1
|
Raju KAK, Biswas A. Surface modifications and coatings to improve osseointegration and antimicrobial activity on titanium surfaces: A statistical review over the last decade. J Orthop 2025; 67:68-87. [PMID: 39902142 PMCID: PMC11787716 DOI: 10.1016/j.jor.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/02/2025] [Indexed: 02/05/2025] Open
Abstract
Background Titanium (Ti) is commonly employed therapeutically in many medical sectors associated with bone healing because of its superior mechanical properties and capacity to osseointegrate in the host bone tissue. The titanium surfaces may now be functionalized to offer additional and potentially valuable features. This review article discusses many titanium implant surface modifications, emphasizing their biological significance and the challenges that each one mainly addresses. Before reviewing the genuine reason for titanium surface modification in implanted devices, we briefly explore the process of osseointegration, enhancement of antibacterial properties, biocompatibility, and the historical significance of titanium as an implantable material, and the significant challenges involved. The various physical and chemical alterations that could take place on Ti surfaces are next examined. The rest of our talk will focus on creating inorganic and organic coatings for implanted Ti devices. Finally, we present a synopsis of the surface modification strategies currently being evaluated in clinical settings. Target This systematic review aims to evaluate research on titanium implants with significant surface modifications, coatings, and antibacterial capabilities. Methods Following the PRISMA paradigm, we searched for three electronic databases (Web of Science, PubMed Central, and Google Scholar) using the keywords "titanium implants," "titanium surface modification," and "titanium osseointegration," and "titanium antibacterial activity." Results We identified 1,39,336 articles overall that were published between 2012 and 2021, and we then focused on 8917 articles that concentrated on a particular topic. Clear inclusion and exclusion criteria were used in a rigorous screening procedure. Articles that didn't meet certain requirements (were irrelevant, used incorrect techniques, had unsuitable data values, or were only brief letters or communications) were eliminated. Finally, 120 research publications in total are taken into account for this extensive systematic review. Conclusion The report summarises current information on titanium implants with significant surface modifications, antibacterial activity, and coatings. It also gives some strong recommendations for future study topics.
Collapse
Affiliation(s)
- Konduru Ashok Kumar Raju
- Centre of Excellence in Tissue Engineering, Biomaterials and Tissue Engineering Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Amit Biswas
- Centre of Excellence in Tissue Engineering, Biomaterials and Tissue Engineering Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
2
|
Mishchenko O, Volchykhina K, Maksymov D, Manukhina O, Pogorielov M, Pavlenko M, Iatsunskyi I. Advanced Strategies for Enhancing the Biocompatibility and Antibacterial Properties of Implantable Structures. MATERIALS (BASEL, SWITZERLAND) 2025; 18:822. [PMID: 40004345 PMCID: PMC11857362 DOI: 10.3390/ma18040822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
This review explores the latest advancements in enhancing the biocompatibility and antibacterial properties of implantable structures, with a focus on titanium (Ti) and its alloys. Titanium implants, widely used in dental and orthopedic applications, demonstrate excellent mechanical strength and biocompatibility, yet face challenges such as peri-implantitis, a bacterial infection that can lead to implant failure. To address these issues, both passive and active surface modification strategies have been developed. Passive modifications, such as altering surface texture and chemistry, aim to prevent bacterial adhesion, while active approaches incorporate antimicrobial agents for sustained infection control. Nanotechnology has emerged as a transformative tool, enabling the creation of nanoscale materials and coatings like TiO2 and ZnO that promote osseointegration and inhibit biofilm formation. Techniques such as plasma spraying, ion implantation, and plasma electrolytic oxidation (PEO) show promising results in improving implant integration and durability. Despite significant progress, further research is needed to refine these technologies, optimize surface properties, and address the clinical challenges associated with implant longevity and safety. This review highlights the intersection of surface engineering, nanotechnology, and biomedical innovation, paving the way for the next generation of implantable devices.
Collapse
Affiliation(s)
- Oleg Mishchenko
- Department of Dentistry of Postgraduate Education, Zaporizhzhia State Medical and Pharmaceutical University, 26 Marii Prymachenko Blvd., 69035 Zaporizhzhia, Ukraine; (K.V.); (D.M.); (O.M.)
| | - Kristina Volchykhina
- Department of Dentistry of Postgraduate Education, Zaporizhzhia State Medical and Pharmaceutical University, 26 Marii Prymachenko Blvd., 69035 Zaporizhzhia, Ukraine; (K.V.); (D.M.); (O.M.)
| | - Denis Maksymov
- Department of Dentistry of Postgraduate Education, Zaporizhzhia State Medical and Pharmaceutical University, 26 Marii Prymachenko Blvd., 69035 Zaporizhzhia, Ukraine; (K.V.); (D.M.); (O.M.)
| | - Olesia Manukhina
- Department of Dentistry of Postgraduate Education, Zaporizhzhia State Medical and Pharmaceutical University, 26 Marii Prymachenko Blvd., 69035 Zaporizhzhia, Ukraine; (K.V.); (D.M.); (O.M.)
| | - Maksym Pogorielov
- Insitute of Atomic Physics and Spectroscopy, University of Latvia, 3 Jelgavas Str., LV-1004 Riga, Latvia;
| | - Mykola Pavlenko
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej Str. 3, 61-614 Poznan, Poland;
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej Str. 3, 61-614 Poznan, Poland;
| |
Collapse
|
3
|
Straumal BB, Kurkin EN, Balihin IL, Klyatskina E, Straumal PB, Anisimova NY, Kiselevskiy MV. Antibacterial Properties and Biocompatibility of Multicomponent Titanium Oxides: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5847. [PMID: 39685284 DOI: 10.3390/ma17235847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/04/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
The simple oxides like titania, zirconia, and ZnO are famous with their antibacterial (or even antimicrobial) properties as well as their biocompatibility. They are broadly used for air and water filtering, in food packaging, in medicine (for implants, prostheses, and scaffolds), etc. However, these application fields can be broadened by switching to the composite multicomponent compounds (for example, titanates) containing in their unit cell, together with oxygen, several different metallic ions. This review begins with a description of the synthesis methods, starting from wet chemical conversion through the manufacturing of oxide (nano)powders toward mechanosynthesis methods. The morphology of these multicomponent oxides can also be very different (like thin films, complicated multilayers, or porous scaffolds). Further, we discuss in vitro tests. The antimicrobial properties are investigated with Gram-positive or Gram-negative bacteria (like Escherichia coli or Staphylococcus aureus) or fungi. The cytotoxicity can be studied, for example, using mouse mesenchymal stem cells, MSCs (C3H10T1/2), or human osteoblast-like cells (MG63). Other human osteoblast-like cells (SaOS-2) can be used to characterize the cell adhesion, proliferation, and differentiation in vitro. The in vitro tests with individual microbial or cell cultures are rather far away from the real conditions in the human or animal body. Therefore, they have to be followed by in vivo tests, which permit the estimation of the real applicability of novel materials. Further, we discuss the physical, chemical, and biological mechanisms determining the antimicrobial properties and biocompatibility. The possible directions of future developments and novel application areas are described in the concluding section of the review.
Collapse
Affiliation(s)
- Boris B Straumal
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Ac. Osipyan Str. 2, 142432 Chernogolovka, Russia
| | - Evgenii N Kurkin
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Ac. Osipyan Str. 2, 142432 Chernogolovka, Russia
| | - Igor L Balihin
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Ac. Osipyan Str. 2, 142432 Chernogolovka, Russia
| | - Elisaveta Klyatskina
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Ac. Osipyan Str. 2, 142432 Chernogolovka, Russia
| | - Peter B Straumal
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Ac. Osipyan Str. 2, 142432 Chernogolovka, Russia
| | - Natalia Yu Anisimova
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Ac. Osipyan Str. 2, 142432 Chernogolovka, Russia
| | - Mikhail V Kiselevskiy
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Ac. Osipyan Str. 2, 142432 Chernogolovka, Russia
| |
Collapse
|
4
|
Popova A, Advakhova DY, Sheveyko AN, Kuptsov KA, Slukin P, Ignatov SG, Ilnitskaya A, Timoshenko RV, Erofeev AS, Kuchmizhak AA, Subramanian B, Shtansky DV. Synergistic Bactericidal Effect of Zn 2+ Ions and Reactive Oxygen Species Generated in Response to Either UV or X-ray Irradiation of Zn-Doped Plasma Electrolytic Oxidation TiO 2 Coatings. ACS APPLIED BIO MATERIALS 2024; 7:5579-5596. [PMID: 39012035 DOI: 10.1021/acsabm.4c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Zn-containing TiO2-based coatings with Na, Ca, Si, and K additives were obtained by plasma electrolytic oxidation (PEO) of Ti in order to achieve an effective and broad bactericidal protection without compromising biocompatibility. A protocol has been developed for cleaning the coating surface from electrolyte residues, ensuring the preservation of the microstructure and composition of the surface layer. Using high-resolution transmission electron microscopy, three characteristic microstructural zones in the PEO-Zn coating are well documented: zone 1 with a TiO2-based nanocrystalline structure, zone 2 with an amorphous structure, and zone 3 around pores with an amorphous-nanocrystalline structure. The excellent cytocompatibility of PEO-Zn samples was confirmed by three different methods: monitoring the proliferation of MC3T3-E1 cells, assessing the viability of sheep osteoblast cells using calcein-AM staining and fluorescence microscopy, and incubation with spheroids based on primary osteoblast cells and mouse embryonic fibroblast NIH3T3 cells. The PEO-Zn coatings absorb >60% of the incident light over the UV and Vis-NIR spectral ranges. After 24 h, the PEO-Zn coatings completely inactivate four types of strains: Gram-positive Staphylococcus aureus CSA154 and ATCC29213 and Gram-negative Escherichia coli K261 and U20, and also prevent E. coli U20 and K261 biofilm formation. The superior antibacterial activity is associated with the synergistic effect of Zn2+ ions in safe concentration and reactive oxygen species (ROS) generated in response to either UV irradiation or soft short-term X-ray irradiation. The X-ray irradiation-induced ROS formation by a PEO coating is reported for the first time. The enhanced bactericidal activity after X-ray irradiation compared to UV illumination is attributed to the more intense ROS generation in the first few hours. The results obtained significantly expand the possibilities of using PEO coatings on the surfaces of titanium implants.
Collapse
Affiliation(s)
- Anastasiya Popova
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Darya Yu Advakhova
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | | | | | - Pavel Slukin
- National University of Science and Technology "MISIS", Moscow 119049, Russia
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia
| | - Sergei G Ignatov
- National University of Science and Technology "MISIS", Moscow 119049, Russia
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia
| | - Alla Ilnitskaya
- N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Roman V Timoshenko
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Alexander S Erofeev
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Aleksandr A Kuchmizhak
- Institute for Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
- Pacific Quantum Center, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Balasubramanian Subramanian
- Electroplating and Metal Finishing Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| |
Collapse
|
5
|
Murugesan R, Venkataramana SH, Marimuthu S, Anand PB, Nagaraja S, Isaac JS, Sudharsan RR, Yunus Khan TM, Almakayeel N, Islam S, Razak A. Influence of Alloying Materials Al, Cu, and Ca on Microstructures, Mechanical Properties, And Corrosion Resistance of Mg Alloys for Industrial Applications: A Review. ACS OMEGA 2023; 8:37641-37653. [PMID: 37867648 PMCID: PMC10586278 DOI: 10.1021/acsomega.3c03417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023]
Abstract
Magnesium is renowned for its favorable low-density attributes, rendering it a viable choice for commercial engineering applications in which weight has substantial design implications. Magnesium (Mg) stands as a readily obtainable metallic element, exhibiting robustness, efficient heat dissipation, and excellent damping properties. The utilization of pure magnesium remains infrequent due to its susceptibility to instability under high temperatures and pronounced vulnerability to corrosion within humid environments. Hence, the incorporation of magnesium alloys into the design process of aircraft, automotive, and biomedical applications assumes paramount importance. This Review presents a comprehensive review of research endeavors and their resultant achievements concerning the advancement of magnesium alloys. Specifically focusing on aerospace, automotive, and biomedical applications, the Review underscores the pivotal role played by alloying constituents, namely aluminum (Al), copper (Cu), calcium (Ca), and PEO coatings, in influencing the microstructural attributes, mechanical potency, and resistance to corrosion.
Collapse
Affiliation(s)
- Rajadurai Murugesan
- Department
of Aeronautical Engineering, Nitte Meenakshi
Institute of Technology, Bangalore, Karnataka 560064, India
| | | | - Siva Marimuthu
- School
of Digital, Technologies and Arts, Staffordshire
University, Stoke
on Trent ST42DF, United Kingdom
| | - Praveena Bindiganavile Anand
- Department
of Mechanical Engineering, Nitte Meenakshi
Institute of Technology, Bangalore, Karnataka 560064, India
| | - Santhosh Nagaraja
- Department
of Mechanical Engineering, MVJ College of
Engineering, Bangalore, Karnataka 560067, India
| | - J. Samson Isaac
- Department
of Biomedical Engineering, Karunya lnstitute
of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - R. Raja Sudharsan
- Department
of Biomedical Engineering, Sri Shanmugha
College of Engineering and Technology, Morur, Tamil Nadu 637304, India
| | - T. M. Yunus Khan
- Department
of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Naif Almakayeel
- Department
of Industrial Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Saiful Islam
- Civil
Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Abdul Razak
- Department
of Mechanical Engineering, P. A. College
of Engineering, Mangaluru, Karnataka 574153, India
| |
Collapse
|
6
|
Akram W, Zahid R, Usama RM, AlQahtani SA, Dahshan M, Basit MA, Yasir M. Enhancement of Antibacterial Properties, Surface Morphology and In Vitro Bioactivity of Hydroxyapatite-Zinc Oxide Nanocomposite Coating by Electrophoretic Deposition Technique. Bioengineering (Basel) 2023; 10:693. [PMID: 37370624 DOI: 10.3390/bioengineering10060693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
To develop medical-grade stainless-steel 316L implants that are biocompatible, non-toxic and antibacterial, such implants need to be coated with biomaterials to meet the current demanding properties of biomedical materials. Hydroxyapatite (HA) is commonly used as a bone implant coating due to its excellent biocompatible properties. Zinc oxide (ZnO) nanoparticles are added to HA to increase its antibacterial and cohesion properties. The specimens were made of a stainless-steel grade 316 substrate coated with HA-ZnO using the electrophoretic deposition technique (EPD), and were subsequently characterized using scanning electron microscopy (SEM), energy dispersive X-ray (EDX), stylus profilometry, electrochemical corrosion testing and Fourier transform infrared (FTIR) spectroscopy. Additionally, cross-hatch tests, cell viability assays, antibacterial assessment and in vitro activity tests in simulated body fluid (SBF) were performed. The results showed that the HA-ZnO coating was uniform and resistant to corrosion in an acceptable range. FTIR confirmed the presence of HA-ZnO compositions, and the in vitro response and adhesion were in accordance with standard requirements for biomedical materials. Cell viability confirmed the viability of cells in an acceptable range (>70%). In addition, the antibacterial activity of ZnO was confirmed on Staphylococcus aureus. Thus, the HA-ZnO samples are recommended for biomedical applications.
Collapse
Affiliation(s)
- Waseem Akram
- Department of Mechanical Engineering, Faculty of Engineering & Technology, International Islamic University, Islamabad 44000, Pakistan
| | - Rumaisa Zahid
- Department of Materials Science & Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Raja Muhammad Usama
- Department of Materials Science & Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Salman Ali AlQahtani
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia
| | - Mostafa Dahshan
- School of Computing, Mathematics and Engineering, Charles Sturt University, Panorama Avenue, Bathurst, NSW 2795, Australia
| | - Muhammad Abdul Basit
- Department of Materials Science & Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Muhammad Yasir
- Department of Materials Science & Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| |
Collapse
|
7
|
Costa RC, Nagay BE, Dini C, Borges MHR, Miranda LFB, Cordeiro JM, Souza JGS, Sukotjo C, Cruz NC, Barão VAR. The race for the optimal antimicrobial surface: perspectives and challenges related to plasma electrolytic oxidation coating for titanium-based implants. Adv Colloid Interface Sci 2023; 311:102805. [PMID: 36434916 DOI: 10.1016/j.cis.2022.102805] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/01/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023]
Abstract
Plasma electrolytic oxidation (PEO) is a low-cost, structurally reliable, and environmentally friendly surface modification method for orthopedic and dental implants. This technique is successful for the formation of porous, corrosion-resistant, and bioactive coatings, besides introducing antimicrobial compounds easily. Given the increase in implant-related infections, antimicrobial PEO-treated surfaces have been widely proposed to surmount this public health concern. This review comprehensively discusses antimicrobial implant surfaces currently produced by PEO in terms of their in vitro and in vivo microbiological and biological properties. We present a critical [part I] and evidence-based [part II] review about the plethora of antimicrobial PEO-treated surfaces. The mechanism of microbial accumulation on implanted devices and the principles of PEO technology to ensure antimicrobial functionalization by one- or multi-step processes are outlined. Our systematic literature search showed that particular focus has been placed on the metallic and semi-metallic elements incorporated into PEO surfaces to facilitate antimicrobial properties, which are often dose-dependent, without leading to cytotoxicity in vitro. Meanwhile, there are concerns over the biocompatibility of PEO and its long-term antimicrobial effects in animal models. We clearly highlight the importance of using clinically relevant infection models and in vivo long-term assessments to guarantee the rational design of antimicrobial PEO-treated surfaces to identify the 'finish line' in the race for antimicrobial implant surfaces.
Collapse
Affiliation(s)
- Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Maria H R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Luís F B Miranda
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Jairo M Cordeiro
- Department of Dentistry, Centro Universitário das Faculdades Associadas de Ensino (UNIFAE), Sāo Joāo da Boa Vista, Sāo Paulo 13870-377, Brazil
| | - Joāo G S Souza
- Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil; Dentistry Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais 39401-303, Brazil
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago College of Dentistry, Chicago, IL 60612, USA
| | - Nilson C Cruz
- Laboratory of Technological Plasmas, Institute of Science and Technology, Sāo Paulo State University (UNESP), Sorocaba, Sāo Paulo 18087-180, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil.
| |
Collapse
|
8
|
Wang R, Ni S, Ma L, Li M. Porous construction and surface modification of titanium-based materials for osteogenesis: A review. Front Bioeng Biotechnol 2022; 10:973297. [PMID: 36091459 PMCID: PMC9452912 DOI: 10.3389/fbioe.2022.973297] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Titanium and titanium alloy implants are essential for bone tissue regeneration engineering. The current trend is toward the manufacture of implants from materials that mimic the structure, composition and elasticity of bones. Titanium and titanium alloy implants, the most common materials for implants, can be used as a bone conduction material but cannot promote osteogenesis. In clinical practice, there is a high demand for implant surfaces that stimulate bone formation and accelerate bone binding, thus shortening the implantation-to-loading time and enhancing implantation success. To avoid stress shielding, the elastic modulus of porous titanium and titanium alloy implants must match that of bone. Micro-arc oxidation technology has been utilized to increase the surface activity and build a somewhat hard coating on porous titanium and titanium alloy implants. More recently, a growing number of researchers have combined micro-arc oxidation with hydrothermal, ultrasonic, and laser treatments, coatings that inhibit bacterial growth, and acid etching with sand blasting methods to improve bonding to bone. This paper summarizes the reaction at the interface between bone and implant material, the porous design principle of scaffold material, MAO technology and the combination of MAO with other technologies in the field of porous titanium and titanium alloys to encourage their application in the development of medical implants.
Collapse
Affiliation(s)
- Rui Wang
- Department of Stomatology, The Second Hospital of Jilin University, Changchun, China
| | - Shilei Ni
- Department of Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Li Ma
- Department of Fever Clinic, The Second Hospital of Jilin University, Changchun, China
| | - Meihua Li
- Department of Stomatology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Meihua Li,
| |
Collapse
|
9
|
Plasma Electrolytic Oxidation Ceramic Coatings on Zirconium (Zr) and Zr-Alloys: Part-II: Properties and Applications. COATINGS 2021. [DOI: 10.3390/coatings11060620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A plasma electrolytic oxidation (PEO) is an electrochemical and eco-friendly process where the surface features of the metal substrate are changed remarkably by electrochemical reactions accompanied by plasma micro-discharges. A stiff, adhesive, and conformal oxide layer on the Zr and Zr-alloy substrates can be formed by applying the PEO process. The review describes recent progress on various applications and functionality of PEO coatings in light of increasing industrial, medical, and optoelectronic demands for the production of advanced coatings. Besides, it explains how the PEO coating can address concerns about employing protective and long-lasting coatings with a remarkable biocompatibility and a broad excitation and absorption range of photoluminescence. A general overview of the process parameters of coatings is provided, accompanied by some information related to the biological conditions, under which, coatings are expected to function. The focus is to explain how the biocompatibility of coatings can be improved by tailoring the coating process. After that, corrosion and wear performance of PEO coatings are described in light of recognizing parameters that lead to the formation of coatings with outstanding performance in extreme loading conditions and corrosive environments. Finally, a future outlook and suggested research areas are outlined. The emerging applications derived from paramount features of the coating are considered in light of practical properties of coatings in areas including biocompatibility and bioactivity, corrosion and wear protection, and photoluminescence of coatings
Collapse
|
10
|
van Hengel IAJ, Tierolf MWAM, Fratila-Apachitei LE, Apachitei I, Zadpoor AA. Antibacterial Titanium Implants Biofunctionalized by Plasma Electrolytic Oxidation with Silver, Zinc, and Copper: A Systematic Review. Int J Mol Sci 2021; 22:3800. [PMID: 33917615 PMCID: PMC8038786 DOI: 10.3390/ijms22073800] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Patients receiving orthopedic implants are at risk of implant-associated infections (IAI). A growing number of antibiotic-resistant bacteria threaten to hamper the treatment of IAI. The focus has, therefore, shifted towards the development of implants with intrinsic antibacterial activity to prevent the occurrence of infection. The use of Ag, Cu, and Zn has gained momentum as these elements display strong antibacterial behavior and target a wide spectrum of bacteria. In order to incorporate these elements into the surface of titanium-based bone implants, plasma electrolytic oxidation (PEO) has been widely investigated as a single-step process that can biofunctionalize these (highly porous) implant surfaces. Here, we present a systematic review of the studies published between 2009 until 2020 on the biomaterial properties, antibacterial behavior, and biocompatibility of titanium implants biofunctionalized by PEO using Ag, Cu, and Zn. We observed that 100% of surfaces bearing Ag (Ag-surfaces), 93% of surfaces bearing Cu (Cu-surfaces), 73% of surfaces bearing Zn (Zn-surfaces), and 100% of surfaces combining Ag, Cu, and Zn resulted in a significant (i.e., >50%) reduction of bacterial load, while 13% of Ag-surfaces, 10% of Cu-surfaces, and none of Zn or combined Ag, Cu, and Zn surfaces reported cytotoxicity against osteoblasts, stem cells, and immune cells. A majority of the studies investigated the antibacterial activity against S. aureus. Important areas for future research include the biofunctionalization of additively manufactured porous implants and surfaces combining Ag, Cu, and Zn. Furthermore, the antibacterial activity of such implants should be determined in assays focused on prevention, rather than the treatment of IAIs. These implants should be tested using appropriate in vivo bone infection models capable of assessing whether titanium implants biofunctionalized by PEO with Ag, Cu, and Zn can contribute to protect patients against IAI.
Collapse
Affiliation(s)
- Ingmar A. J. van Hengel
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands; (M.W.A.M.T.); (L.E.F.-A.); (I.A.); (A.A.Z.)
| | | | | | | | | |
Collapse
|
11
|
Liu J, Zhang X, Wang R, Long F, Liu L. A Stable and Indurative Superhydrophobic Film with Excellent Anti-Bioadhesive Performance for 6061 Al Protection. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5564. [PMID: 33291306 PMCID: PMC7731204 DOI: 10.3390/ma13235564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022]
Abstract
Superhydrophobic surfaces have attracted intensive attention in the antifouling field because of their excellent anti-bioadhesive performance and environmental friendliness. However, promising surfaces have met great challenges of poor mechanical robustness under harsh serving conditions. Herein, an organic-inorganic composite strategy, that the silane-modified TiO2 nanoparticles are compounded into the porous framework provided by the stable and indurative aluminum oxide film, is proposed to address the common serious problem in superhydrophobic surfaces. Different from the traditional superhydrophobic surfaces, this composite film possesses a ~18 μm thick layer which can provide strong support to silane-modified TiO2 nanoparticles. The resulting film can reserve superhydrophobicity to the surface even after a thickness loss of ~15 μm under continuous abrasion. At the same time, the results of the bacterial adhesive tests also verify that the film has the same long-term anti-bioadhesive performance. The film with superhydrophobicity, excellent anti-bioadhesive property, and stable robustness will make it a promising candidate for serving in a harsh environment, and the design concept of this film could be applied to various substrates.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (J.L.); (X.Z.); (R.W.); (F.L.)
| | - Xinwen Zhang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (J.L.); (X.Z.); (R.W.); (F.L.)
| | - Ruoyun Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (J.L.); (X.Z.); (R.W.); (F.L.)
| | - Fei Long
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (J.L.); (X.Z.); (R.W.); (F.L.)
| | - Lei Liu
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (J.L.); (X.Z.); (R.W.); (F.L.)
- Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Shimabukuro M. Antibacterial Property and Biocompatibility of Silver, Copper, and Zinc in Titanium Dioxide Layers Incorporated by One-Step Micro-Arc Oxidation: A Review. Antibiotics (Basel) 2020; 9:E716. [PMID: 33092058 PMCID: PMC7589568 DOI: 10.3390/antibiotics9100716] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Titanium (Ti) and its alloys are commonly used in medical devices. However, biomaterial-associated infections such as peri-implantitis and prosthetic joint infections are devastating and threatening complications for patients, dentists, and orthopedists and are easily developed on titanium surfaces. Therefore, this review focuses on the formation of biofilms on implant surfaces, which is the main cause of infections, and one-step micro-arc oxidation (MAO) as a coating technology that can be expected to prevent infections due to the implant. Many researchers have provided sufficient data to prove the efficacy of MAO for preventing the initial stages of biofilm formation on implant surfaces. Silver (Ag), copper (Cu), and zinc (Zn) are well used and are incorporated into the Ti surface by MAO. In this review, the antibacterial properties, cytotoxicity, and durability of these elements on the Ti surface incorporated by one-step MAO will be summarized. This review is aimed at enhancing the importance of the quantitative control of Ag, Cu, and Zn for their use in implant surfaces and the significance of the biodegradation behavior of these elements for the development of antibacterial properties.
Collapse
Affiliation(s)
- Masaya Shimabukuro
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
13
|
Polo TOB, Silva WPP, Momesso GAC, Lima-Neto TJ, Barbosa S, Cordeiro JM, Hassumi JS, da Cruz NC, Okamoto R, Barão VAR, Faverani LP. Plasma Electrolytic Oxidation as a Feasible Surface Treatment for Biomedical Applications: an in vivo study. Sci Rep 2020; 10:10000. [PMID: 32561767 PMCID: PMC7305204 DOI: 10.1038/s41598-020-65289-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/28/2020] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES In this in vivo animal study, we evaluated the effect of plasma electrolytic oxidation (PEO) coating on the topographic and biological parameters of implants installed in rats with induced osteoporosis and low-quality bones. MATERIALS AND METHODS In total 44 Wistar rats (Rattus novergicus), 6 months old, were submitted to ovariectomy (OXV group) and dummy surgery (SHAM group). After 90 days, the ELISA test was performed and the ovariectomy effectiveness was confirmed. In each tibial metaphysis, an implant with PEO coating containing Ca2+ and P5+ molecules were installed, and the other tibia received an implant with SLA acid etching and blasting (AC) (control surface). After 42 days, 16 rats from each group were euthanized, their tibias were removed for histological and immunohistochemical analysis (OPG, RANKL, OC and TRAP), as well as reverse torque biomechanics. Data were submitted to One-way ANOVA or Kruskal-Wallis tests, followed by a Tukey post-test; P < 0.05. Histological analyses showed higher bone neoformation values among the members of the PEO group, SHAM and OVX groups. Immunohistochemical analysis demonstrated equilibrium in all groups when comparing surfaces for TRAP, OC and RANKL (P > 0.05), whereas OPG showed higher PEO labeling in the OVX group (P < 0.05). Biomechanical analysis showed higher reverse torque values (N.cm) for PEO, irrespective of whether they were OVX or SHAM groups (P < 0.05). CONCLUSION The results indicated that the PEO texturing method favored bone formation and showed higher bone maturation levels during later periods in osteoporotic rats.
Collapse
Affiliation(s)
- Tárik Ocon Braga Polo
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - William Phillip Pereira Silva
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Gustavo Antonio Correa Momesso
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Tiburtino José Lima-Neto
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Stéfany Barbosa
- Undergradutate student, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Jairo Matozinho Cordeiro
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av Limeira, 901, Piracicaba, São Paulo, CEP13414-903, Brazil.,Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Sao Paulo, Brazil
| | - Jaqueline Suemi Hassumi
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Nilson Cristino da Cruz
- Technological Plasma Laboratory (LaPTec), Experimental Campus of Sorocaba, Sao Paulo State University-Unesp, Sorocaba, Brazil
| | - Roberta Okamoto
- Department of Basic Sciences, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil
| | - Valentim A R Barão
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av Limeira, 901, Piracicaba, São Paulo, CEP13414-903, Brazil.,Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Sao Paulo, Brazil
| | - Leonardo P Faverani
- Department of Diagnosis and Surgery, Sao Paulo State University - Unesp. School of Dentistry, Rua José Bonifácio, 1193, Araçatuba, ZIP code:, CEP16015-050, Sao Paulo, Brazil.
| |
Collapse
|
14
|
Phosphate Porous Coatings Enriched with Selected Elements via PEO Treatment on Titanium and Its Alloys: A Review. MATERIALS 2020; 13:ma13112468. [PMID: 32481746 PMCID: PMC7321118 DOI: 10.3390/ma13112468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
This paper shows that the subject of porous coatings fabrication by Plasma Electrolytic Oxidation (PEO), known also as Micro Arc Oxidation (MAO), is still current, inter alia because metals and alloys, which can be treated by the PEO method, for example, titanium, niobium, tantalum and their alloys, are increasingly available for sale. On the international market, apart from scientific works/activity developed at universities, scientific research on the PEO coatings is also underway in companies such as Keronite (Great Britain), Magoxid-Coat (Germany), Mofratech (France), Machaon (Russia), as well as CeraFuse, Tagnite, Microplasmic (USA). In addition, it should be noted that the development of the space industry and implantology will force the production of trouble-free micro- and macro-machines with very high durability. Another aspect in favor of this technique is the rate of part treatment, which does not exceed several dozen minutes, and usually only lasts a few minutes. Another advantage is functionalization of fabricated surface through thermal or hydrothermal modification of fabricated coatings, or other methods (Physical vapor deposition (PVD), chemical vapor deposition (CVD), sol-gel), including also reoxidation by PEO treatment in another electrolyte. In the following chapters, coatings obtained both in aqueous solutions and electrolytes based on orthophosphoric acid will be presented; therein, dependent on the PEO treatment and the electrolyte used, they are characterized by different properties associated with their subsequent use. The possibilities for using coatings produced by means of plasma electrolytic oxidation are very wide, beginning from various types of catalysts, gas sensors, to biocompatible and antibacterial coatings, as well as hard wear coatings used in machine parts, among others, used in the aviation and aerospace industries.
Collapse
|
15
|
Antibacterial and cytocompatible coatings based on poly(adipic anhydride) for a Ti alloy surface. Bioact Mater 2020; 5:709-720. [PMID: 32478204 PMCID: PMC7248586 DOI: 10.1016/j.bioactmat.2020.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
This paper describes a formation of hybrid coatings on a Ti–2Ta–3Zr–36Nb surface. This is accomplished by plasma electrolytic oxidation and a dip-coating technique with poly(adipic anhydride) ((C6H8O3)n) that is loaded with drugs: amoxicillin (C16H19N3O5S), cefazolin (C14H14N8O4S3) or vancomycin (C66H75Cl2N9O24 · xHCl). The characteristic microstructure of the polymer was evaluated using scanning electron microscopy and confocal microscopy. Depending on the surface treatment, the surface roughness varied (between 1.53 μm and 2.06 μm), and the wettability was change with the over of time. X-ray photoelectron spectroscopy analysis showed that the oxide layer did not affect the polymer layer or loaded drugs. However, the drugs lose their stability in a phosphate-buffered saline solution after 6.5 h of exposure, and its decrease was greater than 7% (HPLC analysis). The stability, drug release and concentration of the drug loaded into the material were precisely analyzed by high-performance liquid chromatography. The results correlated with the degradation of the polymer in which the addition of drugs caused the percent of degraded polymer to be between 35.5% and 49.4% after 1 h of material immersion, depending on the mass of the loaded drug and various biological responses that were obtained. However, all of the coatings were cytocompatible with MG-63 osteoblast-like cells. The drug concentrations released from the coatings were sufficient to inhibit adhesion of reference and clinical bacterial strains (S. aureus). The coatings with amoxicillin showed the best results in the bacterial inhibition zone, whereas coatings with cefazolin inhibited adhesion of the above bacteria on the surface. Hybrid layers containing fast degradable poly(adipic anhydride) (PADA) were performed. Drugs stability, concentration of released and loaded drugs were evaluated using HPLC. Adhesion of S. aureus clinical and reference strains confirmed the antibaterial properties. Performed hybrid layers were cytocompatible (MG-63 tests).
Collapse
|
16
|
Hnatko M, Hičák M, Labudová M, Galusková D, Sedláček J, Lenčéš Z, Šajgalík P. Bioactive silicon nitride by surface thermal treatment. Ann Ital Chir 2020. [DOI: 10.1016/j.jeurceramsoc.2019.12.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Chen C, Bai X, Ding Y, Lee IS. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater Res 2019; 23:25. [PMID: 31844552 PMCID: PMC6896676 DOI: 10.1186/s40824-019-0176-8] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
Recently, electrical stimulation as a physical stimulus draws lots of attention. It shows great potential in disease treatment, wound healing, and mechanism study because of significant experimental performance. Electrical stimulation can activate many intracellular signaling pathways, and influence intracellular microenvironment, as a result, affect cell migration, cell proliferation, and cell differentiation. Electrical stimulation is using in tissue engineering as a novel type of tool in regeneration medicine. Besides, with the advantages of biocompatible conductive materials coming into view, the combination of electrical stimulation with suitable tissue engineered scaffolds can well combine the benefits of both and is ideal for the field of regenerative medicine. In this review, we summarize the various materials and latest technologies to deliver electrical stimulation. The influences of electrical stimulation on cell alignment, migration and its underlying mechanisms are discussed. Then the effect of electrical stimulation on cell proliferation and differentiation are also discussed.
Collapse
Affiliation(s)
- Cen Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018 People’s Republic of China
| | - Xue Bai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Yahui Ding
- Department of Cardiology, Zhejiang Provincial People’s Hospital, Hangzhou, 310014 People’s Republic of China
- People’s Hospital of Hangzhou Medical College, Hangzhou, 310014 People’s Republic of China
| | - In-Seop Lee
- Institute of Natural Sciences, Yonsei University, 134 Shinchon-dong, Seodaemoon-gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
18
|
Characterization, Bioactivity and Antibacterial Properties of Copper-Based TiO2 Bioceramic Coatings Fabricated on Titanium. COATINGS 2018. [DOI: 10.3390/coatings9010001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The bioactive and anti-bacterial Cu-based bioceramic TiO2 coatings have been fabricated on cp-Ti (Grade 2) by two-steps. These two-steps combine micro-arc oxidation (MAO) and physical vapor deposition–thermal evaporation (PVD-TE) techniques for dental implant applications. As a first step, all surfaces of cp-Ti substrate were coated by MAO technique in an alkaline electrolyte, consisting of Na3PO4 and KOH in de-ionized water. Then, as a second step, a copper (Cu) nano-layer with 5 nm thickness was deposited on the MAO by PVD-TE technique. Phase structure, morphology, elemental amounts, thickness, roughness and wettability of the MAO and Cu-based MAO coating surfaces were characterized by XRD (powder- and TF-XRD), SEM, EDS, eddy current device, surface profilometer and contact angle goniometer, respectively. The powder- and TF-XRD spectral analyses showed that Ti, TiO2, anatase-TiO2 and rutile-TiO2 existed on the MAO and Cu-based MAO coatings’ surfaces. All coatings’ surfaces were porous and rough, owing to the presence of micro sparks through MAO. Furthermore, the surface morphology of Cu-based MAO was not changed. Also, the Cu-based MAO coating has more hydrophilic properties than the MAO coating. In vitro bioactivity and in vitro antibacterial properties of the coatings have been investigated by immersion in simulated body fluid (SBF) at 36.5 °C for 28 days and bacterial adhesion for gram-positive (S. aureus) and gram-negative (E. coli) bacteria, respectively. The apatite layer was formed on the MAO and Cu-based MAO surfaces at post-immersion in SBF and therefore, the bioactivity of Cu-based MAO surface was increased to the MAO surface. Also, for S. aureus and E. coli, the antibacterial properties of Cu-based MAO coatings were significantly improved compared to one of the uncoated MAO surfaces. These results suggested that Cu-based MAO coatings on cp-Ti could be a promising candidate for biomedical dental implant applications.
Collapse
|
19
|
A critical review of multifunctional titanium surfaces: New frontiers for improving osseointegration and host response, avoiding bacteria contamination. Acta Biomater 2018; 79:1-22. [PMID: 30121373 DOI: 10.1016/j.actbio.2018.08.013] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023]
Abstract
Evolution of metal implants progressively shifted the focus from adequate mechanical strength to improved biocompatibility and absence of toxicity and, finally, to fast osseointegration. Recently, new frontiers and challenges of Ti implants have been addressed to improvement of bioactivity, fighting of bacterial infection and biofilm formation, as well as modulation of inflammation. This is closely related to the clinical demand of multifunctional implants able to simultaneously have a number of specific responses with respect to body fluids, cells (osteoblasts, fibroblasts, macrophages) and pathogenic agents (bacteria, viruses). This complex system of multiple biological stimuli and surface responses is a major arena of the current research on biomaterials and biosurfaces. This review covers the strategies explored to this purpose since 2010 in the case of Ti and Ti alloys, considering that the number of related papers doubled about in the last seven years and no review has comprehensively covered this engaging research area yet. The different approaches followed for producing multifunctional Ti-based surfaces involve the use of thick and thin inorganic coatings, chemical surface treatments, and functionalization strategies coupled with organic coatings. STATEMENT OF SIGNIFICANCE According to the clinical demand of multifunctional implants able to simultaneously have a number of specific responses with respect to body fluids, cells and pathogenic agents, new frontiers of Ti implants have been addressed to improvement of bioactivity, fighting of bacterial infection and biofilm formation, as well as modulation of inflammation. Literature since 2010 is here reviewed. Several strategies for getting bioactive and antibacterial actions on Ti surfaces have been suggested, but they still need to be optimized with respect to several concerns. A further step will be to combine on the same surface a proven ability of modulation of inflammatory response. The achievement of multifunctional surfaces able to modulate inflammation and to promote osteogenesis is a grand challenge.
Collapse
|
20
|
Alves AC, Thibeaux R, Toptan F, Pinto AMP, Ponthiaux P, David B. Influence of macroporosity on NIH/3T3 adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 over bio-functionalized highly porous titanium implant material. J Biomed Mater Res B Appl Biomater 2018. [PMID: 29520948 DOI: 10.1002/jbm.b.34096] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Highly porous Ti implant materials are being used in order to overcome the stress shielding effect on orthopedic implants. However, the lack of bioactivity on Ti surfaces is still a major concern regarding the osseointegration process. It is known that the rapid recruitment of osteoblasts in bone defects is an essential prerequisite for efficient bone repair. Conventionally, osteoblast recruitment to bone defects and subsequent bone repair has been achieved using growth factors. Thus, in this study highly porous Ti samples were processed by powder metallurgy using space holder technique followed by the bio-functionalization through microarc oxidation using a Ca- and P-rich electrolyte. The biological response in terms of early cell response, namely, adhesion, spreading, viability, and proliferation of the novel biofunctionalized highly porous Ti was carried out with NIH/3T3 fibroblasts and MC3T3-E1 preosteoblasts in terms of viability, adhesion, proliferation, and alkaline phosphatase activity. Results showed that bio-functionalization did not affect the cell viability. However, bio-functionalized highly porous Ti (22% porosity) enhanced the cell proliferation and activity. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 73-85, 2019.
Collapse
Affiliation(s)
- A C Alves
- CMEMS-UMinho - Center of MicroElectroMechanical Systems - Universidade do Minho, Campus de Azuém, Guimarães, Portugal
| | - R Thibeaux
- MSSMat, Laboratoire de Mécanique des Sols, Structures et Matériaux, UMR CNRS 8579, CentraleSupélec, Université Paris Saclay, Châtenay-Malabry, France
| | - F Toptan
- CMEMS-UMinho - Center of MicroElectroMechanical Systems - Universidade do Minho, Campus de Azuém, Guimarães, Portugal.,DEM - Departament of Mechanical Engineering - Universidade do Minho, Campus de Azurém, Guimarães, Portugal.,IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UNESP, Campus de Bauru, Bauru, SP, Brazil
| | - A M P Pinto
- CMEMS-UMinho - Center of MicroElectroMechanical Systems - Universidade do Minho, Campus de Azuém, Guimarães, Portugal.,DEM - Departament of Mechanical Engineering - Universidade do Minho, Campus de Azurém, Guimarães, Portugal
| | - P Ponthiaux
- LGPM, Laboratoire de Génie des Procédés et Matériaux, CentraleSupélec, Université Paris Saclay, Châtenay-Malabry, France
| | - B David
- MSSMat, Laboratoire de Mécanique des Sols, Structures et Matériaux, UMR CNRS 8579, CentraleSupélec, Université Paris Saclay, Châtenay-Malabry, France
| |
Collapse
|
21
|
Rizwan M, Alias R, Zaidi UZ, Mahmoodian R, Hamdi M. Surface modification of valve metals using plasma electrolytic oxidation for antibacterial applications: A review. J Biomed Mater Res A 2017; 106:590-605. [PMID: 28975693 DOI: 10.1002/jbm.a.36259] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/13/2017] [Accepted: 09/26/2017] [Indexed: 01/15/2023]
Abstract
Plasma electrolytic oxidation (PEO) is an advance technique to develop porous oxidation layer on light metals, primarily to enhance corrosion and wear resistance. The oxidation layer can also offer a wide variety of mechanical, biomedical, tribological, and antibacterial properties through the incorporation of several ions and particles. Due to the increasing need of antimicrobial surfaces for biomedical implants, antibacterial PEO coatings have been developed through the incorporation of antibacterial agents. Metallic nanoparticles that have been employed most widely as antibacterial agents are reported to demonstrate serious health and environmental threats. To overcome the current limitations of these coatings, there is a significant need to develop antibacterial surfaces that are not harmful for patient's health and environment. Attention of the readers has been directed to utilize bioactive glasses as antibacterial agents for PEO coatings. Bioactive glasses are well known for their excellent bioactivity, biocompatibility, and antibacterial character. PEO coatings incorporated with bioactive glasses can provide environment-friendly antimicrobial surfaces with exceptional bioactivity, biocompatibility, and osseointegration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 590-605, 2018.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Department of Metallurgical Engineering, Faculty of Chemical and Process Engineering, NED University of Engineering and Technology, Karachi, 75270, Pakistan
| | - Rodianah Alias
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Department of Manufacturing Technology, Faculty of Innovative Design and Technology, University Sultan Zainal Abidin (UNISZA), Kuala Terengganu, 21030, Malaysia
| | - Umi Zhalilah Zaidi
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Centre of Advanced Manufacturing and Material Processing, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Reza Mahmoodian
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Centre of Advanced Manufacturing and Material Processing, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Department of Research and Development, Azarin Kar Ind. Co., Industrial Park 1, Kerman, 7635168361, Iran
| | - Mohd Hamdi
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.,Centre of Advanced Manufacturing and Material Processing, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
22
|
Davey AV. The effect of manufacturing techniques on custom-made titanium cranioplasty plates: A pilot study. J Craniomaxillofac Surg 2017; 45:2017-2027. [PMID: 29096989 DOI: 10.1016/j.jcms.2017.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE This study investigated the effect of varying techniques on the surface characteristics of pressed titanium cranioplasty plates, commonly manufactured in laboratory practice. The aim was to highlight the variety of techniques currently used, assess these methods of manufacture and produce manufacturing recommendations. METHODS A questionnaire identified manufacturing methods commonly used by maxillofacial prosthetists. The plate surfaces were examined using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectrometry. The surface differences and titanium compositions were statistically analysed. RESULTS Bead blasting with aluminium oxide (Al2O3) showed a significant decrease (p < 0.001) in titanium surface composition, replaced by a large aluminium content. Trimming tool choice had a significant impact (p = 0.001) on surface contamination by smoothing wheel material deposition; however passivation and anodising techniques had no significant effect (p = 0.293 and p = 0.257, respectively) on the surface composition or roughness of titanium samples. CONCLUSIONS A large range of manufacturing techniques of titanium cranioplasty plates was confirmed and significant differences were found. Amongst other recommendations, bead blasting with Al2O3 is not recommended for commercially pure titanium implant surface finishing due to aluminium contamination. The recommendations outlined will minimise manufacturing time, reduce risk of complication (thus costs) and unify methods to enable a safe, reliable treatment.
Collapse
Affiliation(s)
- Amy V Davey
- Reconstructive Prosthetics North Bristol NHS Trust, Gate 24, Level 1, Brunel Building, Southmead Hospital, Southmead Road, Westbury-on-Trym, Bristol, BS10 5NB, UK.
| |
Collapse
|
23
|
Characterisation of Calcium- and Phosphorus-Enriched Porous Coatings on CP Titanium Grade 2 Fabricated by Plasma Electrolytic Oxidation. METALS 2017. [DOI: 10.3390/met7090354] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Review of Antibacterial Activity of Titanium-Based Implants’ Surfaces Fabricated by Micro-Arc Oxidation. COATINGS 2017. [DOI: 10.3390/coatings7030045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Karbowniczek J, Cordero-Arias L, Virtanen S, Misra SK, Valsami-Jones E, Tuchscherr L, Rutkowski B, Górecki K, Bała P, Czyrska-Filemonowicz A, Boccaccini AR. Electrophoretic deposition of organic/inorganic composite coatings containing ZnO nanoparticles exhibiting antibacterial properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:780-789. [PMID: 28532093 DOI: 10.1016/j.msec.2017.03.180] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/22/2017] [Accepted: 03/21/2017] [Indexed: 01/20/2023]
Abstract
To address one of the serious problems associated with permanent implants, namely bacterial infections, novel organic/inorganic coatings containing zinc oxide nanoparticles (nZnO) are proposed. Coatings were obtained by electrophoretic deposition (EPD) on stainless steel 316L. Different deposition conditions namely: deposition times in the range 60-300s and applied voltage in the range 5-30V as well as developing a layered coating approach were studied. Antibacterial tests against gram-positive Staphylococcus aureus and gram-negative Salmonella enteric bacteria confirmed the activity of nZnO to prevent bacterial growth. Coatings composition and morphology were analyzed by thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. Moreover, the corrosion resistance was analyzed by evaluation of the polarization curves in DMEM at 37°C, and it was found that coatings containing nZnO increased the corrosion resistance compared to the bare substrate. Considering all results, the newly developed coatings represent a suitable alternative for the surface modification of metallic implants.
Collapse
Affiliation(s)
- Joanna Karbowniczek
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. A. Mickiewicza 30, PL-30059 Krakow, Poland
| | - Luis Cordero-Arias
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, D-91058 Erlangen, Germany; Escuela de Ciencia e Ingeniería de los Materiales (ECIM), Costa Rican Institute of Technology (ITCR), Cartago 159-7050, Costa Rica
| | - Sannakaisa Virtanen
- Institute for Surface Science and Corrosion, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany
| | - Superb K Misra
- Materials Science and Engineering, Indian Institute of Technology-Gandhinagar, India
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Bogdan Rutkowski
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. A. Mickiewicza 30, PL-30059 Krakow, Poland
| | - Kamil Górecki
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. A. Mickiewicza 30, PL-30059 Krakow, Poland
| | - Piotr Bała
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. A. Mickiewicza 30, PL-30059 Krakow, Poland; Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. A. Mickiewicza 30, PL-30059, Krakow, Poland
| | - Aleksandra Czyrska-Filemonowicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. A. Mickiewicza 30, PL-30059 Krakow, Poland
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, D-91058 Erlangen, Germany.
| |
Collapse
|
26
|
Fidan S, Muhaffel F, Riool M, Cempura G, de Boer L, Zaat S, Filemonowicz AC, Cimenoglu H. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:565-569. [DOI: 10.1016/j.msec.2016.11.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/02/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
|
27
|
Rokosz K, Hryniewicz T, Matýsek D, Raaen S, Valíček J, Dudek Ł, Harničárová M. SEM, EDS and XPS Analysis of the Coatings Obtained on Titanium after Plasma Electrolytic Oxidation in Electrolytes Containing Copper Nitrate. MATERIALS 2016; 9:ma9050318. [PMID: 28773443 PMCID: PMC5503094 DOI: 10.3390/ma9050318] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 11/29/2022]
Abstract
In the paper, the Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS) results of the surface layer formed on pure titanium after plasma electrolytic oxidation (micro arc oxidation) at the voltage of 450 V are shown. As an electrolyte, the mixture of copper nitrate Cu(NO3)2 (10–600 g/L) in concentrated phosphoric acid H3PO4 (98 g/mol) was used. The thickness of the obtained porous surface layer equals about 10 μm, and it consists mainly of titanium phosphates and oxygen with embedded copper ions as a bactericidal agent. The maximum percent of copper in the PEO surface layer was equal to 12.2 ± 0.7 wt % (7.6 ± 0.5 at %), which is the best result that the authors obtained. The top surface layer of all obtained plasma electrolytic oxidation (PEO) coatings consisted most likely mainly of Ti3(PO4)4∙nH3PO4 and Cu3(PO4)2∙nH3PO4 with a small addition of CuP2, CuO and Cu2O.
Collapse
Affiliation(s)
- Krzysztof Rokosz
- Division of Surface Electrochemistry & Technology, Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland.
| | - Tadeusz Hryniewicz
- Division of Surface Electrochemistry & Technology, Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland.
| | - Dalibor Matýsek
- Institute of Geological Engineering, Faculty of Mining and Geology, ŠB-Technical University of Ostrava, 708 33 Ostrava, Czech Republic.
| | - Steinar Raaen
- Department of Physics, Norwegian University of Science and Technology (NTNU), Realfagbygget E3-124 Høgskoleringen 5, NO 7491 Trondheim, Norway.
| | - Jan Valíček
- Institute of Physics, Faculty of Mining and Geology, VŠB-Technical University of Ostrava, 708 33 Ostrava, Czech Republic.
- Institute of Clean Technologies for Mining and Utilization of Raw Materials for Energy Use, Faculty of Mining and Geology, VŠB-Technical University of Ostrava, 708 33 Ostrava, Czech Republic.
- Regional Materials Science and Technology Centre, Faculty of Metallurgy and Materials Engineering, VŠB-Technical University of Ostrava, 708 33 Ostrava, Czech Republic.
| | - Łukasz Dudek
- Division of Surface Electrochemistry & Technology, Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, PL 75-620 Koszalin, Poland.
| | - Marta Harničárová
- Institute of Physics, Faculty of Mining and Geology, VŠB-Technical University of Ostrava, 708 33 Ostrava, Czech Republic.
| |
Collapse
|
28
|
Muhaffel F, Cimenoglu H. Synthesis of zirconia-incorporated titania layer by microarc oxidation for biomedical applications. SURF INTERFACE ANAL 2015. [DOI: 10.1002/sia.5869] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Faiz Muhaffel
- Department of Metallurgical and Materials Engineering; Istanbul Technical University; Istanbul Turkey
| | - Huseyin Cimenoglu
- Department of Metallurgical and Materials Engineering; Istanbul Technical University; Istanbul Turkey
| |
Collapse
|