1
|
Khosrowshahi ND, Amini H, Khoshfetrat AB, Rahbarghazi R. Oxidized pectin/collagen self-healing hydrogel accelerated the regeneration of acute hepatic injury in a mouse model. Int J Biol Macromol 2025; 304:140931. [PMID: 39947540 DOI: 10.1016/j.ijbiomac.2025.140931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
The high-rate incidence of hepatic tissue pathologies and lack of enough donors necessitate the development of de novo liver therapeutic protocols and tissue engineering modalities. Due to unique chemical structure, and biological properties, the application of pectin-based hydrogels has been extended in different pathological conditions. Using ozonation [O3 gas (25 mg/h) a flow rate of 1 l/min] for 20, 40, 60, and 80 min, the hepatogenic properties of green synthesized hydrogel containing 6 % oxidized pectin (OP) 1 % collagen (Col) were studied in vitro and acute liver injury mice model. Data confirmed suitable gel content, swelling rate, porosity, Young's modulus, and self-healing capacity of OP-Col hydrogel. Ozonation time can influence the viability and function of human HepG2 cells via the generation-free aldehyde groups in which 40 min-ozonation yielded better biological outcomes (migration↑, and albumin production↑) after neutralization with glycine. The transplantation of glycine-treated liver cells-laden OP-Col hydrogel with 40 min-ozonation protocol reduced the progression of fibrotic changes, and unwanted in situ immune system response in acute liver injury mice model after 14 days. Besides, the systemic levels of albumin and urea were increased coinciding with the reduction of liver cell damage enzymes. OP-based hydrogels can appropriately mimic suitable microenvironments for the regulation of hepatocyte dynamic growth and function in in vitro conditions and following acute injuries. The synthesis of OP-based hydrogel with a specific synthesis protocol promotes the biological activity of transplanted liver cells at the site of injury.
Collapse
Affiliation(s)
- Nafiseh Didar Khosrowshahi
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335-1996, Iran; Tissue Engineering and Stem Cell Research Laboratory, Sahand University of Technology, Tabriz 51335-1996, Iran
| | - Hassan Amini
- Department of General and Vascular Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell and Regenerative Medicine Institute (SCARM), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Baradar Khoshfetrat
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335-1996, Iran; Tissue Engineering and Stem Cell Research Laboratory, Sahand University of Technology, Tabriz 51335-1996, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Alarcón-Apablaza J, Godoy-Sánchez K, Jarpa-Parra M, Garrido-Miranda K, Fuentes R. Tissue Sources Influence the Morphological and Morphometric Characteristics of Collagen Membranes for Guided Bone Regeneration. Polymers (Basel) 2024; 16:3499. [PMID: 39771351 PMCID: PMC11678201 DOI: 10.3390/polym16243499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
(1) Background: Collagen, a natural polymer, is widely used in the fabrication of membranes for guided bone regeneration (GBR). These membranes are sourced from various tissues, such as skin, pericardium, peritoneum, and tendons, which exhibit differences in regenerative outcomes. Therefore, this study aimed to evaluate the morphological and chemical properties of porcine collagen membranes from five different tissue sources: skin, pericardium, dermis, tendons, and peritoneum. (2) Methods: The membrane structure was analyzed using energy-dispersive X-ray spectrometry (EDX), variable pressure scanning electron microscopy (VP-SEM), Fourier transform infrared spectroscopy (FTIR), and thermal stability via thermogravimetric analysis (TGA). The absorption capacity of the membranes for GBR was also assessed using an analytical digital balance. (3) Results: The membranes displayed distinct microstructural features. Skin- and tendon-derived membranes had rough surfaces with nanopores (1.44 ± 1.24 µm and 0.46 ± 0.1 µm, respectively), while pericardium- and dermis-derived membranes exhibited rough surfaces with macropores (78.90 ± 75.89 µm and 64.89 ± 13.15 µm, respectively). The peritoneum-derived membrane featured a rough surface of compact longitudinal fibers with irregular macropores (9.02 ± 3.70 µm). The thickness varied significantly among the membranes, showing differences in absorption capacity. The pericardium membrane exhibited the highest absorption, increasing by more than 10 times its initial mass. In contrast, the skin-derived membrane demonstrated the lowest absorption, increasing by less than 4 times its initial mass. Chemical analysis revealed that all membranes were primarily composed of carbon, nitrogen, and oxygen. Thermogravimetric and differential scanning calorimetry analyses showed no significant compositional differences among the membranes. FTIR spectra confirmed the presence of collagen, with characteristic peaks corresponding to Amide A, B, I, II, and III. (4) Conclusions: The tissue origin of collagen membranes significantly influences their morphological characteristics, which may, in turn, affect their osteogenic properties. These findings provide valuable insights into the selection of collagen membranes for GBR applications.
Collapse
Affiliation(s)
- Josefa Alarcón-Apablaza
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile;
- Research Center in Dental Sciences (CICO-UFRO), Dental School, Faculty of Dentistry, Universidad de La Frontera, Temuco 4780000, Chile
| | - Karina Godoy-Sánchez
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (K.G.-S.); (K.G.-M.)
| | - Marcela Jarpa-Parra
- Natural Resources and Polymers Research Laboratory, Universidad Adventista de Chile, Chillán 3780000, Chile;
| | - Karla Garrido-Miranda
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (K.G.-S.); (K.G.-M.)
| | - Ramón Fuentes
- Research Center in Dental Sciences (CICO-UFRO), Dental School, Faculty of Dentistry, Universidad de La Frontera, Temuco 4780000, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (K.G.-S.); (K.G.-M.)
- Department of Integral Adult Dentistry, Dental School, Faculty of Dentistry, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
3
|
Alajmi K, Hartford M, Roy NS, Bhattacharya A, Kaity S, Cavanagh BL, Roy S, Kaur K. Selenium nanoparticle-functionalized injectable chitosan/collagen hydrogels as a novel therapeutic strategy to enhance stem cell osteoblastic differentiation for bone regeneration. J Mater Chem B 2024; 12:9268-9282. [PMID: 39171482 DOI: 10.1039/d4tb00984c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Stem cells are an essential consideration in the fields of tissue engineering and regenerative medicine. Understanding how nanoengineered biomaterials and mesenchymal stem cells (MSCs) interact is crucial for their role in bone regeneration. Taking advantage of the structural stability of selenium nanoparticles (Se-NPs) and biological properties of natural polymers, Se-NPs-functionalized, injectable, thermoresponsive hydrogels with an interconnected molecular structure were prepared to identify their role in the osteogenic differentiation of different types of mesenchymal stem cells. Further, comprehensive characterization of their structural and biological properties was performed. The results showed that the hydrogels undergo a sol to gel transition with the help of β-glycerophosphate, while functionalization with Se-NPs significantly enhances their biological response through stabilizing their polymeric structure by forming Se-O covalent bonds. Further results suggest that Se-NPs enhance the differentiation of MSCs toward osteogenic lineage in both the 2D as well as 3D. We demonstrated that the Se-NPs-functionalized hydrogels could enhance the differentiation of osteoporotic bone-derived MSCs. We also focused on specific cell surface marker expression (CD105, CD90, CD73, CD45, CD34) based on the exposure of healthy rats' bone marrow-derived stem cells (BMSCs) to the Se-NP-functionalized hydrogels. This study provides essential evidence for pre-clinical/clinical applications, highlighting the potential of the nanoengineered biocompatible elastic hydrogels for bone regeneration in diseased bone.
Collapse
Affiliation(s)
- Khaled Alajmi
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland.
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland
| | - Matthew Hartford
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland.
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland
| | - Nakka Sharmila Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Anamitra Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Santanu Kaity
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Brenton L Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin D02YN77, Ireland
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Kulwinder Kaur
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland.
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland
| |
Collapse
|
4
|
Kim M, Yeo M, Lee K, Park MJ, Han G, Lee C, Park J, Jung B. Extraction and Characterization of Human Adipose Tissue-Derived Collagen: Toward Xeno-Free Tissue Engineering. Tissue Eng Regen Med 2024; 21:97-109. [PMID: 38079100 PMCID: PMC10764687 DOI: 10.1007/s13770-023-00612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Collagen is a key component of connective tissue and has been frequently used in the fabrication of medical devices for tissue regeneration. Human-originated collagen is particularly appealing due to its low immune response as an allograft biomaterial compared to xenografts and its ability to accelerate the regeneration process. Ethically and economically, adipose tissues available from liposuction clinics are a good resource to obtain human collagen. However, studies are still scarce on the extraction and characterization of human collagen, which originates from adipose tissue. The aim of this study is to establish a novel and simple method to extract collagen from human adipose tissue, characterize the collagen, and compare it with commercial-grade porcine collagen for tissue engineering applications. METHODS We developed a method to extract the collagen from human adipose tissue under quasi-Good Manufacturing Practice (GMP) conditions, including freezing the tissue, blood removal, and ethanol-based purification. Various techniques, including protein quantification, decellularization assessment, SDS-PAGE, FTIR, and CD spectroscopy analysis, were used for characterization. Amino acid composition was compared with commercial collagen. Biocompatibility and cell proliferation tests were performed, and in vitro tests using collagen sponge scaffolds were conducted with statistical analysis. RESULTS Our results showed that this human adipose-derived collagen was equivalent in quality to commercially available porcine collagen. In vitro testing demonstrated high cell attachment and the promotion of cell proliferation. CONCLUSION In conclusion, we developed a simple and novel method to extract and characterize collagen and extracellular matrix from human adipose tissue, offering a potential alternative to animal-derived collagen for xeno-free tissue engineering applications.
Collapse
Affiliation(s)
- Minseong Kim
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chembok-ro, Dong-gu, Daegu, 41061, Republic of Korea.
- Medical Device Development Center, KBIO HEALTH OSONG Medical Innovation Foundation, 123, Osongsaengmyeong-ro, Cheongju-si, 28160, Republic of Korea.
| | - MyungGu Yeo
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chembok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - KyoungHo Lee
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chembok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Min-Jeong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chembok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Gyeongyeop Han
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chembok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Chansong Lee
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chembok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Jihyo Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chembok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Bongsu Jung
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Chembok-ro, Dong-gu, Daegu, 41061, Republic of Korea.
| |
Collapse
|
5
|
Liu J, Du C, Huang W, Lei Y. Injectable smart stimuli-responsive hydrogels: pioneering advancements in biomedical applications. Biomater Sci 2023; 12:8-56. [PMID: 37969066 DOI: 10.1039/d3bm01352a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Hydrogels have established their significance as prominent biomaterials within the realm of biomedical research. However, injectable hydrogels have garnered greater attention compared with their conventional counterparts due to their excellent minimally invasive nature and adaptive behavior post-injection. With the rapid advancement of emerging chemistry and deepened understanding of biological processes, contemporary injectable hydrogels have been endowed with an "intelligent" capacity to respond to various endogenous/exogenous stimuli (such as temperature, pH, light and magnetic field). This innovation has spearheaded revolutionary transformations across fields such as tissue engineering repair, controlled drug delivery, disease-responsive therapies, and beyond. In this review, we comprehensively expound upon the raw materials (including natural and synthetic materials) and injectable principles of these advanced hydrogels, concurrently providing a detailed discussion of the prevalent strategies for conferring stimulus responsiveness. Finally, we elucidate the latest applications of these injectable "smart" stimuli-responsive hydrogels in the biomedical domain, offering insights into their prospects.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Fauzi AA, Fauza J, Suroto H, Parenrengi MA, Suryaningtyas W, Widiyanti P, Suroto NS, Utomo B, Wahid BDJ, Bella FR, Firda Y. An In Vitro Study of Chitosan-Coated Bovine Pericardium as a Dural Substitute Candidate. J Funct Biomater 2023; 14:488. [PMID: 37888153 PMCID: PMC10607121 DOI: 10.3390/jfb14100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
Defects in the dura matter can be caused by head injury, and many cases require neurosurgeons to use artificial dura matter. Bovine pericardium is an option due to its abundant availability, adjustable size and characteristics, and because it has more collagen than porcine or equine pericardia. Nevertheless, the drawback of bovine pericardium is that it has a higher inflammatory effect than other synthetic dura matters. Chitosan has been shown to have a strong anti-inflammatory effect and has good tensile strength; thus, the idea was formulated to use chitosan as a coating for bovine pericardium. This study used decellularized bovine pericardial membranes with 0.5% sodium dodecyl sulphate and coatings containing chitosan at concentrations of 0.25%, 0.5%, 0.75%, and 1%. An FTIR test showed the presence of a C=N functional group as a bovine pericardium-chitosan bond. Morphological tests of the 0.25% and 0.5% chitosan concentrations showed standard pore sizes. The highest tensile strength percentage was shown by the membrane with a chitosan concentration of 1%. The highest degradation rate of the membrane was observed on the 7th and 14th days for 0.75% and 1% concentrations, and the lowest swelling ratio was observed for the 0.25% concentration. The highest level of cell viability was found for 0.75% chitosan. The bovine pericardium membrane with a 0.75% concentration chitosan coating was considered the optimal sample for use as artificial dura matter.
Collapse
Affiliation(s)
- Asra Al Fauzi
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60131, Indonesia; (J.F.); (M.A.P.); (W.S.); (N.S.S.); (B.D.J.W.); (F.R.B.)
| | - Joandre Fauza
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60131, Indonesia; (J.F.); (M.A.P.); (W.S.); (N.S.S.); (B.D.J.W.); (F.R.B.)
| | - Heri Suroto
- Department of Orthopedic and Traumatology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60131, Indonesia;
| | - Muhammad Arifin Parenrengi
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60131, Indonesia; (J.F.); (M.A.P.); (W.S.); (N.S.S.); (B.D.J.W.); (F.R.B.)
| | - Wihasto Suryaningtyas
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60131, Indonesia; (J.F.); (M.A.P.); (W.S.); (N.S.S.); (B.D.J.W.); (F.R.B.)
| | - Prihartini Widiyanti
- Biomedical Engineering Study Program, Department of Physic, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; (P.W.); (Y.F.)
| | - Nur Setiawan Suroto
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60131, Indonesia; (J.F.); (M.A.P.); (W.S.); (N.S.S.); (B.D.J.W.); (F.R.B.)
| | - Budi Utomo
- Department of Public Health, Faculty of Medicine, Universitas Airlangga, Surabaya 60115, Indonesia;
| | - Billy Dema Justia Wahid
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60131, Indonesia; (J.F.); (M.A.P.); (W.S.); (N.S.S.); (B.D.J.W.); (F.R.B.)
| | - Fitria Renata Bella
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya 60131, Indonesia; (J.F.); (M.A.P.); (W.S.); (N.S.S.); (B.D.J.W.); (F.R.B.)
| | - Yurituna Firda
- Biomedical Engineering Study Program, Department of Physic, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; (P.W.); (Y.F.)
| |
Collapse
|
7
|
Wang Y, Song L, Guo C, Ji R. Proteomic Identification and Characterization of Collagen from Bactrian Camel ( Camelus bactrianus) Hoof. Foods 2023; 12:3303. [PMID: 37685234 PMCID: PMC10486769 DOI: 10.3390/foods12173303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
With the development of camel-derived food and pharmaceutical cosmetics, camel hoof, as a unique by-product of the camel industry, has gradually attracted the attention of scientific researchers in the fields of nutrition, health care, and biomaterial development. In this study, the protein composition and collagen type of Bactrian camel hoof collagen extract (CHC) were analyzed by LC-MS/MS, and the functional properties of CHC were further investigated, including its rheological characteristics, emulsification and emulsion stability, and hygroscopicity and humectancy. Proteomic identification confirmed that CHC had 13 collagen subunits, dominated by type I collagen (α1, α2), with molecular weights mainly in the 100-200 KDa range and a pI of 7.48. An amino acid study of CHC revealed that it carried the standard amino acid profile of type I collagen and was abundant in Gly, Pro, Glu, Ala, and Arg. Additionally, studies using circular dichroism spectroscopy and Fourier transform infrared spectroscopy revealed that CHC contains a collagen-like triple helix structure that is stable and intact. Different concentrations of CHC solutions showed shear-thinning flow behavior. Its tan δ did not differ much with increasing concentration. The CHC has good emulsifying ability and stability, humectancy, and hygroscopicity. This study provides a basis for utilizing and developing Bactrian camel hoof collagen as a functional ingredient.
Collapse
Affiliation(s)
- Yingli Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (L.S.); (C.G.)
| | - Le Song
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (L.S.); (C.G.)
| | - Chengcheng Guo
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (L.S.); (C.G.)
| | - Rimutu Ji
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (L.S.); (C.G.)
- Inner Mongolia Institute of Camel Research, Alxa 737300, China
| |
Collapse
|
8
|
Chaschin IS, Sinolits MA, Badun GA, Chernysheva MG, Anuchina NM, Krasheninnikov SV, Khugaev GA, Petlenko AA, Britikov DV, Zubko AV, Kurilov AD, Dreger EI, Bakuleva NP. Chitosan/hyaluronic acid polyanion bilayer applied from carbon acid as an advanced coating with intelligent antimicrobial properties for improved biological prosthetic heart valves. Int J Biol Macromol 2022; 222:2761-2774. [DOI: 10.1016/j.ijbiomac.2022.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/30/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
9
|
Amirrah IN, Lokanathan Y, Zulkiflee I, Wee MFMR, Motta A, Fauzi MB. A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold. Biomedicines 2022; 10:2307. [PMID: 36140407 PMCID: PMC9496548 DOI: 10.3390/biomedicines10092307] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Collagen is the most abundant structural protein found in humans and mammals, particularly in the extracellular matrix (ECM). Its primary function is to hold the body together. The collagen superfamily of proteins includes over 20 types that have been identified. Yet, collagen type I is the major component in many tissues and can be extracted as a natural biomaterial for various medical and biological purposes. Collagen has multiple advantageous characteristics, including varied sources, biocompatibility, sustainability, low immunogenicity, porosity, and biodegradability. As such, collagen-type-I-based bioscaffolds have been widely used in tissue engineering. Biomaterials based on collagen type I can also be modified to improve their functions, such as by crosslinking to strengthen the mechanical property or adding biochemical factors to enhance their biological activity. This review discusses the complexities of collagen type I structure, biosynthesis, sources for collagen derivatives, methods of isolation and purification, physicochemical characteristics, and the current development of collagen-type-I-based scaffolds in tissue engineering applications. The advancement of additional novel tissue engineered bioproducts with refined techniques and continuous biomaterial augmentation is facilitated by understanding the conventional design and application of biomaterials based on collagen type I.
Collapse
Affiliation(s)
- Ibrahim N. Amirrah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Izzat Zulkiflee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - M. F. Mohd Razip Wee
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38122 Trento, Italy
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
10
|
Collagen extracted from rabbit: meat and by-products: isolation and physicochemical assessment. Food Res Int 2022; 162:111967. [DOI: 10.1016/j.foodres.2022.111967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022]
|
11
|
He B, Zhang J, He Q, Li B, Ran Y, Li Z, Chen J, Zhu Y, Chen X, Jiang T, Yu X, Tian Y. Integrity of the ECM Influences the Bone Regenerative Property of ECM/Dicalcium Phosphate Composite Scaffolds. ACS APPLIED BIO MATERIALS 2022; 5:3269-3280. [PMID: 35696704 DOI: 10.1021/acsabm.2c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to the limitation of clinical autologous bone supply and other issues, the development of bone regeneration materials is still a hot topic. Natural tissue-derived bone repair materials have good biocompatibility and degradability, but their structure and properties are likely to be adversely affected during terminal sterilization. In this study, a composite scaffold consisting of the acellular extracellular matrix and dicalcium phosphate (ECM/DCP) was fabricated and terminally sterilized by γ-ray irradiation. In addition, the ECM/DCP scaffold was saturated with water and was also sterilized by γ-ray irradiation (RX-ECM/DCP). Results showed that the triple helix structure of collagen was better maintained in RX-ECM/DCP than in ECM/DCP. The thermal stability of RX-DCP/ECM was much better than that of ECP/ECM. The in vitro and in vivo performances of both types of scaffolds were also evaluated. The RX-ECM/DCP scaffold exhibited better in vitro bioactivity than that of the ECM/DCP scaffold as evidenced by more mineral formation in the simulated body fluid. In addition, RX-ECM/DCP also induced more effective bone regeneration than the ECM/DCP scaffold did in a rat calvarial defect model. Results sufficiently demonstrated that the addition of water to the scaffold could protect the structure of the ECM/DCP scaffold from being damaged by γ-ray irradiation during the terminal sterilization process. In summary, this study demonstrated a means to protect the ECM structure, which in turn led to the improvement of bone regenerative properties of the materials during γ-ray irradiation of ECM-based bone repair materials.
Collapse
Affiliation(s)
- Baichuan He
- Department of Orthopedic Surgery, Third Hospital of Peking University, Beijing 100191, China
| | - Jingyi Zhang
- Hangzhou Huamai Medical Technology Co., Ltd., Hangzhou 310052, Zhejiang, China
| | - Qianhong He
- Hangzhou Huamai Medical Technology Co., Ltd., Hangzhou 310052, Zhejiang, China
| | - Bo Li
- Hangzhou Huamai Medical Technology Co., Ltd., Hangzhou 310052, Zhejiang, China
| | - Yongfeng Ran
- Hangzhou Huamai Medical Technology Co., Ltd., Hangzhou 310052, Zhejiang, China
| | - Zhihong Li
- Hangzhou Huamai Medical Technology Co., Ltd., Hangzhou 310052, Zhejiang, China
| | - Jiayu Chen
- Hangzhou Huamai Medical Technology Co., Ltd., Hangzhou 310052, Zhejiang, China
| | - Yuqing Zhu
- Hangzhou Huamai Medical Technology Co., Ltd., Hangzhou 310052, Zhejiang, China
| | - Xin Chen
- Hangzhou Huamai Medical Technology Co., Ltd., Hangzhou 310052, Zhejiang, China
| | - Tao Jiang
- Hangzhou Huamai Medical Technology Co., Ltd., Hangzhou 310052, Zhejiang, China
| | - Xiaohua Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Yun Tian
- Department of Orthopedic Surgery, Third Hospital of Peking University, Beijing 100191, China
| |
Collapse
|
12
|
Qin D, Wang N, You XG, Zhang AD, Chen XG, Liu Y. Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives. Biomater Sci 2021; 10:318-353. [PMID: 34783809 DOI: 10.1039/d1bm01294k] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone is a hard-connective tissue composed of matrix, cells and bioactive factors with a hierarchical structure, where the matrix is mainly composed of type I collagen and hydroxyapatite. Collagen fibers assembled by collagen are the template for mineralization and make an important contribution to bone formation and the bone remodeling process. Therefore, collagen has been widely clinically used for bone/cartilage defect regeneration. However, pure collagen implants, such as collagen scaffolds or sponges, have limitations in the bone/cartilage regeneration process due to their poor mechanical properties and osteoinductivity. Different forms of collagen-based composites prepared by incorporating natural/artificial polymers or bioactive inorganic substances are characterized by their interconnected porous structure and promoting cell adhesion, while they improve the mechanical strength, structural stability and osteogenic activities of the collagen matrix. In this review, various forms of collagen-based biocomposites, such as scaffolds, sponges, microspheres/nanoparticles, films and microfibers/nanofibers prepared by natural/synthetic polymers, bioactive ceramics and carbon-based materials compounded with collagen are reviewed. In addition, the application of collagen-based biocomposites as cytokine, cell or drug (genes, proteins, peptides and chemosynthetic) delivery platforms for proangiogenesis and bone/cartilage tissue regeneration is also discussed. Finally, the potential application, research and development direction of collagen-based biocomposites in future bone/cartilage tissue regeneration are discussed.
Collapse
Affiliation(s)
- Di Qin
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Na Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xin-Guo You
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - An-Di Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| |
Collapse
|
13
|
Kaur K, Paiva SS, Caffrey D, Cavanagh BL, Murphy CM. Injectable chitosan/collagen hydrogels nano-engineered with functionalized single wall carbon nanotubes for minimally invasive applications in bone. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112340. [PMID: 34474890 DOI: 10.1016/j.msec.2021.112340] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Mechanical robustness is an essential consideration in the development of hydrogel platforms for bone regeneration, and despite significant advances in the field of injectable hydrogels, many fail in this regard. Inspired by the mechanical properties of carboxylated single wall carbon nanotubes (COOH-SWCNTs) and the biological advantages of natural polymers, COOH-SWCNTs were integrated into chitosan and collagen to formulate mechanically robust, injectable and thermoresponsive hydrogels with interconnected molecular structure for load-bearing applications. This study presents a complete characterisation of the structural and biological properties, and mechanism of gelation of these novel formulated hydrogels. Results demonstrate that β-glycerophosphate (β-GP) and temperature play important roles in attaining gelation at physiological conditions, and the integration with COOH-SWCNTs significantly changed the structural morphology of the hydrogels to a more porous and aligned network. This led to a crystalline structure and significantly increased the mechanical strength of the hydrogels from kPa to MPa, which is closer to the mechanical strength of the bone. Moreover, increased osteoblast proliferation and rapid adsorption of hydroxyapatite on the surface of the hydrogels indicates increased bioactivity with addition of COOH-SWCNTs. Therefore, these nano-engineered hydrogels are expected to have wide utility in the area of bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Kulwinder Kaur
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland
| | - Silvia Sa' Paiva
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland
| | - David Caffrey
- School of Physics and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, D02 PN40, Ireland
| | - Brenton L Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin D02YN77, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin D02YN7, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
14
|
Gomes AD, de Oliveira AAR, Houmard M, Nunes EHM. Gamma sterilization of collagen/hydroxyapatite composites: Validation and radiation effects. Appl Radiat Isot 2021; 174:109758. [PMID: 33962117 DOI: 10.1016/j.apradiso.2021.109758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/06/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
In this work, gamma sterilization was validated, and the impact of this sterilization process on collagen/hydroxyapatite (Col/HAp) composites was investigated. It has been already recognized that the improper sterilization of healthcare products may lead to infection and mortality/morbidity issues in patients. Gamma sterilization has emerged as a promising sterilization method because it shows advantages such as low cost, a small increase in temperature of irradiated materials, and no production of toxic residues. Moreover, gamma rays can reach the products even when contained in sealed packages. The dose of gamma radiation applied in this study ranged from 17.5 to 50 kGy. The studied samples were examined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), and differential scanning calorimetry (DSC). No apparent effect of gamma radiation on HAp was observed even when doses as high as 50 kGy were applied. On the other hand, Col was greatly affected by gamma radiation, displaying cross-linking and degradation after sterilization. These structural changes may alter Col's properties, which could, in turn, impact its medical use. As a consequence, it is strongly recommended that the irradiation dose used to sterilize the Col/HAp composites shall be kept as low as possible to mitigate the structural changes induced in Col. It was noticed that a radiation dose of 17.5 kGy was sufficient to sterilize the examined samples because a sterility assurance level (SAL) below 10-6 was detected. Although dramatic structural changes were observed in Col when this dose was applied, the sterilized samples showed no toxicity to human mesenchymal stem cells. Based on these results, we established a VDMax of 17.5 kGy for Col/HAp-based healthcare products.
Collapse
Affiliation(s)
- Anderson D Gomes
- JHS Biomaterials, Rua Ouro Branco 345, Novo Alvorada, Sabará, Minas Gerais, CEP, 34650-120, Brazil; Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Bloco 2, Sala 2233, Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, CEP, 31270-901, Brazil.
| | - Agda A R de Oliveira
- JHS Biomaterials, Rua Ouro Branco 345, Novo Alvorada, Sabará, Minas Gerais, CEP, 34650-120, Brazil
| | - Manuel Houmard
- Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia Química, Bloco 2, Sala 5212, Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, CEP, 31270-901, Brazil
| | - Eduardo H M Nunes
- Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Bloco 2, Sala 2233, Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, CEP, 31270-901, Brazil.
| |
Collapse
|
15
|
Chashchin IS, Petlenko AA, Zaitsev IL, Bakuleva NP. A Study of Resistance to Calcification of Bovine Jugular Veins with Coatings Deposited from Solutions in Carbonic Acid. DOKLADY PHYSICAL CHEMISTRY 2021. [DOI: 10.1134/s0012501621010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Ghavimi MA, Bani Shahabadi A, Jarolmasjed S, Memar MY, Maleki Dizaj S, Sharifi S. Nanofibrous asymmetric collagen/curcumin membrane containing aspirin-loaded PLGA nanoparticles for guided bone regeneration. Sci Rep 2020; 10:18200. [PMID: 33097790 PMCID: PMC7584591 DOI: 10.1038/s41598-020-75454-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/15/2020] [Indexed: 01/08/2023] Open
Abstract
The goal of the current study was to develop an asymmetric guided bone regeneration (GBR) membrane benefiting from curcumin and aspirin. The membrane was prepared using electrospinning technique and then was physic-chemically characterized by the conventional methods. The release profile of aspirin from the prepared membrane was also measured by ultraviolet spectrophotometry. Also, the antibacterial activities of the membrane was evaluated. We also assessed the in vitro effects of the prepared membrane on the biocompatibility and osteogenic differentiation of dental pulp stem cells (DPSCs), and evaluated in vivo bone regeneration using the prepared membrane in the defects created in both sides of the dog’s jaw by histology. The results from the characterization specified that the membrane was successfully prepared with monodispersed nanosized fibers, uniform network shaped morphology, negative surface charge and sustained release platform for aspirin. The membrane also showed antimicrobial effects against all tested bacteria. The presence of curcumin and aspirin in the asymmetric membrane enhanced osteogenic potential at both transcriptional and translational levels. The results of the animal test showed that the test area was completely filled with new bone after just 28 days, while the commercial membrane area remained empty. There was also a soft tissue layer above the new bone area in the test side. We suggested that the prepared membrane in this work could be used as a GBR membrane to keep soft tissue from occupying bone defects in GBR surgeries. Besides, the surgeries can be benefited from antibacterial activities and bone healing effects of this novel GBR membrane while, simultaneously, promoting bone regeneration.
Collapse
Affiliation(s)
- Mohammad Ali Ghavimi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Bani Shahabadi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedhosein Jarolmasjed
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Chaschin IS, Khugaev GA, Krasheninnikov SV, Petlenko AA, Badun GA, Chernysheva MG, Dzhidzhikhiya KM, Bakuleva NP. Bovine jugular vein valved conduit: A new hybrid method of devitalization and protection by chitosan-based coatings using super- and subrcritical СО2. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Flaig I, Radenković M, Najman S, Pröhl A, Jung O, Barbeck M. In Vivo Analysis of the Biocompatibility and Immune Response of Jellyfish Collagen Scaffolds and its Suitability for Bone Regeneration. Int J Mol Sci 2020; 21:E4518. [PMID: 32630456 PMCID: PMC7350248 DOI: 10.3390/ijms21124518] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
Jellyfish collagen, which can be defined as "collagen type 0" due to its homogeneity to the mammalian types I, II, III, V, and IX and its batch-to-batch consistent producibility, is of special interest for different medical applications related to (bone) tissue regeneration as an alternative to mammalian collagen-based biomaterials. However, no in vivo studies regarding the induction of M1- and M2-macrophages and their time-dependent ration as well as the analysis of the bone regeneration capacity of jellyfish collagen scaffolds have been conducted until now. Thus, the goal of this study was to determine the nature of the immune response to jellyfish collagen scaffolds and their bone healing capacities. Two in vivo studies using established implantation models, i.e., the subcutaneous and the calvarian implantation model in Wistar rats, were conducted. Furthermore, specialized histological, histopathological, and histomorphometrical methods have been used. As a control biomaterial, a collagen scaffold, originating from porcine pericardium, which has already been stated as biocompatible, was used for the subcutaneous study. The results of the present study show that jellyfish collagen scaffolds are nearly completely resorbed until day 60 post implantation by stepwise integration within the subcutaneous connective tissue mediated mainly by macrophages and single multinucleated giant cells. Interestingly, the degradation process ended in a vessel rich connective tissue that is understood to be an optimal basis for tissue regeneration. The study results showed an overall weaker immune response to jellyfish collagen than to porcine pericardium matrices by the induction of significantly lower numbers of macrophages together with a more balanced occurrence of M1- and M2-macrophages. However, both collagen-based biomaterials induced balanced numbers of both macrophage subtypes, which supports their good biocompatibility. Moreover, the histomorphometrical results for the calvarial implantation of the jellyfish scaffolds revealed an average of 46.20% de novo bone formation at day 60, which was significantly higher compared to the control group. Thereby, the jellyfish collagen scaffolds induced also significantly higher numbers of anti-inflammatory macrophages within the bony implantation beds. Altogether, the results show that the jellyfish collagen scaffolds allowed for a directed integration behavior, which is assumed to be in accordance with the concept of Guided Bone Regeneration (GBR). Furthermore, the jellyfish collagen scaffolds induced a long-term anti-inflammatory macrophage response and an optimal vascularization pattern within their implant beds, thus showing excellent biocompatibility and (bone) tissue healing properties.
Collapse
Affiliation(s)
- Iris Flaig
- BerlinAnalytix GmbH, 12109 Berlin, Germany; (I.F.); (A.P.)
| | - Milena Radenković
- Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, 18108 Niš, Serbia;
| | - Stevo Najman
- Department for Cell and Tissue Engineering and Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18108 Niš, Serbia;
| | - Annica Pröhl
- BerlinAnalytix GmbH, 12109 Berlin, Germany; (I.F.); (A.P.)
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Mike Barbeck
- BerlinAnalytix GmbH, 12109 Berlin, Germany; (I.F.); (A.P.)
| |
Collapse
|
19
|
Terzi A, Gallo N, Bettini S, Sibillano T, Altamura D, Madaghiele M, De Caro L, Valli L, Salvatore L, Sannino A, Giannini C. Sub‐ and Supramolecular X‐Ray Characterization of Engineered Tissues from Equine Tendon, Bovine Dermis, and Fish Skin Type‐I Collagen. Macromol Biosci 2020; 20:e2000017. [DOI: 10.1002/mabi.202000017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Alberta Terzi
- Institute of Crystallography (IC)National Research Council Bari 70126 Italy
| | - Nunzia Gallo
- Department of Engineering for InnovationUniversity of Salento Lecce 73100 Italy
| | - Simona Bettini
- Department of Engineering for InnovationUniversity of Salento Lecce 73100 Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC)National Research Council Bari 70126 Italy
| | - Davide Altamura
- Institute of Crystallography (IC)National Research Council Bari 70126 Italy
| | - Marta Madaghiele
- Department of Engineering for InnovationUniversity of Salento Lecce 73100 Italy
| | - Liberato De Caro
- Institute of Crystallography (IC)National Research Council Bari 70126 Italy
| | - Ludovico Valli
- Department of Biological and Environmental Sciences and TechnologiesUniversity of Salento Lecce 73100 Italy
| | - Luca Salvatore
- Department of Engineering for InnovationUniversity of Salento Lecce 73100 Italy
| | - Alessandro Sannino
- Department of Engineering for InnovationUniversity of Salento Lecce 73100 Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC)National Research Council Bari 70126 Italy
| |
Collapse
|
20
|
León-López A, Morales-Peñaloza A, Martínez-Juárez VM, Vargas-Torres A, Zeugolis DI, Aguirre-Álvarez G. Hydrolyzed Collagen-Sources and Applications. Molecules 2019; 24:E4031. [PMID: 31703345 PMCID: PMC6891674 DOI: 10.3390/molecules24224031] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Hydrolyzed collagen (HC) is a group of peptides with low molecular weight (3-6 KDa) that can be obtained by enzymatic action in acid or alkaline media at a specific incubation temperature. HC can be extracted from different sources such as bovine or porcine. These sources have presented health limitations in the last years. Recently research has shown good properties of the HC found in skin, scale, and bones from marine sources. Type and source of extraction are the main factors that affect HC properties, such as molecular weight of the peptide chain, solubility, and functional activity. HC is widely used in several industries including food, pharmaceutical, cosmetic, biomedical, and leather industries. The present review presents the different types of HC, sources of extraction, and their applications as a biomaterial.
Collapse
Affiliation(s)
- Arely León-López
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1. Ex Hacienda de Aquetzalpa. Tulancingo, Hidalgo 43600, Mexico; (A.L.-L.); (V.M.M.-J.); (A.V.-T.)
| | - Alejandro Morales-Peñaloza
- Universidad Autónoma del Estado de Hidalgo, Escuela Superior de Apan, Carretera Apan-Calpulalpan s/n, Colonia, Chimalpa Tlalayote, Apan, Hidalgo 43920 Mexico;
| | - Víctor Manuel Martínez-Juárez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1. Ex Hacienda de Aquetzalpa. Tulancingo, Hidalgo 43600, Mexico; (A.L.-L.); (V.M.M.-J.); (A.V.-T.)
| | - Apolonio Vargas-Torres
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1. Ex Hacienda de Aquetzalpa. Tulancingo, Hidalgo 43600, Mexico; (A.L.-L.); (V.M.M.-J.); (A.V.-T.)
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), H91 TK33 Galway, Ireland;
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM) National University of Ireland Galway (NUI Galway), H91 TK33 Galway, Ireland
| | - Gabriel Aguirre-Álvarez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1. Ex Hacienda de Aquetzalpa. Tulancingo, Hidalgo 43600, Mexico; (A.L.-L.); (V.M.M.-J.); (A.V.-T.)
| |
Collapse
|
21
|
Alexandretti C, Verlindo R, Hassemer GDS, Manzoli A, Roman SS, Fernandes IA, Backes GT, Cansian RL, Alvarado Soares MB, Schwert R, Valduga E. Structural and Techno-Functional Properties of Bovine
Collagen and Its Application in Hamburgers. Food Technol Biotechnol 2019; 57:369-377. [PMID: 31866750 PMCID: PMC6902288 DOI: 10.17113/ftb.57.03.19.5896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The objective of this work is to characterize two types of bovine collagen (fibre and powder), evaluating its application in mixed hamburger formulations, as well as the quality characteristics of the products. The collagen fibre had a fibrillar structure, molecular mass 100 kDa and greater gel strength (146 315 Pa) and protein content (97.81%) than the powdered collagen, which had molecular mass from 50 to 100 kDa, greater hydroxyproline content, and a morphological structure with spherical microparticles more amorphous than the collagen fibre. In this study we found that the addition of 1.5% powdered collagen and 2.5% flocculated soybean flour and/or 0.75% powdered collagen and 3.5% flocculated soybean flour did not deteriorate the technological properties or the sensory attributes of hamburgers. The use of collagen is a promising alternative, since it has functional properties, improves the texture characteristics of a product, and is of low cost.
Collapse
Affiliation(s)
- Christian Alexandretti
- Department of Food Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS, 99709910, Brazil
| | - Roberto Verlindo
- Department of Food Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS, 99709910, Brazil
| | | | - Alexandra Manzoli
- Department of Food Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS, 99709910, Brazil
| | - Silvane Souza Roman
- Department of Food Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS, 99709910, Brazil
| | | | - Geciane Toniazzo Backes
- Department of Food Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS, 99709910, Brazil
| | - Rogério Luis Cansian
- Department of Food Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS, 99709910, Brazil
| | | | - Rodrigo Schwert
- Department of Food Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS, 99709910, Brazil
| | - Eunice Valduga
- Department of Food Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS, 99709910, Brazil
| |
Collapse
|
22
|
Chowdhury SR, Mh Busra MF, Lokanathan Y, Ng MH, Law JX, Cletus UC, Binti Haji Idrus R. Collagen Type I: A Versatile Biomaterial. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1077:389-414. [PMID: 30357700 DOI: 10.1007/978-981-13-0947-2_21] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collagen type I is the most abundant matrix protein in the human body and is highly demanded in tissue engineering, regenerative medicine, and pharmaceutical applications. To meet the uprising demand in biomedical applications, collagen type I has been isolated from mammalians (bovine, porcine, goat and rat) and non-mammalians (fish, amphibian, and sea plant) source using various extraction techniques. Recent advancement enables fabrication of collagen scaffolds in multiple forms such as film, sponge, and hydrogel, with or without other biomaterials. The scaffolds are extensively used to develop tissue substitutes in regenerating or repairing diseased or damaged tissues. The 3D scaffolds are also used to develop in vitro model and as a vehicle for delivering drugs or active compounds.
Collapse
Affiliation(s)
- Shiplu Roy Chowdhury
- Tissue Engineering Centre, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Fauzi Mh Busra
- Tissue Engineering Centre, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yogeswaran Lokanathan
- Tissue Engineering Centre, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Tissue Engineering Centre, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ude Chinedu Cletus
- Bioartificial Organ and Regenerative Medicine Unit, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Ruszymah Binti Haji Idrus
- Department of Physiology, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
23
|
Yang S, Shi X, Li X, Wang J, Wang Y, Luo Y. Oriented collagen fiber membranes formed through counter-rotating extrusion and their application in tendon regeneration. Biomaterials 2019; 207:61-75. [DOI: 10.1016/j.biomaterials.2019.03.041] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
|
24
|
Challenges for Natural Hydrogels in Tissue Engineering. Gels 2019; 5:gels5020030. [PMID: 31146448 PMCID: PMC6631000 DOI: 10.3390/gels5020030] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Protein-based biopolymers derived from natural tissues possess a hierarchical structure in their native state. Strongly solvating, reducing and stabilizing agents, as well as heat, pressure, and enzymes are used to isolate protein-based biopolymers from their natural tissue, solubilize them in aqueous solution and convert them into injectable or preformed hydrogels for applications in tissue engineering and regenerative medicine. This review aims to highlight the need to investigate the nano-/micro-structure of hydrogels derived from the extracellular matrix proteins of natural tissues. Future work should focus on identifying the nature of secondary, tertiary, and higher order structure formation in protein-based hydrogels derived from natural tissues, quantifying their composition, and characterizing their binding pockets with cell surface receptors. These advances promise to lead to wide-spread use of protein-based hydrogels derived from natural tissues as injectable or preformed matrices for cell delivery in tissue engineering and regenerative medicine.
Collapse
|
25
|
Structural and mechanical characteristics of collagen tissue coated with chitosan in a liquid CO 2/water system at different pressures. J Mech Behav Biomed Mater 2019; 94:213-221. [PMID: 30913517 DOI: 10.1016/j.jmbbm.2019.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/04/2019] [Accepted: 03/15/2019] [Indexed: 11/20/2022]
Abstract
Chitosan coatings of biological heart-valve prostheses enhance their biocompatibility, resistance to pathogenic microflora and lifetime. Collagen tissues can be coated with chitosan in aqueous solution acidified, to make chitosan soluble, with H2CO3 formed from a coexisting liquid CO2 phase under pressure. The advantage of H2CO3 is that it can be easily removed after the coating procedure. This study assessed the effects of 6-50 MPa CO2 pressure during the coating procedure on the structure and mechanical properties of the resulting biocomposite matrices. The dependence of chitosan adsorption on CO2 pressure was bell-shaped, reaching a maximum adsorption of 0.8 mass % at 40 MPa. Tissue surface became highly porous upon pressure treatment. At 50 MPa, the pores merged to form furrows with lengths of several hundred micrometers, accompanied by collagen fibril reorganisation. Chitosan coating did not affect tissue tensile strength in the axial direction, but increased it by 75% in the radial direction in the tissue coated at 50 MPa pressure. Strain at break, a measure of elasticity, increased in both directions by up to 100% upon coating with chitosan. CO2 pressure of 30-50 MPa seems thus optimal in terms of chitosan incorporation and tissue mechanical properties.
Collapse
|
26
|
Li J, Wang M, Qiao Y, Tian Y, Liu J, Qin S, Wu W. Extraction and characterization of type I collagen from skin of tilapia (Oreochromis niloticus) and its potential application in biomedical scaffold material for tissue engineering. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Riaz T, Zeeshan R, Zarif F, Ilyas K, Muhammad N, Safi SZ, Rahim A, Rizvi SAA, Rehman IU. FTIR analysis of natural and synthetic collagen. APPLIED SPECTROSCOPY REVIEWS 2018; 53:703-746. [DOI: 10.1080/05704928.2018.1426595] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Affiliation(s)
- Tehseen Riaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Rabia Zeeshan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Faiza Zarif
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Kanwal Ilyas
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Sher Zaman Safi
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Abdur Rahim
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Syed A. A. Rizvi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Ihtesham Ur Rehman
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
28
|
Ashtikar M, Wacker MG. Nanopharmaceuticals for wound healing - Lost in translation? Adv Drug Deliv Rev 2018; 129:194-218. [PMID: 29567397 DOI: 10.1016/j.addr.2018.03.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 12/17/2022]
Abstract
Today, many of the newly developed pharmaceuticals and medical devices take advantage of nanotechnology and with a rising incidence of chronic diseases such as diabetes and cardiovascular disease, the number of patients afflicted globally with non-healing wounds is growing. This has created a requirement for improved therapies and wound care. However, converting the strategies applied in early research into new products is still challenging. Many of them fail to comply with the market requirements. This review discusses the legal and scientific challenges in the design of nanomedicines for wound healing. Are they lost in translation or is there a new generation of therapeutics in the pipeline?
Collapse
Affiliation(s)
- Mukul Ashtikar
- Department of Pharmaceutical Technology and Nanosciences, Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), Frankfurt, Germany; Institute of Pharmaceutical Technology, Goethe University, Frankfurt, Germany
| | - Matthias G Wacker
- Department of Pharmaceutical Technology and Nanosciences, Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), Frankfurt, Germany; Institute of Pharmaceutical Technology, Goethe University, Frankfurt, Germany.
| |
Collapse
|
29
|
Extraction and characterization of collagen from Antarctic and Sub-Antarctic squid and its potential application in hybrid scaffolds for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:787-795. [DOI: 10.1016/j.msec.2017.04.122] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/07/2017] [Accepted: 04/09/2017] [Indexed: 01/19/2023]
|
30
|
Zou Y, Xu P, Li P, Cai P, Zhang M, Sun Z, Sun C, Xu W, Wang D. Effect of ultrasound pre-treatment on the characterization and properties of collagen extracted from soft-shelled turtle ( Pelodiscus sinensis ). Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.04.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Templated Assembly of Collagen Fibers Directs Cell Growth in 2D and 3D. Sci Rep 2017; 7:9628. [PMID: 28852121 PMCID: PMC5575125 DOI: 10.1038/s41598-017-10182-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023] Open
Abstract
Collagen is widely used in tissue engineering and regenerative medicine, with many examples of collagen-based biomaterials emerging in recent years. While there are numerous methods available for forming collagen scaffolds from isolated collagen, existing biomaterial processing techniques are unable to efficiently align collagen at the microstructural level, which is important for providing appropriate cell recognition and mechanical properties. Although some attention has shifted to development of fiber-based collagen biomaterials, existing techniques for producing and aligning collagen fibers are not appropriate for large-scale fiber manufacturing. Here, we report a novel biomaterial fabrication approach capable of efficiently generating collagen fibers of appropriate sizes using a viscous solution of dextran as a dissolvable template. We demonstrate that myoblasts readily attach and align along 2D collagen fiber networks created by this process. Furthermore, encapsulation of collagen fibers with myoblasts into non-cell-adherent hydrogels promotes aligned growth of cells and supports their differentiation. The ease-of-production and versatility of this technique will support future development of advanced in vitro tissue models and materials for regenerative medicine.
Collapse
|
32
|
Claudio-Rizo JA, Mendoza-Novelo B, Delgado J, Castellano LE, Mata-Mata JL. A new method for the preparation of biomedical hydrogels comprised of extracellular matrix and oligourethanes. Biomed Mater 2016; 11:035016. [DOI: 10.1088/1748-6041/11/3/035016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Moreira CD, Carvalho SM, Mansur HS, Pereira MM. Thermogelling chitosan–collagen–bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:1207-16. [DOI: 10.1016/j.msec.2015.09.075] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/25/2015] [Accepted: 09/19/2015] [Indexed: 12/27/2022]
|
34
|
Jalili-Firoozinezhad S, Rajabi-Zeleti S, Marsano A, Aghdami N, Baharvand H. Influence of decellularized pericardium matrix on the behavior of cardiac progenitors. J Appl Polym Sci 2015. [DOI: 10.1002/app.43255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sasan Jalili-Firoozinezhad
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
- Departments of Surgery and Biomedicine; University Hospital Basel, University of Basel; Basel CH-4031 Switzerland
| | - Sareh Rajabi-Zeleti
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Anna Marsano
- Departments of Surgery and Biomedicine; University Hospital Basel, University of Basel; Basel CH-4031 Switzerland
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| |
Collapse
|
35
|
Martínez-Ortiz MA, Hernández-Fuentes AD, Pimentel-González DJ, Campos-Montiel RG, Vargas-Torres A, Aguirre-Álvarez G. Extraction and characterization of collagen from rabbit skin: partial characterization. CYTA - JOURNAL OF FOOD 2014. [DOI: 10.1080/19476337.2014.946451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Gallyamov MO, Chaschin IS, Khokhlova MA, Grigorev TE, Bakuleva NP, Lyutova IG, Kondratenko JE, Badun GA, Chernysheva MG, Khokhlov AR. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 37:127-40. [DOI: 10.1016/j.msec.2014.01.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/16/2013] [Accepted: 01/05/2014] [Indexed: 02/07/2023]
|
37
|
Potorac S, Popa M, Picton L, Dulong V, Verestiuc L, Cerf DL. Collagen functionalized with unsaturated cyclic anhydrides-interactions in solution and solid state. Biopolymers 2013; 101:228-36. [DOI: 10.1002/bip.22319] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/28/2013] [Accepted: 05/31/2013] [Indexed: 01/05/2023]
Affiliation(s)
- S. Potorac
- Department of Natural and Synthetic Polymers, “Gheorghe Asachi”; Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection; Str. D. Mangeron 73 700050 Iasi Romania
- Normandie Université; France
- Université de Rouen; Laboratoire Polymères Biopolymères Surfaces; F-76821 Mont Saint Aignan France
- CNRS UMR 6270 & FR3038; F-76821 Mont Saint Aignan France
| | - M. Popa
- Department of Natural and Synthetic Polymers, “Gheorghe Asachi”; Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection; Str. D. Mangeron 73 700050 Iasi Romania
| | - L. Picton
- Normandie Université; France
- Université de Rouen; Laboratoire Polymères Biopolymères Surfaces; F-76821 Mont Saint Aignan France
- CNRS UMR 6270 & FR3038; F-76821 Mont Saint Aignan France
| | - V. Dulong
- Normandie Université; France
- Université de Rouen; Laboratoire Polymères Biopolymères Surfaces; F-76821 Mont Saint Aignan France
- CNRS UMR 6270 & FR3038; F-76821 Mont Saint Aignan France
| | - L. Verestiuc
- Department of Bimedical Sciences; “Grigore T. Popa” University of Medicine and Pharmacy; Faculty of Medical Bioengineering; 16 Universitatii Street 700115 Iasi Romania
| | - D. Le Cerf
- Normandie Université; France
- Université de Rouen; Laboratoire Polymères Biopolymères Surfaces; F-76821 Mont Saint Aignan France
- CNRS UMR 6270 & FR3038; F-76821 Mont Saint Aignan France
| |
Collapse
|