1
|
Radulescu R, Meleșcanu Imre M, Ripszky A, Rus F, Popa A, Moisa M, Funieru C, Ene R, Pituru S. Exploring the Broad Spectrum of Titanium-Niobium Implants and Hydroxyapatite Coatings-A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6206. [PMID: 39769805 PMCID: PMC11676640 DOI: 10.3390/ma17246206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Tooth loss replacement using dental implants is becoming more frequent. Traditional dental implant materials such as commercially pure titanium and titanium aluminum vanadium alloys have well-proven mechanical and biological properties. New titanium alloying metals such as niobium provide improved mechanical properties such as lower elastic modulus while displaying comparable or even better biocompatibility. Hydroxyapatite coatings are a well-documented and widely used method for enhancing dental implants' surface characteristics and properties and could provide a useful tool for further enhancing titanium-niobium implant properties like osteointegration. Among several coating techniques, physical deposition methods and, in particular, vapour deposition ones are the most used due to their advantages compared to wet deposition techniques for hydroxyapatite coating of metallic surfaces like that of dental implants. Considering the scarcity of data concerning the in vivo evaluation of titanium-niobium biocompatibility and osteointegration and the lack of studies investigating coating these new proposed alloys with hydroxyapatite, this review aims to further knowledge on hydroxyapatite-coated titanium niobium alloys.
Collapse
Affiliation(s)
- Radu Radulescu
- Department of Biochemistry, Faculty of Dental Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania; (R.R.); (A.R.); (F.R.); (A.P.); (M.M.)
| | - Marina Meleșcanu Imre
- Department of Complete Denture, Faculty of Dental Medicine, University of Medicine and Pharmacy Carol Davila, 17-23 Calea Plevnei, 010221 Bucharest, Romania;
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 19-21 Jean Louis Calderon Street, 020021 Bucharest, Romania;
| | - Alexandra Ripszky
- Department of Biochemistry, Faculty of Dental Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania; (R.R.); (A.R.); (F.R.); (A.P.); (M.M.)
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 19-21 Jean Louis Calderon Street, 020021 Bucharest, Romania;
| | - Florentina Rus
- Department of Biochemistry, Faculty of Dental Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania; (R.R.); (A.R.); (F.R.); (A.P.); (M.M.)
| | - Alexandra Popa
- Department of Biochemistry, Faculty of Dental Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania; (R.R.); (A.R.); (F.R.); (A.P.); (M.M.)
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 19-21 Jean Louis Calderon Street, 020021 Bucharest, Romania;
| | - Mihai Moisa
- Department of Biochemistry, Faculty of Dental Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania; (R.R.); (A.R.); (F.R.); (A.P.); (M.M.)
| | - Cristian Funieru
- Department of Preventive Dentistry, Faculty of Dental Medicine, University of Medicine and Pharmacy Carol Davila, 4 Eforiei, 050037 Bucharest, Romania
| | - Razvan Ene
- Orthopedics and Traumatology Department, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Silviu Pituru
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 19-21 Jean Louis Calderon Street, 020021 Bucharest, Romania;
- Department of Professional Organization and Medical Legislation-Malpractice, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
2
|
Wang H, Shu Z, Chen P, Su J, Zhu H, Jiang J, Yan C, Xiao J, Shi Y. Laser powder bed fusion printed poly-ether-ether-ketone/bioactive glass composite scaffolds with dual-scale pores for enhanced osseointegration and bone ingrowth. Acta Biomater 2024; 189:605-620. [PMID: 39389225 DOI: 10.1016/j.actbio.2024.09.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Although poly-ether-ether-ketone (PEEK) implants hold significant medical promise, their bioinert nature presents challenges in osseointegration and bone ingrowth within clinical contexts. To mitigate these challenges, the present study introduces Diamond PEEK/bioactive glass (BG) composite scaffolds, characterized by macro/micro dual-porous structures, precisely fabricated via laser powder bed fusion (LPBF) technology. The findings indicate that an increase in BG content within these scaffolds significantly augments their hydrophilicity and hydroxyapatite formation capacities. Stress-strain curve analysis demonstrates reliable load-bearing stability across all scaffold types. In vitro assessments confirmed the non-cytotoxicity of PEEK/BG samples and demonstrated improved osteogenic differentiation and mineralization with increased BG incorporation. Further, in vivo experiments illustrated that the Diamond porous structure of these scaffolds facilitated bone growth, an effect notably amplified with higher BG content. Particularly in groups with 15 wt.% and 25 wt.% BG scaffolds, new bone formation was observed not only within the macropores of the Diamond structure but also within the micropores inside the scaffold rod, suggesting an almost seamless fusion with the new bone. This demonstrates the scaffolds' effective osteointegration and bone ingrowth properties. This study conclusively established the effectiveness of Diamond-structured PEEK/BG composite scaffolds, fabricated via LPBF, in bone repair. It highlights the crucial role of BG in enhancing osteogenic potential through interaction with the macro/micro pores of the scaffold. STATEMENT OF SIGNIFICANCE: This study addresses the bioinert nature of PEEK implants by developing Diamond-structured PEEK/bioactive glass (BG) composite scaffolds by laser powder bed fusion. The dual-porous macro/microstructure enhances hydrophilicity and hydroxyapatite formation, vital for bone regeneration. By adjusting the BG content, we controlled the melt viscosity and sintering rate, leading to the formation of beneficial microscale pores. These pores resolve the issue of ineffective bioactive fillers in previous LPBF-fabricated scaffolds, enhancing the osteogenic potential of BG and inducing superior bone ingrowth and osseointegration. In vitro and in vivo analyses show enhanced osteogenic differentiation, mineralization, and bone growth, underscoring the clinical potential of these scaffolds for bone repair.
Collapse
Affiliation(s)
- Haoze Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zixing Shu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Zhu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiawei Jiang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jun Xiao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Kocak FZ, Yar M, Rehman IU. In vitro degradation, swelling, and bioactivity performances of in situ forming injectable chitosan-matrixed hydrogels for bone regeneration and drug delivery. Biotechnol Bioeng 2024; 121:2767-2779. [PMID: 38837342 DOI: 10.1002/bit.28755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/25/2023] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Injectable, tissue mimetic, bioactive, and biodegradable hydrogels offer less invasive regeneration and repair of tissues. The monitoring swelling and in vitro degradation capacities of hydrogels are highly important for drug delivery and tissue regeneration processes. Bioactivity of bone tissue engineered constructs in terms of mineralized apatite formation capacity is also pivotal. We have previously reported in situ forming chitosan-based injectable hydrogels integrated with hydroxyapatite and heparin for bone regeneration, promoting angiogenesis. These hydrogels were functionalized by glycerol and pH to improve their mechano-structural properties. In the present study, functionalized hybrid hydrogels were investigated for their swelling, in vitro degradation, and bioactivity performances. Hydrogels have degraded gradually in phosphate-buffered saline (PBS) with and without lysozyme enzyme. The percentage weight loss of hydrogels and their morphological and chemical properties, and pH of media were analyzed. The swelling ratio of hydrogels (55%-68%(wt), 6 h of equilibrium) indicated a high degree of cross-linking, can be suitable for controlled drug release. Hydrogels have gradually degraded reaching to 60%-70% (wt%) in 42 days in the presence and absence of lysozyme, respectively. Simulated body fluid (SBF)-treated hydrogels containing hydroxyapatite-induced needle-like carbonated-apatite mineralization was further enhanced by heparin content significantly.
Collapse
Affiliation(s)
- Fatma Zehra Kocak
- Engineering-Architecture Faculty, Metallurgy and Materials Engineering, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey
- Engineering Department, Lancaster University, Lancaster, UK
| | - Muhammad Yar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ihtesham U Rehman
- School of Medicine and Dentistry, University of Central Lancashire, Lancashire, UK
| |
Collapse
|
4
|
Wu SC, Hsu HC, Wang HF, Liou SP, Ho WF. Synthesis and Characterization of Nano-Hydroxyapatite Obtained from Eggshell via the Hydrothermal Process and the Precipitation Method. Molecules 2023; 28:4926. [PMID: 37446589 DOI: 10.3390/molecules28134926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Hydroxyapatite (HA) is a major component of the inorganic minerals in the hard tissues of humans and has been widely used as a biomedical ceramic material in orthopedic and dentistry applications. Because human bone contains several impurities, including carbonates, chlorides, fluorides, magnesium, and strontium, human bone minerals differ from stoichiometric HA. Additionally, natural bone is composed of nano-sized HA, and the nanoscale particles exhibit a high level of biological activity. In this paper, HA is prepared via the hydrothermal process because its reaction conditions are easy to control and it has been shown to be quite feasible for large-scale production. Therefore, the hydrothermal process is an effective and convenient method for the preparation of HA. Furthermore, eggshell is adopted as a source of calcium, and mulberry leaf extract is selectively added to synthesize HA. The eggshell accounts for 11% of the total weight of a whole egg, and it consists of calcium carbonate, calcium phosphate, magnesium carbonate, and organic matter. Eggshell contains a variety of trace elements, such as magnesium and strontium, making the composition of the synthesized HA similar to that of the human skeleton. These trace elements exert considerable benefits for bone growth. Moreover, the use of eggshell as a raw material can permit the recycling of biowaste and a reduction in process costs. The purpose of this study is to prepare HA powder via the hydrothermal method and to explore the effects of hydrothermal conditions on the structure and properties of the synthesized HA. The room-temperature precipitation method is used for the control group. Furthermore, the results of an immersion test in simulated body fluid confirm that the as-prepared HA exhibits good apatite-forming bioactivity, which is an essential requirement for artificial materials to bond to living bones in the living body and promote bone regeneration. In particular, it is confirmed that the HA synthesized with the addition of the mulberry leaf extract exhibits good in vitro biocompatibility. The morphology, crystallite size, and composition of the carbonated nano-HA obtained herein are similar to those of natural bones. The carbonated nano-HA appears to be an excellent material for bioresorbable bone substitutes or drug delivery. Therefore, the nano-HA powder prepared in this study has great potential in biomedical applications.
Collapse
Affiliation(s)
- Shih-Ching Wu
- Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Hsueh-Chuan Hsu
- Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Hsueh-Fang Wang
- Department of Nutrition, Hungkuang University, Taichung 43302, Taiwan
| | - Shu-Ping Liou
- Department of Materials Science and Engineering, Da-Yeh University, Changhua 515006, Taiwan
| | - Wen-Fu Ho
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| |
Collapse
|
5
|
Mukundan LM, Nirmal S R, Kumar N, Dhara S, Chattopadhyay S. Engineered nanostructures within sol-gel bioactive glass for enhanced bioactivity and modulated drug delivery. J Mater Chem B 2022; 10:10112-10127. [PMID: 36468610 DOI: 10.1039/d2tb01692c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The engineering of nanocrystalline phase in amorphous oxide materials such as bioactive glass is emerging as a new area of great technological and scientific interest in the field of biomaterials. This study reports for the first time the infusion of apatite nanocrystals in sol-gel-derived bioactive glass using P123 as the structure-directing agent. The synthesis of a multicomponent 80SiO2-15CaO-5P2O5 bioactive glass material having a hierarchically ordered mesoporous structure with uniformly grown nanocrystals of apatite was achieved through a sono-assisted surfactant-templated sol-gel method. The bulk crystallographic analysis together with microstructural characterizations shows that the nanocrystalline apatite domains are uniformly dispersed as well as embedded along the mesopores. These nanocrystalline domains were found to influence the textural properties. In addition, macroscopic evidence for higher signs of bonelike matrix formation was observed by the biomineralization study in simulated body fluids. Osteostimulatory effects of these glass samples were evident by cultures in a osteogenic and non-osteogenic mediums with human osteosarcoma cells and a higher osteopromotive potential was authenticated by the alkaline phosphatase activity and alizarin red staining. Further, this study shows a new strategy to prolong the drug release period on account of the nanocrystalline phase and hierarchically positioned mesopores, thus making it a better drug delivery matrix as well.
Collapse
Affiliation(s)
- Lakshmi M Mukundan
- Rubber Technology Center, Indian Institute of Technology Kharagpur, West Bengal, 721302, India. .,School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Remya Nirmal S
- Division of Toxicology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, 695012, India
| | - Nikhil Kumar
- Rubber Technology Center, Indian Institute of Technology Kharagpur, West Bengal, 721302, India. .,School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Santanu Dhara
- Division of Toxicology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, 695012, India
| | - Santanu Chattopadhyay
- Rubber Technology Center, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
6
|
Kim JK, Ha L, Kwon YE, Lee SG, Kim DP. Rapid Flow Synthesis of a Biomimetic Carbonate Apatite as an Effective Drug Carrier. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29626-29638. [PMID: 35724663 DOI: 10.1021/acsami.2c06900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A facile synthesis of apatite nanocrystals analogous to bioapatites with increased biocompatibility and biodegradability can remedy the shortcomings of the widely applied synthetic hydroxyapatite (HAp) for bone defect treatment. Here, we propose an expeditious synthesis method to develop a biomimetic B-type carbonate apatite (CAp) with a simple capillary microfluidic device at room temperature. The process not only eliminates fluctuations with the addition of carbonate but also produces safe CAp drug carriers through simultaneous alendronate incorporation to the CAp structure. CAp displayed superior mineralization on osteoblast-like MG-63 cells when compared with HAp and HAp drug carriers that were produced using identical methods. Furthermore, alendronate-incorporated CAp drug carriers potentially displayed higher cancer cell suppression when applied to breast cancer cells attached to the bone tissue model, which signifies enhanced cancer metastasis to bone suppression due to the likelihood of increased alendronate release of CAp owing to its faster dissolution. Overall, our results may provide promising opportunities for enhanced clinical CAp application for bone defect treatment, particularly for bone loss and cancer to bone metastasis.
Collapse
Affiliation(s)
- Jung-Kyun Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Laura Ha
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Yong-Eun Kwon
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, South Korea
| | - Sang-Gil Lee
- Center for Research Equipment, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, South Korea
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
7
|
Zhang W, Zhou R, Yang Y, Peng S, Xiao D, Kong T, Cai X, Zhu B. Aptamer-mediated synthesis of multifunctional nano-hydroxyapatite for active tumour bioimaging and treatment. Cell Prolif 2021; 54:e13105. [PMID: 34382270 PMCID: PMC8450118 DOI: 10.1111/cpr.13105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The nano-hydroxyapatite (nHAp) is widely used to develop imaging probes and drug carriers due to its excellent bioactivity and biocompatibility. However, traditional methods usually need cumbersome and stringent conditions such as high temperature and post-modification to prepare the functionalized nHAp, which do not benefit the particles to enter cells due to the increased particle size. Herein, a biomimetic synthesis strategy was explored to achieve the AS1411-targeted tumour dual-model bioimaging using DNA aptamer AS1411 as a template. Then, the imaging properties and the biocompatibility of the synthesized AS-nFAp:Gd/Tb were further investigated. MATERIALS AND METHODS The AS-nFAp:Gd/Tb was prepared under mild conditions through a one-pot procedure with AS1411 as a template. Besides, the anticancer drug DOX was loaded to AS-nFAp:Gd/Tb so as to achieve the establishment of a multifunctional nano-probe that integrated the tumour diagnosis and treatment. The AS-nFAp:Gd/Tb was characterized by transmission electron microscopy (TEM), energy disperse X-ray Spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS) spectrum, X-ray diffraction (XRD), fourier-transformed infrared (FTIR) spectroscopy, capillary electrophoresis analyses, zeta potential and particle sizes. The in vitro magnetic resonance imaging (MRI) and fluorescence imaging were performed on an MRI system and a confocal laser scanning microscope, respectively. The potential of the prepared multifunctional nHAp for a targeted tumour therapy was investigated by a CCK-8 kit. And the animal experiments were conducted on the basis of the guidelines approved by the Animal Care and Use Committee of Sichuan University, China. RESULTS In the presence of AS1411, the as-prepared AS-nFAp:Gd/Tb presented a needle-like morphology with good monodispersity and improved imaging performance. Furthermore, due to the specific binding between AS1411 and nucleolin up-expressed in cancer cells, the AS-nFAp:Gd/Tb possessed excellent AS1411-targeted fluorescence and MRI imaging properties. Moreover, after loading chemotherapy drug DOX, in vitro and in vivo studies showed that DOX@AS-nFAp:Gd/Tb could effectively deliver DOX to tumour tissues and exert a highly effective tumour inhibition without systemic toxicity compared with pure DOX. CONCLUSIONS The results indicated that the prepared multifunctional nHAp synthesized by a novel biomimetic strategy had outstanding capabilities of recognition and treatment for the tumour and had good biocompatibility; hence, it might have a potential clinical application in the future.
Collapse
Affiliation(s)
- Wenqing Zhang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuting Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuanglin Peng
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Southwest Medical University, Luzhou, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tingting Kong
- Department of Stomatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bofeng Zhu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Forensic Genetics, Multi-Omics Innovative Research Center of Forensic Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Chang KC, Chen JC, Cheng IT, Haung SM, Liu SM, Ko CL, Sun YS, Shih CJ, Chen WC. Strength and Biocompatibility of Heparin-Based Calcium Phosphate Cement Grafted with Ferulic Acid. Polymers (Basel) 2021; 13:2219. [PMID: 34279363 PMCID: PMC8271828 DOI: 10.3390/polym13132219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/14/2022] Open
Abstract
The biomimetic synthesis of carbonated apatites by biomolecule-based templates is a promising way for broadening apatite applications in bone tissue regeneration. In this work, heparin was used as an organic template to prepare uniform carbonate-based apatite nanorods (CHA) and graft ferulic acid (F-CHA) for enhanced bone mineralization. Next, by combining calcium phosphate cement (CPC) with different F-CHA/CPC ratios, a new type of injectable bone cement combined with F-CHA bioactive apatite was developed (CPC + F-CHA). The physicochemical properties, biocompatibility, and mineralization potential of the CPC + F-CHA composites were determined in vitro. The experimental results confirmed the preparation of highly biocompatible CHA and the compatibility of F-CHA with CPC. Although CPC + F-CHA composites with F-CHA (2.5 wt%, 5 wt%, and 10 wt%) showed a significant reduction in compressive strength (CS), compositing CPC with 10 wt% F-CHA yielded a CS suitable for orthopedic repair (CS still larger than 30 MPa). Spectroscopic and phase analyses revealed that the phase of the hydrothermally synthesized CHA product was not modified by the heparin template. Injection and disintegration tests indicated that the CPC + F-CHA composites have good biocompatibility even at 10 wt% F-CHA. D1 osteoprogenitor cells were cultured with the composites for 7 days in vitro, and the CPC + 10%F-CHA group demonstrated significantly promoted cell mineralization compared with other groups. Given these results, the use of over 10% F-CHA in CPC composites should be avoided if the latter is to be applied to load-bearing areas. A stress-shielding device may also be recommended to stabilize these areas. These newly developed biocompatible CPC + F-CHA have great potential as osteoconductive bone fillers for bone tissue engineering.
Collapse
Affiliation(s)
- Kai-Chi Chang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Jian-Chih Chen
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - I-Tse Cheng
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Ssu-Meng Haung
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Shih-Ming Liu
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Chia-Ling Ko
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Ying-Sui Sun
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chi-Jen Shih
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wen-Cheng Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
9
|
Li T, Yu J, Sui H, Zhang T, Zhou R. Bovine Serum Albumin-Directed Fabrication of Nanohydroxyapatite with Improved Stability and Biocompatibility. INTERNATIONAL JOURNAL OF NANOSCIENCE 2021. [DOI: 10.1142/s0219581x21500289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nanohydroxyapatite (nHAp) has gained considerable concerns due to its vast potential in biomedical applications such as drug delivery, tissue engineering and bone repair. However, the preparation of HAp nanostructures in a controllable manner under environment-friendly reaction conditions remains a challenge. In recent years, the use of biological macromolecules or proteins as templates in the production of nanomaterials has gained more attention due to the relatively mild physical conditions needed for biomimetic synthesis. In this study, a novel nHAp was fabricated by employing bovine serum albumin (BSA) as template under mild condition. After that, the as-obtained nanostructured materials which have well-defined structures and morphologies were characterized by various methods. Furthermore, the rod-like shaped hydroxyapatite demonstrated improved stability properties, as well as cell viability and biocompatibility, compared to BSA free synthesized c-HAp. We expect that this pleasantly novel research will render new insights into the fabrication strategies of nanomaterials and be of practical importance for the expanding biological application.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Jialu Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Hao Sui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
10
|
Pattanashetti NA, Torvi AI, Shettar AK, Gai PB, Kariduraganavar MY. Polysaccharides as Novel Materials for Tissue Engineering Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
11
|
Lira RM, Sartoretto SC, da Silva Gouveia Pedrosa C, Calasans-Maia MD, Leite PE, Granjeiro JM. Is THP-1 viability affected by the crystallinity of nanostructured carbonated hydroxyapatites? J Biomed Mater Res A 2020; 109:1266-1274. [PMID: 33047463 DOI: 10.1002/jbm.a.37120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 11/06/2022]
Abstract
In daily clinical practice, there is a notable variety of synthetic bone substitute, with various resorption rates, different chemical and structural characteristics that influence on bone regeneration and are not suitable for every clinical use. New biomaterials based on nanotechnology have been developed to be bioabsorbable as new bone is formed. This study intends to evaluate THP-1 cell viability when exposed to extracts of unsintered nanostructured carbonated hydroxyapatite (cHA) microspheres processed at 5 and 37°C compared to sintered hydroxyapatite processed at 90°C. cHA shows, in previous studies, biocompatibility, and better bioabsorption rates, consequently, improve the deposition of new bone and tissue repair. The results demonstrated that the tested biomaterials did not activate inflammatory role through THP-1 cells and did not affect activated macrophages independently of their crystallinities, suggesting their safety and biocompatibility. These results are of fundamental importance for the advancement of research on smart materials, especially in what controls the effect of nanostructured cHA microspheres in the biological environment, seems to be a promising biomaterial in clinical application on regenerative medicine.
Collapse
Affiliation(s)
- Renata Moraes Lira
- Graduate Program in Dentistry, Fluminense Federal University, Niterói, Brazil
| | - Suelen Cristina Sartoretto
- Graduate Program in Dentistry, Fluminense Federal University, Niterói, Brazil.,Graduate Program in Dentistry, Veiga de Almeida University, Rio de Janeiro, Brazil.,Oral Surgery Department, Iguaçu University, Nova Iguaçu, Brazil
| | | | | | - Paulo Emílio Leite
- Laboratory of Ultrastructure and Cellular Biology Hertha Meyer, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - José Mauro Granjeiro
- Bioengineering Laboratory, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil.,School of Dentistry, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
12
|
Zhang M, Zhang J, Ban L, Qiu L, Chen J, Zhu Z, Wan Y. Polydopamine regulated hydroxyapatite microspheres grown in the three-dimensional honeycomb-like mollusk shell-derived organic template for osteogenesis. Biofabrication 2020; 12:035022. [PMID: 32353832 DOI: 10.1088/1758-5090/ab8f20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Layered osteochondral composite scaffolds are considered as a promising strategy for the treatment of osteochondral defects. However, the insufficient osseous support and integration of the subchondral bone layer frequently result in the failure of osteochondral repair. Therefore, it is essentially important to explore new subchondral bone constructs tailored to support bone integration and healing. In this study, a novel three-dimensional porous biomimetic construct (HA/pDA-OTMS) was successfully developed by polydopamine (pDA) regulating hydroxyapatite (HA) microspheres grown in the honeycomb-like mollusk shell-derived organic template (OTMS). The biomimetic OTMS had good mechanical properties, high toughness, biodegradability and excellent biocompatibility. Moreover, the long-range ordered cavity structure of OTMS allowed the smallest material to create the largest and most stable geometric space, endowing it high HA loading capacity. The modification of pDA on OTMS surface effectively promoted the mineral nucleation of HA in the micro-nano cavities of OTMS. The compression mechanical tests showed that the combination of inorganic HA and organic pDA-OTMS greatly improved the mechanical properties of the construct. Additionally, the HA/pDA-OTMS composite provided adequate 3-D support for osteoblast cell attachment, proliferation and differentiation, as well as significantly up-regulated the expression of osteogenesis-related genes. These results demonstrated that as-prepared HA/pDA-OTMS constructs with combined mechanical strength and excellent osteogenic activity show great application prospects in subchondral bone regeneration.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Nano-Science and Nano-Technology, College of Physical Science and Technology, Central China Normal University, Wuhan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
13
|
Wang D, Wang X, Zhang Z, Wang L, Li X, Xu Y, Ren C, Li Q, Turng LS. Programmed Release of Multimodal, Cross-Linked Vascular Endothelial Growth Factor and Heparin Layers on Electrospun Polycaprolactone Vascular Grafts. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32533-32542. [PMID: 31393107 DOI: 10.1021/acsami.9b10621] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Viable tissue-engineering small-diameter vascular grafts should support rapid growth of an endothelial cell layer and exhibit long-term antithrombogenic property. In this study, multiple layers of various bioactive molecules, such as vascular endothelial growth factor (VEGF) and heparin, on an electrospun polycaprolactone scaffold have been developed through repeated electrostatic adsorption self-assembly (up to 20 layers), followed by genipin cross-linking. Programmed and sustained release of biomolecules embedded within the multilayered structure can be triggered by matrix metallopeptidase 2 enzyme in vitro. The result is an early and full release of VEGF to promote rapid endothelialization on the intended vascular grafts, followed by a gradual but sustained release of heparin for long-term anticoagulation and antithrombogenicity. This method of forming a biologically responsive, multimodal delivery of VEGF and heparin is highly suitable for all hydrophobic surfaces and provides a promising way to meet the critical requirements of engineered small-diameter vascular grafts.
Collapse
|
14
|
Li M, Bao L, Yin Z, Ji X. Heparin‐Mediated Growth of Self‐Organized ZnO Quasi‐Microspheres with Twinned Donut‐Like Hierarchical Structures. ChemistrySelect 2019. [DOI: 10.1002/slct.201901174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ming Li
- China-America Institute of NeuroscienceXuanwu HospitalCapital Medical University Beijing 100053 China
- Research Center for Medicine and EngineeringSuzhou Institute of Beihang University Suzhou 215163 China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu HospitalCapital Medical University Beijing 100053 China
- Institute of Electrical EngineeringChinese Academy of Sciences Beijing 100190 China
| | - Lu‐zi Bao
- Research Center for Medicine and EngineeringSuzhou Institute of Beihang University Suzhou 215163 China
| | - Zhi‐chen Yin
- China-America Institute of NeuroscienceXuanwu HospitalCapital Medical University Beijing 100053 China
- Research Center for Medicine and EngineeringSuzhou Institute of Beihang University Suzhou 215163 China
| | - Xun‐ming Ji
- China-America Institute of NeuroscienceXuanwu HospitalCapital Medical University Beijing 100053 China
- Research Center for Medicine and EngineeringSuzhou Institute of Beihang University Suzhou 215163 China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu HospitalCapital Medical University Beijing 100053 China
| |
Collapse
|
15
|
Lu K, Li C, Wang HZ, Li YL, Zhu Y, Ouyang Y. Effect of gamma irradiation on carbon dot decorated polyethylene-gold@ hydroxyapatite biocomposite on titanium implanted repair for shoulder joint arthroplasty. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111504. [PMID: 31228687 DOI: 10.1016/j.jphotobiol.2019.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 02/09/2023]
Abstract
High disappointment rate of the ligament to hard tissue mending after the medical procedure has dependably been a testing issue in rotator cuff repair. Considering the elasticity of carbon dot decorated polyethylene (f-CDs-PE) and osteogenic movement of gold substituted hydroxyapatite (Au@HA) bioceramic, f-CDs-PE-Au@HA biocomposite coatings were created by an electrophoretic deposition method (EPD), the in vivo and in vitro bioactivity and cytocompatibility were researched. The physico-chemical properties of f-CDs-PE-Au@HA biocomposite coatings were characterized using fourier transform infra-red (FTIR) and X-Ray diffractometery (XRD). The morphology of the fabricated biocomposites was analyses via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. With a gamma-irradiation of f-CDs-PE-Au@HA biocomposite coating (BC2), the bond and multiplication of cells on biocomposite coating were improved. The specimen with a f-CDs-PE-Au@HA biocomposite (BC2) demonstrated a most noteworthy alkaline phosphatase activity articulation. The animal model consequences additionally show that the f-CDs-PE-Au@HA biocomposite (BC2) had great bioactive and cytocompatibility, which could develop the association of collagen and the arrangement of ligament and hard tissue. Expansion of the gamma-ray irradiation with f-CDs-PE-Au@HA biocomposite coating (BC2) at the tendon- hard tissue crossing point was exhibited to reinforce the mending entheses, increment hard tissue and tendon development and progress collagen association contrasted and control. The above outcomes have recommended that the progressive, implantable and solid stringy platforms built utilizing EPD extraordinary potential for enlargement of rotator cuff tears-recuperating.
Collapse
Affiliation(s)
- Ke Lu
- Department of Joint Surgery, the First People's Hospital of Kunshan, Suzhou, Jiangsu 215300, China
| | - Cong Li
- Department of Orthopaedics, the First People's Hospital of Kunshan, Suzhou, Jiangsu 215300, China
| | - Hong-Zhen Wang
- Department of Joint Surgery, the First People's Hospital of Kunshan, Suzhou, Jiangsu 215300, China
| | - Yun-Long Li
- Department of Urology Surgery, the First People's Hospital of Kunshan, Suzhou, Jiangsu 215300, China
| | - Yi Zhu
- Department of Orthopedics, Shanghai Jiao Tong University Affliated Sixth People's Hospital, Shanghai 200233, China.
| | - Yuanming Ouyang
- Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine and Health, Shanghai 201306, China
| |
Collapse
|
16
|
Sharma M, Nagar R, Meena VK, Singh S. Electro-deposition of bactericidal and corrosion-resistant hydroxyapatite nanoslabs. RSC Adv 2019; 9:11170-11178. [PMID: 35520229 PMCID: PMC9063003 DOI: 10.1039/c9ra00811j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/21/2019] [Indexed: 11/21/2022] Open
Abstract
Herein, nanoscale hydroxyapatite (HA) with a slab-like morphology was synthesized, and its size was calculated to be in the range of 80-150 nm, as confirmed via scanning electron microscopy (SEM) and atomic force microscopy (AFM). The nanoscale HA with a slab-like structure has been referred as HA nanoslabs in the manuscript. The composition, crystallinity, wettability, bacterial resistance porosity, surface roughness and corrosion resistance of these HA nanoslabs were studied using energy dispersive spectroscopy (EDAX), X-ray diffraction (XRD), contact angle, colony count BET analyzer and profilometer and polarization techniques, respectively. The contact angle of the HA nanoslabs was found to be 22.6°, which indicated the hydrophilic nature of these nanoslabs. Their bacterial resistance was studied against the Salmonella typhi strain, and it was found that in the presence of the HA nanoslabs, the growth of the bacteria was hindered. For the corrosion resistance study, the HA nanoslabs were electro-deposited on a titanium alloy, used as a substrate. The deposition was carried out at varying currents, viz, 1 mA, 3 mA and 5 mA. The open circuit potential (OCP) and polarization were used for the estimation of the corrosion resistance of the bare and coated substrates. The corrosion potential started shifting towards noble potential, and the current density started decreasing with an increase in the electrochemical deposition current. This indicated good corrosion resistance of these nanoslabs.
Collapse
Affiliation(s)
- Manisha Sharma
- Central Scientific Instruments Organisation (CSIR-CSIO) Chandigarh India .,Academy of Scientific and Innovative Research (AcSIR-CSIO) Ghaziabad India
| | - Rohit Nagar
- Central Scientific Instruments Organisation (CSIR-CSIO) Chandigarh India
| | - Vijay Kumar Meena
- Central Scientific Instruments Organisation (CSIR-CSIO) Chandigarh India .,Academy of Scientific and Innovative Research (AcSIR-CSIO) Ghaziabad India
| | - Suman Singh
- Central Scientific Instruments Organisation (CSIR-CSIO) Chandigarh India .,Academy of Scientific and Innovative Research (AcSIR-CSIO) Ghaziabad India
| |
Collapse
|
17
|
Gao C, Zhao K, Lin L, Wang J, Liu Y, Zhu P. Preparation and Characterization of Biomimetic Hydroxyapatite Nanocrystals by Using Partially Hydrolyzed Keratin as Template Agent. NANOMATERIALS 2019; 9:nano9020241. [PMID: 30754714 PMCID: PMC6409535 DOI: 10.3390/nano9020241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 11/16/2022]
Abstract
Hydroxyapatite (HA), a typical inorganic component of bone, is a widely utilized biomaterial for bone tissue repair and regeneration due to its excellent properties. Inspired by the recent findings on the important roles of protein in biomineralization and natural structure of fish scales, keratin was chosen as a template for modulating the assembly of HA nanocrystals. A series of HA nanocrystals with different sizes were synthesized by adjusting the concentration of partially hydrolyzed keratin. The structure and compositions of the prepared HA were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectrum, and Transmission electron microscopy (TEM). Results revealed that the size of the synthesized HA nanocrystals can be controlled by adjusting the concentration of partially hydrolyzed keratin. Specifically, the size of synthesized HA decreased from 63 ± 1.5 nm to 27 ± 0.9 nm with the increasing concentration of partially hydrolyzed keratin from 0 to 0.6g. In addition, in vitro cytocompatibility of synthesized HA nanocrystals were evaluated using the MG-63 cells.
Collapse
Affiliation(s)
- Chunxia Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu 225009, China.
| | - Ke Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu 225009, China.
| | - Liwei Lin
- School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu 225009, China.
| | - Jinyu Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu 225009, China.
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu 225009, China.
| | - Peizhi Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu 225009, China.
| |
Collapse
|
18
|
Li Y, Bai Y, Pan J, Wang H, Li H, Xu X, Fu X, Shi R, Luo Z, Li Y, Li Q, Fuh JYH, Wei S. A hybrid 3D-printed aspirin-laden liposome composite scaffold for bone tissue engineering. J Mater Chem B 2019; 7:619-629. [PMID: 32254795 DOI: 10.1039/c8tb02756k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bone defects are some of the most difficult injuries to treat in clinical medicine. Evidence from cellular and animal studies suggests that aspirin exhibits protective effects on bone by promoting both the survival of osteoblast precursor stem cells and osteoblast differentiation. However, acquired resistance to aspirin and its cytotoxicity significantly limit its therapeutic application. Controlled release systems have been confirmed to promote the efficacy of certain drugs for bone regeneration. Additionally, the controlled release of a high dose of drug allows for lower dosing over an extended period. In this way, nano-liposomal encapsulation of aspirin can be used to reduce the cytotoxicity of the overall dose. Using a series of osteogenic experiments, this study found that an aspirin-laden liposome delivery system (Asp@Lipo) obviously promoted osteogenesis and immunomodulation of human mesenchymal stem cells (hMSCs). We also studied the in vitro capacity of polycaprolactone (PCL)-based bioactive composite (PCL-Asp@Lipo) scaffolds to facilitate cell proliferation and osteoblast differentiation. Compared to a common scaffold, ALP assays, immunofluorescence and calcium mineralisation studies revealed that the PCL-Asp@Lipo scaffolds enhanced the osteogenic differentiation of hMSCs. Subsequently, along with the cells, PCL and PCL-Asp@Lipo scaffolds were both implanted subcutaneously into nude mice for estimation of osteo-inductivity after 6 weeks, the PCL-Asp@Lipo composite scaffold exhibited more osteogenic activity than the bare PCL scaffold. This approach has potential applications in bone tissue repair and regenerative medicine.
Collapse
Affiliation(s)
- Yan Li
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ahmadzadeh E, Rowshan FT, Mashkour M. Enhancement of bone mineral density and body mass in newborn chickens by in ovo injection of ionic-hydroxyapatite nanoparticles of bacterial origin. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:16. [PMID: 30671631 DOI: 10.1007/s10856-018-6210-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Using non-drug, non-surgical treatments for improving bone mineral diseases in newborn babies is an important topic for neonatologists. The present study introduces bacterial synthesized ionic nano-hydroxyapatite (Bio-HA) for the development of bone mineral density in the chicken embryo model. In vitro cytotoxicity analyses were demonstrated the optimal concentrations of Bio-HA compared to a chemically-synthesized hydroxyapatite (Ch-HA). Toxicity of Bio-HA on MCF-7 human cell lines was negligible at the concentrations less than 500 μg/mL whereas Ch-HA showed similar results at the concentrations less than 100 μg/mL. Therefore, concentrations at 50 μg/mL and 100 μg/mL were selected for in ovo injection of both materials into the fertilized eggs. The newly hatched chickens were sacrificed in order to monitor their serological factors, total body mass, bone mineral contents and bone mineral density. The results confirmed that Bio-HA increased the average body weight and bone mineral indices of chickens in comparison to the Ch-HA and negative controls (normal saline and intact groups). In view of the intact group, no liver or kidney damage occurred in the groups receiving Bio-HA which promises the effectiveness of these nanoparticles for the treatment of afterbirth bone mineral deficiency.
Collapse
Affiliation(s)
- Elham Ahmadzadeh
- Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, P.O. Box: 484, Babol, Mazandaran, 47148-71167, Iran
| | - Farid Talebnia Rowshan
- Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, P.O. Box: 484, Babol, Mazandaran, 47148-71167, Iran.
- Department of Manufacturing Technology, Sanofi Pasteur, Toronto, M2R 3T4T, Canada.
| | - Mehrdad Mashkour
- Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, P.O. Box: 484, Babol, Mazandaran, 47148-71167, Iran
| |
Collapse
|
20
|
Deng Y, Yang L, Huang X, Chen J, Shi X, Yang W, Hong M, Wang Y, Dargusch MS, Chen ZG. Dual Ag/ZnO-Decorated Micro-/Nanoporous Sulfonated Polyetheretherketone with Superior Antibacterial Capability and Biocompatibility via Layer-by-Layer Self-Assembly Strategy. Macromol Biosci 2018; 18:e1800028. [PMID: 29782695 DOI: 10.1002/mabi.201800028] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/18/2018] [Indexed: 01/27/2023]
Abstract
Polyetheretherketone is attractive for dental and orthopedic applications due to its mechanical attributes close to that of human bone; however, the lack of antibacterial capability and bioactivity of polyetheretherketone has substantially impeded its clinical applications. Here, a dual therapy implant coating is developed on the 3D micro-/nanoporous sulfonated polyetheretherketone via layer-by-layer self-assembly of Ag ions and Zn ions. Material characterization studies have indicated that nanoparticles consisting of elemental Ag and ZnO are uniformly incorporated on the porous sulfonated polyetheretherketone surface. The antibacterial assays demonstrate that Ag-decorated sulfonated polyetheretherketone and Ag/ZnO-codecorated sulfonated polyetheretherketone effectively inhibit the reproduction of Gram-negative and Gram-positive bacteria. Owing to the coordination of micro-/nanoscale topological cues and Zn induction, the Ag/ZnO-codecorated sulfonated polyetheretherketone substrates are found to enhance biocompatibility (cell viability, spreading, and proliferation), and hasten osteodifferentiation and -maturation (alkaline phosphate activity (ALP) production, and osteogenesis-related genetic expression), compared with the Ag-decorated sulfonated polyetheretherketone and the ZnO-decorated sulfonated polyetheretherketone counterparts. The dual therapy Ag/ZnO-codecorated sulfonated polyetheretherketone has an appealing bacteriostatic performance and osteogenic differentiation potential, showing great potential for dental and orthopedic implants.
Collapse
Affiliation(s)
- Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.,Department of Mechanical Engineering, The University of Hong Kong, 999077, Hong Kong, China
| | - Lei Yang
- School of Materials and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaobing Huang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Junhong Chen
- School of Materials and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiuyuan Shi
- School of Materials and Engineering, Sichuan University, Chengdu, 610065, China
| | - Weizhong Yang
- School of Materials and Engineering, Sichuan University, Chengdu, 610065, China
| | - Min Hong
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Yuan Wang
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Matthew S Dargusch
- Materials Engineering, The University of Queensland, Brisbane, Queensland, 4072, Australia.,Centre for Advanced Materials Processing and Manufacturing (AMPAM), School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Zhi-Gang Chen
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia.,Materials Engineering, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
21
|
Park KH, Kim SJ, Jeong YH, Moon HJ, Song HJ, Park YJ. Fabrication and biological properties of calcium phosphate/chitosan composite coating on titanium in modified SBF. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:113-118. [PMID: 29853074 DOI: 10.1016/j.msec.2018.04.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/23/2018] [Accepted: 04/19/2018] [Indexed: 11/30/2022]
Abstract
In order to increase the biocompatibility and bioactivity of chitosan, hydroxyapatite was in situ combined into the spin-coated chitosan layer on the titanium substrate by incubating in modified simulated body fluid (m-SBF). The calcium phosphate/chitosan (CaP/CS) composite prepared in m-SBF showed a homogeneous distribution of spherical nano-clusters. The hydrophilicity of the coatings was increased by performing NaOH post-treatment of CaP/CS composites, which also affected apatite formation. Biocompatibility of the coatings was assessed by investigating the cellular response of human osteoblast-like MG-63 cells with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell adhesion and osteogenic properties of the mesoporous CaP/CS composite were evaluated by SEM and ALPase assay, respectively. This in vitro study showed improved cell adhesion and differentiation on nanostructured CaP/CS composites. These results indicate that this CaP/CS composite could be a promising candidate for bone tissue engineering.
Collapse
Affiliation(s)
- Kyung Hee Park
- Department of Dental Materials and Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seok-Jae Kim
- Department of Dental Materials and Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Young-Hwa Jeong
- Department of Dental Materials and Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyun-Joo Moon
- Department of Dental Materials and Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ho-Jun Song
- Department of Dental Materials and Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yeong-Joon Park
- Department of Dental Materials and Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
22
|
Nakamura M, Oyane A, Kuroiwa K, Shimizu Y, Pyatenko A, Misawa M, Numano T, Kosuge H. Facile one-pot fabrication of calcium phosphate-based composite nanoparticles as delivery and MRI contrast agents for macrophages. Colloids Surf B Biointerfaces 2017; 162:135-145. [PMID: 29190464 DOI: 10.1016/j.colsurfb.2017.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/20/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022]
Abstract
We developed a facile one-pot fabrication process for magnetic iron oxide-calcium phosphate (IO-CaP) composite nanoparticles via coprecipitation in labile supersaturated CaP solutions containing IO nanocrystals. All the source solutions used were clinically approved for injection, including water and magnetic IO nanocrystals (ferucarbotran, used as a negative magnetic resonance imaging (MRI) contrast agent). This ensured that the resulting nanoparticles were pathogen- and endotoxin-free. The dispersants used were clinically approved heparin sodium (heparin) or adenosine triphosphate disodium hydrate (ATP), which were added to the IO-containing labile supersaturated CaP solutions. Both heparin and ATP coprecipitated with CaP and ferucarbotran to form heparin- and ATP-modified IO-CaP nanoparticles, respectively, with a hydrodynamic diameter of a few hundred nanometers. Both the resulting nanoparticles exhibited relatively large negative zeta potentials, caused by the negatively charged functional groups in heparin and ATP, which improved the particle dispersibility when compared to non-modified IO-CaP nanoparticles. The heparin-modified IO-CaP nanoparticles were effectively ingested by murine macrophages (RAW264.7) without showing significant cytotoxicity but barely ingested by non-phagocytotic human umbilical vein endothelial cells, indicating the potential of these nanoparticles for targeted delivery to macrophages. The heparin-modified IO-CaP nanoparticles exhibited a negative contrast enhancing ability for MRI. Our results show that IO-CaP nanoparticles have potential as delivery and MRI contrast agents for macrophages.
Collapse
Affiliation(s)
- Maki Nakamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kiyoko Kuroiwa
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yoshiki Shimizu
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Alexander Pyatenko
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 Japan
| | - Masaki Misawa
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
| | - Tomokazu Numano
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan; Department of Radiological Sciences, Graduate School of Human Health Science, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Hisanori Kosuge
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Advanced Imaging Center Tsukuba, 2-1-16 Amakubo, Tsukuba, Ibaraki 305-0005, Japan
| |
Collapse
|
23
|
Li Y, Luo Z, Xu X, Li Y, Zhang S, Zhou P, Sui Y, Wu M, Luo E, Wei S. Aspirin enhances the osteogenic and anti-inflammatory effects of human mesenchymal stem cells on osteogenic BFP-1 peptide-decorated substrates. J Mater Chem B 2017; 5:7153-7163. [PMID: 32263906 DOI: 10.1039/c7tb01732d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several bone diseases, including arthritis, fracture and osteoporosis, have a pathophysiologically important inflammatory component. Sustained inflammation can result in delayed bone healing. Therefore, to promote bone repair, it is important to inhibit inflammatory bone erosion and suppress pro-inflammatory mediators. In this study, aspirin significantly enhanced immunomodulation and osteogenic differentiation in human mesenchymal stem cells (hMSCs). Additionally, an osteogenic BFP-1 peptide-decorated substrate (PS-PEP) enhanced osteogenic differentiation of aspirin-treated hMSCs compared to a pristine substrate. Alkaline phosphatase assay, quantitative real-time polymerase chain reaction, immunostaining and Alizarin Red S staining revealed that aspirin-treated hMSCs cultured on PS-PEP exhibited enhanced osteogenesis compared with untreated cells. Thus, we report here that the anti-inflammatory and osteogenic effects of aspirin promote the activity and osteogenesis of hMSCs. The combination of aspirin and an osteogenic BFP-1 peptide-decorated substrate suppresses the production of pro-inflammatory mediators and promotes osteogenic differentiation of hMSCs; therefore, this novel strategy has potential for application in cell therapy and bone tissue engineering.
Collapse
Affiliation(s)
- Yan Li
- Central Laboratory, School and Hospital of Stomatology, Peking University, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu G, Xue C, Zhu P. Removal of Carmine from Aqueous Solution by Carbonated Hydroxyapatite Nanorods. NANOMATERIALS 2017; 7:nano7060137. [PMID: 28587250 PMCID: PMC5485784 DOI: 10.3390/nano7060137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/28/2017] [Accepted: 05/31/2017] [Indexed: 11/16/2022]
Abstract
In this study, carbonated hydroxyapatite (CHA) nanorods were prepared by a novel hydrothermal method. The crystallinity and chemical structure of synthesized CHA nanorods was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), respectively. Carmine was selected as representative organic dyes to study the adsorption capacities of CHA nanorods. Mechanistic studies of carmine adsorption by CHA nanorods show that the adsorption processes both follow the pseudo-second-order kinetic model and fit the Langmuir isotherm model well. The CHA nanorods exhibited a high adsorption capacity of 85.51 mg/g for carmine at room-temperature. The experimental results prove that CHA nanorods can be promising absorbents for removing organic dye pollutants in wastewater from paper and textile plants.
Collapse
Affiliation(s)
- Guanxiong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Caibao Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Peizhi Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
25
|
Nourmohammadi J, Roshanfar F, Farokhi M, Haghbin Nazarpak M. Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:951-958. [PMID: 28482612 DOI: 10.1016/j.msec.2017.03.166] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023]
Abstract
The combination of protein-polysaccharide in scaffolding together with the ability to induce bone-like apatite formation has become a promising approach to mimic extracellular matrix composition. In the present study, we developed and characterized new bioactive composite scaffolds from kappa-carrageenan/silk fibroin for bone regeneration applications. Three dimensional (3D) scaffolds were fabricated by adding various amounts of carrageenan to a silk fibroin solution, followed by freeze-drying. Various characterization techniques were applied to analyze such items as the structure, morphology, compressive strength, and bone-like apatite mineralization of the composites, which were then compared to those of pure fibroin scaffolds. The results demonstrated the formation of a highly porous structure with interconnected pores. The mean pore size and porosity both increased by increasing carrageenan content. Moreover, the addition of carrageenan to silk fibroin led to the formation of a bone-like apatite layer throughout the scaffolds after 7days of soaking them in simulated body fluid. Osteoblast-like cell (MG 63) culture experiments indicated that all scaffolds are biocompatible. The cells attached well to the surfaces of all scaffolds and tended to join their adjacent cells. However, higher carrageenan content led to better cellular proliferation and higher Alkaline phosphatase expression.
Collapse
Affiliation(s)
- Jhamak Nourmohammadi
- Faculty of New Sciences and Technologies, Department of Life Science Engineering, University of Tehran, Tehran, Iran.
| | - Fahimeh Roshanfar
- Faculty of New Sciences and Technologies, Department of Life Science Engineering, University of Tehran, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
26
|
Wilcock CJ, Gentile P, Hatton PV, Miller CA. Rapid Mix Preparation of Bioinspired Nanoscale Hydroxyapatite for Biomedical Applications. J Vis Exp 2017:55343. [PMID: 28287572 PMCID: PMC5409323 DOI: 10.3791/55343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Hydroxyapatite (HA) has been widely used as a medical ceramic due to its good biocompatibility and osteoconductivity. Recently there has been interest regarding the use of bioinspired nanoscale hydroxyapatite (nHA). However, biological apatite is known to be calcium-deficient and carbonate-substituted with a nanoscale platelet-like morphology. Bioinspired nHA has the potential to stimulate optimal bone tissue regeneration due to its similarity to bone and tooth enamel mineral. Many of the methods currently used to fabricate nHA both in the laboratory and commercially, involve lengthy processes and complex equipment. Therefore, the aim of this study was to develop a rapid and reliable method to prepare high quality bioinspired nHA. The rapid mixing method developed was based upon an acid-base reaction involving calcium hydroxide and phosphoric acid. Briefly, a phosphoric acid solution was poured into a calcium hydroxide solution followed by stirring, washing and drying stages. Part of the batch was sintered at 1,000 °C for 2 h in order to investigate the products' high temperature stability. X-ray diffraction analysis showed the successful formation of HA, which showed thermal decomposition to β-tricalcium phosphate after high temperature processing, which is typical for calcium-deficient HA. Fourier transform infrared spectroscopy showed the presence of carbonate groups in the precipitated product. The nHA particles had a low aspect ratio with approximate dimensions of 50 x 30 nm, close to the dimensions of biological apatite. The material was also calcium deficient with a Ca:P molar ratio of 1.63, which like biological apatite is lower than the stoichiometric HA ratio of 1.67. This new method is therefore a reliable and far more convenient process for the manufacture of bioinspired nHA, overcoming the need for lengthy titrations and complex equipment. The resulting bioinspired HA product is suitable for use in a wide variety of medical and consumer health applications.
Collapse
Affiliation(s)
- Caroline J Wilcock
- Bioengineering and Healthcare Technologies, School of Clinical Dentistry, University of Sheffield
| | - Piergiorgio Gentile
- Bioengineering and Healthcare Technologies, School of Clinical Dentistry, University of Sheffield
| | - Paul V Hatton
- Bioengineering and Healthcare Technologies, School of Clinical Dentistry, University of Sheffield;
| | - Cheryl A Miller
- Bioengineering and Healthcare Technologies, School of Clinical Dentistry, University of Sheffield
| |
Collapse
|
27
|
Novel chitosan-sulfonated chitosan-polycaprolactone-calcium phosphate nanocomposite scaffold. Carbohydr Polym 2017; 157:695-703. [DOI: 10.1016/j.carbpol.2016.10.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/02/2016] [Accepted: 10/09/2016] [Indexed: 01/15/2023]
|
28
|
Deng Y, Yang Y, Ma Y, Fan K, Yang W, Yin G. Nano-hydroxyapatite reinforced polyphenylene sulfide biocomposite with superior cytocompatibility and in vivo osteogenesis as a novel orthopedic implant. RSC Adv 2017. [DOI: 10.1039/c6ra25526d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The design of novel functional biomaterials that possess similar mechanical attributes as human bones, accompanied with admirable osteogenesis to replace conventional metallic implants would be an intriguing accomplishment.
Collapse
Affiliation(s)
- Yi Deng
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yuanyi Yang
- Department of Materials Engineering
- Sichuan College of Architectural Technology
- Deyang 618000
- China
| | - Yuan Ma
- Department of Neurosurgery
- Chengdu Military General Hospital
- Chengdu 610083
- China
| | - Kexia Fan
- Department of Neurosurgery
- Chengdu Military General Hospital
- Chengdu 610083
- China
| | - Weizhong Yang
- College of Materials Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Guangfu Yin
- College of Materials Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
29
|
Nanocrystalline β-Ta Coating Enhances the Longevity and Bioactivity of Medical Titanium Alloys. METALS 2016. [DOI: 10.3390/met6090221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Xie L, Yu H, Yang W, Zhu Z, Yue L. Preparation,in vitrodegradability, cytotoxicity, andin vivobiocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:505-28. [DOI: 10.1080/09205063.2016.1140613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Gao X, Song J, Ji P, Zhang X, Li X, Xu X, Wang M, Zhang S, Deng Y, Deng F, Wei S. Polydopamine-Templated Hydroxyapatite Reinforced Polycaprolactone Composite Nanofibers with Enhanced Cytocompatibility and Osteogenesis for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3499-515. [PMID: 26756224 DOI: 10.1021/acsami.5b12413] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanohydroxyapatite (HA) synthesized by biomimetic strategy is a promising nanomaterial as bone substitute due to its physicochemical features similar to those of natural nanocrystal in bone tissue. Inspired by mussel adhesive chemistry, a novel nano-HA was synthesized in our work by employing polydopamine (pDA) as template under weak alkaline condition. Subsequently, the as-prepared pDA-templated HA (tHA) was introduced into polycaprolactone (PCL) matrix via coelectrospinning, and a bioactive tHA/PCL composite nanofiber scaffold was developed targeted at bone regeneration application. Our research showed that tHA reinforced PCL composite nanofibers exhibited favorable cytocompatibility at given concentration of tHA (0-10 w.t%). Compared to pure PCL and traditional nano-HA enriched PCL (HA/PCL) composite nanofibers, enhanced cell adhesion, spreading and proliferation of human mesenchymal stem cells (hMSCs) were observed on tHA/PCL composite nanofibers on account of the contribution of pDA present in tHA. More importantly, tHA nanoparticles exposed on the surface of composite nanofibers could further promote osteogenesis of hMSCs in vitro even in the absence of osteogenesis soluble inducing factors when compared to traditional HA/PCL scaffolds, which was supported by in vivo test as well according to the histological analysis. Overall, our study demonstrated that the developed tHA/PCL composite nanofibers with enhanced cytocompatibility and osteogenic capacity hold great potential as scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Xiang Gao
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | - Jinlin Song
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | - Ping Ji
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | - Xiaohong Zhang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | | | | | | | - Siqi Zhang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Yi Deng
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Feng Deng
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | | |
Collapse
|
32
|
Men J, Wang R, Hu X, Zhao H, Wei H, Hu C, Gao B. Preparation of heparin-functionalized microspheres and study on their adsorption characteristic for basic protein lysozyme. Macromol Res 2016. [DOI: 10.1007/s13233-016-2016-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Xue C, Chen Y, Huang Y, Zhu P. Hydrothermal Synthesis and Biocompatibility Study of Highly Crystalline Carbonated Hydroxyapatite Nanorods. NANOSCALE RESEARCH LETTERS 2015; 10:1018. [PMID: 26245858 PMCID: PMC4526508 DOI: 10.1186/s11671-015-1018-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/25/2015] [Indexed: 06/04/2023]
Abstract
Highly crystalline carbonated hydroxyapatite (CHA) nanorods with different carbonate contents were synthesized by a novel hydrothermal method. The crystallinity and chemical structure of synthesized nanorods were studied by Fourier transform infrared spectroscopy (FTIR), X-ray photo-electronic spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The biocompatibility of synthesized CHA nanorods was evaluated by cell viability and alkaline phosphatase (ALP) activity of MG-63 cell line. The biocompatibility evaluation results show that these CHA nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopedic application.
Collapse
Affiliation(s)
- Caibao Xue
- />School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu, 225009 China
| | - Yingzhi Chen
- />Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Yongzhuo Huang
- />Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Peizhi Zhu
- />School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu, 225009 China
| |
Collapse
|
34
|
Pylypchuk IV, Petranovskaya AL, Gorbyk PP, Korduban AM, Markovsky PE, Ivasishin OM. Biomimetic Hydroxyapatite Growth on Functionalized Surfaces of Ti-6Al-4V and Ti-Zr-Nb Alloys. NANOSCALE RESEARCH LETTERS 2015; 10:1017. [PMID: 26297184 PMCID: PMC4546072 DOI: 10.1186/s11671-015-1017-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 07/24/2015] [Indexed: 06/04/2023]
Abstract
A biomimetic approach for coating titanium-containing alloys with hydroxyapatite (HA) is reported in the article. Two types of Ti-containing alloys were chosen as an object for coating: Ti-6Al-4V (recommended for orthopedic application) and a novel highly biocompatible Ti-Zr-Nb alloy, with good mechanical compatibility due to a modulus that is more close to that of human bones (E ≈ 50 GPa instead of 110 GPa in Ti-6Al-4V). Coating process was carried out in a 10×-concentrated simulated body fluid (SBF)-synthetic analog of human body plasma. The effect of oxidized and carboxylated alloy surface on formation of biomimetic hydroxyapatite has been studied. By XRD, we found influence of thermal conditions on HA crystal formation and size. SEM images and Fourier transform infrared confirmed that hydroxyapatite with different morphology, crystallinity, and Ca/P ratio formed on metallic surfaces. X-ray photoelectron spectroscopy showed that in the Ti-6AL-4V sample the observed Ca/P ratio reach 0.97, whereas in the Ti-Zr-Nb sample the observed Ca/P ratio reach 1.15.
Collapse
Affiliation(s)
- Ie V Pylypchuk
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17 General Naumov Str., Kyiv, 03164, Ukraine,
| | | | | | | | | | | |
Collapse
|
35
|
Wang J, Liu G, Chen J, Zhao B, Zhu P. Synthesis of Biocompatible Hydroxyapatite Using Chitosan Oligosaccharide as a Template. MATERIALS 2015; 8:8097-8105. [PMID: 28793700 PMCID: PMC5458867 DOI: 10.3390/ma8125440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 01/18/2023]
Abstract
In this study, a novel biocompatible hydroxyapatite (HA) was synthesized by using chitosan oligosaccharide (COS) as a template. These HA samples were studied by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The biocompatibility of HA samples was evaluated via cell viability, cell morphology and alkaline phosphatase staining of MG-63 cell lines. The results show that HA synthesized in the presence of COS was favorable to proliferation and osteogenic differentiation of MG-63 cells. These hydroxyapatites are potentially attractive biomaterials for bone tissue engineering applications.
Collapse
Affiliation(s)
- Jinyu Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Guanxiong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Jinshuai Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Bo Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Peizhi Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
36
|
Bai Y, Deng Y, Zheng Y, Li Y, Zhang R, Lv Y, Zhao Q, Wei S. Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium-niobium alloy with low Young's modulus. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:565-576. [PMID: 26652409 DOI: 10.1016/j.msec.2015.10.062] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/02/2015] [Accepted: 10/20/2015] [Indexed: 11/17/2022]
Abstract
β-Type titanium alloys with a low elastic modulus are a potential strategy to enhance bone remodeling and to mitigate the concern over the risks of osteanabrosis and bone resorption caused by stress shielding, when used to substitute irreversibly impaired hard tissue. Hence, in this study, a Ti-45Nb alloy with low Young's modulus and high strength was developed, and microstructure, mechanical properties, corrosion behaviors, cytocompatibility and in vivo osteo-compatibility of the alloy were systematically investigated for the first time. The results of mechanical tests showed that Young's modulus of the Ti-Nb alloy was reduced to about 64.3GPa (close to human cortical bone) accompanied with higher tensile strength and hardness compared with those of pure Ti. Importantly, the Ti-Nb alloy exhibited superior corrosion resistance to Ti in different solutions including SBF, MAS and FAAS (MAS containing NaF) media. In addition, the Ti-Nb alloy produced no deleterious effect to L929 and MG-63 cells, and cells performed excellent cell attachment onto Ti-Nb surface, indicating a good in vitro cytocompatibility. In vivo evaluations indicated that Ti-Nb had comparable bone tissue compatibility to Ti determined from micro-CT and histological evaluations. The Ti-Nb alloy with an elasticity close to human bone, thus, could be suitable for orthopedic/dental applications.
Collapse
Affiliation(s)
- Yanjie Bai
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081, China; Department of Stomatology, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Science, Beijing 100012, China
| | - Yi Deng
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yunfei Zheng
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Yongliang Li
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Ranran Zhang
- Department of Stomatology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yalin Lv
- Department of Stomatology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Qiang Zhao
- Department of Stomatology, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Science, Beijing 100012, China.
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
37
|
Xu A, Liu X, Gao X, Deng F, Deng Y, Wei S. Enhancement of osteogenesis on micro/nano-topographical carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite biocomposite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 48:592-8. [PMID: 25579962 DOI: 10.1016/j.msec.2014.12.061] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/15/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
Abstract
As an FDA-approved implantable material, carbon fiber-reinforced polyetheretherketone (CFRPEEK) possesses excellent mechanical properties similar to those of human cortical bone and is a prime candidate to replace conventional metallic implants. The bioinertness and inferior osteogenic properties of CFRPEEK, however, limit its clinical application as orthopedic/dental implants. The present work aimed at developing a novel carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite (PEEK/CF/n-HA) ternary biocomposite with micro/nano-topographical surface for the enhancement of the osteogenesis as a potential bioactive material for bone grafting and bone tissue-engineering applications. The combined modification of oxygen plasma and sand-blasting could improve the hydrophily and generate micro/nano-topographical structures on the surface of the CFRPEEK-based ternary biocomposite. The results clearly showcased that the micro-/nano-topographical PEEK/n-HA/CF ternary biocomposite demonstrated the outstanding ability to promote the proliferation and differentiation of MG-63 cells in vitro as well as to boost the osseointegration between implant and bone in vivo, thereby boding well application to bone tissue engineering.
Collapse
Affiliation(s)
- Anxiu Xu
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, China
| | - Xiaochen Liu
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, China
| | - Feng Deng
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, China
| | - Yi Deng
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, China.
| | - Shicheng Wei
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, China.
| |
Collapse
|
38
|
Shakib K, Tan A, Soskic V, Seifalian AM. Regenerative nanotechnology in oral and maxillofacial surgery. Br J Oral Maxillofac Surg 2014; 52:884-93. [PMID: 25218313 DOI: 10.1016/j.bjoms.2014.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/14/2014] [Indexed: 11/15/2022]
Abstract
Regenerative nanotechnology is at the forefront of medical research, and translational medicine is a challenge to both scientists and clinicians. Although there has been an exponential rise in the volume of research generated about it for both medical and surgical uses, key questions remain about its actual benefits. Nevertheless, some people think that therapeutics based on its principles may form the core of applied research for the future. Here we give an account of its current use in oral and maxillofacial surgery, and implications and challenges for the future.
Collapse
Affiliation(s)
- Kaveh Shakib
- Department of Oral and Maxillofacial Surgery, Royal Free London NHS Foundation Trust, London, UK; UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK.
| | - Aaron Tan
- UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK; UCL Medical School, University College London (UCL), London, UK
| | | | - Alexander M Seifalian
- UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London (UCL), London, UK; Royal Free London NHS Foundation Trust, London, UK.
| |
Collapse
|
39
|
Wang L, He S, Wu X, Liang S, Mu Z, Wei J, Deng F, Deng Y, Wei S. Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. Biomaterials 2014; 35:6758-75. [PMID: 24835045 DOI: 10.1016/j.biomaterials.2014.04.085] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/22/2014] [Indexed: 11/16/2022]
Abstract
Lack of antibacterial activity and binding ability to natural bone tissue has significantly limited polyetheretherketone (PEEK) for many challenging dental implant applications. Here, we have developed a polyetheretherketone/nano-fluorohydroxyapatite (PEEK/nano-FHA) biocomposite with enhanced antibacterial activity and osseointegration through blending method. Smooth and rough surfaces of PEEK/nano-FHA biocomposites were also prepared. Our results showed that in vitro initial cell adhesion and proliferation on the nano-FHA reinforced PEEK composite were improved. In addition, higher alkaline phosphatase activity and cell mineralization were also detected in cells cultured on PEEK/nano-FHA biocomposites, especially for rough PEEK/nano-FHA surfaces. More importantly, the as-prepared PEEK/nano-FHA biocomposite could effectively prevent the proliferation and biofilm formation of bacterial. For in vivo test, the newly formed bone volume of PEEK/nano-FHA group was higher than that of bare PEEK group based on 3D microcomputed tomography and 2D histomorphometric analysis. These reports demonstrate that the developed PEEK/nano-FHA biocomposite has increased biocompatibility and antibacterial activity in vitro, and promoted osseointegration in vivo, which suggests that it holds potential to be applied as dental implant material in dental tissue engineering applications.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Shu He
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaomian Wu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shanshan Liang
- The Affiliated Hospital, Hainan Medical College, Hainan 571199, China
| | - Zhonglin Mu
- The Affiliated Hospital, Hainan Medical College, Hainan 571199, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Deng
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, China
| | - Yi Deng
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081, China; Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
40
|
BAČÁKOVÁ L, NOVOTNÁ K, PAŘÍZEK M. Polysaccharides as Cell Carriers for Tissue Engineering: the Use of Cellulose in Vascular Wall Reconstruction. Physiol Res 2014; 63:S29-47. [DOI: 10.33549/physiolres.932644] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Polysaccharides are long carbohydrate molecules of monosaccharide units joined together by glycosidic bonds. These biological polymers have emerged as promising materials for tissue engineering due to their biocompatibility, mostly good availability and tailorable properties. This complex group of biomolecules can be classified using several criteria, such as chemical composition (homo- and heteropolysaccharides), structure (linear and branched), function in the organism (structural, storage and secreted polysaccharides), or source (animals, plants, microorganisms). Polysaccharides most widely used in tissue engineering include starch, cellulose, chitosan, pectins, alginate, agar, dextran, pullulan, gellan, xanthan and glycosaminoglycans. Polysaccharides have been applied for engineering and regeneration of practically all tissues, though mostly at the experimental level. Polysaccharides have been tested for engineering of blood vessels, myocardium, heart valves, bone, articular and tracheal cartilage, intervertebral discs, menisci, skin, liver, skeletal muscle, neural tissue, urinary bladder, and also for encapsulation and delivery of pancreatic islets and ovarian follicles. For these purposes, polysaccharides have been applied in various forms, such as injectable hydrogels or porous and fibrous scaffolds, and often in combination with other natural or synthetic polymers or inorganic nanoparticles. The immune response evoked by polysaccharides is usually mild, and can be reduced by purifying the material or by choosing appropriate crosslinking agents.
Collapse
Affiliation(s)
- L. BAČÁKOVÁ
- Department of Biomaterials and Tissue Engineering, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | |
Collapse
|
41
|
Deng Y, Zhang X, Zhao X, Li Q, Ye Z, Li Z, Liu Y, Zhou Y, Ma H, Pan G, Pei D, Fang J, Wei S. Long-term self-renewal of human pluripotent stem cells on peptide-decorated poly(OEGMA-co-HEMA) brushes under fully defined conditions. Acta Biomater 2013; 9:8840-50. [PMID: 23891809 DOI: 10.1016/j.actbio.2013.07.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/13/2013] [Accepted: 07/16/2013] [Indexed: 01/07/2023]
Abstract
Realization of the full potential of human induced pluripotent stem cells (hiPSC) in clinical applications requires the development of well-defined culture conditions for their long-term growth and directed differentiation. This paper describes a novel fully defined synthetic peptide-decorated substrate that supports self-renewal of hiPSC in commercially available xeno-free, chemically defined medium. The Au surface was deposited by a poly(OEGMA-co-HEMA) film, using the surface-initiated polymerization method (SIP) with the further step of carboxylation. The hiPSC generated from umbilical cord mesenchymal cells were successfully cultured for 10 passages on the peptide-tethered poly(OEGMA-co-HEMA) brushes for the first time. Cells maintained their characteristic morphology, proliferation and expressed high levels of markers of pluripotency, similar to the cells cultured on Matrigel™. Moreover, the cell adhesion could be tuned by the pattern and peptide concentration on the substrate. This well-defined, xeno-free and safe substrate, which supports long-term proliferation and self-renewal of hiPSC, will not only help to accelerate the translational perspectives of hiPSC, but also provide a platform to elucidate the underlying molecular mechanisms that regulate stem cell proliferation and differentiation via SIP technology.
Collapse
Affiliation(s)
- Y Deng
- Department of Prosthodontics, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sun Y, Deng Y, Ye Z, Liang S, Tang Z, Wei S. Peptide decorated nano-hydroxyapatite with enhanced bioactivity and osteogenic differentiation via polydopamine coating. Colloids Surf B Biointerfaces 2013; 111:107-16. [PMID: 23792546 DOI: 10.1016/j.colsurfb.2013.05.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/11/2013] [Accepted: 05/25/2013] [Indexed: 01/03/2023]
Abstract
To be better used as implant materials in bone graft substitutes, bioactivity and osteogenesis of nano-hydroxyapatite (nano-HA) need to be further enhanced. Inspired by adhesive proteins in mussels, here we developed a novel bone forming peptide decorated nano-HA material. In this study, nano-HA was coated by one-step pH-induced polymerization of dopamine, and then the peptide was grafted onto polydopamine (pDA) coated nano-HA (HA-pDA) through catechol chemistry. Our results demonstrated that the peptide-conjugated nano-HA crystals could induce the adhesion and proliferation of MG-63 cells. Moreover, the highly alkaline phosphatase activity of the functionalized nano-HA indicated that the grafted peptide could maintain its biological activity after immobilization onto the surface of HA-pDA, especially at the concentration of 100μg/mL. These modified nano-HA crystals with better bioactivity and osteogenic differentiation hold great potential to be applied as bioactive materials in bone repairing, bone regeneration and bio-implant coating applications.
Collapse
Affiliation(s)
- Yuhua Sun
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Yi Deng
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ziyou Ye
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; School of Biology and Basic Medical Sciences, Medical College, Soochow University, Jiangsu 215123, China
| | - Shanshan Liang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Hainan Medical College, Hainan 571199, China
| | - Zhihui Tang
- 2nd Dental Center, School and Hospital of Stomatology, Peking University, Beijing 100081, China.
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; 2nd Dental Center, School and Hospital of Stomatology, Peking University, Beijing 100081, China.
| |
Collapse
|