1
|
Zhang Y, Liu S, Rong L, Gao L, Wei L, Du Y, Yang H. Effect of Yak Skin Gelatin with Different Molecular Weights on the Properties of Gelatin/Polymethyl Vinyl Ether- alt-maleic-anhydride Copolymer Composite Scaffold Material. ACS OMEGA 2025; 10:9938-9951. [PMID: 40124064 PMCID: PMC11923661 DOI: 10.1021/acsomega.4c06149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 03/25/2025]
Abstract
Gelatin has been extensively documented for its utility in tissue engineering applications. However, the exploration of yak skin gelatin as a novel gelatin source remains under-reported, particularly regarding the impact of varying molecular weights on the attributes of composite scaffold materials. This study investigates the distinctive behaviors of yak skin gelatin fractions with different molecular weights, assessing fundamental properties through electrophoretic analysis, thermodynamic property assessment, amino acid profiling, infrared spectroscopy, and atomic force microscopy. Then, the polymethyl vinyl ether-alt-maleic-anhydride copolymer (PMVE-MA) was introduced to fabricate the composite scaffold materials. It was observed that the hemolysis rate escalated with increasing gelatin molecular weight. Additionally, properties such as platelet adhesion and mechanical stability exhibited a molecular-weight-dependent threshold behavior. Importantly, no cytotoxic effects were observed across all groups. Notably, scaffold materials fabricated by gelatin with a molecular weight range of 0.1-0.22 μm demonstrated superior mechanical strength and cell adhesion, positioning them as optimal candidates for biodegradable vascular scaffold applications.
Collapse
Affiliation(s)
- Yuxia Zhang
- Northwest
Institute of Plateau Biology, Chinese Academy
of Sciences, Xining 810008, China
- University
of Chinese Academic of Sciences, Beijing 100049, China
| | - Songhao Liu
- University
of Chinese Academic of Sciences, Beijing 100049, China
- School of
Energy and Electrical Engineering, Qinghai
University, Xining, Qinghai 810016, China
| | - Lin Rong
- Northwest
Institute of Plateau Biology, Chinese Academy
of Sciences, Xining 810008, China
- University
of Chinese Academic of Sciences, Beijing 100049, China
| | - Liang Gao
- Northwest
Institute of Plateau Biology, Chinese Academy
of Sciences, Xining 810008, China
- University
of Chinese Academic of Sciences, Beijing 100049, China
| | - Lixin Wei
- Northwest
Institute of Plateau Biology, Chinese Academy
of Sciences, Xining 810008, China
| | - Yuzhi Du
- Northwest
Institute of Plateau Biology, Chinese Academy
of Sciences, Xining 810008, China
| | - Hongxia Yang
- Northwest
Institute of Plateau Biology, Chinese Academy
of Sciences, Xining 810008, China
| |
Collapse
|
2
|
Choi J, Kang S, An HI, Kim CE, Lee S, Pack CG, Yoon YI, Jin H, Cho YP, Kim CJ, Namgoong JM, Kim JK, Tak E. Fasudil and viscosity of gelatin promote hepatic differentiation by regulating organelles in human umbilical cord matrix-mesenchymal stem cells. Stem Cell Res Ther 2024; 15:229. [PMID: 39075621 PMCID: PMC11288082 DOI: 10.1186/s13287-024-03851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Human mesenchymal stem cells originating from umbilical cord matrix are a promising therapeutic resource, and their differentiated cells are spotlighted as a tissue regeneration treatment. However, there are limitations to the medical use of differentiated cells from human umbilical cord matrix-mesenchymal stem cells (hUCM-MSCs), such as efficient differentiation methods. METHODS To effectively differentiate hUCM-MSCs into hepatocyte-like cells (HLCs), we used the ROCK inhibitor, fasudil, which is known to induce endoderm formation, and gelatin, which provides extracellular matrix to the differentiated cells. To estimate a differentiation efficiency of early stage according to combination of gelatin and fasudil, transcription analysis was conducted. Moreover, to demonstrate that organelle states affect differentiation, we performed transcription, tomographic, and mitochondrial function analysis at each stage of hepatic differentiation. Finally, we evaluated hepatocyte function based on the expression of mRNA and protein, secretion of albumin, and activity of CYP3A4 in mature HLCs. RESULTS Fasudil induced endoderm-related genes (GATA4, SOX17, and FOXA2) in hUCM-MSCs, and it also induced lipid droplets (LDs) inside the differentiated cells. However, the excessive induction of LDs caused by fasudil inhibited mitochondrial function and prevented differentiation into hepatoblasts. To prevent the excessive LDs formation, we used gelatin as a coating material. When hUCM-MSCs were induced into hepatoblasts with fasudil on high-viscosity (1%) gelatin-coated dishes, hepatoblast-related genes (AFP and HNF4A) showed significant upregulation on high-viscosity gelatin-coated dishes compared to those treated with low-viscosity (0.1%) gelatin. Moreover, other germline cell fates, such as ectoderm and mesoderm, were repressed under these conditions. In addition, LDs abundance was also reduced, whereas mitochondrial function was increased. On the other hand, unlike early stage of the differentiation, low viscosity gelatin was more effective in generating mature HLCs. In this condition, the accumulation of LDs was inhibited in the cells, and mitochondria were activated. Consequently, HLCs originated from hUCM-MSCs were genetically and functionally more matured in low-viscosity gelatin. CONCLUSIONS This study demonstrated an effective method for differentiating hUCM-MSCs into hepatic cells using fasudil and gelatin of varying viscosities. Moreover, we suggest that efficient hepatic differentiation and the function of hepatic cells differentiated from hUCM-MSCs depend not only on genetic changes but also on the regulation of organelle states.
Collapse
Affiliation(s)
- Jiwan Choi
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seoon Kang
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye-In An
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chae-Eun Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sanghwa Lee
- Biomedical Engineering Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Chan-Gi Pack
- Department of Biomedical Engineering, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Young-In Yoon
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hana Jin
- Division of Vascular Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong-Pil Cho
- Division of Vascular Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chong Jai Kim
- Department of Pathology, Asan Medical Center, Asan-Minnesota Institute for Innovating Transplantation (AMIT), University of Ulsan College of Medicine, Seoul, Korea
| | - Jung-Man Namgoong
- Department of Pediatric Surgery, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Jun Ki Kim
- Biomedical Engineering Research Center, Asan Medical Center, Seoul, Republic of Korea.
- Department of Biomedical Engineering, College of Medicine, University of Ulsan, Seoul, Republic of Korea.
| | - Eunyoung Tak
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Braccini S, Chen CB, Łucejko JJ, Barsotti F, Ferrario C, Chen GQ, Puppi D. Additive manufacturing of wet-spun chitosan/hyaluronic acid scaffolds for biomedical applications. Carbohydr Polym 2024; 329:121788. [PMID: 38286555 DOI: 10.1016/j.carbpol.2024.121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024]
Abstract
Additive manufacturing (AM) holds great potential for processing natural polymer hydrogels into 3D scaffolds exploitable for tissue engineering and in vitro tissue modelling. The aim of this research activity was to assess the suitability of computer-aided wet-spinning (CAWS) for AM of hyaluronic acid (HA)/chitosan (Cs) polyelectrolyte complex (PEC) hydrogels. A post-printing treatment based on HA chemical cross-linking via transesterification with poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) was investigated to enhance the structural stability of the developed scaffolds in physiological conditions. PEC formation and the esterification reaction were investigated by infrared spectroscopy, thermogravimetric analysis, evolved gas analysis-mass spectrometry, and differential scanning calorimetry measurements. In addition, variation of PMVEMA concentration in the cross-linking medium was demonstrated to strongly influence scaffold water uptake and its stability in phosphate buffer saline at 37 °C. The in vitro cytocompatibility of the developed hydrogels was demonstrated by employing the murine embryo fibroblast Balb/3T3 clone A31 cell line, highlighting that PMVEMA cross-linking improved scaffold cell colonization. The results achieved demonstrated that the developed hydrogels represent suitable 3D scaffolds for long term cell culture experiments.
Collapse
Affiliation(s)
- Simona Braccini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Chong-Bo Chen
- School of Life Sciences, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | | | - Francesca Barsotti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Claudia Ferrario
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Guo-Qiang Chen
- School of Life Sciences, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dario Puppi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
4
|
Coșman BP, Bucătariu SM, Constantin M, Fundueanu G. Temperature/pH-Sensitive Double Cross-Linked Hydrogels as Platform for Controlled Delivery of Metoclopramide. Gels 2022; 8:824. [PMID: 36547347 PMCID: PMC9778456 DOI: 10.3390/gels8120824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Novel double cross-linked (DC) hydrogels with pH-/temperature-sensitive properties were designed and developed. Therefore, linear pH-sensitive poly(methyl vinyl ether-alt-maleic acid) (P(VME/MA)) macromolecules were absorbed within a thermosensitive poly(N-isopropylacrylamide-co-hydroxyethylacrylamide)-hydrogel (PNH) and, subsequently, cross-linked together through a solvent-free thermal method. As a novelty, double cross-linked hydrogels were obtained from previously purified polymers in the absence of any solvent or cross-linking agent, which are generally harmful for the body. The new DC structures were characterized by FT-IR spectroscopy, SEM, swelling kinetic measurements, and mechanical tests. The resulting scaffolds exhibited interconnected pores and a flexible pattern, compared to the brittle structure of conventional PNH. The swelling kinetics of DC hydrogels were deeply affected by temperature (25 and 37 °C) and pH (7.4 and 1.2). Furthermore, the hydrogels absorbed a great amount of water in a basic environment and displayed improved mechanical properties. Metoclopramide (Met) was loaded within DC hydrogels as a model drug to investigate the ability of the support to control the drug release rate. The results obtained recommended them as convenient platforms for the oral administration of drugs, with the release of the largest part of the active principle occurring in the colon.
Collapse
Affiliation(s)
| | - Sanda-Maria Bucătariu
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
| | | | - Gheorghe Fundueanu
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
| |
Collapse
|
5
|
Torres-Figueroa AV, Pérez-Martínez CJ, Encinas JC, Burruel-Ibarra S, Silvas-García MI, García Alegría AM, del Castillo-Castro T. Thermosensitive Bioadhesive Hydrogels Based on Poly( N-isopropylacrilamide) and Poly(methyl vinyl ether- alt-maleic anhydride) for the Controlled Release of Metronidazole in the Vaginal Environment. Pharmaceutics 2021; 13:pharmaceutics13081284. [PMID: 34452245 PMCID: PMC8402040 DOI: 10.3390/pharmaceutics13081284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022] Open
Abstract
The development of thermosensitive bioadhesive hydrogels as multifunctional platforms for the controlled delivery of microbicides is a valuable contribution for the in situ treatment of vagina infections. In this work, novel semi-interpenetrating network (s-IPN) hydrogels were prepared by the entrapment of linear poly(methyl vinyl ether-alt-maleic anhydride) (PVME-MA) chains within crosslinked 3D structures of poly(N-isopropylacrylamide) (PNIPAAm). The multifunctional platforms were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermal techniques, rheological analysis, swelling kinetic measurements, and bioadhesion tests on porcine skin. The hydrogels exhibited an interconnected porous structure with defined boundaries. An elastic, solid-like behavior was predominant in all formulations. The swelling kinetics were strongly dependent on temperature (25 °C and 37 °C) and pH (7.4 and 4.5) conditions. The s-IPN with the highest content of PVME-MA displayed a significantly higher detachment force (0.413 ± 0.014 N) than the rest of the systems. The metronidazole loading in the s-IPN improved its bioadhesiveness. In vitro experiments showed a sustained release of the antibiotic molecules from the s-IPN up to 48 h (94%) in a medium simulating vaginal fluid, at 37 °C. The thermosensitive and bioadhesive PNIPAAm/PVME-MA systems showed a promising performance for the controlled release of metronidazole in the vaginal environment.
Collapse
Affiliation(s)
- Ana V. Torres-Figueroa
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Mexico; (A.V.T.-F.); (J.C.E.); (S.B.-I.)
| | - Cinthia J. Pérez-Martínez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo 83000, Mexico; (C.J.P.-M.); (A.M.G.A.)
| | - J. Carmelo Encinas
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Mexico; (A.V.T.-F.); (J.C.E.); (S.B.-I.)
| | - Silvia Burruel-Ibarra
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Mexico; (A.V.T.-F.); (J.C.E.); (S.B.-I.)
| | - María I. Silvas-García
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo 83000, Mexico;
| | - Alejandro M. García Alegría
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo 83000, Mexico; (C.J.P.-M.); (A.M.G.A.)
| | - Teresa del Castillo-Castro
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Mexico; (A.V.T.-F.); (J.C.E.); (S.B.-I.)
- Correspondence:
| |
Collapse
|
6
|
Feng L, Liang S, Zhou Y, Luo Y, Chen R, Huang Y, Chen Y, Xu M, Yao R. Three-Dimensional Printing of Hydrogel Scaffolds with Hierarchical Structure for Scalable Stem Cell Culture. ACS Biomater Sci Eng 2020; 6:2995-3004. [DOI: 10.1021/acsbiomaterials.9b01825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lu Feng
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Shaojun Liang
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yongyong Zhou
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yixue Luo
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Ruoyu Chen
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuyu Huang
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yiqing Chen
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Mingen Xu
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Rui Yao
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Baseer A, Koenneke A, Zapp J, Khan SA, Schneider M. Design and Characterization of Surface‐Crosslinked Gelatin Nanoparticles for the Delivery of Hydrophilic Macromolecular Drugs. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Abdul Baseer
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology Saarland University D‐66123 Saarbrücken Germany
| | - Aljoscha Koenneke
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology Saarland University D‐66123 Saarbrücken Germany
| | - Josef Zapp
- Saarland University D‐66123 Saarbrücken Germany
| | - Saeed A. Khan
- Kohat University of Science and Technology 26000 Kohat Pakistan
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology Saarland University D‐66123 Saarbrücken Germany
| |
Collapse
|
8
|
Mira A, Mateo CR, Mallavia R, Falco A. Poly(methyl vinyl ether-alt-maleic acid) and ethyl monoester as building polymers for drug-loadable electrospun nanofibers. Sci Rep 2017; 7:17205. [PMID: 29222482 PMCID: PMC5722912 DOI: 10.1038/s41598-017-17542-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/24/2017] [Indexed: 12/19/2022] Open
Abstract
New biomaterials are sought for the development of bioengineered nanostructures. In the present study, electrospun nanofibers have been synthesized by using poly(methyl vinyl ether-alt-maleic acid) and poly(methyl vinyl ether-alt-maleic ethyl monoester) (PMVEMA-Ac and PMVEMA-ES, respectively) as building polymers for the first time. To further functionalize these materials, nanofibers of PMVEMA-Ac and PMVEMA-ES containing a conjugated polyelectrolyte (HTMA-PFP, blue emitter, and HTMA-PFNT, red emitter) were achieved with both forms maintaining a high solid state fluorescence yield without altered morphology. Also, 5-aminolevulinic acid (5-ALA) was incorporated within these nanofibers, where it remained chemically stable. In all cases, nanofiber diameters were less than 150 nm as determined by scanning and transmission electron microscopy, and encapsulation efficiency of 5-ALA was 97 ± 1% as measured by high-performance liquid chromatography. Both polymeric matrices showed rapid release kinetics in vertical cells (Franz cells) and followed Higuchi kinetics. In addition, no toxicity of nanofibers, in the absence of light, was found in HaCaT and SW480 cell lines. Finally, it was shown that loaded 5-ALA was functional, as it was internalized by cells in nanofiber-treated cultures and served as a substrate for the generation of protoporphyrin IX, suggesting these pharmaceutical vehicles are suitable for photodynamic therapy applications.
Collapse
Affiliation(s)
- Amalia Mira
- Universidad Miguel Hernández (UMH), Instituto de Biología Molecular y Celular (IBMC), 03202, Elche (Alicante), Spain
| | - C Reyes Mateo
- Universidad Miguel Hernández (UMH), Instituto de Biología Molecular y Celular (IBMC), 03202, Elche (Alicante), Spain
| | - Ricardo Mallavia
- Universidad Miguel Hernández (UMH), Instituto de Biología Molecular y Celular (IBMC), 03202, Elche (Alicante), Spain.
| | - Alberto Falco
- Universidad Miguel Hernández (UMH), Instituto de Biología Molecular y Celular (IBMC), 03202, Elche (Alicante), Spain.
| |
Collapse
|
9
|
Zhou N, Liu C, Lv S, Sun D, Qiao Q, Zhang R, Liu Y, Xiao J, Sun G. Degradation prediction model and stem cell growth of gelatin-PEG composite hydrogel. J Biomed Mater Res A 2016; 104:3149-3156. [PMID: 27466028 DOI: 10.1002/jbm.a.35847] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Nan Zhou
- Scientific Research Center for Translational Medicine; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
- Department of Oral Pathology; College of Stomatology, Dalian Medical University; Dalian 116044 China
| | - Chang Liu
- Scientific Research Center for Translational Medicine; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
- Dalian Municipal Central Hospital; Dalian 116033 China
| | - Shijie Lv
- Dalian Maternity & Child Healthcare Hospital; Dalian 116033 China
| | - Dongsheng Sun
- Scientific Research Center for Translational Medicine; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| | - Qinglong Qiao
- Scientific Research Center for Translational Medicine; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| | - Rui Zhang
- Department of Stomatology; First Affiliated Hospital, Dalian Medical University; Dalian 116023 China
| | - Yang Liu
- Scientific Research Center for Translational Medicine; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| | - Jing Xiao
- Department of Oral Pathology; College of Stomatology, Dalian Medical University; Dalian 116044 China
| | - Guangwei Sun
- Scientific Research Center for Translational Medicine; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| |
Collapse
|
10
|
Chhabra H, Kumbhar J, Rajwade J, Jadhav S, Paknikar K, Jadhav S, Bellare JR. Three-dimensional scaffold of gelatin–poly(methyl vinyl ether-alt-maleic anhydride) for regenerative medicine: Proliferation and differentiation of mesenchymal stem cells. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911515617491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cell-based tissue engineering offers great promise to regenerative therapy, but so far it has been restricted due to insufficient number of cells obtained from donors and the lack of efficient ways of delivering them to target sites. This study shows, for the first time, the ability of a composite scaffold of gelatin and poly(methyl vinyl ether- alt-maleic anhydride) (GP-2) as a niche for expansion and multilineage differentiation ability of human umbilical cord–derived mesenchymal stem cells. First, the in vivo biocompatibility of scaffolds was checked by subcutaneous implantation of scaffolds in male Wistar rats for up to 45 days. Hematological parameters and histology of skin near implanted region rule out the probability of any adverse effects due to the scaffolds. The isolated human umbilical cord–derived mesenchymal stem cells were seeded on to pre-optimized scaffolds and induced to differentiate into osteogenic and adipogenic lineages by culturing in respective induction media. The human umbilical cord–derived mesenchymal stem cells were found to be viable and proliferated well on scaffolds when assessed with live/dead and PicoGreen assay. The biochemical assays such as alkaline phosphatase activity and triglycerides estimation confirmed the differentiation of cells toward particular lineages when cultured on scaffolds with appropriate inductive media. The study exhibited the proficiency of scaffold GP-2 for mesenchymal stem cells’ adherence, proliferation, and differentiation and also showed its engraftment efficiency. Taken together, our study establishes the in vivo biocompatibility of composite scaffold and, importantly, indicates its potential for stem cell–based therapy.
Collapse
Affiliation(s)
- Hemlata Chhabra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Jyoti Kumbhar
- Centre for Nanobioscience, Agharkar Research Institute, Pune, India
| | - Jyutika Rajwade
- Centre for Nanobioscience, Agharkar Research Institute, Pune, India
| | - Sachin Jadhav
- Animal Sciences Division, Agharkar Research Institute, Pune, India
| | - Kishore Paknikar
- Centre for Nanobioscience, Agharkar Research Institute, Pune, India
| | - Sameer Jadhav
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Jayesh R Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|