1
|
Ali AA, Abo Dena AS, Fahmy T, El-Sherbiny IM, Sarhan A. Fabrication and preliminary characterization of conductive nanofillers-enhanced polymeric hydrogels for cardiac patch applications. Int J Biol Macromol 2025; 305:141177. [PMID: 39971078 DOI: 10.1016/j.ijbiomac.2025.141177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/25/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
The development of conducting polymeric nanocomposites patches for cardiac tissue engineering has opened new possibilities for restoring the health of infarcted heart tissues. Herein, we report the fabrication of biocompatible and relatively cost-effective poly(vinyl alcohol)/alginate-based hydrogels patches modified with different conducting nanofillers such as silver nanoparticles, polyaniline nanofibers, copper oxide nanoleaves, and graphene oxide nanosheets. The impact of the different nanofiller materials on the molecular structure, charge transport mechanism and mechanical characteristics of the designed nanocomposites patches was investigated. In addition, some significant parameters of the nanocomposites were characterized such as swelling ability, antioxidant activity as well as hemocompatibility. Infrared spectroscopy results demonstrated the occurrence of different interactions between the included nanofillers and the polymer matrix depending on the type of the nanofiller. Moreover, conductivity measurements revealed that only the polyaniline nanofibers-modified nanocomposites hydrogels showed the highest conductivity compared to other counterparts. Mechanical characterization, antioxidant activity, swelling and hemocompatibility proved the suitability of the developed polyaniline nanofibers-modified nanocomposites hydrogels as potential candidates for successful application in cardiac tissue engineering.
Collapse
Affiliation(s)
- Asmaa A Ali
- Polymer Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Ahmed S Abo Dena
- Nanomedicine Research Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6 October City, 12578, Giza, Egypt; Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Tarek Fahmy
- Polymer Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6 October City, 12578, Giza, Egypt.
| | - Afaf Sarhan
- Polymer Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
2
|
Pergal MV, Brkljačić J, Vasiljević-Radović D, Steinhart M, Ostojić S, Dojčinović B, Antić B, Tovilović-Kovačević G. Structure and Functional Characteristics of Novel Polyurethane/Ferrite Nanocomposites with Antioxidant Properties and Improved Biocompatibility for Vascular Graft Development. Polymers (Basel) 2025; 17:152. [PMID: 39861225 PMCID: PMC11768855 DOI: 10.3390/polym17020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Novel ferrite/polyurethane nanocomposites were synthesized using the in situ polymerization method after the addition of different spinel nanoferrite particles (copper, zinc, and copper-zinc) and examined as potential coatings for medical devices and implants in vascular tissue engineering. The influence of the nanoferrite type on the structure and functional characteristics of the polyurethane composites was investigated by FTIR, SWAXS, AFM, TGA, DSC, nanoindentation, swelling behavior, water contact angle, and water absorption measurements. Biocompatibility was evaluated by examining the cytotoxicity and adhesion of human endothelial cells and fibroblasts onto prepared composites and performing a protein adsorption test. The antioxidant activity was detected by UV-VIS spectroscopy using a 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay. Embedding the different types of nanoparticles in the polyurethane matrix increased phase mixing, swelling ability, and DPPH scavenging, decreased surface roughness, and differently affected the stiffness of the prepared materials. The composite with zinc ferrite showed improved mechanical properties, hydrophilicity, cell adhesion, and antioxidant activity with similar thermal stability, but lower surface roughness and crosslinking density compared to the pristine polyurethane matrix. The in vitro biocompatibility evaluation demonstrates that all nanocomposites are non-toxic, exhibit good hemocompatibility, and promote cell adhesion, and recommends their use as biocompatible materials for the development of coatings for vascular implants.
Collapse
Affiliation(s)
- Marija V. Pergal
- Institute of Chemistry, Technology and Metallurgy—National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (D.V.-R.); (B.D.)
| | - Jelena Brkljačić
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia;
| | - Dana Vasiljević-Radović
- Institute of Chemistry, Technology and Metallurgy—National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (D.V.-R.); (B.D.)
| | - Miloš Steinhart
- Institute of Macromolecular Chemistry CAS (IMC), Heyrovsky Sq. 2, 16206 Prague 6, Czech Republic;
| | - Sanja Ostojić
- Institute of General and Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Biljana Dojčinović
- Institute of Chemistry, Technology and Metallurgy—National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (D.V.-R.); (B.D.)
| | - Bratislav Antić
- The VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia;
| | - Gordana Tovilović-Kovačević
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia;
| |
Collapse
|
3
|
Sun F, Yang L, Zuo Y. Development of electrospun electroactive polyurethane membranes for bone repairing. J Biomater Appl 2025; 39:620-631. [PMID: 39223505 DOI: 10.1177/08853282241280771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
To fabricate electroactive fibrous membranes and provide simulated bioelectric micro-environment for bone regeneration mimicking nature periosteum, a series of electroactive polyurethanes (PUAT) were synthesized using amino-capped aniline trimers (AT) and lysine derivatives as chain extenders. These PUAT were fabricated into fibrous membranes as guided bone tissue regeneration membranes (GBRMs) via electrospinning. The ultraviolet-visible (UV-vis) absorption spectroscopy and cyclic voltammetry (CV) of PUAT copolymers showed that the electroactive PUAT fibrous membranes had good electroactivity. Besides, the introduction of AT significantly improved the hydrophobicity and thermal stability of PUAT fibrous membranes and decreased the degradation rate of PUAT fibers in vitro. With the increasing content of AT incorporated into copolymers, the tensile strength and Young's modulus of PUAT fibrous membranes increased from 4 MPa (PUAT0) to 15 MPa (PUAT10) and from 2.1 MPa (PUAT0) to 18 MPa (PUAT10), respectively. The cell morphology and proliferation of rat mesenchymal stem cells (rMSCs) on PUAT fibers indicated that the incorporation of AT enhanced the cell attachment and proliferation. Moreover, the expression levels of OCN, CD31, and VEGF secreted by rMSCs on PUAT fibers increased with the increasing content of AT. In conclusion, an electroactive polyurethane fibrous membrane mimicking natural periosteum was prepared via electrospinning and showed good potential application in guiding bone tissue regeneration.
Collapse
Affiliation(s)
- Fuhua Sun
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China
- Rehabilitation Medicine and Engineering Key Laboratory of Luzhou, Luzhou, P. R. China
| | - Lishi Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, P. R. China
| | - Yi Zuo
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
4
|
Rejali A, Ebrahimian-Hosseinabadi M, Kharazi AZ. Polyglycerol Sebacate/polycaprolactone/reduced graphene oxide composite scaffold for myocardial tissue engineering. Heliyon 2024; 10:e38672. [PMID: 39398017 PMCID: PMC11470604 DOI: 10.1016/j.heliyon.2024.e38672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
The aim of this research was to fabricate and evaluate polyglycerol sebacate/polycaprolactone/reduced graphene oxide (PGS-PCL-RGO) composite scaffolds for myocardial tissue engineering. Polyglycerol sebacate polymer was synthesized using glycerol and sebacic acid prepolymers, confirmed by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Six PGS-PCL-RGO composite scaffolds (S1-S6) with various weight ratios were prepared in chloroform (CF) and acetone (Ace) solvents at 8 CF:2Ace and 9 CF:1Ace volume ratios, using the electrospinning method at a rate of 1 ml/h and a voltage of 18 kV. The scaffolds' chemical composition and microstructure were characterized by FTIR, XRD, and scanning electron microscopy (SEM). Further investigations included tensile testing, contact angle testing, four-point probe testing for electrical conductivity, degradation testing, and cytotoxicity testing (MTT). The results showed that adding 2%wt RGO to the composite scaffold decreased fiber diameter and degradation rate, while increasing electrical conductivity and ductility. The 33%PGS-65%PCL-2%RGO (S3) composite scaffold exhibited the lowest degradation rate (23.87 % over 60 days) and the highest electrical conductivity (51E-3 S/m). Mechanical evaluations revealed an elastic modulus of 2.46 MPa and elongation of 62.43 %, aligning closely with the heart muscle's elastomeric properties. The contact angle test indicated that the scaffold was hydrophilic, with a water contact angle of 61 ± 2°. Additionally, the cell toxicity test confirmed that scaffolds containing RGO were non-toxic and supported good cell viability. In conclusion, the 33%PGS-65%PCL-2%RGO composite scaffold exhibits mechanical and structural properties similar to heart tissue, making it an ideal candidate for myocardial tissue engineering.
Collapse
Affiliation(s)
- Azadeh Rejali
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | | | - Anousheh Zargar Kharazi
- Department of Biomaterials, Nano Technology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Krzykowska B, Uram Ł, Frącz W, Kovářová M, Sedlařík V, Hanusova D, Kisiel M, Paciorek-Sadowska J, Borowicz M, Zarzyka I. Polymer Bionanocomposites Based on a P3BH/Polyurethane Matrix with Organomodified Montmorillonite-Mechanical and Thermal Properties, Biodegradability, and Cytotoxicity. Polymers (Basel) 2024; 16:2681. [PMID: 39339144 PMCID: PMC11435496 DOI: 10.3390/polym16182681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
In the present work, hybrid nanobiocomposites based on poly(3-hydroxybutyrate), P3HB, with the use of aromatic linear polyurethane as modifier and organic nanoclay, Cloisite 30B, as a nanofiller were produced. The aromatic linear polyurethane (PU) was synthesized in a reaction of diphenylmethane 4,4'-diisocyanate and polyethylene glycol with a molecular mass of 1000 g/mole. The obtained nanobiocomposites were characterized by the small-angle X-ray scattering technique, scanning electron microscopy, Fourier infrared spectroscopy, thermogravimetry, and differential scanning calorimetry, and moreover, their selected mechanical properties, biodegradability, and cytotoxicity were tested. The effect of the organomodified montmorillonite presence in the biocomposites on their properties was investigated and compared to those of the native P3HB and the P3HB-PU composition. The obtained hybrid nanobiocomposites have an exfoliated structure. The presence and content of Cloisite 30B influence the P3HB-PU composition's properties, and 2 wt.% Cloisite 30B leads to the best improvement in the aforementioned properties. The obtained results indicate that the thermal stability and mechanical properties of P3HB were improved, particularly in terms of increasing the degradation temperature, reducing hardness, and increasing impact strength, which were also confirmed by the morphological analysis of these bionanocomposites. However, the presence of organomodified montmorillonite in the obtained polymer biocomposites decreased their biodegradability slightly. The produced hybrid polymer nanobiocomposites have tailored mechanical and thermal properties and processing conditions for their expected application in the production of biodegradable, short-lived products for agriculture. Moreover, in vitro studies on human skin fibroblasts and keratinocytes showed their satisfactory biocompatibility and low cytotoxicity, which make them safe when in contact with the human body, for instance, in biomedical applications.
Collapse
Affiliation(s)
- Beata Krzykowska
- Department of Organic Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Łukasz Uram
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| | - Wiesław Frącz
- Department of Material Forming and Processing, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Powstańców Warszawy 8, 35-959 Rzeszów, Poland;
| | - Miroslava Kovářová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; (M.K.); (V.S.); (D.H.)
| | - Vladimir Sedlařík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; (M.K.); (V.S.); (D.H.)
| | - Dominika Hanusova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; (M.K.); (V.S.); (D.H.)
| | - Maciej Kisiel
- Department of Industrial and Materials Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| | - Joanna Paciorek-Sadowska
- Department of Chemistry & Technology Polyurethanes, Faculty of Materials Engineering, Kazimierz Wielki University, JK Chodkiewicza Street 30, 85-064 Bydgoszcz, Poland; (J.P.-S.); (M.B.)
| | - Marcin Borowicz
- Department of Chemistry & Technology Polyurethanes, Faculty of Materials Engineering, Kazimierz Wielki University, JK Chodkiewicza Street 30, 85-064 Bydgoszcz, Poland; (J.P.-S.); (M.B.)
| | - Iwona Zarzyka
- Department of Organic Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| |
Collapse
|
6
|
Taylor A, Xu J, Rogozinski N, Fu H, Molina Cortez L, McMahan S, Perez K, Chang Y, Pan Z, Yang H, Liao J, Hong Y. Reduced Graphene-Oxide-Doped Elastic Biodegradable Polyurethane Fibers for Cardiomyocyte Maturation. ACS Biomater Sci Eng 2024; 10:3759-3774. [PMID: 38800901 DOI: 10.1021/acsbiomaterials.3c01908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Conductive biomaterials offer promising solutions to enhance the maturity of cultured cardiomyocytes. While the conventional culture of cardiomyocytes on nonconductive materials leads to more immature characteristics, conductive microenvironments have the potential to support sarcomere development, gap junction formation, and beating of cardiomyocytes in vitro. In this study, we systematically investigated the behaviors of cardiomyocytes on aligned electrospun fibrous membranes composed of elastic and biodegradable polyurethane (PU) doped with varying concentrations of reduced graphene oxide (rGO). Compared to PU and PU-4%rGO membranes, the PU-10%rGO membrane exhibited the highest conductivity, approaching levels close to those of native heart tissue. The PU-rGO membranes retained anisotropic viscoelastic behavior similar to that of the porcine left ventricle and a superior tensile strength. Neonatal rat cardiomyocytes (NRCMs) and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) on the PU-rGO membranes displayed enhanced maturation with cell alignment and enhanced sarcomere structure and gap junction formation with PU-10%rGO having the most improved sarcomere structure and CX-43 presence. hiPSC-CMs on the PU-rGO membranes exhibited a uniform and synchronous beating pattern compared with that on PU membranes. Overall, PU-10%rGO exhibited the best performance for cardiomyocyte maturation. The conductive PU-rGO membranes provide a promising matrix for in vitro cardiomyocyte culture with promoted cell maturation/functionality and the potential for cardiac disease treatment.
Collapse
Affiliation(s)
- Alan Taylor
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Jiazhu Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Nicholas Rogozinski
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Huikang Fu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Lia Molina Cortez
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Sara McMahan
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Karla Perez
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yan Chang
- Department of Graduate Nursing, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Zui Pan
- Department of Graduate Nursing, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
7
|
Sabbagh F, Deshmukh AR, Choi Y, Kim BS. Effect of Microsphere Concentration on Catechin Release from Microneedle Arrays. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28276-28289. [PMID: 38788676 DOI: 10.1021/acsami.4c06064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
In this work, microspheres were developed by cross-linking glutaraldehyde in an aqueous gelatin solution with a surfactant and solvent. A poly(vinyl alcohol) (PVA) solution was produced and combined with catechin-loaded microspheres. Different microsphere concentrations (0%, 5%, 10%, and 15%) were applied to the PVA microneedles. The moisture content, particle size, swelling, and drug release percentage of microneedles were studied using various microsphere concentrations. Fourier transform infrared and scanning electron microscopy (SEM) investigations validated the structure of gelatin microspheres as well as their decoration in microneedles. The SEM scans revealed that spherical microspheres with a wrinkled and folded morphology were created, with no physical holes visible on the surface. The gelatin microspheres generated had a mean particle size of 20-30 μm. Ex vivo release analysis indicated that microneedles containing 10% microspheres released the most catechin, with 42.9% at 12 h and 84.4% at 24 h.
Collapse
Affiliation(s)
- Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Aarti R Deshmukh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Yoseok Choi
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
8
|
Khan T, Vadivel G, Ramasamy B, Murugesan G, Sebaey TA. Biodegradable Conducting Polymer-Based Composites for Biomedical Applications-A Review. Polymers (Basel) 2024; 16:1533. [PMID: 38891481 PMCID: PMC11175044 DOI: 10.3390/polym16111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, researchers have increasingly directed their focus toward the biomedical field, driven by the goal of engineering polymer systems that possess a unique combination of both electrical conductivity and biodegradability. This convergence of properties holds significant promise, as it addresses a fundamental requirement for biomedical applications: compatibility with biological environments. These polymer systems are viewed as auspicious biomaterials, precisely because they meet this critical criterion. Beyond their biodegradability, these materials offer a range of advantageous characteristics. Their exceptional processability enables facile fabrication into various forms, and their chemical stability ensures reliability in diverse physiological conditions. Moreover, their low production costs make them economically viable options for large-scale applications. Notably, their intrinsic electrical conductivity further distinguishes them, opening up possibilities for applications that demand such functionality. As the focus of this review, a survey into the use of biodegradable conducting polymers in tissue engineering, biomedical implants, and antibacterial applications is conducted.
Collapse
Affiliation(s)
- Tabrej Khan
- Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Gayathri Vadivel
- Department of Physics, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India
| | - Balan Ramasamy
- Department of Physics, Government Arts and Science College, Mettupalayam 641104, Tamil Nadu, India
| | - Gowtham Murugesan
- Department of Physics, Kongunadu Arts and Science College, Coimbatore 641029, Tamil Nadu, India
| | - Tamer A. Sebaey
- Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia
- Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Sharkia, Egypt
| |
Collapse
|
9
|
Moradikhah F, Shabani I, Tafazzoli Shadpour M. Fabrication of a tailor-made conductive polyaniline/ascorbic acid-coated nanofibrous mat as a conductive and antioxidant cell-free cardiac patch. Biofabrication 2024; 16:035004. [PMID: 38507809 DOI: 10.1088/1758-5090/ad35e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Polyaniline (PANI) wasin-situpolymerized on nanofibrous polycaprolactone mats as cell-free antioxidant cardiac patches (CPs), providing electrical conductivity and antioxidant properties. The fabricated CPs took advantage of intrinsic and additive antioxidant properties in the presence of PANI backbone and ascorbic acid as a biocompatible dopant of PANI. The antioxidant nature of CPs may reduce the serious repercussions of oxidative stress, produced during the ischemia-reperfusion (I/R) process following myocardial infarction. The polymerization parameters were considered as aniline (60 mM, 90 mM, and 120 mM), ascorbic acid concentrations ([aniline]:[ascorbic acid] = 3:0, 3:0.5, 3:1, 3:3), and polymerization time (1 h and 3 h). Mainly, the more aniline concentrations and polymerization time, the less sheet resistance was obtained. 1,1 diphenyl-2-picrylhydrazyl (DPPH) assay confirmed the dual antioxidant properties of prepared samples. The advantage of the employedin-situpolymerization was confirmed by the de-doping/re-doping process. Non-desirable groups were excluded based on their electrical conductivity, antioxidant properties, and biocompatibility. The remained groups protected H9c2 cells against oxidative stress and hypoxia conditions. Selected CPs reduced the intracellular reactive oxygen species content and mRNA level of caspase-3 while the Bcl-2 mRNA level was improved. Also, the selected cardiac patch could attenuate the hypertrophic impact of hydrogen peroxide on H9c2 cells. Thein vivoresults of the skin flap model confirmed the CP potency to attenuate the harmful impact of I/R.
Collapse
Affiliation(s)
- Farzad Moradikhah
- Department of Biomedical Engineering, Amirkabir University of Technology, 1591634311 Tehran, Iran
| | - Iman Shabani
- Department of Biomedical Engineering, Amirkabir University of Technology, 1591634311 Tehran, Iran
| | | |
Collapse
|
10
|
Sahu I, Chakraborty P. A repertoire of nanoengineered short peptide-based hydrogels and their applications in biotechnology. Colloids Surf B Biointerfaces 2024; 233:113654. [PMID: 38000121 DOI: 10.1016/j.colsurfb.2023.113654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Peptide nanotechnology has currently bridged the gap between materials and biological worlds. Bioinspired self-assembly of short-peptide building blocks helps take the leap from molecules to materials by taking inspiration from nature. Owing to their intrinsic biocompatibility, high water content, and extracellular matrix mimicking fibrous morphology, hydrogels engineered from the self-assembly of short peptides exemplify the actualization of peptide nanotechnology into biomedical products. However, the weak mechanical property of these hydrogels jeopardizes their practical applications. Moreover, their functional diversity is limited since they comprise only one building block. Nanoengineering the networks of these hydrogels by incorporating small molecules, polymers, and inorganic/carbon nanomaterials can augment the mechanical properties while retaining their dynamic supramolecular nature. These additives interact with the peptide building blocks supramolecularly and may enhance the branching of the networks via coassembly or crystallographic mismatch. This phenomenon expands the functional diversity of these hydrogels by synergistically combining the attributes of the individual building blocks. This review highlights such nanoengineered peptide hydrogels and their applications in biotechnology. We have included exemplary works on supramolecular modification of the peptide hydrogel networks by integrating other small molecules, synthetic/biopolymers, conductive polymers, and inorganic/carbon nanomaterials and shed light on their various utilities focusing on biotechnology. We finally envision some future prospects in this highly active field of research.
Collapse
Affiliation(s)
- Ipsita Sahu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
11
|
Baheiraei N, Razavi M, Ghahremanzadeh R. Reduced graphene oxide coated alginate scaffolds: potential for cardiac patch application. Biomater Res 2023; 27:109. [PMID: 37924106 PMCID: PMC10625265 DOI: 10.1186/s40824-023-00449-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/15/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Cardiovascular diseases, particularly myocardial infarction (MI), are the leading cause of death worldwide and a major contributor to disability. Cardiac tissue engineering is a promising approach for preventing functional damage or improving cardiac function after MI. We aimed to introduce a novel electroactive cardiac patch based on reduced graphene oxide-coated alginate scaffolds due to the promising functional behavior of electroactive biomaterials to regulate cell proliferation, biocompatibility, and signal transition. METHODS The fabrication of novel electroactive cardiac patches based on alginate (ALG) coated with different concentrations of reduced graphene oxide (rGO) using sodium hydrosulfite is described here. The prepared scaffolds were thoroughly tested for their physicochemical properties and cytocompatibility. ALG-rGO scaffolds were also tested for their antimicrobial and antioxidant properties. Subcutaneous implantation in mice was used to evaluate the scaffolds' ability to induce angiogenesis. RESULTS The Young modulus of the scaffolds was increased by increasing the rGO concentration from 92 ± 4.51 kPa for ALG to 431 ± 4.89 kPa for ALG-rGO-4 (ALG coated with 0.3% w/v rGO). The scaffolds' tensile strength trended similarly. The electrical conductivity of coated scaffolds was calculated in the semi-conductive range (~ 10-4 S/m). Furthermore, when compared to ALG scaffolds, human umbilical vein endothelial cells (HUVECs) cultured on ALG-rGO scaffolds demonstrated improved cell viability and adhesion. Upregulation of VEGFR2 expression at both the mRNA and protein levels confirmed that rGO coating significantly boosted the angiogenic capability of ALG against HUVECs. OD620 assay and FE-SEM observation demonstrated the antibacterial properties of electroactive scaffolds against Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes. We also showed that the prepared samples possessed antioxidant activity using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay and UV-vis spectroscopy. Histological evaluations confirmed the enhanced vascularization properties of coated samples after subcutaneous implantation. CONCLUSION Our findings suggest that ALG-rGO is a promising scaffold for accelerating the repair of damaged heart tissue.
Collapse
Affiliation(s)
- Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division,Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 1411713116, Iran.
| | - Mehdi Razavi
- Department of Medicine, Biionix (Bionic Materials, Implants & Interfaces) Cluster, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - Ramin Ghahremanzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
12
|
Zhang L, Bei Z, Li T, Qian Z. An injectable conductive hydrogel with dual responsive release of rosmarinic acid improves cardiac function and promotes repair after myocardial infarction. Bioact Mater 2023; 29:132-150. [PMID: 37621769 PMCID: PMC10444974 DOI: 10.1016/j.bioactmat.2023.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023] Open
Abstract
Myocardial infarction (MI) causes irreversible damage to the heart muscle, seriously threatening the lives of patients. Injectable hydrogels have attracted extensive attention in the treatment of MI. By promoting the coupling of mechanical and electrical signals between cardiomyocytes, combined with synergistic therapeutic strategies targeting the pathological processes of inflammation, proliferation, and fibrotic remodeling after MI, it is expected to improve the therapeutic effect. In this study, a pH/ROS dual-responsive injectable hydrogel was developed by modifying xanthan gum and gelatin with reversible imine bond and boronic ester bond double crosslinking. By encapsulating polydopamine-rosmarinic acid nanoparticles to achieve on-demand drug release in response to the microenvironment of MI, thereby exerting anti-inflammatory, anti-apoptotic, and anti-fibrosis effects. By adding conductive composites to improve the conductivity and mechanical strength of the hydrogel, restore electrical signal transmission in the infarct area, promote synchronous contraction of cardiomyocytes, avoid induced arrhythmias, and induce angiogenesis. Furthermore, the multifunctional hydrogel promoted the expression of cardiac-specific markers to restore cardiac function after MI. The in vivo and in vitro results demonstrate the effectiveness of this synergistic comprehensive treatment strategy in MI treatment, showing great application potential to promote the repair of infarcted hearts.
Collapse
Affiliation(s)
- Linghong Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwu Bei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Department of Pediatric Cardiac Surgery, West China the Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
13
|
Shokrollahi P, Omidi Y, Cubeddu LX, Omidian H. Conductive polymers for cardiac tissue engineering and regeneration. J Biomed Mater Res B Appl Biomater 2023; 111:1979-1995. [PMID: 37306139 DOI: 10.1002/jbm.b.35293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Cardiovascular diseases, such as myocardial infarction, are considered a significant global burden and the leading cause of death. Given the inability of damaged cardiac tissue to self-repair, cell-based tissue engineering and regeneration may be the only viable option for restoring normal heart function. To maintain the normal excitation-contraction coupling function of cardiac tissue, uniform electronic and ionic conductance properties are required. To transport cells to damaged cardiac tissues, several techniques, including the incorporation of cells into conductive polymers (CPs) and biomaterials, have been utilized. Due to the complexity of cardiac tissues, the success of tissue engineering for the damaged heart is highly dependent on several variables, such as the cell source, growth factors, and scaffolds. In this review, we sought to provide a comprehensive overview of the electro CPs and biomaterials used in the engineering and regeneration of heart tissue.
Collapse
Affiliation(s)
- Parvin Shokrollahi
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Luigi X Cubeddu
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
14
|
Edrisi F, Baheiraei N, Razavi M, Roshanbinfar K, Imani R, Jalilinejad N. Potential of graphene-based nanomaterials for cardiac tissue engineering. J Mater Chem B 2023; 11:7280-7299. [PMID: 37427687 DOI: 10.1039/d3tb00654a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cardiovascular diseases are the primary cause of death worldwide. Despite significant advances in pharmacological treatments and surgical interventions to restore heart function after myocardial infarction, it can progress to heart failure due to the restricted inherent potential of adult cardiomyocytes to self-regenerate. Hence, the evolution of new therapeutic methods is critical. Nowadays, novel approaches in tissue engineering have assisted in restoring biological and physical specifications of the injured myocardium and, hence, cardiac function. The incorporation of a supporting matrix that could mechanically and electronically support the heart tissue and stimulate the cells to proliferate and regenerate will be advantageous. Electroconductive nanomaterials can facilitate intracellular communication and aid synchronous contraction via electroactive substrate creation, preventing the issue of arrhythmia in the heart. Among a wide range of electroconductive materials, graphene-based nanomaterials (GBNs) are promising for cardiac tissue engineering (CTE) due to their outstanding features including high mechanical strength, angiogenesis, antibacterial and antioxidant properties, low cost, and scalable fabrication. In the present review, we discuss the effect of applying GBNs on angiogenesis, proliferation, and differentiation of implanted stem cells, their antibacterial and antioxidant properties, and their role in improving the electrical and mechanical properties of the scaffolds for CTE. Also, we summarize the recent research that has applied GBNs in CTE. Finally, we present a concise discussion on the challenges and prospects.
Collapse
Affiliation(s)
- Fatemeh Edrisi
- Modern Technologies in Engineering Group, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran.
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, Florida 32827, USA
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, Florida 32816, USA
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), 91054 Erlangen, Germany
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Negin Jalilinejad
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
15
|
Fooladi S, Nematollahi MH, Rabiee N, Iravani S. Bacterial Cellulose-Based Materials: A Perspective on Cardiovascular Tissue Engineering Applications. ACS Biomater Sci Eng 2023. [PMID: 37146213 DOI: 10.1021/acsbiomaterials.3c00300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Today, a wide variety of bio- and nanomaterials have been deployed for cardiovascular tissue engineering (TE), including polymers, metal oxides, graphene/its derivatives, organometallic complexes/composites based on inorganic-organic components, among others. Despite several advantages of these materials with unique mechanical, biological, and electrical properties, some challenges still remain pertaining to their biocompatibility, cytocompatibility, and possible risk factors (e.g., teratogenicity or carcinogenicity), restricting their future clinical applications. Natural polysaccharide- and protein-based (nano)structures with the benefits of biocompatibility, sustainability, biodegradability, and versatility have been exploited in the field of cardiovascular TE focusing on targeted drug delivery, vascular grafts, engineered cardiac muscle, etc. The usage of these natural biomaterials and their residues offers several advantages in terms of environmental aspects such as alleviating emission of greenhouse gases as well as the production of energy as a biomass consumption output. In TE, the development of biodegradable and biocompatible scaffolds with potentially three-dimensional structures, high porosity, and suitable cellular attachment/adhesion still needs to be comprehensively studied. In this context, bacterial cellulose (BC) with high purity, porosity, crystallinity, unique mechanical properties, biocompatibility, high water retention, and excellent elasticity can be considered as promising candidate for cardiovascular TE. However, several challenges/limitations regarding the absence of antimicrobial factors and degradability along with the low yield of production and extensive cultivation times (in large-scale production) still need to be resolved using suitable hybridization/modification strategies and optimization of conditions. The biocompatibility and bioactivity of BC-based materials along with their thermal, mechanical, and chemical stability are crucial aspects in designing TE scaffolds. Herein, cardiovascular TE applications of BC-based materials are deliberated, with a focus on the most recent advancements, important challenges, and future perspectives. Other biomaterials with cardiovascular TE applications and important roles of green nanotechnology in this field of science are covered to better compare and comprehensively review the subject. The application of BC-based materials and the collective roles of such biomaterials in the assembly of sustainable and natural-based scaffolds for cardiovascular TE are discussed.
Collapse
Affiliation(s)
- Saba Fooladi
- Department of Clinical Biochemistry, Afzalipour Medical School, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Department of Clinical Biochemistry, Afzalipour Medical School, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, 76169-13555 Kerman, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran
| |
Collapse
|
16
|
Zhang Y, Tang J, Fang W, Zhao Q, Lei X, Zhang J, Chen J, Li Y, Zuo Y. Synergetic Effect of Electrical and Topographical Cues in Aniline Trimer-Based Polyurethane Fibrous Scaffolds on Tissue Regeneration. J Funct Biomater 2023; 14:jfb14040185. [PMID: 37103277 PMCID: PMC10146274 DOI: 10.3390/jfb14040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Processibility and biodegradability of conductive polymers are major concerns when they are applied to tissue regeneration. This study synthesizes dissolvable and conductive aniline trimer-based polyurethane copolymers (DCPU) and processes them into scaffolds by using electrospinning with different patterns (random, oriented, and latticed). The effects of topographic cue changes on electrical signal transmission and further regulation of cell behaviors concerning bone tissue are researched. Results show that DCPU fibrous scaffolds possessed good hydrophilicity, swelling capacity, elasticity, and fast biodegradability in enzymatic liquid. In addition, the conductivity and efficiency of electrical signal transmission can be tuned by changing the surface’s topological structure. Among them, oriented DCPU scaffolds (DCPU-O) showed the best conductivity with the lowest ionic resistance value. Furthermore, the viability and proliferation results of bone mesenchymal stem cells (BMSCs) demonstrate a significant increase on three DCPU scaffolds compared to AT-free scaffolds (DPU-R). Especially, DCPU-O scaffolds exhibit superior abilities to promote cell proliferation because of their unique surface topography and excellent electroactivity. Concurrently, the DCPU-O scaffolds can synergistically promote osteogenic differentiation in terms of osteogenic differentiation and gene expression levels when combined with electrical stimulation. Together, these results suggest a promising use of DCPU-O fibrous scaffolds in the application of tissue regeneration.
Collapse
|
17
|
Shakeri H, Haghbin Nazarpak M, Imani R, Tayebi L. Poly (l-lactic acid)-based modified nanofibrous membrane with dual drug release capability for GBR application. Int J Biol Macromol 2023; 231:123201. [PMID: 36642362 PMCID: PMC10603761 DOI: 10.1016/j.ijbiomac.2023.123201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/08/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Electrospun multilayer nanofibers guided bone regeneration (GBR) with a new design were developed in this study. The synthesized multilayer GBR was composed of two distinct layers. Poly l-lactic acid (PLA) incorporated with simvastatin (SIM) was designed as PLA/SIM layer to contact with a bone defect. In addition, the hydrophilic gelatin (GT) containing thymol (THY) was fabricated as GT/THY layer to contact connective tissue, potentially for bacterial gathering. Due to the different chemical nature and weak cohesion of the hydrophilic and hydrophobic layers, hybrid fibers made of PLA/SIM and GT/THY were electrospun as cohesion promoters between these layers. The microstructure and characteristics of the synthesized multilayer substrate, named GT/PLA, were evaluated, and different fibrous monolayers were fabricated to determine the optimal concentrations of drugs. Scanning electron microscopy (SEM) images showed continuous, smooth, randomly aligned, and bead-free fibers. In addition, there were no drug particles on the fiber surfaces which displayed the good placement of those inside the fibers. The mats exhibited satisfactory tensile strength (4.60 ± 0.14 MPa) and favorable physicochemical properties, including proper porosity percentage (<50 %) and appropriate pore size. Suitable swelling behavior (293 ± 0.05 %) and adequate degradation rates were also approved by characterizing swelling and degradability in vitro. The GT/PLA membrane exhibited a prolonged and sustained SIM release and controlled THY release with high antibacterial efficiency. Cell viability, cell attachment assay, and nuclear staining using 4',6-diamidino-2-phenylindole (DAPI) showed that the designed GT/PLA substrate had good biocompatibility and cell attachment. Cell infiltration testing also showed that the cells were finely prevented by the outer layer (GT/THY). Overall, the obtained results in this study indicated the great potential of the prepared GT/PLA for use as a GBR which can develop osteogenic and antibacterial biomimetic periosteum optimizing the clinical application of GBR strategies.
Collapse
Affiliation(s)
- Haniyeh Shakeri
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | - Masoumeh Haghbin Nazarpak
- New Technologies Research Center (NTRC), Amirkabir University of Technology (Tehran Polytechnic), Iran.
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran.
| | - Lobat Tayebi
- School of Dentistry, Marquette University, WI, United States
| |
Collapse
|
18
|
Bibi A, Santiago KS, Yeh JM, Chen HH. Valorization of Agricultural Waste as a Chemiresistor H 2S-Gas Sensor: A Composite of Biodegradable-Electroactive Polyurethane-Urea and Activated-Carbon Composite Derived from Coconut-Shell Waste. Polymers (Basel) 2023; 15:685. [PMID: 36771986 PMCID: PMC9920131 DOI: 10.3390/polym15030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
In this study, a high-performance H2S sensor that operates at RT was successfully fabricated using biodegradable electroactive polymer-polyurethane-urea (PUU) and PUU-activated-carbon (AC) composites as sensitive material. The PUU was synthesized through the copolymerization of biodegradable polycaprolactone diol and an electroactive amine-capped aniline trimer. AC, with a large surface area of 1620 m2/g and a pore diameter of 2 nm, was derived from coconut-shell waste. The composites, labeled PUU-AC1 and PUU-AC3, were prepared using a physical mixing method. The H2S-gas-sensing performance of PUU-AC0, PUU-AC1, and PUU-AC3 was evaluated. It was found that the PUU sensor demonstrated good H2S-sensing performance, with a sensitivity of 0.1269 ppm-1 H2S. The H2S-gas-sensing results indicated that the PUU-AC composites showed a higher response, compared with PUU-AC0. The enhanced H2S-response of the PUU-AC composites was speculated to be due to the high surface-area and abounding reaction-sites, which accelerated gas diffusion and adsorption and electron transfer. When detecting trace levels of H2S gas at 20 ppm, the sensitivity of the sensors based on PUU-AC1 and PUU-AC3 increased significantly. An observed 1.66 and 2.42 times' enhancement, respectively, in the sensors' sensitivity was evident, compared with PUU-AC0 alone. Moreover, the as-prepared sensors exhibited significantly high selectivity toward H2S, with minimal to almost negligible responses toward other gases, such as SO2, NO2, NH3, CO, and CO2.
Collapse
Affiliation(s)
- Aamna Bibi
- Department of Chemistry, Center for Nanotechnology and R & D Center for Membrane Technology at Chung Yuan Christian University, Chung Li 32023, China
| | - Karen S. Santiago
- Department of Chemistry, College of Science, Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines
| | - Jui-Ming Yeh
- Department of Chemistry, Center for Nanotechnology and R & D Center for Membrane Technology at Chung Yuan Christian University, Chung Li 32023, China
| | - Hsui-Hui Chen
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 10608, China
| |
Collapse
|
19
|
Eivazi Zadeh Z, Eskandari F, Shafieian M, Solouk A, Haghbin Nazarpak M. The importance of polyurethane/carbon nanotubes composites fabrication method to mimic mechanical behavior of different types of soft tissues. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Selvaras T, Alshamrani SA, Gopal R, Jaganathan SK, Sivalingam S, Kadiman S, Saidin S. Biodegradable and antithrombogenic chitosan/elastin blended polyurethane electrospun membrane for vascular tissue integration. J Biomed Mater Res B Appl Biomater 2023; 111:1171-1181. [PMID: 36625453 DOI: 10.1002/jbm.b.35223] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
Current commercialized vascular membranes to treat coronary heart disease (CHD) such as Dacron and expanded polytetrafluoroethylene (ePTFE) have been associated with biodegradable and thrombogenic issues that limit tissue integration. In this study, biodegradable vascular membranes were fabricated in a structure of electrospun nanofibers composed of polyurethane (PU), chitosan (CS) and elastin (0.5%, 1.0%, and 1.5%). The physicochemical properties of the membranes were analyzed, followed by the conduction of several test analyses. The blending of CS and elastin has increased the fiber diameter, pore size and porosity percentage with the appearance of identical chemical groups. The wettability of PU membranes was enhanced up to 39.6%, demonstrating higher degradation following the incorporation of both natural polymers. The PU/CS/elastin electrospun membranes exhibited a controlled release of CS (Higuchi and first-order mechanisms) and elastin (Higuchi and Korsmeyer-Peppas mechanisms). Delayed blood clotting time was observed through both activated partial thromboplastin time (APTT) and partial thromboplastin time (PT) analyses where significantly delay of 26.8% APTT was recorded on the PU membranes blended with CS and elastin, in comparison with the PU membranes, supporting the membrane's antithrombogenic properties. Besides, these membranes produced a minimum of 2.6 ± 0.1 low hemolytic percentage, projecting its hemocompatibility to be used as vascular membrane.
Collapse
Affiliation(s)
- Thiviya Selvaras
- Department of Biomedical Engineering & Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Somyah Ali Alshamrani
- Department of Biomedical Engineering & Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Rathosivan Gopal
- Department of Biomedical Engineering & Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | | | - Sivakumar Sivalingam
- Department of Cardiothoracic Surgery, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | - Suhaini Kadiman
- Department of Clinical Research, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | - Syafiqah Saidin
- Department of Biomedical Engineering & Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.,IJN-UTM Cardiovascular Engineering Centre, Institute of Human Centered Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
21
|
Jalilinejad N, Rabiee M, Baheiraei N, Ghahremanzadeh R, Salarian R, Rabiee N, Akhavan O, Zarrintaj P, Hejna A, Saeb MR, Zarrabi A, Sharifi E, Yousefiasl S, Zare EN. Electrically conductive carbon-based (bio)-nanomaterials for cardiac tissue engineering. Bioeng Transl Med 2023; 8:e10347. [PMID: 36684103 PMCID: PMC9842069 DOI: 10.1002/btm2.10347] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/06/2023] Open
Abstract
A proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials because of their exceptional variable functionality, conductivity, and mechanical properties. Electrically conductive biomaterials used as cell bearers provide the tissue with an appropriate microenvironment for the specific seeded cells as substrates for the sake of protecting cells in biological media against attacking mechanisms. Nevertheless, their advantages and shortcoming in view of cellular behavior, toxicity, and targeted delivery depend on the tissue in which they are implanted or being used as a scaffold. This review seeks to address, summarize, classify, conceptualize, and discuss the use of carbon-based nanoparticles in cardiac tissue engineering emphasizing their conductivity. We considered electrical conductivity as a key affecting the regeneration of cells. Correspondingly, we reviewed conductive polymers used in tissue engineering and specifically in cardiac repair as key biomaterials with high efficiency. We comprehensively classified and discussed the advantages of using conductive biomaterials in cardiac tissue engineering. An overall review of the open literature on electroactive substrates including carbon-based biomaterials over the last decade was provided, tabulated, and thoroughly discussed. The most commonly used conductive substrates comprising graphene, graphene oxide, carbon nanotubes, and carbon nanofibers in cardiac repair were studied.
Collapse
Affiliation(s)
- Negin Jalilinejad
- Biomaterial Group, Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | | | - Reza Salarian
- Biomedical Engineering DepartmentMaziar UniversityRoyanMazandaranIran
| | - Navid Rabiee
- Department of PhysicsSharif University of TechnologyTehranIran
- School of EngineeringMacquarie UniversitySydneyNew South WalesAustralia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH), 77 Cheongam‐ro, Nam‐guPohangGyeongbukSouth Korea
| | - Omid Akhavan
- Department of PhysicsSharif University of TechnologyTehranIran
| | - Payam Zarrintaj
- School of Chemical EngineeringOklahoma State UniversityStillwaterOklahomaUSA
| | - Aleksander Hejna
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadanIran
| | | |
Collapse
|
22
|
Xu C, Hong Y. Rational design of biodegradable thermoplastic polyurethanes for tissue repair. Bioact Mater 2022; 15:250-271. [PMID: 35386346 PMCID: PMC8940769 DOI: 10.1016/j.bioactmat.2021.11.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022] Open
Abstract
As a type of elastomeric polymers, non-degradable polyurethanes (PUs) have a long history of being used in clinics, whereas biodegradable PUs have been developed in recent decades, primarily for tissue repair and regeneration. Biodegradable thermoplastic (linear) PUs are soft and elastic polymeric biomaterials with high mechanical strength, which mimics the mechanical properties of soft and elastic tissues. Therefore, biodegradable thermoplastic polyurethanes are promising scaffolding materials for soft and elastic tissue repair and regeneration. Generally, PUs are synthesized by linking three types of changeable blocks: diisocyanates, diols, and chain extenders. Alternating the combination of these three blocks can finely tailor the physio-chemical properties and generate new functional PUs. These PUs have excellent processing flexibilities and can be fabricated into three-dimensional (3D) constructs using conventional and/or advanced technologies, which is a great advantage compared with cross-linked thermoset elastomers. Additionally, they can be combined with biomolecules to incorporate desired bioactivities to broaden their biomedical applications. In this review, we comprehensively summarized the synthesis, structures, and properties of biodegradable thermoplastic PUs, and introduced their multiple applications in tissue repair and regeneration. A whole picture of their design and applications along with discussions and perspectives of future directions would provide theoretical and technical supports to inspire new PU development and novel applications.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
23
|
Electrical/Spectroscopic Stability of Conducting and Biodegradable Graft‐Copolymer. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Tohidi H, Maleki-Jirsaraei N, Simchi A, Mohandes F, Emami Z, Fassina L, Naro F, Conti B, Barbagallo F. An Electroconductive, Thermosensitive, and Injectable Chitosan/Pluronic/Gold-Decorated Cellulose Nanofiber Hydrogel as an Efficient Carrier for Regeneration of Cardiac Tissue. MATERIALS 2022; 15:ma15155122. [PMID: 35897556 PMCID: PMC9330822 DOI: 10.3390/ma15155122] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022]
Abstract
Myocardial infarction is a major cause of death worldwide and remains a social and healthcare burden. Injectable hydrogels with the ability to locally deliver drugs or cells to the damaged area can revolutionize the treatment of heart diseases. Herein, we formulate a thermo-responsive and injectable hydrogel based on conjugated chitosan/poloxamers for cardiac repair. To tailor the mechanical properties and electrical signal transmission, gold nanoparticles (AuNPs) with an average diameter of 50 nm were physically bonded to oxidized bacterial nanocellulose fibers (OBC) and added to the thermosensitive hydrogel at the ratio of 1% w/v. The prepared hydrogels have a porous structure with open pore channels in the range of 50−200 µm. Shear rate sweep measurements demonstrate a reversible phase transition from sol to gel with increasing temperature and a gelation time of 5 min. The hydrogels show a shear-thinning behavior with a shear modulus ranging from 1 to 12 kPa dependent on gold concentration. Electrical conductivity studies reveal that the conductance of the polymer matrix is 6 × 10−2 S/m at 75 mM Au. In vitro cytocompatibility assays by H9C2 cells show high biocompatibility (cell viability of >90% after 72 h incubation) with good cell adhesion. In conclusion, the developed nanocomposite hydrogel has great potential for use as an injectable biomaterial for cardiac tissue regeneration.
Collapse
Affiliation(s)
- Hajar Tohidi
- Department of Physics and Chemistry, Alzahra University, Vanak Village Street, Tehran 19938 93973, Iran;
| | - Nahid Maleki-Jirsaraei
- Department of Physics and Chemistry, Alzahra University, Vanak Village Street, Tehran 19938 93973, Iran;
- Correspondence: (N.M.-J.); (A.S.)
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran 14588 89694, Iran; (F.M.); (Z.E.)
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Azadi Avenue, Tehran 14588 89694, Iran
- Correspondence: (N.M.-J.); (A.S.)
| | - Fatemeh Mohandes
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran 14588 89694, Iran; (F.M.); (Z.E.)
| | - Zahra Emami
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran 14588 89694, Iran; (F.M.); (Z.E.)
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy;
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University, 00185 Rome, Italy;
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Federica Barbagallo
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy; or
- Faculty of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy
| |
Collapse
|
25
|
Liang R, Yang X, Yew PYM, Sugiarto S, Zhu Q, Zhao J, Loh XJ, Zheng L, Kai D. PLA-lignin nanofibers as antioxidant biomaterials for cartilage regeneration and osteoarthritis treatment. J Nanobiotechnology 2022; 20:327. [PMID: 35842720 PMCID: PMC9287996 DOI: 10.1186/s12951-022-01534-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Background Osteoarthritis (OA) is common musculoskeletal disorders associated with overgeneration of free radicals, and it causes joint pain, inflammation, and cartilage degradation. Lignin as a natural antioxidant biopolymer has shown its great potential for biomedical applications. In this work, we developed a series of lignin-based nanofibers as antioxidative scaffolds for cartilage tissue engineering. Results The nanofibers were engineered by grafting poly(lactic acid) (PLA) into lignin via ring-opening polymerization and followed by electrospinning. Varying the lignin content in the system was able to adjust the physiochemical properties of the resulting nanofibers, including fiber diameters, mechanical and viscoelastic properties, and antioxidant activity. In vitro study demonstrated that the PLA-lignin nanofibers could protect bone marrow-derived mesenchymal stem/stromal cells (BMSCs) from oxidative stress and promote the chondrogenic differentiation. Moreover, the animal study showed that the lignin nanofibers could promote cartilage regeneration and repair cartilage defects within 6 weeks of implantation. Conclusion Our study indicated that lignin-based nanofibers could serve as an antioxidant tissue engineering scaffold and facilitate the cartilage regrowth for OA treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01534-2.
Collapse
Affiliation(s)
- Ruiming Liang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application , Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Xingchen Yang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application , Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Pek Yin Michelle Yew
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Sigit Sugiarto
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application , Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.,Department of Orthopaedics Trauma and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application , Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China. .,Department of Orthopaedics Trauma and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore. .,Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore.
| |
Collapse
|
26
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Muñoz M, Eren Cimenci C, Goel K, Comtois-Bona M, Hossain M, McTiernan C, Zuñiga-Bustos M, Ross A, Truong B, Davis DR, Liang W, Rotstein B, Ruel M, Poblete H, Suuronen EJ, Alarcon EI. Nanoengineered Sprayable Therapy for Treating Myocardial Infarction. ACS NANO 2022; 16:3522-3537. [PMID: 35157804 DOI: 10.1021/acsnano.1c08890] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report the development, as well as the in vitro and in vivo testing, of a sprayable nanotherapeutic that uses surface engineered custom-designed multiarmed peptide grafted nanogold for on-the-spot coating of an infarcted myocardial surface. When applied to mouse hearts, 1 week after infarction, the spray-on treatment resulted in an increase in cardiac function (2.4-fold), muscle contractility, and myocardial electrical conductivity. The applied nanogold remained at the treatment site 28 days postapplication with no off-target organ infiltration. Further, the infarct size in the mice that received treatment was found to be <10% of the total left ventricle area, while the number of blood vessels, prohealing macrophages, and cardiomyocytes increased to levels comparable to that of a healthy animal. Our cumulative data suggest that the therapeutic action of our spray-on nanotherapeutic is highly effective, and in practice, its application is simpler than other regenerative approaches for treating an infarcted heart.
Collapse
Affiliation(s)
- Marcelo Muñoz
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Cagla Eren Cimenci
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Keshav Goel
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Maxime Comtois-Bona
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Mahir Hossain
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Christopher McTiernan
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Matias Zuñiga-Bustos
- Departamento de Bioinformática, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Talca, 2 Norte 685, 3460000, Talca, Chile
| | - Alex Ross
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Brenda Truong
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Darryl R Davis
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, Ontario K1Y 4W7, Canada
- Cardiac Electrophysiology Lab, University of Ottawa, Ottawa, Ontario K1Y 4W7, Canada
| | - Wenbin Liang
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, Ontario K1Y 4W7, Canada
- Cardiac Electrophysiology Lab, University of Ottawa, Ottawa, Ontario K1Y 4W7, Canada
| | - Benjamin Rotstein
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Molecular Imaging Probes and Radiochemistry Laboratory, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Marc Ruel
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Horacio Poblete
- Departamento de Bioinformática, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Talca, 2 Norte 685, 3460000, Talca, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, 2 Norte 685, 3460000 Talca, Chile
| | - Erik J Suuronen
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Emilio I Alarcon
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
- Molecular Imaging Probes and Radiochemistry Laboratory, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| |
Collapse
|
28
|
Li Y, Wei L, Lan L, Gao Y, Zhang Q, Dawit H, Mao J, Guo L, Shen L, Wang L. Conductive biomaterials for cardiac repair: A review. Acta Biomater 2022; 139:157-178. [PMID: 33887448 DOI: 10.1016/j.actbio.2021.04.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 12/18/2022]
Abstract
Myocardial infarction (MI) is one of the fatal diseases in humans. Its incidence is constantly increasing annually all over the world. The problem is accompanied by the limited regenerative capacity of cardiomyocytes, yielding fibrous scar tissue formation. The propagation of electrical impulses in such tissue is severely hampered, negatively influencing the normal heart pumping function. Thus, reconstruction of the internal cardiac electrical connection is currently a major concern of myocardial repair. Conductive biomaterials with or without cell loading were extensively investigated to address this problem. This article introduces a detailed overview of the recent progress in conductive biomaterials and fabrication methods of conductive scaffolds for cardiac repair. After that, the advances in myocardial tissue construction in vitro by the restoration of intercellular communication and simulation of the dynamic electrophysiological environment are systematically reviewed. Furthermore, the latest trend in the study of cardiac repair in vivo using various conductive patches is summarized. Finally, we discuss the achievements and shortcomings of the existing conductive biomaterials and the properties of an ideal conductive patch for myocardial repair. We hope this review will help readers understand the importance and usefulness of conductive biomaterials in cardiac repair and inspire researchers to design and develop new conductive patches to meet the clinical requirements. STATEMENT OF SIGNIFICANCE: After myocardial infarction, the infarcted myocardial area is gradually replaced by heterogeneous fibrous tissue with inferior conduction properties, resulting in arrhythmia and heart remodeling. Conductive biomaterials have been extensively adopted to solve the problem. Summarizing the relevant literature, this review presents an overview of the types and fabrication methods of conductive biomaterials, and focally discusses the recent advances in myocardial tissue construction in vitro and myocardial repair in vivo, which is rarely covered in previous reviews. As well, the deficiencies of the existing conductive patches and their construction strategies for myocardial repair are discussed as well as the improving directions. Confidently, the readers of this review would appreciate advantages and current limitations of conductive biomaterials/patches in cardiac repair.
Collapse
Affiliation(s)
- Yimeng Li
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Leqian Wei
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Lizhen Lan
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yaya Gao
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Qian Zhang
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Hewan Dawit
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Jifu Mao
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China.
| | - Lamei Guo
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China
| | - Li Shen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| | - Lu Wang
- Key Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
29
|
Chee PL, Sugiarto S, Yu Y, Tan YC, Ye E, Kai D, Loh XJ. Antioxidative and Anti‐UV Lignin Carrier for Peptide Delivery. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE) A*STAR 2 Fusionopolis Way, #08‐03 Innovis Singapore 138634 Singapore
| | - Sigit Sugiarto
- Institute of Materials Research and Engineering (IMRE) A*STAR 2 Fusionopolis Way, #08‐03 Innovis Singapore 138634 Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE) A*STAR 2 Fusionopolis Way, #08‐03 Innovis Singapore 138634 Singapore
| | - Ying Chuan Tan
- Institute of Materials Research and Engineering (IMRE) A*STAR 2 Fusionopolis Way, #08‐03 Innovis Singapore 138634 Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE) A*STAR 2 Fusionopolis Way, #08‐03 Innovis Singapore 138634 Singapore
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE) A*STAR 2 Fusionopolis Way, #08‐03 Innovis Singapore 138634 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE) A*STAR 2 Fusionopolis Way, #08‐03 Innovis Singapore 138634 Singapore
| |
Collapse
|
30
|
Chang T, Liu C, Lu K, Wu Y, Xu M, Yu Q, Shen Z, Jiang T, Zhang Y. Biomaterials based cardiac patches for the treatment of myocardial infarction. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 2021; 94:77-89. [DOI: 10.1016/j.jmst.2021.03.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
31
|
Kim KS, Joo HJ, Choi SC, Kim JH, Park CY, Song MH, Noh JM, Cha JJ, Hong SJ, Ahn TH, Kim MN, Na JE, Rhyu IJ, Lim DS. Transplantation of 3D bio-printed cardiac mesh improves cardiac function and vessel formation via ANGPT1/Tie2 pathway in rats with acute myocardial infarction. Biofabrication 2021; 13. [PMID: 34404035 DOI: 10.1088/1758-5090/ac1e78] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022]
Abstract
A novel tissue engineering strategy using 3D bio-print technology has become a promising therapeutic method for acute myocardial infarction (AMI) in an animal model. However, the application of 3D bio-printed tissue remains limited due to poor graft survival. Therefore, it is a scientific priority to enhance graft survival by precisely adjusting the 3D environment of encapsulated cells. In this study, novel transplantable 3D cardiac mesh (cMesh) tissue with a porous mesh structure was presented using human cardiomyocytes, human cardiac fibroblasts, and gelatin-methacryloyl-collagen hydrogel. Cardiomyocytes and cardiac fibroblasts were well spreaded. The cardiomyocytes were connected with a gap junction channel in bio-printed cMesh and a 3D cardiac patch with an aggregated structure. Porous cMesh demonstrated structural advantages by increased phosphorylation of mTOR, AKT, and ERK signals associated with cell survival. Transplanted cMesh in rats with AMI improved long-term graft survival, vessel formation, and stabilization, reduced fibrosis, increased left ventricle thickness, and enhanced cardiac function. Our results suggest that porous cMesh provides structural advantages and a positive therapeutic effect in an AMI animal model.
Collapse
Affiliation(s)
- Kyung Seob Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyung Joon Joo
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jong-Ho Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Chi-Yeon Park
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Myeong-Hwa Song
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ji-Min Noh
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jung-Joon Cha
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Soon Jun Hong
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Tae Hoon Ahn
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mi-Na Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ji Eun Na
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Im Joo Rhyu
- Department of Anatomy, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
32
|
Ul Haq A, Carotenuto F, De Matteis F, Prosposito P, Francini R, Teodori L, Pasquo A, Di Nardo P. Intrinsically Conductive Polymers for Striated Cardiac Muscle Repair. Int J Mol Sci 2021; 22:8550. [PMID: 34445255 PMCID: PMC8395236 DOI: 10.3390/ijms22168550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
One of the most important features of striated cardiac muscle is the excitability that turns on the excitation-contraction coupling cycle, resulting in the heart blood pumping function. The function of the heart pump may be impaired by events such as myocardial infarction, the consequence of coronary artery thrombosis due to blood clots or plaques. This results in the death of billions of cardiomyocytes, the formation of scar tissue, and consequently impaired contractility. A whole heart transplant remains the gold standard so far and the current pharmacological approaches tend to stop further myocardium deterioration, but this is not a long-term solution. Electrically conductive, scaffold-based cardiac tissue engineering provides a promising solution to repair the injured myocardium. The non-conductive component of the scaffold provides a biocompatible microenvironment to the cultured cells while the conductive component improves intercellular coupling as well as electrical signal propagation through the scar tissue when implanted at the infarcted site. The in vivo electrical coupling of the cells leads to a better regeneration of the infarcted myocardium, reducing arrhythmias, QRS/QT intervals, and scar size and promoting cardiac cell maturation. This review presents the emerging applications of intrinsically conductive polymers in cardiac tissue engineering to repair post-ischemic myocardial insult.
Collapse
Affiliation(s)
- Arsalan Ul Haq
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- CIMER—Centro di Ricerca Interdipartimentale di Medicina Rigenerativa, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (P.P.); (R.F.); (L.T.)
| | - Felicia Carotenuto
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- CIMER—Centro di Ricerca Interdipartimentale di Medicina Rigenerativa, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (P.P.); (R.F.); (L.T.)
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy;
| | - Fabio De Matteis
- CIMER—Centro di Ricerca Interdipartimentale di Medicina Rigenerativa, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (P.P.); (R.F.); (L.T.)
- Dipartimento di Ingegneria Industriale, Università degli Studi di Roma “Tor Vergata”, Via del Politecnico, 00133 Roma, Italy
| | - Paolo Prosposito
- CIMER—Centro di Ricerca Interdipartimentale di Medicina Rigenerativa, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (P.P.); (R.F.); (L.T.)
- Dipartimento di Ingegneria Industriale, Università degli Studi di Roma “Tor Vergata”, Via del Politecnico, 00133 Roma, Italy
| | - Roberto Francini
- CIMER—Centro di Ricerca Interdipartimentale di Medicina Rigenerativa, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (P.P.); (R.F.); (L.T.)
- Dipartimento di Ingegneria Industriale, Università degli Studi di Roma “Tor Vergata”, Via del Politecnico, 00133 Roma, Italy
| | - Laura Teodori
- CIMER—Centro di Ricerca Interdipartimentale di Medicina Rigenerativa, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (P.P.); (R.F.); (L.T.)
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy;
| | - Alessandra Pasquo
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy;
| | - Paolo Di Nardo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- CIMER—Centro di Ricerca Interdipartimentale di Medicina Rigenerativa, Università degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (P.P.); (R.F.); (L.T.)
- L.L. Levshin Institute of Cluster Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
33
|
Use of electroconductive biomaterials for engineering tissues by 3D printing and 3D bioprinting. Essays Biochem 2021; 65:441-466. [PMID: 34296738 DOI: 10.1042/ebc20210003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Existing methods of engineering alternatives to restore or replace damaged or lost tissues are not satisfactory due to the lack of suitable constructs that can fit precisely, function properly and integrate into host tissues. Recently, three-dimensional (3D) bioprinting approaches have been developed to enable the fabrication of pre-programmed synthetic tissue constructs that have precise geometries and controlled cellular composition and spatial distribution. New bioinks with electroconductive properties have the potential to influence cellular fates and function for directed healing of different tissue types including bone, heart and nervous tissue with the possibility of improved outcomes. In the present paper, we review the use of electroconductive biomaterials for the engineering of tissues via 3D printing and 3D bioprinting. Despite significant advances, there remain challenges to effective tissue replacement and we address these challenges and describe new approaches to advanced tissue engineering.
Collapse
|
34
|
Huang Y, Du Z, Zheng T, Jing W, Liu H, Liu X, Mao J, Zhang X, Cai Q, Chen D, Yang X. Antibacterial, conductive, and osteocompatible polyorganophosphazene microscaffolds for the repair of infectious calvarial defect. J Biomed Mater Res A 2021; 109:2580-2596. [PMID: 34173709 DOI: 10.1002/jbm.a.37252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/23/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022]
Abstract
Many osteoconductive and osteoinductive scaffolds have been developed for promoting bone regeneration; however, failures would occur in osteogenesis when the defect area is significantly infected while the biomaterials have no antibacterial performances. Herein, a kind of multipurpose PATGP@PDA + Ag microspheres was prepared via emulsion method by using a conductive aniline tetramer (AT) substituted polyphosphazene (PATGP), followed by polydopamine (PDA) modification and silver nanoparticles (AgNPs) loading. The PATGP@PDA + Ag microspheres demonstrated a strong antibacterial activity against Staphylococcus aureus both in vitro and in vivo, while showing no cytotoxicity at an optimized AgNPs loading amount. Due to the electron-donor structure of the AT moieties, the PATGP@PDA + Ag microspheres displayed antioxidant capacities to scavenge reactive oxygen species (ROS). Due to their phosphorus-rich feature, the PATGP@PDA + Ag microspheres favored the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). As controls, nonconductive microspheres (PAGP@PDA, PAGP@PDA + Ag) were prepared similarly by using poly[(ethylalanine)(ethylglycyl)]phosphazene (PAGP). By co-implanting these microspheres with S. aureus into rat calvarial defects, among them, it was determined that the PATGP@PDA + Ag microspheres achieved the most abundant neo-bone formation, benefiting from their antibacterial, antioxidant and osteogenic activities. These results revealed that AgNPs loaded scaffolds made of conductive polyphosphazenes were promising for the regeneration of infected bone defects.
Collapse
Affiliation(s)
- Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Zhiyun Du
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Tianyi Zheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Wei Jing
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Huanhuan Liu
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Xue Liu
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Jianping Mao
- Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Xu Zhang
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
35
|
Fang W, Sun F, Tang J, Zhao Q, Chen J, Lei X, Zhang J, Zhang Y, Zuo Y, Li J, Li Y. Porous Electroactive and Biodegradable Polyurethane Membrane through Self-Doping Organogel. Macromol Rapid Commun 2021; 42:e2100125. [PMID: 33904219 DOI: 10.1002/marc.202100125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/02/2021] [Indexed: 12/15/2022]
Abstract
In order to improve the processability of conductive polyurethane (CPU) containing aniline oligomers, a new CPU containing aniline trimer (AT) and l-lysine (PUAT) are designed and synthesized. Further, the 3D porous PUAT membranes have been prepared by a simple gel cooperated with freeze-drying method. Chemical testings and conductive properties testify a self- doping model of PUAT based on the rich electronic l-lysine and electroaffinity AT moities. The self-doping behavior further endows the PUAT copolymers specific characteristics such as high electrical conductivity and the formation of the polaron lattice like-structure in good solvent dimethyl sulfoxide. The combination of organogel and freeze-drying could prevent the collapse of pore structure when the copolymers are molded as membranes. The synergistic effect of l-lysine and AT components has a strong influence on the dissolution, degradation, thermal stability, and mechanical properties of PUAT. The excellent properties of PUAT would broad the application of conductive polymers in biomedicine field.
Collapse
Affiliation(s)
- Wei Fang
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Fuhua Sun
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, P. R. China
| | - Jiajing Tang
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Qing Zhao
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Jie Chen
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiaoyu Lei
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Jinzheng Zhang
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Yinglong Zhang
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Yi Zuo
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Jidong Li
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| | - Yubao Li
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
36
|
Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem Rev 2021; 121:11238-11304. [PMID: 33856196 DOI: 10.1021/acs.chemrev.0c01200] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Degradable polymers are used widely in tissue engineering and regenerative medicine. Maturing capabilities in additive manufacturing coupled with advances in orthogonal chemical functionalization methodologies have enabled a rapid evolution of defect-specific form factors and strategies for designing and creating bioactive scaffolds. However, these defect-specific scaffolds, especially when utilizing degradable polymers as the base material, present processing challenges that are distinct and unique from other classes of materials. The goal of this review is to provide a guide for the fabrication of biodegradable polymer-based scaffolds that includes the complete pathway starting from selecting materials, choosing the correct fabrication method, and considering the requirements for tissue specific applications of the scaffold.
Collapse
Affiliation(s)
- Alina Kirillova
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Taylor R Yeazel
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shannon R Petersen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sophia Dort
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ken Gall
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
37
|
Novel composite films based on sodium alginate and gallnut extract with enhanced antioxidant, antimicrobial, barrier and mechanical properties. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106508] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Wendels S, Avérous L. Biobased polyurethanes for biomedical applications. Bioact Mater 2021; 6:1083-1106. [PMID: 33102948 PMCID: PMC7569269 DOI: 10.1016/j.bioactmat.2020.10.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Polyurethanes (PUs) are a major family of polymers displaying a wide spectrum of physico-chemical, mechanical and structural properties for a large range of fields. They have shown suitable for biomedical applications and are used in this domain since decades. The current variety of biomass available has extended the diversity of starting materials for the elaboration of new biobased macromolecular architectures, allowing the development of biobased PUs with advanced properties such as controlled biotic and abiotic degradation. In this frame, new tunable biomedical devices have been successfully designed. PU structures with precise tissue biomimicking can be obtained and are adequate for adhesion, proliferation and differentiation of many cell's types. Moreover, new smart shape-memory PUs with adjustable shape-recovery properties have demonstrated promising results for biomedical applications such as wound healing. The fossil-based starting materials substitution for biomedical implants is slowly improving, nonetheless better renewable contents need to be achieved for most PUs to obtain biobased certifications. After a presentation of some PU generalities and an understanding of a biomaterial structure-biocompatibility relationship, recent developments of biobased PUs for non-implantable devices as well as short- and long-term implants are described in detail in this review and compared to more conventional PU structures.
Collapse
Affiliation(s)
- Sophie Wendels
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
39
|
Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering. Int J Biol Macromol 2021; 180:590-598. [PMID: 33711373 DOI: 10.1016/j.ijbiomac.2021.03.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Myocardial infarction of cardiomyocytes is a leading cause of heart failure (HF) worldwide. Since heart has very limited regeneration capacity, cardiac tissue engineering (TE) to produce a bioactive scaffold is considered. In this study, a series of polyurethane solutions (5-7%wt) in aqueous acetic acid were prepared using electrospinning. A variety of Polyurethane (PU)/Chitosan (Cs)/carbon nanotubes (CNT) composite nanofibrous scaffolds with random and aligned orientation were fabricated to structurally mimic the extracellular matrix (ECM). Electrospun nanofibers were then characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), water contact angle, degradation studies, tensile tests, electrical resistance measurement and cell viability assay. The biocompatibility of electrospun random and aligned nanofibrous scaffolds with H9C2 Cells was confirmed. The results revealed that fabricated PU/Cs/CNT composite nanofibrous scaffolds were electro-conductive and aligned nanofibers could be considered as promising scaffolds with nano-scale features for regeneration of infarcted myocardium.
Collapse
|
40
|
Mousavi A, Vahdat S, Baheiraei N, Razavi M, Norahan MH, Baharvand H. Multifunctional Conductive Biomaterials as Promising Platforms for Cardiac Tissue Engineering. ACS Biomater Sci Eng 2020; 7:55-82. [PMID: 33320525 DOI: 10.1021/acsbiomaterials.0c01422] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adult cardiomyocytes are terminally differentiated cells that result in minimal intrinsic potential for the heart to self-regenerate. The introduction of novel approaches in cardiac tissue engineering aims to repair damages from cardiovascular diseases. Recently, conductive biomaterials such as carbon- and gold-based nanomaterials, conductive polymers, and ceramics that have outstanding electrical conductivity, acceptable mechanical properties, and promoted cell-cell signaling transduction have attracted attention for use in cardiac tissue engineering. Nevertheless, comprehensive classification of conductive biomaterials from the perspective of cardiac cell function is a subject for discussion. In the present review, we classify and summarize the unique properties of conductive biomaterials considered beneficial for cardiac tissue engineering. We attempt to cover recent advances in conductive biomaterials with a particular focus on their effects on cardiac cell functions and proposed mechanisms of action. Finally, current problems, limitations, challenges, and suggested solutions for applications of these biomaterials are presented.
Collapse
Affiliation(s)
- Ali Mousavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Sadaf Vahdat
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, 14117-13116 Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911 Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, 14117-13116 Tehran, Iran
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida 32816, United States
| | - Mohammad Hadi Norahan
- Centro de Biotecnología-FEMSA, Department of Sciences, Tecnologico de Monterrey, Monterrey 64849, NL, México
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911 Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
41
|
Najafloo R, Baheiraei N, Imani R. Synthesis and characterization of collagen/calcium phosphate scaffolds incorporating antibacterial agent for bone tissue engineering application. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520966692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the present study, we developed a novel niosomal nanocarrier embedded into a collagen/β- tricalcium phosphate (Col/β-TCP) scaffold for the local delivery of thymol as a natural anti-bacterial reagent. The niosomal Col/β-TCP (N-Col/β-TCP) scaffolds with different weight ratios of β-TCP to Col were prepared by freeze-drying. The antimicrobial activities of the prepared samples against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were assessed by agar diffusion method. The release profile of niosomal thymol from the optimized composite scaffolds showed a sustained profile where 66% of the loaded thymol was released over 30 days. The compressive modulus of niosome added scaffolds with an equal ratio of β-TCP and Col was calculated as 972±1.3KPa. This scaffold showed significantly higher values of cell viability (as evaluated by an MTT assay) against L929 fibroblasts than a scaffold without niosomal thymol after 24 and 72 h. Among synthesized samples, Col/β-TCP1 showed the greatest effectiveness of anti-bacterial activity toward Gram-positive and Gram-negative bacteria with higher activity against Gram-positive ones. The results of this study highlight the potential of niosomal-thymol loaded Col/β-TCP1 scaffold as an anti-bacterial bone substitute for possible osteomyelitis treatment.
Collapse
Affiliation(s)
- Raziyeh Najafloo
- Department of bio-informatics, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences,Tarbiat Modares University, Tehran, Iran
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran polytechnic), Tehran, Iran
| |
Collapse
|
42
|
Saha P, Aloui H, Yun J, Kim H, Kim BS. Development of a novel composite film based on polyurethane and defatted
Chlorella
biomass: Physical and functional characterization. J Appl Polym Sci 2020. [DOI: 10.1002/app.50152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pathikrit Saha
- Department of Chemical Engineering Chungbuk National University Cheongju Republic of Korea
| | - Hajer Aloui
- Department of Chemical Engineering Chungbuk National University Cheongju Republic of Korea
| | - Jin‐Ho Yun
- Cell Factory Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon Republic of Korea
| | - Hee‐Sik Kim
- Cell Factory Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering Chungbuk National University Cheongju Republic of Korea
| |
Collapse
|
43
|
Roles of Reactive Oxygen Species in Cardiac Differentiation, Reprogramming, and Regenerative Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2102841. [PMID: 32908625 PMCID: PMC7475763 DOI: 10.1155/2020/2102841] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) have been implicated in mechanisms of heart development and regenerative therapies such as the use of pluripotent stem cells. The roles of ROS mediating cell fate are dependent on the intensity of stimuli, cellular context, and metabolic status. ROS mainly act through several targets (such as kinases and transcription factors) and have diverse roles in different stages of cardiac differentiation, proliferation, and maturation. Therefore, further detailed investigation and characterization of redox signaling will help the understanding of the molecular mechanisms of ROS during different cellular processes and enable the design of targeted strategies to foster cardiac regeneration and functional recovery. In this review, we focus on the roles of ROS in cardiac differentiation as well as transdifferentiation (direct reprogramming). The potential mechanisms are discussed in regard to ROS generation pathways and regulation of downstream targets. Further methodological optimization is required for translational research in order to robustly enhance the generation efficiency of cardiac myocytes through metabolic modulations. Additionally, we highlight the deleterious effect of the host's ROS on graft (donor) cells in a paracrine manner during stem cell-based implantation. This knowledge is important for the development of antioxidant strategies to enhance cell survival and engraftment of tissue engineering-based technologies. Thus, proper timing and level of ROS generation after a myocardial injury need to be tailored to ensure the maximal efficacy of regenerative therapies and avoid undesired damage.
Collapse
|
44
|
Naureen B, Haseeb ASMA, Basirun WJ, Muhamad F. Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111228. [PMID: 33254956 DOI: 10.1016/j.msec.2020.111228] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Organ repair, regeneration, and transplantation are constantly in demand due to various acute, chronic, congenital, and infectious diseases. Apart from traditional remedies, tissue engineering (TE) is among the most effective methods for the repair of damaged tissues via merging the cells, growth factors, and scaffolds. With regards to TE scaffold fabrication technology, polyurethane (PU), a high-performance medical grade synthetic polymer and bioactive material has gained significant attention. PU possesses exclusive biocompatibility, biodegradability, and modifiable chemical, mechanical and thermal properties, owing to its unique structure-properties relationship. During the past few decades, PU TE scaffold bioactive properties have been incorporated or enhanced with biodegradable, electroactive, surface-functionalised, ayurvedic products, ceramics, glass, growth factors, metals, and natural polymers, resulting in the formation of modified polyurethanes (MPUs). This review focuses on the recent advances of PU/MPU scaffolds, especially on the biomedical applications in soft and hard tissue engineering and regenerative medicine. The scientific issues with regards to the PU/MPU scaffolds, such as biodegradation, electroactivity, surface functionalisation, and incorporation of active moieties are also highlighted along with some suggestions for future work.
Collapse
Affiliation(s)
- Bushra Naureen
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - A S M A Haseeb
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - W J Basirun
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Nanotechnology and catalyst (NANOCAT), University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Farina Muhamad
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Navas-Gómez K, Valero MF. Why Polyurethanes Have Been Used in the Manufacture and Design of Cardiovascular Devices: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3250. [PMID: 32707852 PMCID: PMC7435973 DOI: 10.3390/ma13153250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 11/23/2022]
Abstract
We conducted a systematic review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to ascertain why polyurethanes (PUs) have been used in the manufacture and design of cardiovascular devices. A complete database search was performed with PubMed, Scopus, and Web of Science as the information sources. The search period ranged from 1 January 2005 to 31 December 2019. We recovered 1552 articles in the first stage. After the duplicate selection and extraction procedures, a total of 21 papers were included in the analysis. We concluded that polyurethanes are being applied in medical devices because they have the capability to tolerate contractile forces that originate during the cardiac cycle without undergoing plastic deformation or failure, and the capability to imitate the behaviors of different tissues. Studies have reported that polyurethanes cause severe problems when applied in blood-contacting devices that are implanted for long periods. However, the chemical compositions and surface characteristics of polyurethanes can be modified to improve their mechanical properties, blood compatibility, and endothelial cell adhesion, and to reduce their protein adhesion. These modifications enable the use of polyurethanes in the manufacture and design of cardiovascular devices.
Collapse
Affiliation(s)
| | - Manuel F. Valero
- Energy, Materials and Environment Group, Faculty of Engineering, Universidad de La Sabana, Chía 140013, Colombia;
| |
Collapse
|
46
|
Amjed N, Bhatti IA, Zia KM, Iqbal J, Jamil Y. Synthesis and characterization of stable and biological active chitin-based polyurethane elastomers. Int J Biol Macromol 2020; 154:1149-1157. [DOI: 10.1016/j.ijbiomac.2019.11.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/17/2019] [Accepted: 11/10/2019] [Indexed: 02/07/2023]
|
47
|
Shokrollahi M, Bahrami SH, Nazarpak MH, Solouk A. Multilayer nanofibrous patch comprising chamomile loaded carboxyethyl chitosan/poly(vinyl alcohol) and polycaprolactone as a potential wound dressing. Int J Biol Macromol 2020; 147:547-559. [DOI: 10.1016/j.ijbiomac.2020.01.067] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 01/11/2023]
|
48
|
Deng J, Saleem M, Jia Q, Ding Y, Liu Y, Chen Y. Synthesis, surface wettability, and thermal property of poly(ε-caprolactone)-based polyurethane bearing triethylene glycol monomethyl as side chain. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Mushtaq I, Mushtaq I, Akhter Z, Murtaza I, Qamar S, Ayub S, Mirza B, Butt TM, Janjua NK, Shah FU, Zaman F. Engineering electroactive and biocompatible tetra(aniline)-based terpolymers with tunable intrinsic antioxidant properties in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110456. [DOI: 10.1016/j.msec.2019.110456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/28/2019] [Accepted: 11/16/2019] [Indexed: 12/27/2022]
|
50
|
Tao ZW, Wu S, Cosgriff-Hernandez EM, Jacot JG. Evaluation of a polyurethane-reinforced hydrogel patch in a rat right ventricle wall replacement model. Acta Biomater 2020; 101:206-218. [PMID: 31654774 PMCID: PMC6960327 DOI: 10.1016/j.actbio.2019.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/30/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
Abstract
Congenital heart defects affect about 1% births in the United States. Many of the defects are treated with surgically implanted patches made from inactive materials or fixed pericardium that do not grow with the patients, leading to an increased risk of arrhythmia, sudden cardiac death, and heart failure. This study investigated an angiogenic poly(ethylene glycol) fibrin-based hydrogel reinforced with an electrospun biodegradable poly(ether ester urethane) urea (BPUR) mesh layer that was designed to encourage cell invasion, angiogenesis, and regenerative remodeling in the repair of an artificial defect created onto the rat right ventricle wall. Electrocardiogram signals were analyzed, heart function was measured, and fibrosis, macrophage infiltration, muscularization, vascularization, and defect size were evaluated at 4- and 8-weeks post-surgery. Compared with rats with fixed pericardium patches, rats with BPUR-reinforced hydrogel patches had fewer arrhythmias and greater right ventricular ejection fraction and cardiac output, as well as greater left ventricular ejection fraction, fractional shorting, stroke work and cardiac output. Histology and immunofluorescence staining showed less fibrosis and less patch material remaining in rats with BPUR-reinforced hydrogel patches at 4- and 8-weeks. Rats with BPUR-reinforced hydrogel patches also had a greater volume of granular tissue, a greater volume of muscularized tissue, more blood vessels, and a greater number of leukocytes, pan-macrophages, and M2 macrophages at 8 weeks. Overall, this study demonstrated that the engineered BPUR-reinforced hydrogel patch initiated greater regenerative vascular and muscular remodeling with a limited fibrotic response, resulting in fewer incidences of arrhythmia and improved heart function compared with fixed pericardium patches when applied to heal the defects created on the rat right ventricle wall. STATEMENT OF SIGNIFICANCE: The study tested a polyurethane-reinforced hydrogel patch in a rat right ventricle wall replacement model. Compared with fixed pericardium patches, these reinforced hydrogel patches initiated greater regenerative vascular and muscular remodeling with a reduced fibrotic response, resulting in fewer incidences of arrhythmia and improved heart function at 4- and 8-weeks post surgery. Overall, the new BPUR-reinforced hydrogel patches resulted in better heart function when replacing contractile myocardium than fixed pericardium patches.
Collapse
Affiliation(s)
- Ze-Wei Tao
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, 12705 E Montview Blvd, Suite 100, Aurora 80045, CO, USA
| | - Siliang Wu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | | | - Jeffrey G Jacot
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, 12705 E Montview Blvd, Suite 100, Aurora 80045, CO, USA; Department of Pediatrics, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|