: PMC9589997 DOI: 10.3390/jfb13040162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
Lithium (Li) is a metal with critical therapeutic properties ranging from the treatment of bipolar depression to antibacterial, anticancer, antiviral and pro-regenerative effects. This element can be incorporated into the structure of various biomaterials through the inclusion of Li chloride/carbonate into polymeric matrices or being doped in bioceramics. The biocompatibility and multifunctionality of Li-doped bioceramics present many opportunities for biomedical researchers and clinicians. Li-doped bioceramics (capable of immunomodulation) have been used extensively for bone and tooth regeneration, and they have great potential for cartilage/nerve regeneration, osteochondral repair, and wound healing. The synergistic effect of Li in combination with other anticancer drugs as well as the anticancer properties of Li underline the rationale that bioceramics doped with Li may be impactful in cancer treatments. The role of Li in autophagy may explain its impact in regenerative, antiviral, and anticancer research. The combination of Li-doped bioceramics with polymers can provide new biomaterials with suitable flexibility, especially as bio-ink used in 3D printing for clinical applications of tissue engineering. Such Li-doped biomaterials have significant clinical potential in the foreseeable future.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
- Tissue Engineering Department, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa 74615-168, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Mohammad Ali Salmeh
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14155-6619, Iran
| | - Zahra Golkar
- Department of Midwifery, Firoozabad Branch, Islamic Azad University, Firoozabad 74715-117, Iran
| | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Farzaneh Farid Ghiasi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Sara Zamani Amirabad
- Department of Chemical Engineering, Faculty of Engineering, Yasouj University, Yasouj 75918-74934, Iran
| | - Mohammad Hasan Shoormeij
- Emergency Medicine Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Forough Mahdavinezhad
- Anatomy Department, School of Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
- Department of Infertility, Velayat Hospital, Qazvin University of Medical Sciences, Qazvin 34199-15315, Iran
| | - Simin Momeni
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 83151-61355, Iran
| | - Fatemeh Moradbeygi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - John G. Hardy
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster LA1 4YB, UK
- Materials Science Institute, Lancaster University, Lancaster LA1 4YW, UK
| | - Amir Mostafaei
- Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, 10 W 32nd Street, Chicago, IL 60616, USA
| |
Collapse
|
14
|
Widholz B, Westhauser F. Biomaterials for angiogenesis applications in an orthopedic context. BIOMATERIALS FOR VASCULOGENESIS AND ANGIOGENESIS 2022:415-438. [DOI: 10.1016/b978-0-12-821867-9.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Silica-Based Bioactive Glasses and Their Applications in Hard Tissue Regeneration: A Review. Pharmaceuticals (Basel) 2021; 14:ph14020075. [PMID: 33498229 PMCID: PMC7909272 DOI: 10.3390/ph14020075] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/23/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
Regenerative medicine is a field that aims to influence and improvise the processes of tissue repair and restoration and to assist the body to heal and recover. In the field of hard tissue regeneration, bio-inert materials are being predominantly used, and there is a necessity to use bioactive materials that can help in better tissue-implant interactions and facilitate the healing and regeneration process. One such bioactive material that is being focused upon and studied extensively in the past few decades is bioactive glass (BG). The original bioactive glass (45S5) is composed of silicon dioxide, sodium dioxide, calcium oxide, and phosphorus pentoxide and is mainly referred to by its commercial name Bioglass. BG is mainly used for bone tissue regeneration due to its osteoconductivity and osteostimulation properties. The bioactivity of BG, however, is highly dependent on the compositional ratio of certain glass-forming system content. The manipulation of content ratio and the element compositional flexibility of BG-forming network developed other types of bioactive glasses with controllable chemical durability and chemical affinity with bone and bioactivity. This review article mainly discusses the basic information about silica-based bioactive glasses, including their composition, processing, and properties, as well as their medical applications such as in bone regeneration, as bone grafts, and as dental implant coatings.
Collapse
|
16
|
Palza Cordero H, Castro Cid R, Diaz Dosque M, Cabello Ibacache R, Palma Fluxá P. Li-doped bioglass® 45S5 for potential treatment of prevalent oral diseases. J Dent 2020; 105:103575. [PMID: 33385532 DOI: 10.1016/j.jdent.2020.103575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES Despite the excellent properties of both pure bioglasses (BG) and BG doped with therapeutic ions (such as Li) in hard tissue applications, there is not enough information about their role in the remineralization and bacterial-growth in oral diseases. The aim of this contribution is to evaluate the effect of both pure BG and BG doped with 5-wt% of Li (BGLi) on both the remineralization of in vitro demineralized human-teeth and the antimicrobial behavior against strains from caries and periodontitis. METHODS Bioglass® 45S5 (BG) and BGLi were synthesized by the sol-gel method. The remineralization tests were carried out using in vitro demineralized enamel teeth and evaluated by Electron Microscopy (SEM) and Vickers micro-hardness (HV). The antimicrobial behavior of the particles was evaluated against S. mutans, A. actinomycetemcomitans, and P. gingivalis, representing pathogens from caries and periodontitis. RESULTS Enamel lesion was partially remineralized when both bioglasses (BG and BGLi) were applied on its surface with micro-hardness recoveries around 45 %. They further inhibited the growth of S. mutans and P. gingivalis, at 50 and 200 mg/mL, respectively. BGLi presented a higher toxicity against A. actinomycetemcomitans than BG, with inhibition concentrations of 20 mg/mL and 100 mg/mL, respectively. CONCLUSIONS Bioglasses could be used in the treatment of two of the most prevalent oral diseases: caries and periodontitis, promoting the remineralization of the teeth and killing the main pathogens. The presence of Li did not affect the bioactivity of the bioglass and improved the antibacterial effect over A. actinomycetemcomitans strain.
Collapse
Affiliation(s)
- Humberto Palza Cordero
- Chemical Engineering, Biotechnological and Materials Department, Faculty of Physics and Mathematics Sciences, University of Chile, Santiago, Chile.
| | - René Castro Cid
- Chemical Engineering, Biotechnological and Materials Department, Faculty of Physics and Mathematics Sciences, University of Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
17
|
Omar AE, Ibrahim AM, Abd El-Aziz TH, Al-Rashidy ZM, Farag MM. Role of alkali metal oxide type on the degradation and in vivo biocompatibility of soda-lime-borate bioactive glass. J Biomed Mater Res B Appl Biomater 2020; 109:1059-1073. [PMID: 33274827 DOI: 10.1002/jbm.b.34769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/24/2020] [Accepted: 11/17/2020] [Indexed: 11/09/2022]
Abstract
In this work, it is the first time to study the effect of replacing of Na2 O by a fixed amount of Li2 O or K2 O in soda-lime-borate glass on its in vivo biocompatibility. The glass composition was based on xM2 O-20x Na2 O20 CaO60 B2 O3 , (wt %), where, M2 OLi2 O and K2 O, and consequently, samples encoded BN100, BK50, and BL50. The degradation test was carried out in 0.25 M K2 HPO4 solution. The in vivo test was performed in the femoral bone defect of Sprague-Dawley adult male rat. Following up bone formation was conducted by the histological analyses and bone formation markers (alkaline phosphatase [ALP] and osteocalcin [OCN]). Furthermore, the glass effect on the liver and kidney functions was addressed in this study using (alanine transaminase [ALT] and aspartate transaminase [AST]) and (urea and creatinine), respectively. The results of the degradation test showed that the glass dissolution rate was increased by incorporating of K2 O, and its ion release was occurred by a diffusion-controlled process. Moreover, in vivo bioactivity test showed that serum activity of ALP, OCN level, and the newly formed bone was higher in BL50-implanted group than that of BN100 andBK50at 3 w and 6 w post-surgery. As well as, implantation of all glass samples in the femoral bone defect did not alter the liver and kidney functions. In conclusion, the synthesized borate glass was well served as a controlled delivery system for Li+ ion release, which enhanced bone formation as shown from the bone formation markers (ALP and OCN).
Collapse
Affiliation(s)
- Areg E Omar
- Department of Physics, Faculty of Science, Al-Azhar University (Girls' Branch), Nasr City, Egypt
| | - Ahlam M Ibrahim
- Physics Department (Biophysics Branch), Faculty of Science, Al-Azhar University (Girls' Branch), Nasr City, Egypt
| | - Tamer H Abd El-Aziz
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Giza, Egypt
| | - Zainab M Al-Rashidy
- Department of Refractoriness, Ceramics and Building Materials, National Research Centre, Giza, Egypt
| | - Mohammad M Farag
- Glass Research Department, National Research Centre, Giza, Egypt
| |
Collapse
|
18
|
Pulsed Laser Deposition Derived Bioactive Glass-Ceramic Coatings for Enhancing the Biocompatibility of Scaffolding Materials. MATERIALS 2020; 13:ma13112615. [PMID: 32521699 PMCID: PMC7321570 DOI: 10.3390/ma13112615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
The purpose of this work was to propose and evaluate a new composition for a bioactive glass-ceramic starting from the well-known 45S5 commercial product. Thus, we developed a modified version, including MgO, an oxide that turned out to induce superior mechanical properties and improved biological response. This had the following molar percentages: 46.1% SiO2, 2.6% P2O5, 16.9% CaO, 10.0% MgO, and 24.4% Na2O. The precursor alkoxides and nitrates were processed by a standard sol-gel technique, resulting in a glass-ceramic target, suitable for laser ablation experiments. Combeite (Na2Ca2Si3O9) was identified as a main crystalline phase within the calcined sol-gel powder, as well as in the case of the target sintered at 900 °C. The thin films were deposited on silicon substrates, at room temperature or 300 °C, being subsequently characterized from the material point of view, as well as in terms of bioactivity in simulated conditions and biocompatibility in relation to human fibroblast BJ cells. The investigations revealed the deposition of nanostructured glassy layers with a low proportion of crystalline domains; it was shown that a higher substrate temperature promoted the formation of surfaces with less irregularities, as a consequence of material arrangement into a shell with better morphological homogeneity. The complex elemental composition of the target was successfully transferred to the coatings, which ensured pronounced mineralization and a stimulating environment for the cell cultures. Thereby, both samples were covered with a thick layer of apatite after immersion in simulated body fluid for 28 days, and the one processed at room temperature was qualified to be the best in relation to the cells.
Collapse
|
19
|
Moghanian A, Portillo-Lara R, Shirzaei Sani E, Konisky H, Bassir SH, Annabi N. Synthesis and characterization of osteoinductive visible light-activated adhesive composites with antimicrobial properties. J Tissue Eng Regen Med 2020; 14:66-81. [PMID: 31850689 PMCID: PMC6992487 DOI: 10.1002/term.2964] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 11/07/2022]
Abstract
Orthopedic surgical procedures based on the use of conventional biological graft tissues are often associated with serious post-operative complications such as immune rejection, bacterial infection, and poor osseointegration. Bioresorbable bone graft substitutes have emerged as attractive alternatives to conventional strategies because they can mimic the composition and mechanical properties of the native bone. Among these, bioactive glasses (BGs) hold great potential to be used as biomaterials for bone tissue engineering owing to their biomimetic composition and high biocompatibility and osteoinductivity. Here, we report the development of a novel composite biomaterial for bone tissue engineering based on the incorporation of a modified strontium- and lithium-doped 58S BG (i.e., BG-5/5) into gelatin methacryloyl (GelMA) hydrogels. We characterized the physicochemical properties of the BG formulation via different analytical techniques. Composite hydrogels were then prepared by directly adding BG-5/5 to the GelMA hydrogel precursor, followed by photocrosslinking of the polymeric network via visible light. We characterized the physical, mechanical, and adhesive properties of GelMA/BG-5/5 composites, as well as their in vitro cytocompatibility and osteoinductivity. In addition, we evaluated the antimicrobial properties of these composites in vitro, using a strain of methicillin-resistant Staphylococcus Aureus. GelMA/BG-5/5 composites combined the functional characteristics of the inorganic BG component, with the biocompatibility, biodegradability, and biomimetic composition of the hydrogel network. This novel biomaterial could be used for developing osteoinductive scaffolds or implant surface coatings with intrinsic antimicrobial properties and higher therapeutic efficacy.
Collapse
Affiliation(s)
- Amirhossein Moghanian
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Engineering, Imam Khomeini International University, Qazvin, Iran
| | - Roberto Portillo-Lara
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Zapopan, Mexico
| | - Ehsan Shirzaei Sani
- Chemical and Biomolecular Engineering Department, University of California-Los Angeles, Los Angeles, CA, USA
| | - Hailey Konisky
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Seyed Hossein Bassir
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Nasim Annabi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Chemical and Biomolecular Engineering Department, University of California-Los Angeles, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
20
|
Rodrigues C, Naasani LIS, Zanatelli C, Paim TC, Azevedo JG, de Lima JC, da Cruz Fernandes M, Buchner S, Wink MR. Bioglass 45S5: Structural characterization of short range order and analysis of biocompatibility with adipose-derived mesenchymal stromal cells in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109781. [DOI: 10.1016/j.msec.2019.109781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 05/12/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022]
|
21
|
Barrioni BR, Norris E, Li S, Naruphontjirakul P, Jones JR, Pereira MDM. Osteogenic potential of sol-gel bioactive glasses containing manganese. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:86. [PMID: 31302783 DOI: 10.1007/s10856-019-6288-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Bioactive glasses (BGs) are widely used for bone regeneration, and allow the incorporation of different ions with therapeutic properties into the glass network. Amongst the different ions with therapeutic benefits, manganese (Mn) has been shown to influence bone metabolism and activate human osteoblasts integrins, improving cell adhesion, proliferation and spreading. Mn has also been incorporated into bioceramics as a therapeutic ion for improved osteogenesis. Here, up to 4.4 mol% MnO was substituted for CaO in the 58S composition (60 mol% SiO2, 36 mol% CaO, 4 mol% P2O5) and its effects on the glass properties and capability to influence the osteogenic differentiation were evaluated. Mn-containing BGs with amorphous structure, high specific surface area and nanoporosity were obtained. The presence of Mn2+ species was confirmed by X-ray photoelectron spectroscopy (XPS). Mn-containing BGs presented no cytotoxic effect on human mesenchymal stem cells (hMSCs) and enabled sustained ion release in culture medium. hMSCs osteogenic differentiation stimulation and influence on the mineralisation process was also confirmed through the alkaline phosphatase (ALP) activity, and expression of osteogenic differentiation markers, such as collagen type I, osteopontin and osteocalcin, which presented higher expression in the presence of Mn-containing samples compared to control. Results show that the release of manganese ions from bioactive glass provoked human mesenchymal stem cell (hMSC) differentiation down a bone pathway, whereas hMSCs exposed to the Mn-free glass did not differentiate. Mn incorporation offers great promise for obtaining glasses with superior properties for bone tissue regeneration.
Collapse
Affiliation(s)
- Breno Rocha Barrioni
- Department of Metallurgical Engineering and Materials, Federal University of Minas Gerais, School of Engineering, Belo Horizonte, MG, Brazil.
| | - Elizabeth Norris
- Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Siwei Li
- Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Parichart Naruphontjirakul
- Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK
- Biological Engineering Program, King Mongkut's University of Technology Thonburi, Thon Buri, Thailand
| | - Julian R Jones
- Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Marivalda de Magalhães Pereira
- Department of Metallurgical Engineering and Materials, Federal University of Minas Gerais, School of Engineering, Belo Horizonte, MG, Brazil
| |
Collapse
|
22
|
Zhang K, Alaohali A, Sawangboon N, Sharpe PT, Brauer DS, Gentleman E. A comparison of lithium-substituted phosphate and borate bioactive glasses for mineralised tissue repair. Dent Mater 2019; 35:919-927. [PMID: 30975482 PMCID: PMC6559152 DOI: 10.1016/j.dental.2019.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/02/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Wnt/β-catenin signalling plays important roles in regeneration, particularly in hard tissues such as bone and teeth, and can be regulated by small molecule antagonists of glycogen synthase kinase 3 (GSK3); however, small molecules can be difficult to deliver clinically. Lithium (Li) is also a GSK3 antagonist and can be incorporated into bioactive glasses (BG), which can be used clinically in dental and bone repair applications and tuned to quickly release their constituent ions. METHODS Here, we created phosphate (P)- and borate (B)-based BG that also contained Li (LiPBG and LiBBG) and examined their ion release kinetics and the toxicity of their dissolution ions on mouse 17IA4 dental pulp cells. RESULTS We found that although LiPBG and LiBBG can both quickly release Li at concentrations known to regulate Wnt/β-catenin signalling, the P and B ions they concomitantly release are highly toxic to cells. Only when relatively low concentrations of LiPBG and LiBBG were placed in cell culture medium were their dissolution products non-toxic. However, at these concentrations, LiPBG and LiBBG's ability to regulate Wnt/β-catenin signalling was limited. SIGNIFICANCE These data suggest that identifying a BG composition that can both quickly deliver high concentrations of Li and is non-toxic remains a challenge.
Collapse
Affiliation(s)
- Ke Zhang
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Abeer Alaohali
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Nuttawan Sawangboon
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena, Germany
| | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Delia S Brauer
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena, Germany
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK.
| |
Collapse
|
23
|
Wei Su L, Lin DJ, Yen Uan J. Novel dental resin composites containing LiAl-F layered double hydroxide (LDH) filler: Fluoride release/recharge, mechanical properties, color change, and cytotoxicity. Dent Mater 2019; 35:663-672. [DOI: 10.1016/j.dental.2019.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/26/2019] [Accepted: 02/04/2019] [Indexed: 01/18/2023]
|
24
|
Przekora A. Current Trends in Fabrication of Biomaterials for Bone and Cartilage Regeneration: Materials Modifications and Biophysical Stimulations. Int J Mol Sci 2019; 20:E435. [PMID: 30669519 PMCID: PMC6359292 DOI: 10.3390/ijms20020435] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of engineering of biomaterials is to fabricate implantable biocompatible scaffold that would accelerate regeneration of the tissue and ideally protect the wound against biodevice-related infections, which may cause prolonged inflammation and biomaterial failure. To obtain antimicrobial and highly biocompatible scaffolds promoting cell adhesion and growth, materials scientists are still searching for novel modifications of biomaterials. This review presents current trends in the field of engineering of biomaterials concerning application of various modifications and biophysical stimulation of scaffolds to obtain implants allowing for fast regeneration process of bone and cartilage as well as providing long-lasting antimicrobial protection at the site of injury. The article describes metal ion and plasma modifications of biomaterials as well as post-surgery external stimulations of implants with ultrasound and magnetic field, providing accelerated regeneration process. Finally, the review summarizes recent findings concerning the use of piezoelectric biomaterials in regenerative medicine.
Collapse
Affiliation(s)
- Agata Przekora
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, W. Chodzki 1 Street, 20-093 Lublin, Poland.
| |
Collapse
|
25
|
Pulsed Laser Deposited Biocompatible Lithium-Doped Hydroxyapatite Coatings with Antimicrobial Activity. COATINGS 2019. [DOI: 10.3390/coatings9010054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Simple and lithium-doped biological-origin hydroxyapatite layers were synthesized by Pulsed Laser Deposition technique on medical grade Ti substrates. Cytotoxic effects of lithium addition and the biocompatibility of obtained coatings were assessed using three cell lines of human origin (new initiated dermal fibroblasts, immortalized keratinocytes HaCaT, and MG-63 osteosarcoma). Antimicrobial properties of obtained coatings were assessed on two strains (i.e., Staphylococcus aureus and Candida albicans), belonging to species representative for the etiology of medical devices biofilm-associated infections. Our findings suggest that synthesized lithium-doped coatings exhibited low cytotoxicity on human osteosarcoma and skin cells and therefore, an excellent biocompatibility, correlated with a long-lasting anti-staphylococcal and -fungal biofilm activity. Along with low fabrication costs generated by sustainable resources, these biological-derived materials demonstrate their promising potential for future prospective solutions—viable alternatives to commercially available biomimetic HA implants—for the fabrication of a new generation of implant coatings.
Collapse
|
26
|
Daguano JK, Milesi MT, Rodas AC, Weber AF, Sarkis JE, Hortellani MA, Zanotto ED. In vitro biocompatibility of new bioactive lithia-silica glass-ceramics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:117-125. [DOI: 10.1016/j.msec.2018.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 08/05/2018] [Accepted: 09/03/2018] [Indexed: 12/27/2022]
|
27
|
Moghanian A, Firoozi S, Tahriri M, Sedghi A. A comparative study on the in vitro formation of hydroxyapatite, cytotoxicity and antibacterial activity of 58S bioactive glass substituted by Li and Sr. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:349-360. [PMID: 30033264 DOI: 10.1016/j.msec.2018.05.058] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/09/2018] [Accepted: 05/17/2018] [Indexed: 01/10/2023]
Abstract
Lithium and strontium up to 10 mol% have been substituted for calcium in 58S bioactive glasses in order to enhance specific biological properties such as proliferation, alkaline phosphatase (ALP) activity of cells as well as antibacterial activity. In-vitro formation of hydroxyapatite was studied using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), inductively coupled plasma atomic emission spectrometry (ICP-AES) and scanning electron microscopy (SEM). Substitution of either Li or Sr for Ca in the composition had a retarding effect on the bioactivity while Li decreased and Sr increased the rate of ion release in the simulated body fluid solution. The dissolution rate showed to be inversely proportional to oxygen density of the bioactive glasses. The proposed mechanisms for the lowered bioactivity are a lower supersaturation degree for nucleation of apatite in Li substituted bioactive glasses and blocking of the active growth sites of calcium phosphate by Sr2+ in Sr substituted bioactive glasses. The proliferation rate and alkaline phosphate activity of osteoblast cell line MC3T3-E1 treated with Li and Sr bioactive glasses were studied. 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphate assay showed that all synthesized bioactive glasses with exception of 58S with 10 mol% SrO, exhibited statistically significant increase in both cell proliferation and alkaline phosphatase activity. Finally, 58S bioactive glass with 5 mol% Li2O substitution for CaO was considered as a potential biomaterial in bone repair/regeneration therapies with enhanced biocompatibility, and alkaline phosphate activity, with a negligible loss in the bioactivity compared to the 58S bioglass. At the same time this composition had the highest antibacterial activity against methicillin-resistant Staphylococcus aureus bacteria among all synthesized Li and Sr substituted bioactive glasses.
Collapse
Affiliation(s)
- Amirhossein Moghanian
- Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, 424 Hafez Ave., Tehran 15875-4413, Iran; Department of Materials Engineering, Imam Khomeini International University, Qazvin 34149-16818, Iran.
| | - Sadegh Firoozi
- Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, 424 Hafez Ave., Tehran 15875-4413, Iran
| | | | - Arman Sedghi
- Department of Materials Engineering, Imam Khomeini International University, Qazvin 34149-16818, Iran
| |
Collapse
|
28
|
El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. Acta Biomater 2017; 62:1-28. [PMID: 28844964 DOI: 10.1016/j.actbio.2017.08.030] [Citation(s) in RCA: 370] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022]
Abstract
Large bone defects resulting from fractures and disease are a medical concern, being often unable to heal spontaneously by the body's repair mechanisms. Bone tissue engineering (BTE) is a promising approach for treating bone defects through providing a template to guide osseous regeneration. 3D scaffolds with microstructure mimicking host bone are necessary in common BTE strategies. Bioactive glasses (BGs) attract researchers' attention as BTE scaffolds as they are osteoconductive and osteoinductive in certain formulations. In vivo animal models allow understanding and evaluation of materials' performance in the complex physiological environment, being an inevitable step before clinical trials. The aim of this paper is to review for the first time published research investigating the in vivo osseous regenerative capacity of 3D BG scaffolds in bone defect animal models, to better understand and evaluate the progress and future outlook of the use of such scaffolds in BTE. The literature analysis reveals that the regenerative capacity of BG scaffolds depends on several factors; including BG composition, fabrication method, scaffold microstructure and pore characteristics, in addition to scaffold pretreatment and whether or not the scaffolds are loaded with growth factors. In addition, animal species selected, defect size and implantation time affect the scaffold in vivo behavior and outcomes. The review of the literature also makes clear the difficulty encountered to compare different types of bioactive glass scaffolds in their bone forming ability. Even considering such limitations of the current state-of-the-art, results generated from animal bone defect models provide an essential source of information to guide the design of BG scaffolds in future. STATEMENT OF SIGNIFICANCE Bioactive glasses are at the centre of increasing research efforts in bone tissue engineering as the number of research groups around the world carrying out research on this type of biomaterials continues to increase. However, there are no previous reviews in literature which specifically cover investigations of the performance of bioactive glass scaffolds in bone defect animal models. This is the topic of the present review, in which we have analysed comprehensively all available literature in the field. The review thus fills a gap in the biomaterials literature providing a broad platform of information for researchers interested in bioactive glasses in general and specifically in the outcomes of in vivo models. Bioactive glass scaffolds of different compositions tested in relevant bone defect models are covered.
Collapse
Affiliation(s)
- Aiah A El-Rashidy
- Department of Biomaterials, Faculty of Oral and Dental Medicine, Cairo University, 11562 Cairo, Egypt
| | - Judith A Roether
- Institute of Polymer Materials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Leila Harhaus
- Department of Hand, Plastic and Reconstructive Surgery - Burn Center - BG Trauma Center Ludwigshafen, Plastic and Hand Surgery, University of Heidelberg, Ludwigshafen, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery - Burn Center - BG Trauma Center Ludwigshafen, Plastic and Hand Surgery, University of Heidelberg, Ludwigshafen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
29
|
Biodegradation of Mg-14Li alloy in simulated body fluid: A proof-of-concept study. Bioact Mater 2017; 3:110-117. [PMID: 29744448 PMCID: PMC5935760 DOI: 10.1016/j.bioactmat.2017.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 08/23/2017] [Accepted: 08/29/2017] [Indexed: 11/30/2022] Open
Abstract
High corrosion kinetics and localised corrosion progress are the primary concerns arising from the clinical implementation of magnesium (Mg) based implantable devices. In this study, a binary Mg-lithium (Li) alloy consisting a record high Li content of 14% (in weight) was employed as model material aiming to yield homogenous and slow corrosion behaviour in a simulated body fluid, i.e. minimum essential medium (MEM), in comparison to that of generic Mg alloy AZ31 and biocompatible Mg-0.5Zn-0.5Ca counterparts. Scanning electron microscopy examination reveals single-phase microstructural characteristics of Mg-14Li (β-Li), whilst the presence of insoluble phases, cathodic to α-Mg matrix, in AZ31 and Mg-0.5Zn-0.5Ca. Though slight differences exist in the corrosion kinetics of all the specimens over a short-term time scale (no longer than 60 min), as indicated by potentiodynamic polarisation and electrochemical impedance spectroscopy, profound variations are apparent in terms of immersion tests, i.e. mass loss and hydrogen evolution measurements (up to 7 days). Cross-sectional micrographs unveil severe pitting corrosion in AZ31 and Mg-0.5Zn-0.5Ca, but not the case for Mg-14Li. X-ray diffraction patterns and X-ray photoelectron spectroscopy confirm that a compact film (25 μm in thickness) consisting of lithium carbonate (Li2CO3) and calcium hydroxide was generated on the surface of Mg-14Li in MEM, which contributes greatly to its low corrosion rate. It is proposed therefore that the single-phase structure and formation of protective and defect-free Li2CO3 film give rise to the controlled and homogenous corrosion behaviour of Mg-14Li in MEM, providing new insights for the exploration of biodegradable Mg materials. Mg-14Li (wt.%) binary alloy was studied as a potential degradable material. Single phase of β-Li existed in Mg-14Li. Homogenous corrosion morphology was observed in Mg-14Li in MEM. Corrosion rate of Mg-14Li is lower than that of Mg-0.5Za-0.5Ca and AZ31.
Collapse
|
30
|
Haro Durand LA, Vargas GE, Vera-Mesones R, Baldi A, Zago MP, Fanovich MA, Boccaccini AR, Gorustovich A. In Vitro Human Umbilical Vein Endothelial Cells Response to Ionic Dissolution Products from Lithium-Containing 45S5 Bioactive Glass. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E740. [PMID: 28773103 PMCID: PMC5551783 DOI: 10.3390/ma10070740] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/24/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022]
Abstract
Since lithium (Li⁺) plays roles in angiogenesis, the localized and controlled release of Li⁺ ions from bioactive glasses (BGs) represents a promising alternative therapy for the regeneration and repair of tissues with a high degree of vascularization. Here, microparticles from a base 45S5 BG composition containing (wt %) 45% SiO₂, 24.5% Na₂O, 24.5% CaO, and 6% P₂O₅, in which Na₂O was partially substituted by 5% Li₂O (45S5.5Li), were obtained. The results demonstrate that human umbilical vein endothelial cells (HUVECs) have greater migratory and proliferative response and ability to form tubules in vitro after stimulation with the ionic dissolution products (IDPs) of the 45S5.5Li BG. The results also show the activation of the canonical Wnt/β-catenin pathway and the increase in expression of proangiogenic cytokines insulin like growth factor 1 (IGF1) and transforming growth factor beta (TGFβ). We conclude that the IDPs of 45S5.5Li BG would act as useful inorganic agents to improve tissue repair and regeneration, ultimately stimulating HUVECs behavior in the absence of exogenous growth factors.
Collapse
Affiliation(s)
- Luis A Haro Durand
- Department of Pathology and Molecular Pharmacology, IByME-CONICET, C1428ADN Buenos Aires, Argentina.
| | - Gabriela E Vargas
- Department of Developmental Biology, National University of Salta, A4408FVY Salta, Argentina.
| | - Rosa Vera-Mesones
- Department of Developmental Biology, National University of Salta, A4408FVY Salta, Argentina.
| | - Alberto Baldi
- Department of Pathology and Molecular Pharmacology, IByME-CONICET, C1428ADN Buenos Aires, Argentina.
| | - María P Zago
- Institute of Experimental Pathology, IPE-CONICET, A4408FVY Salta, Argentina.
| | - María A Fanovich
- Research Institute for Materials Science and Technology, INTEMA-CONICET, B7608FDQ Mar del Plata, Argentina.
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Alejandro Gorustovich
- Interdisciplinary Materials Group-IESIING-UCASAL, INTECIN UBA-CONICET, A4400EDD Salta, Argentina.
| |
Collapse
|
31
|
Li S, Maçon ALB, Jacquemin M, Stevens MM, Jones JR. Sol–gel derived lithium-releasing glass for cartilage regeneration. J Biomater Appl 2017. [DOI: 10.1177/0885328217706640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Wnt-signalling cascade is one of the crucial pathways involved in the development and homeostasis of cartilage. Influencing this pathway can potentially contribute to improved cartilage repair or regeneration. One key molecular regulator of the Wnt pathway is the glycogen synthase kinase-3 enzyme, the inhibition of which allows initiation of the signalling pathway. This study aims to utilise a binary SiO2–Li2O sol–gel derived glass for controlled delivery of lithium, a known glycogen synthase kinase-3 antagonist. The effect of the dissolution products of the glass on chondrogenic differentiation in an in vitro 3D pellet culture model is reported. Dissolution products that contained 5 mM lithium and 3.5 mM silicon were capable of inducing chondrogenic differentiation and hyaline cartilaginous matrix formation without the presence of growth factors such as TGF-β3. The results suggest that sol–gel derived glass has the potential to be used as a delivery vehicle for therapeutic lithium ions in cartilage regeneration applications.
Collapse
Affiliation(s)
- Siwei Li
- Department of Materials, Imperial College London, London, UK
| | | | - Manon Jacquemin
- Department of Materials, Imperial College London, London, UK
| | - Molly M Stevens
- Department of Materials, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Julian R Jones
- Department of Materials, Imperial College London, London, UK
| |
Collapse
|
32
|
da Silva JG, Babb R, Salzlechner C, Sharpe PT, Brauer DS, Gentleman E. Optimisation of lithium-substituted bioactive glasses to tailor cell response for hard tissue repair. JOURNAL OF MATERIALS SCIENCE 2017; 52:8832-8844. [PMID: 29056759 PMCID: PMC5644509 DOI: 10.1007/s10853-017-0838-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/24/2017] [Indexed: 06/07/2023]
Abstract
Bioactive glasses (BG) are used clinically because they can both bond to hard tissue and release therapeutic ions that can stimulate nearby cells. Lithium has been shown to regulate the Wnt/β-catenin cell signalling pathway, which plays important roles in the formation and repair of bone and teeth. Lithium-releasing BG, therefore, have the potential to locally regulate hard tissue formation; however, their design must be tailored to induce an appropriate biological response. Here, we optimised the release of lithium from lithium-substituted BG by varying BG composition, particle size and concentration to minimise toxicity and maximise upregulation of the Wnt target gene Axin2 in in vitro cell cultures. Our results show that we can tailor lithium release from BG over a wide therapeutic and non-toxic range. Increasing the concentration of BG in cell culture medium can induce toxicity, likely due to modulations in pH. Nevertheless, at sub-toxic concentrations, lithium released from BG can upregulate the Wnt pathway in 17IA4 cells, similarly to treatment with LiCl. Taken together, these data demonstrate that ion release from lithium-substituted BG can be tailored to maximise biological response. These data may be important in the design of BG that can regulate the Wnt/β-catenin pathway to promote hard tissue repair or regeneration.
Collapse
Affiliation(s)
- Jeison Gabriel da Silva
- Craniofacial Development and Stem Cell Biology, King’s College London, 27th Floor, Guy’s Hospital, London, SE1 9RT UK
| | - Rebecca Babb
- Craniofacial Development and Stem Cell Biology, King’s College London, 27th Floor, Guy’s Hospital, London, SE1 9RT UK
| | - Christoph Salzlechner
- Craniofacial Development and Stem Cell Biology, King’s College London, 27th Floor, Guy’s Hospital, London, SE1 9RT UK
| | - Paul T. Sharpe
- Craniofacial Development and Stem Cell Biology, King’s College London, 27th Floor, Guy’s Hospital, London, SE1 9RT UK
| | - Delia S. Brauer
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Eileen Gentleman
- Craniofacial Development and Stem Cell Biology, King’s College London, 27th Floor, Guy’s Hospital, London, SE1 9RT UK
| |
Collapse
|
33
|
Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds. Sci Rep 2016; 6:32964. [PMID: 27604654 PMCID: PMC5015095 DOI: 10.1038/srep32964] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/15/2016] [Indexed: 11/08/2022] Open
Abstract
Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering.
Collapse
|
34
|
Maçon ALB, Jacquemin M, Page SJ, Li S, Bertazzo S, Stevens MM, Hanna JV, Jones JR. Lithium-silicate sol-gel bioactive glass and the effect of lithium precursor on structure-property relationships. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY 2016; 81:84-94. [PMID: 32009741 PMCID: PMC6961499 DOI: 10.1007/s10971-016-4097-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/27/2016] [Indexed: 06/10/2023]
Abstract
ABSTRACT This work reports the synthesis of lithium-silicate glass, containing 10 mol% of Li 2 O by the sol-gel process, intended for the regeneration of cartilage. Lithium citrate and lithium nitrate were selected as lithium precursors. The effects of the lithium precursor on the sol-gel process, and the resulting glass structure, morphology, dissolution behaviour, chondrocyte viability and proliferation, were investigated. When lithium citrate was used, mesoporous glass containing lithium as a network modifier was obtained, whereas the use of lithium nitrate produced relatively dense glass-ceramic with the presence of lithium metasilicate, as shown by X-ray diffraction, 29 Si and 7 Li MAS NMR and nitrogen sorption data. Nitrate has a better affinity for lithium than citrate, leading to heterogeneous crystallisation from the mesopores, where lithium salts precipitated during drying. Citrate decomposed at a lower temperature, where the crystallisation of lithium-silicate crystal is not thermodynamically favourable. Upon decomposition of the citrate, a solid-state salt metathesis reaction between citrate and silanol occurred, followed by the diffusion of lithium within the structure of the glass. Both glass and glass-ceramic released silica and lithium ions in culture media, but release rate was lower for the glass-ceramic. Both samples did not affect chondrocyte viability and proliferation.
Collapse
Affiliation(s)
| | - Manon Jacquemin
- Department of Materials, Imperial College London, London, SW7 2AZ UK
| | - Samuel J. Page
- Department of Physics, University of Warwick, Coventry, CV4 7AL UK
| | - Siwei Li
- Department of Materials, Imperial College London, London, SW7 2AZ UK
| | - Sergio Bertazzo
- Department of Materials, Imperial College London, London, SW7 2AZ UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ UK
| | - John V. Hanna
- Department of Physics, University of Warwick, Coventry, CV4 7AL UK
| | - Julian R. Jones
- Department of Materials, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
35
|
Bioactive glass nanoparticles designed for multiple deliveries of lithium ions and drugs: Curative and restorative bone treatment. Eur J Pharm Sci 2016; 91:243-50. [PMID: 27155253 DOI: 10.1016/j.ejps.2016.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 02/02/2023]
Abstract
Lithium modified bioactive glass nanoparticles were prepared for multiple deliveries of lithium ions and drugs. The particle size, structure and thermal behavior of nanoparticles were analyzed using TEM, FTIR and DSC respectively. The porosity% and specific surface area of glass nanoparticles were about 68.6% and 224.92 (m(2)/g), respectively. The in vitro bioactivity evaluation in SBF revealed that glass nanoparticles were capable of inducing apatite layer over their surfaces. This could be considered as a good indicator for their future abilities to regenerate bone tissue in vivo. Also, lithium ions were released from glass nanoparticles via diffusion controlled process which could activate Wnt signaling pathway and enhance osteogenesis. As a final point, the possibility of utilizing the glass nanoparticles as a controlled delivery device for vancomycin or 5-FU was verified. Fitting vancomycin or 5-FU release profiles to various mathematical models pointed out that both drugs were released by a diffusion-controlled mode.
Collapse
|
36
|
Abstract
Wollastonite (CaSiO3) and diopside (CaMgSi2O6) silicate ceramics have been widely investigated as highly bioactive materials, suitable for bone tissue engineering applications. In the present paper, highly porous glass-ceramic foams, with both wollastonite and diopside as crystal phases, were developed from the thermal treatment of silicone polymers filled with CaO and MgO precursors, in the form of micro-sized particles. The foaming was due to water release, at low temperature, in the polymeric matrix before ceramic conversion, mainly operated by hydrated sodium phosphate, used as a secondary filler. This additive proved to be “multifunctional”, since it additionally favored the phase development, by the formation of a liquid phase upon firing, in turn promoting the ionic interdiffusion. The liquid phase was promoted also by the incorporation of powders of a glass crystallizing itself in wollastonite and diopside, with significant improvements in both structural integrity and crushing strength. The biological characterization of polymer-derived wollastonite-diopside foams, to assess the bioactivity of the samples, was performed by means of a cell culture test. The MTT assay and LDH activity tests gave positive results in terms of cell viability.
Collapse
|
37
|
Sarkar SK, Lee BT. Hard tissue regeneration using bone substitutes: an update on innovations in materials. Korean J Intern Med 2015; 30:279-93. [PMID: 25995658 PMCID: PMC4438282 DOI: 10.3904/kjim.2015.30.3.279] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/05/2015] [Indexed: 12/15/2022] Open
Abstract
Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues.
Collapse
Affiliation(s)
- Swapan Kumar Sarkar
- Institute of Tissue Regeneration, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Byong Taek Lee
- Institute of Tissue Regeneration, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
38
|
Miguez-Pacheco V, Hench LL, Boccaccini AR. Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater 2015; 13:1-15. [PMID: 25462853 DOI: 10.1016/j.actbio.2014.11.004] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/19/2014] [Accepted: 11/04/2014] [Indexed: 12/11/2022]
Abstract
The applications of bioactive glasses (BGs) have to a great extent been related to the replacement, regeneration and repair of hard tissues, such as bone and teeth, and there is an extensive bibliography documenting the role of BGs as bone replacement materials and in bone tissue engineering applications. Interestingly, many of the biochemical reactions arising from the contact of BGs with bodily fluids, in particular the local increase in concentration of various ions at the glass-tissue interface, are also relevant to mechanisms involved in soft tissue regeneration. An increasing number of studies report on the application of BGs in contact with soft tissues, aiming at exploiting the well-known bioactive properties of BGs in soft tissue regeneration and wound healing. This review focuses on research, sometimes involving preliminary in vitro studies but also in vivo evidence, that demonstrates the suitability of BGs in contact with tissues outside the skeletal system, which includes studies investigating vascularization, wound healing and cardiac, lung, nerve, gastrointestinal, urinary tract and laryngeal tissue repair using BGs in various forms of particulates, fibers and nanoparticles with and without polymer components. Potentially active mechanisms of interaction of BGs and soft tissues based on the surface bioreactivity of BGs and on biomechanical stimuli affecting the soft tissue-BG collagenous bonding are discussed based on results in the literature.
Collapse
|
39
|
Han P, Xu M, Chang J, Chakravorty N, Wu C, Xiao Y. Lithium release from β-tricalcium phosphate inducing cementogenic and osteogenic differentiation of both hPDLCs and hBMSCs. Biomater Sci 2014; 2:1230-1243. [DOI: 10.1039/c4bm00111g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Thorfve A, Lindahl C, Xia W, Igawa K, Lindahl A, Thomsen P, Palmquist A, Tengvall P. Hydroxyapatite coating affects the Wnt signaling pathway during peri-implant healing in vivo. Acta Biomater 2014; 10:1451-62. [PMID: 24342040 DOI: 10.1016/j.actbio.2013.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/12/2013] [Accepted: 12/09/2013] [Indexed: 01/09/2023]
Abstract
Owing to its bio- and osteoconductivity, hydroxyapatite (HA) is a widely used implant material, but its osteogenic properties are only partly evaluated in vitro and in vivo. The present study focused on bone healing adjacent to HA-coated titanium (Ti) implants, with or without incorporated lithium ions (Li(+)). Special attention was given to the Wnt signaling pathway. The implants were inserted into rat tibia for 7 or 28 days and analyzed ex vivo, mainly by histomorphometry and quantitative real-time polymerase chain reaction (qPCR). HA-coated implants showed, irrespective of Li(+) content, bone-implant contact (BIC) and removal torque values significantly higher than those of reference Ti. Further, the expression of OCN, CTSK, COL1A1, LRP5/6 and WISP1 was significantly higher in implant-adherent cells of HA-coated implants, with or without Li(+). Significantly higher β-catenin expression and significantly lower COL2A1 expression were observed in peri-implant bone cells from HA with 14 ng cm(-2) released Li(+). Interestingly, Ti implants showed a significantly larger bone area (BA) in the threads than HA with 39 ng cm(-2) released Li(+), but had a lower BIC than any HA-coated implant. This study shows that HA, with or without Li(+), is a strong activator of the Wnt signaling pathway, and may to some degree explain its high bone induction capacity.
Collapse
Affiliation(s)
- A Thorfve
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, The Sahlgrenska Academy at University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden.
| | - C Lindahl
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, The Sahlgrenska Academy at University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden; Department of Engineering Sciences, Angstrom Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden
| | - W Xia
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, The Sahlgrenska Academy at University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden; Department of Engineering Sciences, Angstrom Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden
| | - K Igawa
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, The Sahlgrenska Academy at University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden; Department of Oral and Maxillofacial Surgery, Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, 71-15 Yatsuyamada Koriyama, Fukushima 9638-563, Japan
| | - A Lindahl
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, The Sahlgrenska Academy at University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden; Department of Clinical Chemistry and Transfusion Medicine, The Sahlgrenska Academy, University of Gothenburg, Bruna Straket 16, SE-413 45 Gothenburg, Sweden
| | - P Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, The Sahlgrenska Academy at University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden
| | - A Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, The Sahlgrenska Academy at University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden
| | - P Tengvall
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, The Sahlgrenska Academy at University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
41
|
Sohrabi M, Hesaraki S, Kazemzadeh A, Alizadeh M. Development of injectable biocomposites from hyaluronic acid and bioactive glass nano-particles obtained from different sol–gel routes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3730-44. [DOI: 10.1016/j.msec.2013.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/22/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
|
42
|
Han P, Wu C, Chang J, Xiao Y. The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/β-catenin signalling pathway by Li+ ions released from bioactive scaffolds. Biomaterials 2012; 33:6370-9. [DOI: 10.1016/j.biomaterials.2012.05.061] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/27/2012] [Indexed: 12/15/2022]
|