1
|
Mei YK, Zhu YW, Wei YW, Li SD, Zhou X, Yao YN, Qiu J. Metal-polydopamine coordinated coatings on titanium surface: enhancing corrosion resistance and biological property. RSC Adv 2025; 15:13603-13617. [PMID: 40297004 PMCID: PMC12036513 DOI: 10.1039/d5ra00301f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Previous studies on polydopamine (PDA)-modified titanium implants have primarily focused on single-metal-ion systems (e.g., Ag+, Cu2+, or Zn2+), while overlooking the interplay between corrosion resistance, antioxidant retention, and antimicrobial efficacy under clinically relevant oxidative conditions. Here, we present a comparative analysis of Ag-, Cu-, and Zn-integrated PDA coatings fabricated via a two-step coordination strategy, addressing these limitations through systematic multi-parameter evaluation. Unlike prior studies, this study reveals distinct metal-PDA interaction mechanisms: XPS/EDS analyses confirm Zn2+ and Cu2+ form coordination complexes with PDA's catechol groups, whereas Ag+ undergoes reduction to metallic nanoparticles (Ag0), leading to divergent ion-release profiles (Zn2+ > Cu2+ > Ag+) and biofunctional outcomes. Electrochemical testing under H2O2-simulated oxidative stress demonstrates Zn-PDA coatings exhibit superior corrosion resistance (polarization resistance: 4330 vs. 3900 and 2850 kΩ cm2 for Cu-PDA and Ag-PDA, respectively), while Ag-PDA achieves the highest antibacterial efficacy (>95% reduction against S. aureus and E. coli). Notably, Zn/Cu-PDA coatings retain >80% of PDA's intrinsic antioxidant capacity, in contrast to Ag-PDA, which exhibits significant antioxidant depletion due to redox interference. In vivo rat models further differentiate our approach: all coatings show comparable soft-tissue integration and systemic biosafety, contrasting with earlier reports of Ag-induced cytotoxicity. By elucidating metal-specific performance trade-offs and establishing a design framework to balance corrosion resistance, ROS scavenging, and antimicrobial activity, this work advances clinically adaptable strategies for enhancing peri-implant tissue stability.
Collapse
Affiliation(s)
- Yu-Kun Mei
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Ya-Wen Zhu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Yu-Wen Wei
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Shu-di Li
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Xuan Zhou
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Ya-Nan Yao
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine Nanjing China
| |
Collapse
|
2
|
Kandaswamy E, Harsha M, Joshi VM. Titanium corrosion products from dental implants and their effect on cells and cytokine release: A review. J Trace Elem Med Biol 2024; 84:127464. [PMID: 38703537 DOI: 10.1016/j.jtemb.2024.127464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Titanium is considered to be an inert material owing to the ability of the material to form a passive titanium oxide layer. However, once the titanium oxide layer is lost, it can lead to exposure of the underlying titanium substructure and can undergo corrosion. SUMMARY The article explores the role of titanium ions and particles from dental implants on cells, cytokine release, and on the systemic redistribution of these particles as well as theories proposed to elucidate the effects of these particles on peri-implant inflammation based on evidence from in-vitro, human, and animal studies. Titanium particles and ions have a pro-inflammatory and cytotoxic effect on cells and promote the release of pro-inflammatory mediators like cytokines. Three theories to explain etiopathogenesis have been proposed, one based on microbial dysbiosis, the second based on titanium particles and ions and the third based on a synergistic effect between microbiome and titanium particles on the host. CONCLUSION There is clear evidence from in-vitro and limited human and animal studies that titanium particles released from dental implants have a detrimental effect on cells directly and through the release of pro-inflammatory cytokines. Future clinical and translational studies are required to clarify the role of titanium particles and ions in peri-implant inflammation and the etiopathogenesis of peri-implantitis.
Collapse
Affiliation(s)
- Eswar Kandaswamy
- Department of Periodontics, LSUHSC, School of Dentistry, 100 Florida Avenue, New Orleans, LA 70119, USA
| | - M Harsha
- Department of Oral Pathology & Microbiology, Yogita Dental College & Hospital, Naringi Riverside, At Post Tal Dist. SH104, Khed, Maharashtra 415709, India
| | - Vinayak M Joshi
- Department of Periodontics, LSUHSC, School of Dentistry, 100 Florida Avenue, New Orleans, LA 70119, USA.
| |
Collapse
|
3
|
Guarnieri R, Reda R, Di Nardo D, Miccoli G, Pagnoni F, Zanza A, Testarelli L. Expression of IL-1β, IL-6, TNF-α, and a-MMP-8 in sites with healthy conditions and with periodontal and peri-implant diseases: A case-control study. J Dent Res Dent Clin Dent Prospects 2024; 18:135-142. [PMID: 39071212 PMCID: PMC11282203 DOI: 10.34172/joddd.40958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/04/2024] [Indexed: 07/30/2024] Open
Abstract
Background This study evaluated the gingival crevicular fluid (GCF) and Peri- implant crevicular fluid (PICF) concentrations of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and active metalloproteinase-8 (a-MMP-8) in sites with healthy conditions vs. sites affected by periodontitis (PER) and peri-implantitis (PIM). Methods Periodontally healthy (PH) sites with PER, sites with peri-implant health (PIH), and sites with PIM were investigated intra-individually, according to the inclusion criteria of each group. Probing pocket depth (PPD), plaque index, gingival index, and the presence or absence of bleeding on probing (BoP) were evaluated. In GCF and PICF samples, IL-1β, IL-6, and TNF-α were quantified by ELISA Duoset® kit in combination with Ultramark® micro-ELISA digital reader; a-MMP8 concentration was analyzed by a chairside test (Perio/ImplantSafe®) in combination with a digital reader (ORALyzer®). Results The concentrations of IL-6 and IL-1β, TNF-α, and a-MMP-8 were significantly higher in the PIM and PER sites compared to healthy sites (P<0.05). Significantly higher concentrations of IL-1β and a-MMP-8 were found in PIM vs. PER sites (P<0.05), while the concentrations of IL-6 and TNF-α did not differ between the PIM and PER groups (P>0.05). Conclusion aMMP-8, IL-6, IL-1β, and TNF-α presented higher GCF/PICF concentrations in diseased periodontal and peri-implant sites. However, only the concentrations of IL-1β and a-MMP-8 were significantly higher in PIM than in PER sites.
Collapse
Affiliation(s)
- Renzo Guarnieri
- Private Practice, Treviso, Italy
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Rodolfo Reda
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
- Department of Prosthodontics and Implantology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Dario Di Nardo
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
- Operative Research Unit of Dentistry, Policlinico Universitario Campus Bio-Medico Foundation, Via Alvaro del Portillo, Roma, Italy
| | - Gabriele Miccoli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Pagnoni
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessio Zanza
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Luca Testarelli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Insua A, Galindo-Moreno P, Miron RJ, Wang HL, Monje A. Emerging factors affecting peri-implant bone metabolism. Periodontol 2000 2024; 94:27-78. [PMID: 37904311 DOI: 10.1111/prd.12532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/05/2023] [Accepted: 09/10/2023] [Indexed: 11/01/2023]
Abstract
Implant dentistry has evolved to the point that standard implant osseointegration is predictable. This is attributed in part to the advancements in material sciences that have led toward improvements in implant surface technology and characteristics. Nonetheless, there remain several cases where implant therapy fails (specifically at early time points), most commonly attributed to factors affecting bone metabolism. Among these patients, smokers are known to have impaired bone metabolism and thus be subject to higher risks of early implant failure and/or late complications related to the stability of the peri-implant bone and mucosal tissues. Notably, however, emerging data have unveiled other critical factors affecting osseointegration, namely, those related to the metabolism of bone tissues. The aim of this review is to shed light on the effects of implant-related factors, like implant surface or titanium particle release; surgical-related factors, like osseodensification or implanted biomaterials; various drugs, like selective serotonin reuptake inhibitors, proton pump inhibitors, anti-hypertensives, nonsteroidal anti-inflammatory medication, and statins, and host-related factors, like smoking, diet, and metabolic syndrome on bone metabolism, and aseptic peri-implant bone loss. Despite the infectious nature of peri-implant biological complications, these factors must be surveyed for the effective prevention and management of peri-implantitis.
Collapse
Affiliation(s)
- Angel Insua
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Pablo Galindo-Moreno
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Oral Surgery and Implant Dentistry, University of Granada, Granada, Spain
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Hom-Lay Wang
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alberto Monje
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Periodontology, University of Bern, Bern, Switzerland
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
5
|
Alhamad M, Barão VA, Sukotjo C, Mathew MT. The effect of three dental cement types on the corrosion of dental implant surfaces. Heliyon 2024; 10:e23626. [PMID: 38192807 PMCID: PMC10772628 DOI: 10.1016/j.heliyon.2023.e23626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
Statement of problem One of the main challenges facing dental implant success is peri-implantitis. Recent evidence indicates that titanium (Ti) corrosion products and undetected-residual cement are potential risk factors for peri-implantitis. The literature on the impact of various types of dental cement on Ti corrosion is very limited. Purpose This study aimed to determine the influence of dental cement on Ti corrosion as a function of cement amount and type. Materials and methods Thirty commercially pure Ti grade 4 discs (19 × 7mm) were polished to mirror-shine (Ra ≈ 40 nm). Samples were divided into 10 groups (n = 3) as a cement type and amount function. The groups were no-cement as control, TempBond NE (TB3mm, TB5mm, and TB8mm), FujiCEM-II (FC3mm, FC5mm, and FC8mm), and Panavia-F-2.0 (PC3mm, PC5mm, and PC8mm). Tafel's method estimated corrosion rate (icorr) and corresponding potential (Ecorr) from potentiodynamic curves. Electrochemical Impedance Spectroscopy (EIS) data was utilized to obtain Nyquist and Bode plots. An equivalent electrical circuit estimated polarization resistance (Rp) and double-layer capacitance (Cdl). Inductively coupled plasma mass spectrometry (ICP-MS) analysis was conducted to analyze the electrolyte solution after corrosion. pH measurements of the electrolyte were recorded before and after corrosion tests. Finally, the corroded surface was characterized by a 3D white-light microscope and scanning electron microscope. Statistical analysis was conducted using either one-way ANOVA followed by Tukey's Post Hoc test or Kruskal-Wallis followed by Dunn's test based on data distribution. Results Based on cement amount, FC and PC significantly increased icorr in higher amounts (FC8mm-icorr = 8.22 × 10-8A/cm2, PC8mm-icorr = 5.61 × 10-8A/cm2) compared to control (3.35 × 10-8A/cm2). In contrast, TB3mm decreased icorr significantly compared to the control. As a function of cement type, FC increased icorr the most. EIS data agrees with these observations. Finally, corroded surfaces had higher surface roughness (Ra) compared to non-corroded surfaces. Conclusion The study indicated that cement types FC and PC led to increased Ti-corrosion as a function of a higher amount. Hence, the implant stability could be impacted by the selection, excessive cement, and a potentially increased risk of peri-implantitis.
Collapse
Affiliation(s)
- Mostafa Alhamad
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Valentim A.R. Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Cortino Sukotjo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Mathew T. Mathew
- Department of Restorative Dentistry, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Wang S, Zhao X, Hsu Y, He Y, Wang F, Yang F, Yan F, Xia D, Liu Y. Surface modification of titanium implants with Mg-containing coatings to promote osseointegration. Acta Biomater 2023; 169:19-44. [PMID: 37517617 DOI: 10.1016/j.actbio.2023.07.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Titanium (Ti) and Ti alloys are commonly used in dental implants, which have good biocompatibility, mechanical strength, processability, and corrosion resistance. However, the surface inertia of Ti implants leads to delayed integration of Ti and new bone, as well as problems such as aseptic loosening and inadequate osseointegration. Magnesium (Mg) ions can promote bone regeneration, and many studies have used Mg-containing materials to modify the Ti implant surface. This systematic review summarizes the methods, effects, and clinical applications of surface modification of Ti implants with Mg-containing coatings. Database collection was completed on Janury 1, 2023, and a total of 29 relevant studies were ultimately included. Mg can be compounded with different materials and coated to the surface of Ti implants using different methods. In vitro and in vivo experiments have shown that Mg-containing coatings promote cell adhesion and osteogenic differentiation. On the one hand, the surface roughness of implants increases with the addition of Mg-containing coatings, which is thought to have an impact on the osseointegration of the implant. On the other hand, Mg ions promote cell attachment through binding interactions between the integrin family and FAK-related signaling pathways. And Mg ions could induce osseointegration by activating PI3K, Notch, ERK/c-Fos, BMP-4-related signaling pathways and TRPM7 protein channels. Overall, Mg-based coatings show great potential for the surface modification of Ti implants to promote osseointegration. STATEMENT OF SIGNIFICANCE: The inertia surface of titanium (Ti) implants leads to delayed osseointegration. Magnesium (Mg) ions, known for promoting bone regeneration, have been extensively studied to modify the surface of Ti implants. However, no consensus has been reached on the appropriate processing methods, surface roughness and effective concentration of Mg-containing coatings for osseointegration. This systematic review focus on the surface modification of Ti implants with Mg-containing compounds, highlighting the effects of Mg-containing coatings on the surface properties of Ti implants and its associated mechanisms. Besides, we also provide an outlook on future directions to promote the clinical application of Mg-modified implants.
Collapse
Affiliation(s)
- Siyi Wang
- Department of Prosthodontics, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, China
| | - Xiao Zhao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Center of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing 100081, China
| | - Yuchien Hsu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Center of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing 100081, China
| | - Yunjiao He
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Center of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing 100081, China
| | - Feilong Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Center of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing 100081, China
| | - Fan Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Center of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing 100081, China
| | - Fanyu Yan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Center of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing 100081, China
| | - Dandan Xia
- National Center of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing 100081, China; Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; National Center of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing 100081, China.
| |
Collapse
|
7
|
Mathew MT, Cheng KY, Sun Y, Barao VAR. The Progress in Tribocorrosion Research (2010-21): Focused on the Orthopedics and Dental Implants. JOURNAL OF BIO- AND TRIBO-CORROSION 2023; 9:48. [PMID: 38525435 PMCID: PMC10959289 DOI: 10.1007/s40735-023-00767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 03/26/2024]
Abstract
Tribocorrosion is an integration of two areas-tribology and corrosion. It can be defined as the material degradation caused by the combined effect of corrosion and tribological process at the material interfaces. Significant development has occurred in the field of tribocorrosion over the past years. This development is due to its applications in various fields, such as aerospace, marine, biomedical, and space. Focusing on biomedical applications, tribocorrosion finds its applications in the implants used in cardiovascular, spine, orthopedics, trauma, and dental areas. It was reported that around 7.2 million Americans are living with joint implants. Implant surgery is a traumatic and expensive procedure. Tribocorrosion can affect the lifespan of the implants, thus leading to implant failure and a potential cause of revision surgery. Hence, it is essential to understand how tribocorrosion works, its interaction with the implants, and what procedures can be implemented to protect materials from tribocorrosion. This paper discusses how tribocorrosion research has evolved over the past 11 years (2010-2021). This is a comprehensive overview of tribocorrosion research in biomedical applications.
Collapse
Affiliation(s)
- Mathew T. Mathew
- Department of Biomedical Science, UIC College of Medicine, Rockford, IL 61107, USA
- Department of Biomedical Engineering, UIC, Chicago, IL 60612, USA
- Department of Restorative Dentistry, College of Dentistry, UIC, Chicago, IL 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kai-yuan Cheng
- Department of Biomedical Science, UIC College of Medicine, Rockford, IL 61107, USA
| | - Yani Sun
- Department of Biomedical Science, UIC College of Medicine, Rockford, IL 61107, USA
| | - Valentim A. R. Barao
- Departament of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo 13414-903, Brazil
| |
Collapse
|
8
|
Babadjanov F, Specht U, Lukasczyk T, Mayer B. Heat Accumulation-Induced Surface Structures at High Degrees of Laser Pulse Overlap on Ti6Al4V Surfaces by Femtosecond Laser Texturing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2498. [PMID: 36984383 PMCID: PMC10059092 DOI: 10.3390/ma16062498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
In this work, femtosecond laser pulses at high repetition rates were used to fabricate unique microstructures on the surface of Ti6Al4V. We investigated the influence of pulse overlap and laser repetition rates on structure formation. Laser texturing with a high degree of overlap resulted in melting of the material, leading to the formation of specific microstructures that can be used as cavities for drug delivery. The reason for melt formation is attributed to local heat accumulation at high repetition rates. Such structures can be fabricated on materials with low thermal conductivity, which prevent heat dissipation into the bulk of the material. The heat accumulation effect has also been demonstrated on steel, which also has low thermal conductivity.
Collapse
Affiliation(s)
- Farkhod Babadjanov
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Str. 12, 28359 Bremen, Germany
| | - Uwe Specht
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Str. 12, 28359 Bremen, Germany
| | - Thomas Lukasczyk
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Str. 12, 28359 Bremen, Germany
| | - Bernd Mayer
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Str. 12, 28359 Bremen, Germany
- Faculty of Production Engineering, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
9
|
Enhanced Corrosion Resistance and Local Therapy from Nano-Engineered Titanium Dental Implants. Pharmaceutics 2023; 15:pharmaceutics15020315. [PMID: 36839638 PMCID: PMC9963924 DOI: 10.3390/pharmaceutics15020315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Titanium is the ideal material for fabricating dental implants with favorable biocompatibility and biomechanics. However, the chemical corrosions arising from interaction with the surrounding tissues and fluids in oral cavity can challenge the integrity of Ti implants and leach Ti ions/nanoparticles, thereby causing cytotoxicity. Various nanoscale surface modifications have been performed to augment the chemical and electrochemical stability of Ti-based dental implants, and this review discusses and details these advances. For instance, depositing nanowires/nanoparticles via alkali-heat treatment and plasma spraying results in the fabrication of a nanostructured layer to reduce chemical corrosion. Further, refining the grain size to nanoscale could enhance Ti implants' mechanical and chemical stability by alleviating the internal strain and establishing a uniform TiO2 layer. More recently, electrochemical anodization (EA) has emerged as a promising method to fabricate controlled TiO2 nanostructures on Ti dental implants. These anodized implants enhance Ti implants' corrosion resistance and bioactivity. A particular focus of this review is to highlight critical advances in anodized Ti implants with nanotubes/nanopores for local drug delivery of potent therapeutics to augment osseo- and soft-tissue integration. This review aims to improve the understanding of novel nano-engineered Ti dental implant modifications, focusing on anodized nanostructures to fabricate the next generation of therapeutic and corrosion-resistant dental implants. The review explores the latest developments, clinical translation challenges, and future directions to assist in developing the next generation of dental implants that will survive long-term in the complex corrosive oral microenvironment.
Collapse
|
10
|
Osseointegration Properties of Titanium Implants Treated by Nonthermal Atmospheric-Pressure Nitrogen Plasma. Int J Mol Sci 2022; 23:ijms232315420. [PMID: 36499747 PMCID: PMC9740438 DOI: 10.3390/ijms232315420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Pure titanium is used in dental implants owing to its excellent biocompatibility and physical properties. However, the aging of the material during storage is detrimental to the long-term stability of the implant after implantation. Therefore, in this study, we attempted to improve the surface properties and circumvent the negative effects of material aging on titanium implants by using a portable handheld nonthermal plasma device capable of piezoelectric direct discharge to treat pure titanium discs with nitrogen gas. We evaluated the osteogenic properties of the treated samples by surface morphology and elemental analyses, as well as in vitro and in vivo experiments. The results showed that nonthermal atmospheric-pressure nitrogen plasma can improve the hydrophilicity of pure titanium without damaging its surface morphology while introducing nitrogen-containing functional groups, thereby promoting cell attachment, proliferation, and osseointegration to some extent. Therefore, nitrogen plasma treatment may be a promising method for the rapid surface treatment of titanium implants.
Collapse
|
11
|
Sotniczuk A, Jastrzębska A, Chlanda A, Kwiatek A, Garbacz H. How Streptococcus mutans Affects the Surface Topography and Electrochemical Behavior of Nanostructured Bulk Ti. Biomolecules 2022; 12:biom12101515. [PMID: 36291724 PMCID: PMC9599476 DOI: 10.3390/biom12101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 11/19/2022] Open
Abstract
The metabolization of carbohydrates by Streptococcus mutans leads to the formation of lactic acid in the oral cavity, which can consequently accelerate the degradation of dental implants fabricated from commercially available microcrystalline Ti. Microstructure influences surface topography and hence interaction between bacteria cells and Ti surfaces. This work offers the first description of the effect of S. mutans on the surface topography and properties of nanostructured bulk Ti, which is a promising candidate for modern narrow dental implants owing to its superior mechanical strength. It was found that S. mutans incubation resulted in the slight, unexpected decrease of surface nanoroughness, which was previously developed owing to privileged oxidation in areas of closely spaced boundaries. However, despite the changes in nanoscale surface topography, bacteria incubation did not reduce the high level of protection afforded by the oxide layer formed on the nanostructured Ti surface. The results highlight the need–hitherto ignored–to consider Ti microstructure when analyzing its behavior in the presence of carbohydrate-metabolizing bacteria.
Collapse
Affiliation(s)
- Agata Sotniczuk
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
- Correspondence:
| | - Agnieszka Jastrzębska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
| | - Adrian Chlanda
- Łukasiewicz Research Network—Institute of Microelectronics and Photonics, 01-919 Warsaw, Poland
| | - Agnieszka Kwiatek
- Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Halina Garbacz
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
| |
Collapse
|
12
|
Hasan J, Bright R, Hayles A, Palms D, Zilm P, Barker D, Vasilev K. Preventing Peri-implantitis: The Quest for a Next Generation of Titanium Dental Implants. ACS Biomater Sci Eng 2022; 8:4697-4737. [PMID: 36240391 DOI: 10.1021/acsbiomaterials.2c00540] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Titanium and its alloys are frequently the biomaterial of choice for dental implant applications. Although titanium dental implants have been utilized for decades, there are yet unresolved issues pertaining to implant failure. Dental implant failure can arise either through wear and fatigue of the implant itself or peri-implant disease and subsequent host inflammation. In the present report, we provide a comprehensive review of titanium and its alloys in the context of dental implant material, and how surface properties influence the rate of bacterial colonization and peri-implant disease. Details are provided on the various periodontal pathogens implicated in peri-implantitis, their adhesive behavior, and how this relationship is governed by the implant surface properties. Issues of osteointegration and immunomodulation are also discussed in relation to titanium dental implants. Some impediments in the commercial translation for a novel titanium-based dental implant from "bench to bedside" are discussed. Numerous in vitro studies on novel materials, processing techniques, and methodologies performed on dental implants have been highlighted. The present report review that comprehensively compares the in vitro, in vivo, and clinical studies of titanium and its alloys for dental implants.
Collapse
Affiliation(s)
- Jafar Hasan
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Richard Bright
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Andrew Hayles
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Dennis Palms
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Peter Zilm
- Adelaide Dental School, University of Adelaide, Adelaide, 5005, South Australia, Australia
| | - Dan Barker
- ANISOP Holdings, Pty. Ltd., 101 Collins St, Melbourne VIC, 3000 Australia
| | - Krasimir Vasilev
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| |
Collapse
|
13
|
Kyaw TT, Abdou A, Nakata H, Pimkhaokham A. Efficacy of combined chemical and electrochemical decontamination treatments on contaminated healing abutments and their effect on surface topography: An in vitro study. Clin Implant Dent Relat Res 2022; 24:696-708. [PMID: 35852825 DOI: 10.1111/cid.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To evaluate the efficacy of four decontamination protocols on contaminated healing abutments (HAs) and their effects on surface topography. METHODS Eighty contaminated single-use HA samples collected from human participants were stained with phloxine B and examined microscopically. The retrieved HAs were randomly divided into four test groups: (1) Autoclaving only (AU), (2) 5.25% sodium hypochlorite (NaOCl) + AU, (3) Electrochemical treatment (EC) + AU, (4) NaOCl + EC + AU, and positive control (contaminated without any treatment). Four new unused HAs served as negative controls (NC). The surface features were analyzed using stereo microscopy (SM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and optical profilometry. RESULTS The lowest decontamination efficacy was observed for the AU group. The NaOCl + AU and EC + AU groups effectively removed residual contamination, whereas EC + AU showed better decontamination results than NaOCl + AU. SM, SEM, and EDS analyses revealed the best decontamination efficacy in the combined NaOCl + EC + AU group compared to the other groups. Surface roughness (Sa), developed surface area ratio (Sdr), and texture-aspect ratio (Str) in AU, NaOCl + AU, EC + AU, and NaOCl + EC + AU groups were not statistically significant compared to the NC group. CONCLUSIONS The combination of NaOCl with subsequent EC can remove soft and hard deposits from the surface of HAs compared to NaOCl alone and EC alone, without altering the surface topography of HAs.
Collapse
Affiliation(s)
- Thiha Tin Kyaw
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Ahmed Abdou
- Prosthodontic Dentistry Department, Division of Biomaterials, Faculty of Dentistry, King Salman International University, South Sinai, Egypt
| | - Hidemi Nakata
- Department of Regenerative & Reconstructive Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atiphan Pimkhaokham
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
Ivanovski S, Bartold PM, Huang Y. The role of foreign body response in peri-implantitis: What is the evidence? Periodontol 2000 2022; 90:176-185. [PMID: 35916872 PMCID: PMC9804527 DOI: 10.1111/prd.12456] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Historically, there has been broad consensus that osseointegration represents a homeostasis between a titanium dental implant and the surrounding bone, and that the crestal bone loss characteristic of peri-implantitis is a plaque-induced inflammatory process. However, this notion has been challenged over the past decade by proponents of a theory that considers osseointegration an inflammatory process characterized by a foreign body reaction and peri-implant bone loss as an exacerbation of this inflammatory response. A key difference in these two schools of thought is the perception of the relative importance of dental plaque in the pathogenesis of crestal bone loss around implants, with obvious implications for treatment. This review investigates the evidence for a persistent foreign body reaction at osseointegrated dental implants and its possible role in crestal bone loss characteristic of peri-implantitis. Further, the role of implant-related material release within the surrounding tissue, particularly titanium particles and corrosion by-products, in the establishment and progression in peri-implantitis is explored. While it is acknowledged that these issues require further investigation, the available evidence suggests that osseointegration is a state of homeostasis between the titanium implant and surrounding tissues, with little evidence that a persistent foreign body reaction is responsible for peri-implant bone loss after osseointegration is established. Further, there is a lack of evidence for a unidirectional causative role of corrosion by-products and titanium particles as possible non-plaque related factors in the etiology of peri-implantitis.
Collapse
Affiliation(s)
- Sašo Ivanovski
- School of DentistryThe University of QueenslandHerstonQueenslandAustralia
| | - Peter Mark Bartold
- School of DentistryUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Yu‐Sheng Huang
- School of DentistryThe University of QueenslandHerstonQueenslandAustralia
| |
Collapse
|
15
|
Nemec M, Behm C, Maierhofer V, Gau J, Kolba A, Jonke E, Rausch-Fan X, Andrukhov O. Effect of Titanium and Zirconia Nanoparticles on Human Gingival Mesenchymal Stromal Cells. Int J Mol Sci 2022; 23:10022. [PMID: 36077419 PMCID: PMC9456558 DOI: 10.3390/ijms231710022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Nano- and microparticles are currently being discussed as potential risk factors for peri-implant disease. In the present study, we compared the responses of human gingival mesenchymal stromal cells (hG-MSCs) on titanium and zirconia nanoparticles (<100 nm) in the absence and presence of Porphyromonas gingivalis lipopolysaccharide (LPS). The primary hG-MSCs were treated with titanium and zirconia nanoparticles in concentrations up to 2.000 µg/mL for 24 h, 72 h, and 168 h. Additionally, the cells were treated with different nanoparticles (25−100 µg/mL) in the presence of P. gingivalis LPS for 24 h. The cell proliferation and viability assay and live−dead and focal adhesion stainings were performed, and the expression levels of interleukin (IL)-6, IL-8, and monocyte chemoattractant protein (MCP)-1 were measured. The cell proliferation and viability were inhibited by the titanium (>1000 µg/mL) but not the zirconia nanoparticles, which was accompanied by enhanced apoptosis. Both types of nanoparticles (>25 µg/mL) induced the significant expression of IL-8 in gingival MSCs, and a slightly higher effect was observed for titanium nanoparticles. Both nanoparticles substantially enhanced the P. gingivalis LPS-induced IL-8 production; a higher effect was observed for zirconia nanoparticles. The production of inflammatory mediators by hG-MSCs is affected by the nanoparticles. This effect depends on the nanoparticle material and the presence of inflammatory stimuli.
Collapse
Affiliation(s)
- Michael Nemec
- Clinical Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Vera Maierhofer
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Jonas Gau
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Anastasiya Kolba
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Erwin Jonke
- Clinical Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Xiaohui Rausch-Fan
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
16
|
Electrogalvanism in Oral Implantology: A Systematic Review. Int J Dent 2022; 2022:4575416. [PMID: 36034476 PMCID: PMC9410998 DOI: 10.1155/2022/4575416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose The objective of this work is to study galvanic corrosion of different couples of prosthetic and implant alloys through the realization of a systematic review. Materials and Methods An electronic search was performed on Pubmed, Google Scholar, Scopus, ScienceDirect, EbscoHost, and Web of Science for published studies related to electrogalvanism in oral implantology. The keywords used were “dental implants” and “galvanic corrosion.” Two independent readers read the scientific articles. Results From 65 articles initially identified, only 19 articles met the eligibility criteria. The evaluation of the selected articles allowed us to determine the parameters compared, such as the resistance to galvanic corrosion, the influence of fluorine and pH on the electrochemical behavior, and the release of metal ions and their cytotoxicity. Indeed, Ti6Al4V and precious alloys coupled to titanium were found to be the most resistant to galvanic corrosion, followed by cobalt-chromium alloys and nickel-chromium alloys which were least resistant. This resistance decreases with increasing fluorine concentration and with decreasing pH of the environment. Discussion. The implant-prosthetic system's galvanic resistance is influenced by many intrinsic factors: alloy composition and surface condition, as well as extrinsic factors such as pH variations and amount of fluorine. The effects of oral electrogalvanism are essentially the result of two main criteria: effects due to electric currents generated by corrosion and effects due to the release of metal ions by corrosion. Conclusion To avoid this phenomenon, it is wise to follow the proposed recommendations such as the use of the minimum of distinct metals as much as possible, favoring the commercially pure titanium implant of Ti6Al4V, opting for the choice of couples, titanium/titanium, favoring daily mouthwashes of 227 ppm of fluoride, and avoiding fluorinated acid solutions.
Collapse
|
17
|
Corrosion, ion release, and surface hardness of Ti-6Al-4V and cobalt-chromium alloys produced by CAD-CAM milling and laser sintering. J Prosthet Dent 2022; 128:529.e1-529.e10. [DOI: 10.1016/j.prosdent.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022]
|
18
|
Jornet-García A, Sanchez-Perez A, Montoya-Carralero JM, Moya-Villaescusa MJ. Electrical Potentiometry with Intraoral Applications. MATERIALS 2022; 15:ma15155100. [PMID: 35897533 PMCID: PMC9331720 DOI: 10.3390/ma15155100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/09/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023]
Abstract
Dental implants currently in use are mainly made of titanium or titanium alloys. As these metallic elements are immersed in an electrolytic medium, galvanic currents are produced between them or with other metals present in the mouth. These bimetallic currents have three potentially harmful effects on the patient: micro-discharges, corrosion, and finally, the dispersion of metal ions or their oxides, all of which have been extensively demonstrated in vitro. In this original work, a system for measuring the potentials generated in vivo is developed. Specifically, it is an electrogalvanic measurements system coupled with a periodontal probe that allows measurement of the potentials in the peri-implant sulcus. This device was tested and verified in vitro to guarantee its applicability in vivo. As a conclusion, this system is able to detect galvanic currents in vitro and it can be considered capable of being employed in vivo, so to assess the effects they may cause on dental implants.
Collapse
|
19
|
Pagar RR, Musale SR, Pawar G, Kulkarni D, Giram PS. Comprehensive Review on the Degradation Chemistry and Toxicity Studies of Functional Materials. ACS Biomater Sci Eng 2022; 8:2161-2195. [PMID: 35522605 DOI: 10.1021/acsbiomaterials.1c01304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent decades there has been growing interest of material chemists in the successful development of functional materials for drug delivery, tissue engineering, imaging, diagnosis, theranostic, and other biomedical applications with advanced nanotechnology tools. The efficacy and safety of functional materials are determined by their pharmacological, toxicological, and immunogenic effects. It is essential to consider all degradation pathways of functional materials and to assess plausible intermediates and final products for quality control. This review provides a brief insight into chemical degradation mechanisms of functional materials like oxidation, photodegradation, and physical and enzymatic degradation. The intermediates and products of degradation were confirmed with analytical methods such as proton nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC), UV-vis spectroscopy (UV-vis), infrared spectroscopy (IR), differential scanning calorimetry (DSC), mass spectroscopy, and other sophisticated analytical methods. These analytical methods are also used for regulatory, quality control, and stability purposes in industry. The assessment of degradation is important to predetermine the behavior of functional materials in specific storage conditions and can be relevant to their behavior during in vivo applications. Another important aspect is the evaluation of the toxicity of functional materials. Toxicity can be accessed with various methods using in vitro, in vivo, ex vivo, and in silico models. In vitro cell culture methods are used to determine mitochondrial damage, reactive oxygen species, stress responses, and cellular toxicity. In vitro cellular toxicity can be measured by MTT assay, LDH leakage assay, and hemolysis. In vivo studies are performed using various animal models involving zebrafish, rodents (mice and rats), and nonhuman primates. Ex vivo studies are also used for efficacy and toxicity determinations of functional materials like ex vivo potency assay and precision-cut liver slice (PCLS) models. The in silico tools with computational simulations like quantitative structure-activity relationships (QSAR), pharmacokinetics (PK) and pharmacodynamics (PD), dose and time response, and quantitative cationic-activity relationships ((Q)CARs) are used for prediction of the toxicity of functional materials. In this review, we studied the principle methods used for degradation studies, different degradation pathways, and mechanisms of functional material degradation with prototype examples. We discuss toxicity assessments with different toxicity approaches used for estimation of the safety and efficacy of functional materials.
Collapse
Affiliation(s)
- Roshani R Pagar
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Shubham R Musale
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Ganesh Pawar
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Deepak Kulkarni
- Srinath College of Pharmacy, Bajajnagar, Aurangabad, Maharashtra 431136, India
| | - Prabhanjan S Giram
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India.,Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
20
|
Safavi MS, Walsh FC, Visai L, Khalil-Allafi J. Progress in Niobium Oxide-Containing Coatings for Biomedical Applications: A Critical Review. ACS OMEGA 2022; 7:9088-9107. [PMID: 35356687 PMCID: PMC8944537 DOI: 10.1021/acsomega.2c00440] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 05/11/2023]
Abstract
Typically, pure niobium oxide coatings are deposited on metallic substrates, such as commercially pure Ti, Ti6Al4 V alloys, stainless steels, niobium, TiNb alloy, and Mg alloys using techniques such as sputter deposition, sol-gel deposition, anodizing, and wet plasma electrolytic oxidation. The relative advantages and limitations of these coating techniques are considered, with particular emphasis on biomedical applications. The properties of a wide range of pure and modified niobium oxide coatings are illustrated, including their thickness, morphology, microstructure, elemental composition, phase composition, surface roughness and hardness. The corrosion resistance, tribological characteristics and cell viability/proliferation of the coatings are illustrated using data from electrochemical, wear resistance and biological cell culture measurements. Critical R&D needs for the development of improved future niobium oxide coatings, in the laboratory and in practice, are highlighted.
Collapse
Affiliation(s)
- Mir Saman Safavi
- Research
Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 513351996 Tabriz, Iran
- Molecular
Medicine Department (DMM), Center for Health Technologies (CHT), UdR
INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy
| | - F. C. Walsh
- Electrochemical
Engineering Laboratory & National Centre for Advanced Tribology,
Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Livia Visai
- Molecular
Medicine Department (DMM), Center for Health Technologies (CHT), UdR
INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy
- Medicina
Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| | - Jafar Khalil-Allafi
- Research
Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 513351996 Tabriz, Iran
| |
Collapse
|
21
|
Whangdee P, Saenrang W, Pongkao Kashima D. Effect of fluoride and hydroxyl group on bioactivity of the anodized films prepared by two‐step anodization at low current density. SURF INTERFACE ANAL 2022. [DOI: 10.1002/sia.7085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Phanawan Whangdee
- Department of Applied Physics, Faculty of Sciences and Liberal Arts Rajamangala University of Technology Isan Nakhon Ratchasima Thailand
- Advanced Materials and Renewable Energy Research Unit, Faculty of Sciences and Liberal Arts Rajamangala University of Technology Isan Nakhon Ratchasima Thailand
| | - Wittawat Saenrang
- Research Network NANOTEC ‐ SUT on Advanced Nanomaterials and Characterization, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand and School of Physics, Institute of Science, Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Dujreutai Pongkao Kashima
- Research Unit of Advanced Ceramics, Department of Materials Science, Faculty of Science Chulalongkorn University Bangkok Thailand
- Center of Excellence on Petrochemical and Materials Technology Chulalongkorn University Bangkok Thailand
| |
Collapse
|
22
|
Insight Into Corrosion of Dental Implants: From Biochemical Mechanisms to Designing Corrosion-Resistant Materials. CURRENT ORAL HEALTH REPORTS 2022; 9:7-21. [PMID: 35127334 PMCID: PMC8799988 DOI: 10.1007/s40496-022-00306-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Purpose of Review Despite advanced technologies to avoid corrosion of dental implants, the mechanisms toward the release of metals and their role in the onset of peri-implant diseases are still under-investigated. Effective knowledge on the etiopathogenesis of corrosive products and preventive strategies mitigating the risks for surface degradation are thus in dire need. This review aimed to summarize evidence toward biocorrosion in the oral environment and discuss the current strategies targeting the improvement of dental implants and focusing on the methodological and electrochemical aspects of surface treatments and titanium-based alloys. Recent Findings Recent studies suggest the existence of wear/corrosion products may correlate with peri-implantitis progress by triggering microbial dysbiosis, the release of pro-inflammatory cytokines, and animal bone resorption. Furthermore, current clinical evidence demonstrating the presence of metal-like particles in diseased tissues supports their possible role as a risk factor for peri-implantitis. For instance, to overcome the drawback of titanium corrosion, researchers are primarily focusing on developing corrosion-resistant alloys and coatings for dental implants by changing their physicochemical features. Summary The current state-of-art discussed in this review found corrosion products effective in affecting biofilm virulence and inflammatory factors in vitro. Controversial and unstandardized data are limitations, making the premise of corrosion products being essential for peri-implantitis onset. On the other hand, when it comes to the strategies toward reducing implant corrosion rate, it is evident that the chemical and physical properties are crucial for the in vitro electrochemical behavior of the implant material. For instance, it is foreseeable that the formation of films/coatings and the incorporation of some functional compounds into the substrate may enhance the material’s corrosion resistance and biological response. Nevertheless, the utmost challenge of research in this field is to achieve adequate stimulation of the biological tissues without weakening its protective behavior against corrosion. In addition, the translatability from in vitro findings to clinical studies is still in its infancy. Therefore, further accumulation of high-level evidence on the role of corrosion products on peri-implant tissues is expected to confirm the findings of the present review besides the development of better methods to improve the corrosion resistance of dental implants. Furthermore, such knowledge could further develop safe and long-term implant rehabilitation therapy.
Collapse
|
23
|
Kheder W, Al Kawas S, Khalaf K, Samsudin A. Impact of tribocorrosion and titanium particles release on dental implant complications - A narrative review. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:182-189. [PMID: 34630776 PMCID: PMC8488597 DOI: 10.1016/j.jdsr.2021.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023] Open
Abstract
Titanium particles as a product of degradation have been detected in periimplant oral tissues and it has been assumed that implants were the source of these particles. Periimplantitis sites had higher concentrations of particles in comparison to healthy implant sites. Several factors have been identified in the degradation of dental implant surface, such as mechanical wear, contact with chemical agents, and the effects of biofilm adhesion. Titanium particles silently prompt the immune-system activation and generate a pro-inflammatory response in macrophages, T lymphocytes and monocytes. During the activation, inflammatory cytokines are released including, granulocyte-macrophage colony-stimulating factor (GM-CSF), prostaglandin, and TNF-α, IL-1β, IL-6. The nanoparticles depict unique features such as high level of biological reactivity and potentially harmful compared to microparticles since they have a relatively greater surface area to volume ratio. Allergic response to titanium as a cause of implant failure has not been well documented. Evidence demonstrating biological complication due to titanium particles release includes peri-implant tissue inflammation that lead terminally to implant loss. There is a biological probability for a relation between the presence of titanium particles and ions, biological complication, and corrosion, but there is no justifiable evidence for unidirectional series of causative actions.
Collapse
Affiliation(s)
- Waad Kheder
- College of Dental Medicine, University of Sharjah, P.O. Box 27272, United Arab Emirates
| | - Sausan Al Kawas
- College of Dental Medicine, University of Sharjah, P.O. Box 27272, United Arab Emirates
| | - Khaled Khalaf
- College of Dental Medicine, University of Sharjah, P.O. Box 27272, United Arab Emirates
| | - A.R. Samsudin
- College of Dental Medicine, University of Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
24
|
Malhotra R, Han Y, Nijhuis CA, Silikas N, Castro Neto AH, Rosa V. Graphene nanocoating provides superb long-lasting corrosion protection to titanium alloy. Dent Mater 2021; 37:1553-1560. [PMID: 34420797 DOI: 10.1016/j.dental.2021.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/17/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The presence of metallic species around failed implants raises concerns about the stability of titanium alloy (Ti-6Al-4V). Graphene nanocoating on titanium alloy (GN) has promising anti-corrosion properties, but its long-term protective potential and structural stability remains unknown. The objective was to determine GN's anti-corrosion potential and stability over time. METHODS GN and uncoated titanium alloy (Control) were challenged with a highly acidic fluorinated corrosive medium (pH 2.0) for up to 240 days. The samples were periodically tested using potentiodynamic polarization curves, electrochemical impedance spectroscopy and inductively coupled plasma-atomic emission spectroscopy (elemental release). The integrity of samples was determined using Raman spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and scanning electron microscopy. Statistical analyses were performed with one-sample t-test, paired t-test and one-way ANOVA with Tukey post-hoc test with a pre-set significance level of 5%. RESULTS There was negligible corrosion and elemental loss on GN. After 240 days of corrosion challenge, the corrosion rate and roughness increased by two and twelve times for the Control whereas remained unchanged for GN. The nanocoating presented remarkably high structural integrity and coverage area (>98%) at all time points tested. SIGNIFICANCE Graphene nanocoating protects titanium alloy from corrosion and dissolution over a long period while maintaining high structural integrity. This coating has promising potential for persistent protection of titanium and potentially other metallic alloys against corrosion.
Collapse
Affiliation(s)
- Ritika Malhotra
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Yingmei Han
- Department of Chemistry, National University of Singapore, Singapore.
| | - Christian A Nijhuis
- Department of Molecules and Materials, Faculty of Science and Technology, University of Twente, Netherlands.
| | - Nikolaos Silikas
- Dental Biomaterials, Dentistry, The University of Manchester, Manchester, United Kingdom.
| | - A H Castro Neto
- Centre for Advanced 2D Materials, National University of Singapore, Singapore.
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; Centre for Advanced 2D Materials, National University of Singapore, Singapore.
| |
Collapse
|
25
|
Abstract
The high specific strength, good corrosion resistance, and great biocompatibility make titanium and its alloys the ideal materials for biomedical metallic implants. Ti-6Al-4V alloy is the most employed in practical biomedical applications because of the excellent combination of strength, fracture toughness, and corrosion resistance. However, recent studies have demonstrated some limits in biocompatibility due to the presence of toxic Al and V. Consequently, scientific literature has reported novel biomedical β-Ti alloys containing biocompatible β-stabilizers (such as Mo, Ta, and Zr) studying the possibility to obtain similar performances to the Ti-6Al-4V alloys. The aim of this review is to highlight the corrosion resistance of the passive layers on biomedical Ti-6Al-4V and β-type Ti alloys in the human body environment by reviewing relevant literature research contributions. The discussion is focused on all those factors that influence the performance of the passive layer at the surface of the alloy subjected to electrochemical corrosion, among which the alloy composition, the method selected to grow the oxide coating, and the physicochemical conditions of the body fluid are the most significant.
Collapse
|
26
|
Kotsakis GA, Olmedo DG. Peri-implantitis is not periodontitis: Scientific discoveries shed light on microbiome-biomaterial interactions that may determine disease phenotype. Periodontol 2000 2021; 86:231-240. [PMID: 33690947 DOI: 10.1111/prd.12372] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peri-implantitis is an immune-mediated biological complication that is attributed to bacterial biofilms on the implant surface. As both periodontitis and peri-implantitis have similar inflammatory phenotypes when assessed cross-sectionally, treatment protocols for peri-implantitis were modeled according to those used for periodontitis. However, lack of efficacy of antimicrobial treatments targeting periodontal pathogens coupled with recent discoveries from open-ended microbial investigation studies create a heightened need to revisit the pathogenesis of peri-implantitis compared with that of periodontitis. The tale of biofilm formation on intraoral solid surfaces begins with pellicle formation, which supports initial bacterial adhesion. The differences between implant- and tooth-bound biofilms appear as early as bacterial adhesion commences. The electrostatic forces and ionic bonding that drive initial bacterial adhesion are fundamentally different in the presence of titanium dioxide or other implant alloys vs mineralized organic hydroxyapatite, respectively. Moreover, the interaction between metal surfaces and the oral environment leads to the release of implant degradation products into the peri-implant sulcus, which exposes the microbiota to increased environmental stress and may alter immune responses to bacteria. Clinically, biofilms found in peri-implantitis are resistant to beta-lactam antibiotics, which are effective against periodontal communities even as monotherapies and demonstrate a composition different from that of biofilms found in periodontitis; these facts strongly suggest that a new model of peri-implant infection is required.
Collapse
Affiliation(s)
- Georgios A Kotsakis
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Daniel G Olmedo
- Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Anatomía Patológica, Buenos Aires, Argentina & CONICET, Buenos Aires, Argentina
| |
Collapse
|
27
|
Effects of 2% sodium fluoride solution on the prevention of streptococcal adhesion to titanium and zirconia surfaces. Sci Rep 2021; 11:4498. [PMID: 33627733 PMCID: PMC7904803 DOI: 10.1038/s41598-021-84096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/12/2021] [Indexed: 11/08/2022] Open
Abstract
Streptococci are associated with dental plaque formation as the early-colonizing bacteria that adhere to titanium (CpTi) and zirconia (TZP) implant abutment surfaces. Effective prevention of peri-implantitis may be possible by removing streptococci as target. This study aimed to evaluate the effects of 2% NaF on the prevention of streptococcal adhesion to CpTi and TZP. After immersion in 2% NaF for 90 min, surface characterization of mirror-polished CpTi and TZP disks were assesed using XPS, EPMA, and SEM. S. sanguinis, S. gordonii, and S. oralis were used as the streptococcal bacterial strains. After 24 h culture, bacterial adhesion was evaluated using an ATP-bioluminescent assay and SEM. In XPS, EPMA, and SEM analyses, fluoride was detected on the CpTi and TZP surfaces after 2% NaF immersion with no signs of localization, and no corrosion on the CpTi disks. Based on the adhesion assay, the adherences of S. sanguinis, S. gordonii, and S. oralis were significantly lower with NaF than without NaF in CpTi (p = 0.005, 0.001, and 0.001, respectively) and TZP (p = 0.003, 0.002, and 0.001). This was also confirmed by SEM. In conclusion, 2% NaF reduced the adhesion of streptococci to the CpTi and TZP surfaces.
Collapse
|
28
|
Cytotoxic effects of submicron- and nano-scale titanium debris released from dental implants: an integrative review. Clin Oral Investig 2021; 25:1627-1640. [PMID: 33616805 DOI: 10.1007/s00784-021-03785-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This integrative review aimed to report the toxic effect of submicron and nano-scale commercially pure titanium (cp Ti) debris on cells of peri-implant tissues. MATERIALS AND METHODS A systematic search was carried out on the PubMed electronic platform using the following key terms: Ti "OR" titanium "AND" dental implants "AND" nanoparticles "OR" nano-scale debris "OR" nanometric debris "AND" osteoblasts "OR "cytotoxicity" OR "macrophage" OR "mutagenic" OR "peri-implantitis". The inclusion criteria involved articles published in the English language, until December 26, 2020, reporting the effect of nano-scale titanium particles as released from dental implants on the toxicity and damage of osteoblasts. RESULTS Of 258 articles identified, 14 articles were selected for this integrative review. Submicron and nano-scale cp Ti particles altered the behavior of cells in culture medium. An inflammatory response was triggered by macrophages, fibroblasts, osteoblasts, mesenchymal cells, and odontoblasts as indicated by the detection of several inflammatory mediators such as IL-6, IL-1β, TNF-α, and PGE2. The formation of a bioactive complex composed of calcium and phosphorus on titanium nanoparticles allowed their binding to proteins leading to the cell internalization phenomenon. The nanoparticles induced mutagenic and carcinogenic effects into the cells. CONCLUSIONS The cytotoxic effect of debris released from dental implants depends on the size, concentration, and chemical composition of the particles. A high concentration of particles on nanometric scale intensifies the inflammatory responses with mutagenic potential of the surrounding cells. CLINICAL RELEVANCE Titanium ions and debris have been detected in peri-implant tissues with different size, concentration, and forms. The presence of metallic debris at peri-implant tissues also stimulates the migration of immune cells and inflammatory reactions. Cp Ti and TiO2 micro- and nano-scale particles can reach the bloodstream, accumulating in lungs, liver, spleen, and bone marrow.
Collapse
|
29
|
Nanocomposites for Enhanced Osseointegration of Dental and Orthopedic Implants Revisited: Surface Functionalization by Carbon Nanomaterial Coatings. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5010023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past few decades, carbon nanomaterials, including carbon nanofibers, nanocrystalline diamonds, fullerenes, carbon nanotubes, carbon nanodots, and graphene and its derivatives, have gained the attention of bioengineers and medical researchers as they possess extraordinary physicochemical, mechanical, thermal, and electrical properties. Recently, surface functionalization with carbon nanomaterials in dental and orthopedic implants has emerged as a novel strategy for reinforcement and as a bioactive cue due to their potential for osseointegration. Numerous developments in fabrication and biological studies of carbon nanostructures have provided various novel opportunities to expand their application to hard tissue regeneration and restoration. In this minireview, the recent research trends in surface functionalization of orthopedic and dental implants with coating carbon nanomaterials are summarized. In addition, some seminal methodologies for physicomechanical and electrochemical coatings are discussed. In conclusion, it is shown that further development of surface functionalization with carbon nanomaterials may provide innovative results with clinical potential for improved osseointegration after implantation.
Collapse
|
30
|
Jujur IN, Damisih, Devy K, Suha S, Bachtiar BM, Bachtiar EW. Effect of Implantation Ti-6Al-4V ELI in femoral bone defect regeneration of Sprague Dawley rat. J Adv Pharm Technol Res 2021; 11:202-206. [PMID: 33425705 PMCID: PMC7784942 DOI: 10.4103/japtr.japtr_74_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 11/23/2022] Open
Abstract
Ti-6Al-4V ELI is one of the most commonly used dental implant restore function. The solution treatment temperature variation can significantly increase the strength, but it is not yet known the effect of these temperature variations on the alloy's biocompatibility properties. Twelve female Sprague Dawley rats were divided into six groups as follows: the treated group, the control group, and the defect group without implant material. In the treated group, the femur bone defect was implanted with as-cast Ti-6Al-4V ELI, 850°C, 950°C, and 1050°C heat-treated Ti-6Al-4V ELI implant material. The rats were euthanized after 30 days postimplantation and evaluated histologically. The results show that the histological scoring of the specimen for femur defect without implant material is 2 (fibrous union and fibrocartilaginous), score with implant as-cast is 2.5, the sample with 850°C heat treatment material is 2.5, 950°C is 2.5, and the temperature at 1050°C is 2.5. The score of 2.5 is between score 2 and score 3: hemorrhage, fibrous union, fibrocartilaginous microhemorrhage, and mineralized cartilage union. In conclusion, there is no effect of different heat treatment temperatures for Ti-6Al-4V ELI implant material in rat bone regeneration's maturation level.
Collapse
Affiliation(s)
- I Nyoman Jujur
- Center for Materials Technology, Agency for the Assessment and Application of Technology (BPPT), Tangerang Selatan, Indonesia
| | - Damisih
- Center for Materials Technology, Agency for the Assessment and Application of Technology (BPPT), Tangerang Selatan, Indonesia
| | - Kartika Devy
- Departement of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Shovy Suha
- Departement of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Boy Muchlis Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Oral Science Research Center, Universitas Indonesia, Jakarta, Indonesia
| | - Endang Winiati Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Oral Science Research Center, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
31
|
Nakada H, Watanabe T, Takahashi T, Sato H, Isaji D, Sato K, Kimoto S, Mijares DQ, Zhang Y, Kawai Y. Coating Dental Implants with Synthetic Bone Mineral for Early New Bone Formation in Vivo. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hiroshi Nakada
- Department of Removable Prosthodontics and Geriatric Oral Health, Nihon University School of Dentistry at Matsudo
| | - Takehiro Watanabe
- Department of Removable Prosthodontics and Geriatric Oral Health, Nihon University School of Dentistry at Matsudo
| | - Takahiro Takahashi
- Department of Removable Prosthodontics and Geriatric Oral Health, Nihon University School of Dentistry at Matsudo
| | - Hiroki Sato
- Department of Removable Prosthodontics and Geriatric Oral Health, Nihon University School of Dentistry at Matsudo
| | - Daisuke Isaji
- Department of Removable Prosthodontics and Geriatric Oral Health, Nihon University School of Dentistry at Matsudo
| | - Kanami Sato
- Department of Removable Prosthodontics and Geriatric Oral Health, Nihon University School of Dentistry at Matsudo
| | - Suguru Kimoto
- Department of Gerodontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University
| | - Dindo Q. Mijares
- Department of Biomaterials and Biomimetics, New York University College of Dentistry
| | - Yu Zhang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania
| | - Yasuhiko Kawai
- Department of Removable Prosthodontics and Geriatric Oral Health, Nihon University School of Dentistry at Matsudo
| |
Collapse
|
32
|
Barreiros P, Braga J, Faria-Almeida R, Coelho C, Teughels W, Souza JCM. Remnant oral biofilm and microorganisms after autoclaving sterilization of retrieved healing abutments. J Periodontal Res 2020; 56:415-422. [PMID: 33368278 DOI: 10.1111/jre.12834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/18/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the sterilization effectiveness against biofilms on retrieved healing abutments used in implant dentistry. BACKGROUND A large number of clinicians reuse healing abutments to decrease treatment costs although it can promote infection due to the presence of remnant biofilm biomass. METHODS One hundred and eighty-five titanium healing abutments previously used for 3 months in oral cavity were assessed in this study. Abutments were submitted to cleaning, chemical disinfection, and autoclave sterilization according to clinical guidelines. The abutments were aseptically placed into glass tubes containing specific bacterial growth medium and then incubated for 10 days. From glass tubes with bacterial growth, 100 µl medium was transferred to Schaedler's agar for morphological identification and counting of strict anaerobes and to Columbia blood agar for presumptive identification of facultative anaerobes after incubation. Isolated strains were then identified at species level by enzymatic and biochemical tests within API microorganism detection platform. Also, polymerase chain reaction (PCR) was performed for identification of undefined strains. RESULTS After the standard cleaning and sterilization procedures, fifty-six (approximately 30%) retrieved abutments showed the presence of remnant biofilm biomass. The bacteria identified into the remnant biofilms covering the abutments were representative of the commensal oral microbiota including Aggregatibacter actinomycetemcomitans, Prevotella intermedia, and Enterococcus faecalis. CONCLUSION Although some healing abutments did not reveal the existence of bacteria, organic components from biofilm biomass are still strongly adhered on the retentive micro-regions and surfaces of abutments and therefore that would support the accumulation of biofilm including pathogenic species leading to patients' cross-infections. Further studies should be performed on the assessment of different materials, design, and connections of the healing abutments associated with clinical disinfection procedures in implant dentistry.
Collapse
Affiliation(s)
- Pedro Barreiros
- Division of Oral Surgery, School of Dentistry (FMDUP), University of Porto, Porto, 4200-393, Portugal.,Department of Dental Sciences, University Institute of Health Sciences (IUCS), CESPU, Gandra PRD, 4585-116, Portugal
| | - João Braga
- Division of Oral Surgery, School of Dentistry (FMDUP), University of Porto, Porto, 4200-393, Portugal
| | - Ricardo Faria-Almeida
- Division of Oral Surgery, School of Dentistry (FMDUP), University of Porto, Porto, 4200-393, Portugal
| | - Cristina Coelho
- Department of Dental Sciences, University Institute of Health Sciences (IUCS), CESPU, Gandra PRD, 4585-116, Portugal
| | - Wim Teughels
- Department of Oral Health Sciences, Periodontology, Dentistry, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, 3000, Belgium
| | - Júlio C M Souza
- Department of Dental Sciences, University Institute of Health Sciences (IUCS), CESPU, Gandra PRD, 4585-116, Portugal.,Center for Microelectromechanical Systems (CMEMS-UMINHO), University of Minho, Guimarães, Braga, 4800-058, Portugal
| |
Collapse
|
33
|
Souza JC, Correia MS, Oliveira MN, Silva FS, Henriques B, Novaes de Oliveira AP, Gomes JR. PEEK-matrix composites containing different content of natural silica fibers or particulate lithium‑zirconium silicate glass fillers: Coefficient of friction and wear volume measurements. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biotri.2020.100147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
A Comprehensive Review on the Corrosion Pathways of Titanium Dental Implants and Their Biological Adverse Effects. METALS 2020. [DOI: 10.3390/met10091272] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The main aim of this work was to perform a comprehensive review of findings reported by previous studies on the corrosion of titanium dental implants and consequent clinical detrimental effects to the patients. Most studies were performed by in vitro electrochemical tests and complemented with microscopic techniques to evaluate the corrosion behavior of the protective passive oxide film layer, namely TiO2. Results revealed that bacterial accumulation, dietary, inflammation, infection, and therapeutic solutions decrease the pH of the oral environment leading to the corrosion of titanium. Some therapeutic products used as mouthwash negatively affect the corrosion behavior of the titanium oxide film and promote changes on the implant surface. In addition, toothpaste and bleaching agents, can amplify the chemical reactivity of titanium since fluor ions interacting with the titanium oxide film. Furthermore, the number of in vivo studies is limited although corrosion signs have been found in retrieved implants. Histological evaluation revealed titanium macro- and micro-scale particles on the peri-implant tissues. As a consequence, progressive damage of the dental implants and the evolution of inflammatory reactions depend on the size, chemical composition, and concentration of submicron- and nanoparticles in the surrounding tissues and internalized by the cells. In fact, the damage of the implant surfaces results in the loss of material that compromises the implant surfaces, implant-abutment connections, and the interaction with soft tissues. The corrosion can be an initial trigger point for the development of biological or mechanical failures in dental implants.
Collapse
|
35
|
Hamza HM, Deen KM, Haider W. Microstructural examination and corrosion behavior of selective laser melted and conventionally manufactured Ti6Al4V for dental applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110980. [DOI: 10.1016/j.msec.2020.110980] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 01/05/2023]
|
36
|
Fares C, Hsu SM, Xian M, Xia X, Ren F, Mecholsky JJ, Gonzaga L, Esquivel-Upshaw J. Demonstration of a SiC Protective Coating for Titanium Implants. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3321. [PMID: 32722625 PMCID: PMC7435394 DOI: 10.3390/ma13153321] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/02/2022]
Abstract
To mitigate the corrosion of titanium implants and improve implant longevity, we investigated the capability to coat titanium implants with SiC and determined if the coating could remain intact after simulated implant placement. Titanium disks and titanium implants were coated with SiC using plasma-enhanced chemical vapor deposition (PECVD) and were examined for interface quality, chemical composition, and coating robustness. SiC-coated titanium implants were torqued into a Poly(methyl methacrylate) (PMMA) block to simulate clinical implant placement followed by energy dispersive spectroscopy to determine if the coating remained intact. After torquing, the atomic concentration of the detectable elements (silicon, carbon, oxygen, titanium, and aluminum) remained relatively unchanged, with the variation staying within the detection limits of the Energy Dispersive Spectroscopy (EDS) tool. In conclusion, plasma-enhanced chemical vapor deposited SiC was shown to conformably coat titanium implant surfaces and remain intact after torquing the coated implants into a material with a similar hardness to human bone mass.
Collapse
Affiliation(s)
- Chaker Fares
- Chemical Engineering Department, College of Engineering, University of Florida, Gainesville, FL 32611, USA; (C.F.); (M.X.); (F.R.)
| | - Shu-Min Hsu
- Department of Restorative Dental Sciences, Division of Prosthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (S.-M.H.); (X.X.)
| | - Minghan Xian
- Chemical Engineering Department, College of Engineering, University of Florida, Gainesville, FL 32611, USA; (C.F.); (M.X.); (F.R.)
| | - Xinyi Xia
- Department of Restorative Dental Sciences, Division of Prosthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (S.-M.H.); (X.X.)
| | - Fan Ren
- Chemical Engineering Department, College of Engineering, University of Florida, Gainesville, FL 32611, USA; (C.F.); (M.X.); (F.R.)
| | - John J. Mecholsky
- Materials Science and Engineering, College of Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Luiz Gonzaga
- Center for Implant Dentistry, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Josephine Esquivel-Upshaw
- Department of Restorative Dental Sciences, Division of Prosthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (S.-M.H.); (X.X.)
| |
Collapse
|
37
|
Woźniak A, Adamiak M, Chladek G, Bonek M, Walke W, Bialas O. The Influence of Hybrid Surface Modification on the Selected Properties of CP Titanium Grade II Manufactured by Selective Laser Melting. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2829. [PMID: 32599731 PMCID: PMC7344586 DOI: 10.3390/ma13122829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
The human body is an extremely aggressive environment in terms of corrosion. Titanium and its alloys are one of the most popular biomaterials used for implant applications due to biocompatibility. However, every element introduced into the body is treated as a foreign body. The human body's immune response may, therefore, lead to implant rejection and the need for reoperation. For this purpose, it seems important to carry out surface modifications by applying coatings and inter alia by texturing to implants. The objective of this paper is to investigate the effect of surface treatment on the chosen properties of the pure titanium (Grade II) samples obtained by selective laser melting (SLM) processing. The samples were divided into five groups: Initial state (after polishing), after surface modification by the physical vapour deposition (PVD) method-CrN and TiN coatings were deposited on the surface of the tested material, and after laser texturing. The paper presents the results of the microscopic investigation, chemical and phase compositions, and physicochemical and electrochemical properties of the tested samples. Based on the results obtained it can be concluded that the hybrid surface modification shows significant effects on the properties of the pure titanium. The samples with the textured PVD-deposited TiN coatings were characterized by favorable physicochemical properties and were the highest performing in terms of pitting corrosion resistance.
Collapse
Affiliation(s)
- Anna Woźniak
- Faculty of Mechanical Engineering, Department of Materials Engineering and Biomaterials, Silesian University of Technology, Konarskiego 18A Street, 44-100 Gliwice, Poland; (M.A.); (G.C.); (M.B.); (O.B.)
| | - Marcin Adamiak
- Faculty of Mechanical Engineering, Department of Materials Engineering and Biomaterials, Silesian University of Technology, Konarskiego 18A Street, 44-100 Gliwice, Poland; (M.A.); (G.C.); (M.B.); (O.B.)
| | - Grzegorz Chladek
- Faculty of Mechanical Engineering, Department of Materials Engineering and Biomaterials, Silesian University of Technology, Konarskiego 18A Street, 44-100 Gliwice, Poland; (M.A.); (G.C.); (M.B.); (O.B.)
| | - Mirosław Bonek
- Faculty of Mechanical Engineering, Department of Materials Engineering and Biomaterials, Silesian University of Technology, Konarskiego 18A Street, 44-100 Gliwice, Poland; (M.A.); (G.C.); (M.B.); (O.B.)
| | - Witold Walke
- Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices Engineering, Silesian University of Technology, Ul. Roosevelta 40 Street, 41-800 Zabrze, Poland;
| | - Oktawian Bialas
- Faculty of Mechanical Engineering, Department of Materials Engineering and Biomaterials, Silesian University of Technology, Konarskiego 18A Street, 44-100 Gliwice, Poland; (M.A.); (G.C.); (M.B.); (O.B.)
| |
Collapse
|
38
|
The progress on physicochemical properties and biocompatibility of tantalum-based metal bone implants. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2480-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
39
|
Furiya-Sato S, Fukushima A, Mayanagi G, Sasaki K, Takahashi N. Electrochemical evaluation of the hydrogen peroxide- and fluoride-induced corrosive property and its recovery on the titanium surface. J Prosthodont Res 2019; 64:307-312. [PMID: 31629684 DOI: 10.1016/j.jpor.2019.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/30/2019] [Accepted: 09/03/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE This study aimed to elucidate the effects of hydrogen peroxide (H2O2) and sodium fluoride (NaF) on titanium surfaces under conditions mimicking those encountered during dental treatment. METHODS Titanium samples were immersed in artificial saliva (AS), 1M H2O2, 1M H2O2 with catalase, 1000ppmF NaF, 1M H2O2 with 1000ppmF NaF, or 9000ppmF NaF (9000ppmF NaF: pH 5.3, other solutions: pH 6.5) for 3min. The electrochemical properties of the titanium samples were analyzed before and after the immersion procedures using a potentiostat. The amounts of titanium eluted into each solution were measured using inductively coupled plasma mass spectrometry. The post-immersion color changes (ΔE*ab) and gloss values of the titanium samples were determined using spectrophotometry. Moreover, the solution-treated titanium samples were subsequently immersed in AS and analyzed electrochemically at 1, 2, 3, 4, 6, 8, and 24h. RESULTS The immersion of titanium in any of the solutions except 1000ppmF NaF caused significant increases in corrosive and passive currents and significant reductions in polarization resistance. No titanium elution or color changes were observed, except when 9000ppmF NaF was used. After immersion in AS, the electrochemical properties of all of the titanium samples, except the 9000ppmF NaF-treated samples, recovered within 24h. CONCLUSIONS One M H2O2 and 1000ppmF NaF can be used alone or in combination in the clinical setting without causing significant titanium corrosion because the corrosive properties they induce is reversible. However, highly concentrated acidic fluorides can cause irreversible corrosion.
Collapse
Affiliation(s)
- Satoko Furiya-Sato
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan; Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Azusa Fukushima
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Gen Mayanagi
- Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| |
Collapse
|
40
|
Zandim-Barcelos DL, Carvalho GGD, Sapata VM, Villar CC, Hämmerle C, Romito GA. Implant-based factor as possible risk for peri-implantitis. Braz Oral Res 2019; 33:e067. [PMID: 31576951 DOI: 10.1590/1807-3107bor-2019.vol33.0067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 11/21/2022] Open
Abstract
Peri-implantitis is currently a topic of major interest in implantology. Considered one of the main reasons of late implant failure, there is an emerged concern whether implant characteristics could trigger inflammatory lesion and loss of supporting bone. The purpose of this narrative review is to provide an evidence based overview on the influence of implant-based factors in the occurrence of peri-implantitis. A literature review was conducted addressing the following topics: implant surface topography; implant location; occlusal overload; time in function; prosthesis-associated factors (rehabilitation extension, excess of cement and implant-abutment connection); and metal particle release. Although existing data suggests that some implant-based factors may increase the risk of peri-implantitis, the evidence is still limited to consider them a true risk factor for peri-implantitis. In conclusion, further evidences are required to a better understanding of the influence of implant-based factors in the occurrence of peri-implantitis. Large population-based studies including concomitant analyses of implant- and patient-based factors are required to provide strong evidence of a possible association with peri-implantitis in a higher probability. The identification of these factors is essential for the establishment of strategies to prevent peri-implantitis.
Collapse
Affiliation(s)
- Daniela Leal Zandim-Barcelos
- Universidade Estadual Paulista - Unesp, Araraquara School of Dentistry, Department of Diagnosis and Surgery, Araraquara, SP, Brazil
| | - Gabriel Garcia de Carvalho
- Universidade Estadual Paulista - Unesp, Araraquara School of Dentistry, Department of Diagnosis and Surgery, Araraquara, SP, Brazil
| | - Vitor Marques Sapata
- Universidade de São Paulo - USP, Dental School, Department of Stomatology, São Paulo, Brazil
| | - Cristina Cunha Villar
- Universidade de São Paulo - USP, Dental School, Department of Stomatology, São Paulo, Brazil
| | - Christoph Hämmerle
- University of Zurich, Clinic for Fixed and Removable Prosthodontics and Dental Material Science, Zurich, Switzerland
| | | |
Collapse
|
41
|
Thavanayagam G, Swan J. Optimizing hydride-dehydride Ti-6Al-4V feedstock composition for titanium powder injection moulding. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.07.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Corrêa MG, Pimentel SP, Ribeiro FV, Cirano FR, Casati MZ. Host response and peri-implantitis. Braz Oral Res 2019; 33:e066. [PMID: 31576950 DOI: 10.1590/1807-3107bor-2019.vol33.0066] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
Considering the absence of predictable and effective therapeutic interventions for the treatment of peri-implantitis, scientific evidence concerning the host response profile around dental implants could be important for providing in the future a wider preventive and/or therapeutic window for this peri-implant lesion, indicating biomarkers that provide quantifiable measure of response to peri-implant therapy. Moreover, a better knowledge of pattern of host osteo-immunoinflammatory modulation in the presence of peri-implantitis could either benefit the early diagnostic of the disease or to cooperate to prognostic information related to the status of the peri-implant breakdown. Finally, new evidences concerning the host profile of modulators of inflammation and of osseous tissue metabolism around dental implants could explain the individual susceptibility for developing peri-implant lesions, identifying individuals or sites with increased risk for peri-implantitis. The focus of this chapter was, based on a systematically searched and critically reviewed literature, summarizing the existing knowledge in the scientific research concerning the host osteo-immunoinflammatory response to the microbiological challenge related to periimplantitis.
Collapse
Affiliation(s)
- Monica Grazieli Corrêa
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| | - Suzana Peres Pimentel
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| | - Fernanda Vieira Ribeiro
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| | - Fabiano Ribeiro Cirano
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| | - Marcio Zaffalon Casati
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| |
Collapse
|
43
|
Lopes PA, Carreiro AFP, Nascimento RM, Vahey BR, Henriques B, Souza JCM. Physicochemical and microscopic characterization of implant-abutment joints. Eur J Dent 2019; 12:100-104. [PMID: 29657532 PMCID: PMC5883459 DOI: 10.4103/ejd.ejd_3_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Objective: The purpose of this study was to investigate Morse taper implant–abutment joints by chemical, mechanical, and microscopic analysis. Materials and Methods: Surfaces of 10 Morse taper implants and the correlated abutments were inspected by field emission gun-scanning electron microscopy (FEG-SEM) before connection. The implant–abutment connections were tightened at 32 Ncm. For microgap evaluation by FEG-SEM, the systems were embedded in epoxy resin and cross-sectioned at a perpendicular plane of the implant–abutment joint. Furthermore, nanoindentation tests and chemical analysis were performed at the implant–abutment joints. Statistics: Results were statistically analyzed via one-way analysis of variance, with a significance level of P < 0.05. Results: Defects were noticed on different areas of the abutment surfaces. The minimum and maximum size of microgaps ranged from 0.5 μm up to 5.6 μm. Furthermore, defects were detected throughout the implant–abutment joint that can, ultimately, affect the microgap size after connection. Nanoindentation tests revealed a higher hardness (4.2 ± 0.4 GPa) for abutment composed of Ti6Al4V alloy when compared to implant composed of commercially pure Grade 4 titanium (3.2 ± 0.4 GPa). Conclusions: Surface defects produced during the machining of both implants and abutments can increase the size of microgaps and promote a misfit of implant–abutment joints. In addition, the mismatch in mechanical properties between abutment and implant can promote the wear of surfaces, affecting the size of microgaps and consequently the performance of the joints during mastication.
Collapse
Affiliation(s)
- Patricia A Lopes
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Adriana F P Carreiro
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Rubens M Nascimento
- Department of Materials Engineering, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Brendan R Vahey
- The Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Bruno Henriques
- Center for Microelectromechanical Systems (CMEMS-MINHO), University of Minho, Guimarães, Portugal
| | - Júlio C M Souza
- Center for Microelectromechanical Systems (CMEMS-MINHO), University of Minho, Guimarães, Portugal
| |
Collapse
|
44
|
Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater 2019; 94:112-131. [PMID: 31128320 DOI: 10.1016/j.actbio.2019.05.045] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 12/16/2022]
Abstract
The main aim of this review study was to report the state of art on the nano-scale technological advancements of titanium implant surfaces to enhance the osseointegration process. Several methods of surface modification are chronologically described bridging ordinary methods (e.g. grit blasting and etching) and advanced physicochemical approaches such as 3D-laser texturing and biomimetic modification. Functionalization procedures by using proteins, peptides, and bioactive ceramics have provided an enhancement in wettability and bioactivity of implant surfaces. Furthermore, recent findings have revealed a combined beneficial effect of micro- and nano-scale modification and biomimetic functionalization of titanium surfaces. However, some technological developments of implant surfaces are not commercially available yet due to costs and a lack of clinical validation for such recent surfaces. Further in vitro and in vivo studies are required to endorse the use of enhanced biomimetic implant surfaces. STATEMENT OF SIGNIFICANCE: Grit-blasting followed by acid-etching is currently used for titanium implant modifications, although recent technological biomimetic physicochemical methods have revealed enhanced osteoconductive and anti-microbial outcomes. An improvement in wettability and bioactivity of titanium implant surfaces has been accomplished by combining micro and nano-scale modification and functionalization with protein, peptides, and bioactive compounds. Such morphological and chemical modification of the titanium surfaces induce the migration and differentiation of osteogenic cells followed by an enhancement of the mineral matrix formation that accelerate the osseointegration process. Additionally, the incorporation of bioactive molecules into the nanostructured surfaces is a promising strategy to avoid early and late implant failures induced by the biofilm accumulation.
Collapse
|
45
|
Sotniczuk A, Kuczyńska-Zemła D, Kwaśniak P, Thomas M, Garbacz H. Corrosion behavior of Ti-29Nb-13Ta-4.6Zr and commercially pure Ti under simulated inflammatory conditions – comparative effect of grain refinement and non-toxic β phase stabilizers. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.138] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Rao S, Hashemi Astaneh S, Villanueva J, Silva F, Takoudis C, Bijukumar D, Souza JCM, Mathew MT. Physicochemical and in-vitro biological analysis of bio-functionalized titanium samples in a protein-rich medium. J Mech Behav Biomed Mater 2019; 96:152-164. [PMID: 31035066 DOI: 10.1016/j.jmbbm.2019.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 01/04/2023]
Abstract
The long-term survivability of the implants is strongly influenced by the osseointegration aspects of the metal-bone interface. In this study, biological materials such as fibrinogen and fibrin are used to functionalize titanium surfaces to enhance the ability of implants to interact with human tissues for accelerated osseointegration. The biofunctionalized samples that were assessed by White Light Microscope, Scanning Electron Microscope and Water Contact Angle for surface properties proved samples etched with HF/HNO3 to be better than HCl/H2SO4 in terms of having optimum roughness and hydrophilicity for our further experiments. To further investigate the in vitro osseointegration of the biofunctionalized samples, Osteoblasts were cultured on the surfaces to assess cell proliferation, adhesion, gene expression as well as the mineralization process. Further bacterial adhesion (Enterococcus faecalis) and electrochemical evaluation of surface coating stability were carried out. Results of the study show that the biofunctionalized surfaces provided high cell proliferation, adherence, gene expression, and mineralization compared to other control surfaces hence proving them to have efficient and enhanced osseointegration. Also, bacterial adhesion studies show that there is no augmented growth of bacteria on the biofunctionalized samples in comparison to control surfaces. Electrochemical studies proved the existence of a stable protein layer on the bio functionalized surfaces. Such a method can reduce the time for osseointegration that can decrease risks in early failures of implants due to its enhanced hydrophilicity and cytocompatibility.
Collapse
Affiliation(s)
- Shradha Rao
- Department of Biomedical Science, University of Illinois College of Medicine at Rockford, USA
| | - Sarah Hashemi Astaneh
- Department of Chemical Engineering, the University of Illinois at Chicago, (UIC), Chicago, USA
| | - Jose Villanueva
- Department of Restorative Dentistry, College of Dentistry, UIC, Chicago, IL, USA
| | - Filipe Silva
- Center for MicroElectromechanical Systems (CMEMS-UMINHO), Universidade do Minho, Portugal
| | - Christos Takoudis
- Department of Chemical Engineering, the University of Illinois at Chicago, (UIC), Chicago, USA; Department of Bioengineering, University of Illinois at Chicago (UIC), Chicago, USA
| | - Divya Bijukumar
- Department of Biomedical Science, University of Illinois College of Medicine at Rockford, USA
| | - Júlio C M Souza
- Department of Biomedical Science, University of Illinois College of Medicine at Rockford, USA; Department of Dental Sciences, University Institute of Health Sciences (IUCS-CESPU), Grandra 4585-116, Portugal
| | - Mathew T Mathew
- Department of Biomedical Science, University of Illinois College of Medicine at Rockford, USA; Department of Bioengineering, University of Illinois at Chicago (UIC), Chicago, USA.
| |
Collapse
|
47
|
Delgado-Ruiz R, Romanos G. Potential Causes of Titanium Particle and Ion Release in Implant Dentistry: A Systematic Review. Int J Mol Sci 2018; 19:E3585. [PMID: 30428596 PMCID: PMC6274707 DOI: 10.3390/ijms19113585] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 01/03/2023] Open
Abstract
Implant surface characteristics, as well as physical and mechanical properties, are responsible for the positive interaction between the dental implant, the bone and the surrounding soft tissues. Unfortunately, the dental implant surface does not remain unaltered and changes over time during the life of the implant. If changes occur at the implant surface, mucositis and peri-implantitis processes could be initiated; implant osseointegration might be disrupted and bone resorption phenomena (osteolysis) may lead to implant loss. This systematic review compiled the information related to the potential sources of titanium particle and ions in implant dentistry. Research questions were structured in the Population, Intervention, Comparison, Outcome (PICO) framework. PICO questionnaires were developed and an exhaustive search was performed for all the relevant studies published between 1980 and 2018 involving titanium particles and ions related to implant dentistry procedures. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed for the selection and inclusion of the manuscripts in this review. Titanium particle and ions are released during the implant bed preparation, during the implant insertion and during the implant decontamination. In addition, the implant surfaces and restorations are exposed to the saliva, bacteria and chemicals that can potentially dissolve the titanium oxide layer and, therefore, corrosion cycles can be initiated. Mechanical factors, the micro-gap and fluorides can also influence the proportion of metal particles and ions released from implants and restorations.
Collapse
Affiliation(s)
- Rafael Delgado-Ruiz
- Department of Prosthodontics and Digital Technology, School of Dental Medicine, Stony Brook University, New York, NY 11794, USA.
| | - Georgios Romanos
- Department of Periodontics, School of Dental Medicine, Stony Brook University, New York, NY 11794, USA.
- Department of Oral Surgery and Implant Dentistry, Dental School, Johann Wolfgang Goethe University, 60323 Frankfurt, Germany.
| |
Collapse
|
48
|
Bins-Ely L, Cesca K, Souza FS, Porto L, Spinelli A, Magini R, Henriques B, Souza JCM. On the increase of the chemical reactivity of cp titanium and Ti6Al4V at low electrical current in a protein-rich medium. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Peñarrieta-Juanito G, Sordi MB, Henriques B, Dotto MER, Teughels W, Silva FS, Magini RS, Souza JCM. Surface damage of dental implant systems and ions release after exposure to fluoride and hydrogen peroxide. J Periodontal Res 2018; 54:46-52. [PMID: 30368813 DOI: 10.1111/jre.12603] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/20/2018] [Accepted: 08/02/2018] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate surface changes on dental implant systems and ions release after immersion in fluoride and hydrogen peroxide. METHODS Ten implant-abutment assemblies were embedded in acrylic resin and cross-sectioned along the implant vertical axis. Samples were wet ground and polished. Delimited areas of groups of samples were immersed in 1.23% sodium fluoride gel (F) or in 35% hydrogen peroxide (HP) for 16 min. Gels (n = 3) were collected from the implant surfaces and analyzed by inductively coupled plasma mass spectrometry (ICP-MS), to detect the concentration of metallic ions released from the implant systems. Selected areas of the abutment and implant (n = 15) were analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). RESULTS SEM images revealed surface topographic changes on implant-abutment joints after immersion in fluoride. Implants showed excessive oxidation within loss of material, while abutment surfaces revealed intergranular corrosion after immersion in fluoride. ICP-MS results revealed a high concentration of Ti, Al, V ions in fluoride after contact with the implant systems. Localized corrosion of implant systems could not be detected by SEM after immersion in hydrogen peroxide although the profilometry showed increase in roughness. ICP-MS showed the release of metallic ions in hydrogen peroxide medium after contact with dental implants. CONCLUSION Therapeutical substances such as fluorides and hydrogen peroxide can promote the degradation of titanium-based dental implant and abutments leading to the release of toxic ions.
Collapse
Affiliation(s)
- Gabriella Peñarrieta-Juanito
- Postgraduate Program in Dentistry (PPGO), Department of Dentistry, Division of Implant Dentistry, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Mariane B Sordi
- Postgraduate Program in Dentistry (PPGO), Department of Dentistry, Division of Implant Dentistry, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Bruno Henriques
- Laboratory of Ceramic and Composite Materials (CERMAT), Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), Florianópolis, Brazil.,Center for Microelectromechanical Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal
| | - Marta E R Dotto
- Department of Physics, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Wim Teughels
- Department of Oral Health Sciences, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Filipe S Silva
- Center for Microelectromechanical Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal
| | - Ricardo S Magini
- Postgraduate Program in Dentistry (PPGO), Department of Dentistry, Division of Implant Dentistry, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Júlio C M Souza
- Center for Microelectromechanical Systems (CMEMS-UMINHO), University of Minho, Guimarães, Portugal
| |
Collapse
|
50
|
Mombelli A, Hashim D, Cionca N. What is the impact of titanium particles and biocorrosion on implant survival and complications? A critical review. Clin Oral Implants Res 2018; 29 Suppl 18:37-53. [DOI: 10.1111/clr.13305] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Andrea Mombelli
- Division of Periodontology; University Clinics of Dental Medicine; University of Geneva; Geneva Switzerland
| | - Dena Hashim
- Division of Periodontology; University Clinics of Dental Medicine; University of Geneva; Geneva Switzerland
| | - Norbert Cionca
- Division of Periodontology; University Clinics of Dental Medicine; University of Geneva; Geneva Switzerland
| |
Collapse
|