1
|
Chen G, Wan Y, Ghosh R. Bioseparation using membrane chromatography: Innovations, and challenges. J Chromatogr A 2025; 1744:465733. [PMID: 39893917 DOI: 10.1016/j.chroma.2025.465733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
The resin-based column continues to be the dominant incumbent in bioprocess chromatography. While alternative formats such as membrane-, monolith- and fiber-based chromatography are more visible than before, each still plays minor roles. The reasons for this are complex and some of these are explained in this paper. However, the fact remains that membrane chromatography has come a long way since its early days of development. The main advantage of membrane chromatography continues to be its convection dominant transport mechanism, the resultant benefit being fast and scalable separation. Also, resolution obtained with properly designed devices could be comparable or even better than resin-based chromatography. Significant progress has been made in new membrane development, membrane characterization, device design and novel applications development. A wider range of new membrane matrices, ligands, and ligand-matrix linking chemistries are now available. New membrane modules, formats, and process configurations have also helped improve membrane performance. However, some significant challenges still exist, and these need to be addressed if membrane chromatography is to become more mainstream in the field of bioprocessing. Also, membrane chromatography has significant potential for application in analytical separations and this space has hardly been explored. In this paper, the advances in the areas of membrane preparation, device design and process development are reviewed. A high-level cost analysis is presented and the role of process design in membrane chromatography is discussed.
Collapse
Affiliation(s)
- Guoqiang Chen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, PR China
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada.
| |
Collapse
|
2
|
Pasquier V, Botelho Ferreira K, Lergenmuller M, Tottoli A, Perilleux A, Souquet J, Bielser JM. Assessment of membrane-based downstream purification processes as a replacement to traditional resin bead for monoclonal antibody purification. Biotechnol Prog 2025; 41:e3508. [PMID: 39279354 DOI: 10.1002/btpr.3508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
Membrane chromatography devices are a viable alternative to packed-bed resins and enable highly productive purification cascades for monoclonal antibodies and Fc-fusion proteins. In this study, ion exchange and protein A membrane chromatography performances were assessed and compared with their resin counterparts. Protein A dynamic binding capacities were higher than 50 g/L for two of the tested membranes and with a residence time of 0.2 min. For polishing, it was observed that aggregate clearance was generally less performant with membrane separation when compared to resins with similar ligands. However, the comparable yield and increased productivity of membranes could be enough to consider their implementation. In addition, lifetime studies demonstrated that the performance of membranes remained robust over cycles. One hundred cycles were reached for most of the tested membranes with no impact on the process performance nor product quality. Finally, purification cascades were fully operated with membranes, from capture to polishing, reaching good levels of host cells proteins (less than 50 ppm) and aggregates (equal to or less than 1%). The outcome of this study demonstrated that resin chromatography could be fully replaced by membranes for monoclonal antibody and Fc-fusion protein purification processes.
Collapse
Affiliation(s)
- Victor Pasquier
- Biotech Development Center, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Kevin Botelho Ferreira
- Biotech Development Center, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Morgane Lergenmuller
- Biotech Development Center, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Alexis Tottoli
- Biotech Development Center, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Arnaud Perilleux
- Biotech Development Center, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Jonathan Souquet
- Biotech Development Center, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Jean-Marc Bielser
- Biotech Development Center, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| |
Collapse
|
3
|
Hajihassan Z, Ghaee A, Bazargannia P, Salmani Shahrivar E. Affinity purification/immobilization of poly histidine-tagged proteins by nickel-functionalized porous chitosan membranes. J Chromatogr A 2024; 1722:464902. [PMID: 38636150 DOI: 10.1016/j.chroma.2024.464902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Although immobilized metal ion affinity chromatography (IMAC) is one of the most effective methods for purifying his-tagged proteins, it has limitations such as expensive commercial resins and non-specific binding of unwanted proteins to the nickel immobilized on the resin. In this study, biocompatible chitosan and porous chitosan membranes as alternative resins were synthesized for protein immobilization and purification, but finally porous chitosan membrane was selected due to its higher porosity and consequently higher nickel adsorption. Once the membrane was functionalized with nickel ions and its metal adsorption confirmed by EDS and ICP methods, it was used to immobilize and purify recombinant β-NGF as a protein model with his-tag tail in batch-fashion. Protein binding and purification were also approved by FTIR and UV-Vis spectroscopy and SDS-PAGE technique. Our results indicated that the protein of interest could bind to the nickel-functionalized porous chitosan membrane with high efficiency at pH=7. Furthermore, for protein purification, the pH value of 6 and an imidazole concentration of 750 mM were suggested for the final elution buffer. In conclusion, nickel-functionalized porous chitosan membrane could be a suitable alternative to IMAC for low cost and specific protein immobilization and purification.
Collapse
Affiliation(s)
- Zahra Hajihassan
- School of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.
| | - Azadeh Ghaee
- School of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.
| | - Parisa Bazargannia
- School of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Elahe Salmani Shahrivar
- School of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Chen J, Yu B, Cong H, Shen Y. Recent development and application of membrane chromatography. Anal Bioanal Chem 2023; 415:45-65. [PMID: 36131143 PMCID: PMC9491666 DOI: 10.1007/s00216-022-04325-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 01/11/2023]
Abstract
Membrane chromatography is mainly used for the separation and purification of proteins and biological macromolecules in the downstream processing process, also applications in sewage disposal. Membrane chromatography is recognized as an effective alternative to column chromatography because it significantly improves chromatography from affinity, hydrophobicity, and ion exchange; the development status of membrane chromatography in membrane matrix and membrane equipment is thoroughly discussed, and the applications of protein capture and intermediate purification, virus, monoclonal antibody purification, water treatment, and others are summarized. This review will provide value for the exploration and potential application of membrane chromatography.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| |
Collapse
|
5
|
Bao C, Zhang X, Shen J, Li C, Zhang J, Feng X. Freezing-triggered gelation of quaternized chitosan reinforced with microfibrillated cellulose for highly efficient removal of bilirubin. J Mater Chem B 2022; 10:8650-8663. [PMID: 36218039 DOI: 10.1039/d2tb01407f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The highly efficient removal of bilirubin from blood by hemoperfusion for liver failure therapy remains a challenge in the clinical field due to the low adsorption capacity and poor hemocompatibility of currently used carbon-based adsorbents. Polysaccharide-based cryogels seem to be promising candidates for hemoperfusion adsorbents owing to their inherited excellent hemocompatibility. However, the weak mechanical strength and relatively low adsorption capacity of polysaccharide-based cryogels limited their application in bilirubin adsorption. In this work, we presented a freezing-triggered strategy to fabricate QCS/MFC cryogels, which were formed by quaternized chitosan (QCS) crosslinked with divinylsulfonyl methane (BVSM) and reinforced with microfibrillated cellulose (MFC). Ice crystal exclusions triggered the chemical crosslinking to generate the cryogels with dense pore walls. The obtained QCS/MFC cryogels were characterized by FTIR, SEM, stress-strain test, and hemocompatibility assay, which exhibited interconnected macroporous structures, excellent shape-recovery and mechanical performance, and outstanding blood compatibility. Due to the quaternary ammonium functionalization of chitosan, the QCS/MFC showed a high adsorption capacity of 250 mg g-1 and a short adsorption equilibrium time of 3 h. More importantly, the QCS/MFC still exhibited high adsorption efficiency (over 49.7%) in the presence of 40 g L-1 albumin. Furthermore, the QCS/MFC could also maintain high dynamic adsorption efficiency in self-made hemoperfusion devices. This facile approach provides a new avenue to develop high-performance hemoperfusion adsorbents for bilirubin removal, showing great promise for the translational therapy of hyperbilirubinemia.
Collapse
Affiliation(s)
- Chunxiu Bao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Xufeng Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Jing Shen
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Changjing Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Jinmeng Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Xiyun Feng
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| |
Collapse
|
6
|
Xie F, Bian X, Lu Y, Xia T, Xu D, Wang Y, Cai J. Versatile antibacterial surface with amphiphilic quaternized chitin-based derivatives for catheter associated infection prevention. Carbohydr Polym 2022; 275:118683. [PMID: 34742413 DOI: 10.1016/j.carbpol.2021.118683] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/08/2021] [Accepted: 09/16/2021] [Indexed: 11/02/2022]
Abstract
Microbial colonization of catheter surfaces is responsible for most healthcare-associated infections. Quaternized chitin and chitosan have excellent antimicrobial and biocompatible properties and can be used to provide safe and prolonged protection for biomedical catheters. Herein, we prepared quaternized β-chitin derivative (QC)- and quaternized chitosan derivative (QCS)-based antimicrobial surfaces. The quaternized polysaccharides modified TPU surfaces exhibited hydrophilicity, good biocompatibility. Among these, QCS2-modified TPU exhibited excellent antibacterial properties against Gram-positive and Gram-negative bacteria, and prevented the adherence of bacteria compared with pristine TPU. The antibacterial activity of QCS2-modified surfaces maintained for 8 weeks under the condition of immersion in serum. An in vivo subcutaneous implantation experiment revealed 99.87% reduction of bacteria and reduced expression of inflammation-related factors in the surrounding tissue five days after implantation with QCS2-modified TPU. Therefore, quaternized polysaccharide-modified surfaces have promising potential in preventing medical catheter-associated infections.
Collapse
Affiliation(s)
- Fang Xie
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoen Bian
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan 430072, China
| | - Yiwen Lu
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Tian Xia
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan 430072, China
| | - Duoduo Xu
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan 430072, China.
| | - Jie Cai
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China; Research Institute of Shenzhen, Wuhan University, Shenzhen 518057, China.
| |
Collapse
|
7
|
Feng G, Yuan X, Li P, Tian R, Hou Z, Fu X, Chang Z, Wang J, Li Q, Zhao X. G protein-coupled receptor-in-paper, a versatile chromatographic platform to study receptor-drug interaction. J Chromatogr A 2020; 1637:461835. [PMID: 33383241 DOI: 10.1016/j.chroma.2020.461835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022]
Abstract
High-performance affinity chromatography is limited by its high cost and high pressure. Paper is made up of porous fiber networks and has the properties of low cost, ease of fabrication, and biodegradable. Due to these advantages, herein, we immobilized beta2-adrenoceptor (β2-AR) onto the surface of the polytetrafluoroethylene membrane, a paper-based material, and constructed a G protein-coupled receptor (GPCR)-in-paper chromatographic platform. This platform was characterized by Fourier transform infrared spectroscopy, fluorescence analysis, X-ray photoelectron spectroscopy, and chromatographic studies. These morphological and elemental analysis showed that β2-AR was successfully immobilized on the paper surface. The specific drugs have good retentions on the GPCR-in-paper chromatographic platform. The association constants of salbutamol, terbutaline and bambuterol to β2-AR were calculated to be 2.02 × 104 M-1, 1.15 × 104 M-1, 1.75 × 104 M-1 by adsorption energy distribution, which were in good line with the values from frontal analysis, zonal elution and previous literatures. We demonstrated that the GPCR-in-paper platform was cost-effective, easy to be modified for protein immobilization, and applicable in the receptor-drug interaction analysis. We believe such a platform sheds new light on paper chromatography for receptor-drug interaction analysis and other applications.
Collapse
Affiliation(s)
- Gangjun Feng
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinyi Yuan
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ping Li
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Rui Tian
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhaoling Hou
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaoying Fu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhongman Chang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qian Li
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
8
|
Shoparwe NF, Otitoju TA, Ahmad AL. Fouling evaluation of polyethersulfone (PES)/sulfonated cation exchange resin (SCER) membrane for BSA separation. J Appl Polym Sci 2017. [DOI: 10.1002/app.45854] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Noor Fazliani Shoparwe
- School of Chemical Engineering, Engineering Campus; Universiti Sains Malaysia; 14300 Nibong Tebal, Seberang Perai Selatan Pulau Pinang Malaysia
| | - Tunmise Ayode Otitoju
- School of Chemical Engineering, Engineering Campus; Universiti Sains Malaysia; 14300 Nibong Tebal, Seberang Perai Selatan Pulau Pinang Malaysia
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus; Universiti Sains Malaysia; 14300 Nibong Tebal, Seberang Perai Selatan Pulau Pinang Malaysia
| |
Collapse
|
9
|
Preparation of pH-controllable nanofibrous membrane functionalized with lysine for selective adsorption of protein. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Song C, Wang M, Liu X, Wang H, Chen X, Dai L. Fabrication of high-capacity polyelectrolyte brush-grafted porous AAO-silica composite membrane via RAFT polymerization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:748-755. [DOI: 10.1016/j.msec.2017.03.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/28/2016] [Accepted: 03/04/2017] [Indexed: 01/08/2023]
|
11
|
Ye H, Huang L, Li W, Zhang Y, Zhao L, Xin Q, Wang S, Lin L, Ding X. Protein adsorption and desorption behavior of a pH-responsive membrane based on ethylene vinyl alcohol copolymer. RSC Adv 2017. [DOI: 10.1039/c7ra03206d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pH-responsive protein adsorption and desorption of a poly(DMAEMA)-grafted EVAL membrane was observed.
Collapse
Affiliation(s)
- Hui Ye
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Lilan Huang
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Wenrui Li
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - YuZhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Lizhi Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Qingping Xin
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Shaofei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| | - Xiaoli Ding
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
- School of Materials Science and Engineering
| |
Collapse
|
12
|
Chitosan membrane adsorber for low concentration copper ion removal. Carbohydr Polym 2016; 146:274-81. [DOI: 10.1016/j.carbpol.2016.03.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/18/2016] [Accepted: 03/19/2016] [Indexed: 11/19/2022]
|
13
|
Jafari Sanjari A, Asghari M. A Review on Chitosan Utilization in Membrane Synthesis. CHEMBIOENG REVIEWS 2016. [DOI: 10.1002/cben.201500020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Fu Q, Wang X, Si Y, Liu L, Yu J, Ding B. Scalable Fabrication of Electrospun Nanofibrous Membranes Functionalized with Citric Acid for High-Performance Protein Adsorption. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11819-29. [PMID: 27111287 DOI: 10.1021/acsami.6b03107] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fabricating protein adsorbents with high adsorption capacity and appreciable throughput is extremely important and highly desired for the separation and purification of protein products in the biomedical and pharmaceutical industries, yet still remains a great challenge. Herein, we demonstrate the synthesis of a novel protein adsorbent by in situ functionalizing eletrospun ethylene-vinyl alcohol (EVOH) nanofibrous membranes (NFM) with critic acid (CCA). Taking advantage of the merits of large specific surface area, highly tortuous open-porous structure, abundant active carboxyl groups introduced by CCA, superior chemical stability, and robust mechanical strength, the obtained CCA-grafted EVOH NFM (EVOH-CCA NFM) present an excellent integrated protein (take lysozyme as the model protein) adsorption performance with a high capacity of 284 mg g(-1), short equilibrium time of 6 h, ease of elution, and good reusability. Meanwhile, the adsorption performance of EVOH-CCA NFM can be optimized by regulating buffer pH, ionic strength, and initial concentration of protein solutions. More importantly, a dynamic binding efficiency of 250 mg g(-1) can be achieved driven solely by the gravity of protein solution, which matches well with the demands of the high yield and energy conservation in the actual protein purification process. Furthermore, the resultant EVOH-CCA NFM also possess unique selectivity for positively charged proteins which was confirmed by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis. Significantly, the successful synthesis of such intriguing and economic EVOH-CCA NFM may provide a promising candidate for the next generation of protein adsorbents for rapid, massive, and cost-effective separation and purification of proteins.
Collapse
Affiliation(s)
- Qiuxia Fu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
| | - Xueqin Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, China
| | - Lifang Liu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
| | - Jianyong Yu
- Nanofibers Research Center, Modern Textile Institute, Donghua University , Shanghai 200051, China
| | - Bin Ding
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University , Shanghai 201620, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, China
- Nanofibers Research Center, Modern Textile Institute, Donghua University , Shanghai 200051, China
| |
Collapse
|
15
|
Synthesis of membrane adsorbers via surface initiated ATRP of 2-dimethylaminoethyl methacrylate from microporous PVDF membranes. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-014-1462-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Bayramoglu G, Ozalp VC, Arica MY. Magnetic Polymeric Beads Functionalized with Different Mixed-Mode Ligands for Reversible Immobilization of Trypsin. Ind Eng Chem Res 2013. [DOI: 10.1021/ie402656p] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gulay Bayramoglu
- Biochemical
Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar-Ankara, Turkey
- Department
of Chemistry, Faculty of Sciences, Gazi University, 06500 Teknikokullar-Ankara, Turkey
| | - Veli Cengiz Ozalp
- School
of Medicine, Istanbul Kemerburgaz University, 34217 Istanbul, Turkey
| | - M. Yakup Arica
- Biochemical
Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar-Ankara, Turkey
| |
Collapse
|