1
|
Hashemi SS, Alizadeh R, Rafati A, Mohammadi A, Mortazavi M, Hashempur MH. Investigation of silicon oxide nanoparticle-enhanced self-healing hydrogel for cartilage repair and regeneration in rabbit earlobe models. J Drug Target 2025:1-13. [PMID: 40019486 DOI: 10.1080/1061186x.2025.2473675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
This study developed an alginate, gelatine and chondroitin sulphate hydrogel incorporating silicon oxide nanoparticles to assess hydrogel morphology, cell proliferation and viability. The effectiveness of these hydrogels for cartilage repair was evaluated in vivo using male albino rabbits, divided into three groups: a control group without hydrogels, an observer group with hydrogels lacking nanoparticles and a treatment group with nanoparticle-enhanced hydrogels for post-injury repair. At 15, 30 and 60 days post-surgery, the rabbits were humanely euthanized and excised tissue samples were fixed in 10% formalin for histopathological analysis, then processed and embedded in paraffin for microscopic evaluation. Statistical analysis was performed using SPSS software with ANOVA and Tukey's post hoc test. Results indicated that the hydrogels supported cell viability and encouraged differentiation into chondrocyte-like phenotypes. Scanning electron microscopy confirmed the hydrogels' porosity and showed significant differences in cell survival rates compared to the control group, underscoring the potential of hydrogels in cartilage tissue engineering and regenerative repair strategies.
Collapse
Affiliation(s)
- Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Alizadeh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Rafati
- Division of Pharmacology and Pharmaceutical Chemistry, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
| | - Aliakbar Mohammadi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Zhang J, Zhang L, Sun Z, Li Z, Zou X, Sun S, Zhu L, Xi K, Liu Z, Deng G. Nano-alkaline ion-excited NETs ablative eye drops promote ocular surface recovery. J Control Release 2025; 378:864-879. [PMID: 39740695 DOI: 10.1016/j.jconrel.2024.12.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/13/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
Neutrophil extracellular traps (NETs) promote neovascularization during the acute phase after ocular chemical injury, while the local inflammatory acidic environment delays post-injury repair. Currently, the mechanism of NETs promoting neovascularization has not been fully elucidated, and there is a lack of therapeutic strategies to effectively improve the local microenvironment for corneal repair. In this study, we validated the NETs-M2-angiogenic pathway after injury. Using transcriptomics sequencing and liquid-phase microarray assays, the intrinsic immune cascade mechanism of NETs inducing macrophage M2 polarization and releasing VEGF via PI3K/AKT was identified. Based on this pathology and the physiological need to improve the local inflammatory acidic environment and promote corneal repair, we organically integrated the alkaline ion-rich bioglass with the highly transmissive and highly adhesive filipin protein, and constructed NETs ablative gel eye drops (DMS) that can release DNase I and alkaline ions in a sustained manner. The eye drops restricted the inflammatory interaction of NETs with macrophages from the source, adhered to the corneal surface and continuously released alkaline ions to improve the local acidic inflammatory environment, providing a favorable immune microenvironment for corneal recovery. We established a cell co-culture system and a corneal alkali burn model to further validate the role of DMS in modulating the intrinsic immune cascade of neovascularization for corneal repair and the related mechanisms. In conclusion, based on the biological mechanism of NETs-M2-VEGF after corneal chemical injury, the present study designed eye drops for dual regulation of intrinsic immunity and the inflammatory acid environment, which not only further supplemented and improved the pathophysiological mechanism of corneal neovascularization after chemical injury, but also provided a new way of thinking about corneal regeneration after injury.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Ophthalmology, Changzhou Third Peopls's Hospital, Changzhou Clinical College of Xuzhou Medical University, 300 Lanlin North road, Changzhou, Jiangsu 213000, China
| | - Lichen Zhang
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, SuZhou, Jiangsu 215000, China
| | - Zhuo Sun
- Department of Ophthalmology, Changzhou Third Peopls's Hospital, Changzhou Clinical College of Xuzhou Medical University, 300 Lanlin North road, Changzhou, Jiangsu 213000, China
| | - Ziang Li
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, SuZhou, Jiangsu 215000, China
| | - Xi Zou
- Department of Ophthalmology, Changzhou Third Peopls's Hospital, Changzhou Clinical College of Xuzhou Medical University, 300 Lanlin North road, Changzhou, Jiangsu 213000, China
| | - Shanshan Sun
- Department of Ophthalmology, Changzhou Third Peopls's Hospital, Changzhou Clinical College of Xuzhou Medical University, 300 Lanlin North road, Changzhou, Jiangsu 213000, China
| | - Lin Zhu
- Department of Ophthalmology, Changzhou Third Peopls's Hospital, Changzhou Clinical College of Xuzhou Medical University, 300 Lanlin North road, Changzhou, Jiangsu 213000, China
| | - Kun Xi
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 708 Renmin Road, SuZhou, Jiangsu 215000, China.
| | - Zhinan Liu
- Department of Ophthalmology, Changzhou Third Peopls's Hospital, Changzhou Clinical College of Xuzhou Medical University, 300 Lanlin North road, Changzhou, Jiangsu 213000, China.
| | - Guohua Deng
- Department of Ophthalmology, Changzhou Third Peopls's Hospital, Changzhou Clinical College of Xuzhou Medical University, 300 Lanlin North road, Changzhou, Jiangsu 213000, China.
| |
Collapse
|
3
|
Ghobadi F, Saadatmand M, Simorgh S, Brouki Milan P. Microfluidic 3D cell culture: potential application of collagen hydrogels with an optimal dose of bioactive glasses. Sci Rep 2025; 15:569. [PMID: 39747624 PMCID: PMC11696724 DOI: 10.1038/s41598-024-84346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
We engineered a microfluidic platform to study the effects of bioactive glass nanoparticles (BGNs) on cell viability under static culture. We incorporated different concentrations of BGNs (1%, 2%, and 3% w/v) in collagen hydrogel (with a concentration of 3.0 mg/mL). The microfluidic chip's dimensions were optimized through fluid flow and mass transfer simulations. Collagen type I extracted from rat tail tendons was used as the main material, and BGNs synthesized by the sol-gel method were used to enhance the mechanical properties of the hydrogel. The extracted collagen was characterized using FTIR and SDS-PAGE, and BGNs were analyzed using XRD, FTIR, DLS, and FE-SEM/EDX. The structure of the collagen-BGNs hydrogels was examined using SEM, and their mechanical properties were determined using rheological analysis. The cytotoxicity of BGNs was assessed using the MTT assay, and the viability of fibroblast (L929) cells encapsulated in the collagen-BGNs hydrogel inside the microfluidic device was assessed using a live/dead assay. Based on all these test results, the L929 cells showed high cell viability in vitro and promising microenvironment mimicry in a microfluidic device. Collagen3-BGNs3 (Collagen 3 mg/mL + BGNs 3% (w/v)) was chosen as the most suitable sample for further research on a microfluidic platform.
Collapse
Affiliation(s)
- Faezeh Ghobadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Sara Simorgh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies inMedicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies inMedicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Alajmi K, Hartford M, Roy NS, Bhattacharya A, Kaity S, Cavanagh BL, Roy S, Kaur K. Selenium nanoparticle-functionalized injectable chitosan/collagen hydrogels as a novel therapeutic strategy to enhance stem cell osteoblastic differentiation for bone regeneration. J Mater Chem B 2024; 12:9268-9282. [PMID: 39171482 DOI: 10.1039/d4tb00984c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Stem cells are an essential consideration in the fields of tissue engineering and regenerative medicine. Understanding how nanoengineered biomaterials and mesenchymal stem cells (MSCs) interact is crucial for their role in bone regeneration. Taking advantage of the structural stability of selenium nanoparticles (Se-NPs) and biological properties of natural polymers, Se-NPs-functionalized, injectable, thermoresponsive hydrogels with an interconnected molecular structure were prepared to identify their role in the osteogenic differentiation of different types of mesenchymal stem cells. Further, comprehensive characterization of their structural and biological properties was performed. The results showed that the hydrogels undergo a sol to gel transition with the help of β-glycerophosphate, while functionalization with Se-NPs significantly enhances their biological response through stabilizing their polymeric structure by forming Se-O covalent bonds. Further results suggest that Se-NPs enhance the differentiation of MSCs toward osteogenic lineage in both the 2D as well as 3D. We demonstrated that the Se-NPs-functionalized hydrogels could enhance the differentiation of osteoporotic bone-derived MSCs. We also focused on specific cell surface marker expression (CD105, CD90, CD73, CD45, CD34) based on the exposure of healthy rats' bone marrow-derived stem cells (BMSCs) to the Se-NP-functionalized hydrogels. This study provides essential evidence for pre-clinical/clinical applications, highlighting the potential of the nanoengineered biocompatible elastic hydrogels for bone regeneration in diseased bone.
Collapse
Affiliation(s)
- Khaled Alajmi
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland.
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland
| | - Matthew Hartford
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland.
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland
| | - Nakka Sharmila Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Anamitra Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Santanu Kaity
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Brenton L Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin D02YN77, Ireland
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Kulwinder Kaur
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland.
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland
| |
Collapse
|
5
|
Mîrț AL, Ficai D, Oprea OC, Vasilievici G, Ficai A. Current and Future Perspectives of Bioactive Glasses as Injectable Material. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1196. [PMID: 39057873 PMCID: PMC11280465 DOI: 10.3390/nano14141196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
This review covers recent compositions of bioactive glass, with a specific emphasis on both inorganic and organic materials commonly utilized as matrices for injectable materials. The major objective is to highlight the predominant bioactive glass formulations and their clinical applications in the biomedical field. Previous studies have highlighted the growing interest among researchers in bioactive glasses, acknowledging their potential to yield promising outcomes in this field. As a result of this increased interest, investigations into bioactive glass have prompted the creation of composite materials and, notably, the development of injectable composites as a minimally invasive method for administering the material within the human body. Injectable materials have emerged as a promising avenue to mitigate various challenges. They offer several advantages, including minimizing invasive surgical procedures, reducing patient discomfort, lowering the risk of postoperative infection and decreasing treatment expenses. Additionally, injectable materials facilitate uniform distribution, allowing for the filling of defects of any shape.
Collapse
Affiliation(s)
- Andreea-Luiza Mîrț
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania;
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Denisa Ficai
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Gabriel Vasilievici
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Anton Ficai
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu 1–7, 011061 Bucharest, Romania;
- National Center for Scientific Research for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (D.F.); (O.-C.O.)
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| |
Collapse
|
6
|
Wu K, Li Y, Chen J. Effect of pH on the Structure, Functional Properties and Rheological Properties of Collagen from Greenfin Horse-Faced Filefish ( Thamnaconus septentrionalis) Skin. Mar Drugs 2024; 22:45. [PMID: 38248670 PMCID: PMC10817565 DOI: 10.3390/md22010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Collagen is an important biopolymer widely used in food, cosmetics and biomedical applications. Understanding the effect of pH on the structure and properties of collagen is beneficial for its further processing and exploitation. In this study, greenfin horse-faced filefish skin collagen (GHSC) was prepared and identified as a type I collagen. We systematically investigated the effect of pH on the structural, functional and rheological properties of GHSC. Scanning electron microscopy showed that the collagen morphology changed from an ordered stacked sheet structure to a rough silk-like structure as pH increased. Gaussian-fitted Fourier infrared spectroscopy results of the collagen revealed that it unfolded with increasing pH. Moreover, the ordered structure was reduced, and random coils became the dominant conformation. Its β-sheet and random coil contents increased from 18.43 ± 0.08 and 33.62 ± 0.17 to 19.72 ± 0.02 and 39.53 ± 1.03%, respectively, with increasing pH. α-helices and β-turns decreased from 35.00 ± 0.26 and 12.95 ± 0.01 to 29.39 ± 0.92 and 11.36 ± 0.10%, respectively. The increase in β-sheets and random coils allowed the pI-treated collagen to exhibit maximum water contact angle. The emulsification and foaming properties decreased and then increased with increasing pH in a V-shape. The increased net surface charge and β-sheets in collagen benefited its emulsification and foaming properties. The rheological results showed that the protoprotein exhibited shear-thinning properties in all pH ranges. The collagen solutions showed liquid-like behaviour in low-pH (2, 4) solutions and solid-like behaviour in high-pH (6, 7.83 and 10) solutions. Moreover, the frequency-dependent properties of the storage modulus (G') and loss modulus (G″) of the collagen solutions weakened with increasing pH. Collagen has considerable frequency-dependent properties of G' and G″ at low pH (2, 4). Thus, the importance of collagen raw material preparation for subsequent processing was emphasised, which may provide new insights into applying collagen-based materials in food, biomaterials and tissue engineering.
Collapse
Affiliation(s)
| | | | - Junde Chen
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (K.W.); (Y.L.)
| |
Collapse
|
7
|
Akhlaghi N, Najafpour-Darzi G. Thermosensitive injectable dual drug-loaded chitosan-based hybrid hydrogel for treatment of orthopedic implant infections. Carbohydr Polym 2023; 320:121138. [PMID: 37659783 DOI: 10.1016/j.carbpol.2023.121138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 09/04/2023]
Abstract
A myriad of therapeutic agents and drug delivery systems are available to the surgeons for treating orthopedic implant-associated infections (OIAI), but only very few have demonstrated their effectiveness in preventing bacteria colonization and biofilm formation due to challenges in the local and sustainable therapeutic release. To address this issue, in this work, a thermosensitive injectable hydrogel based on chitosan (CH)-integrated hydroxyapatite nanoparticles (HAP NPs) containing vancomycin (Van) and quercetin (QC)-loaded in F127 micelles (CH-HAP-FQ-Van hydrogel) was fabricated with potential application in the treatment of OIAI. This dual drug delivery system demonstrated a pH-sensitive drug release pattern. In addition, 100 % growth inhibition of Staphylococcus aureus for a duration of 14 days was observed. Apart from the strong antioxidant activities owing to the co-administration of QC even after 432 h, this composite hydrogel revealed 95.88 ± 2.8 % S. aureus biofilm eradication. By consideration of degradation stability (53.52 ± 4.24 %) during 60 days along with smart gelation within 10 min at 37 °C and easy injectability, CH-HAP-FQ-Van hydrogel could be used as a promising ideal local drug delivery system for implant-related infections.
Collapse
Affiliation(s)
- Neda Akhlaghi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Shariati Avenue, Babol 47148-71167, Iran
| | - Ghasem Najafpour-Darzi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Shariati Avenue, Babol 47148-71167, Iran.
| |
Collapse
|
8
|
Campbell S, Preciado Rivera N, Said S, Lam A, Weir L, Gour J, Smeets NMB, Hoare T. Injectable On-Demand Pulsatile Drug Delivery Hydrogels Using Alternating Magnetic Field-Triggered Polymer Glass Transitions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48892-48902. [PMID: 37816152 DOI: 10.1021/acsami.3c09299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Remote-controlled pulsatile or staged release has significant potential in a wide range of therapeutic treatments. However, most current approaches are hindered by the low resolution between the on- and off-states of drug release and the need for surgical implantation of larger controlled-release devices. Herein, we describe a method that addresses these limitations by combining injectable hydrogels, superparamagnetic iron oxide nanoparticles (SPIONs) that heat when exposed to an alternating magnetic field (AMF), and polymeric nanoparticles with a glass transition temperature (Tg) just above physiological temperature. Miniemulsion polymerization was used to fabricate poly(methyl methacrylate-co-butyl methacrylate) (p(MMA-co-BMA)) nanoparticles loaded with a model hydrophobic drug and tuned to have a Tg value just above physiological temperature (∼43 °C). Co-encapsulation of these drug-loaded nanoparticles with SPIONs inside a carbohydrate-based injectable hydrogel matrix (formed by rapid hydrazone cross-linking chemistry) enables injection and immobilization of the nanoparticles at the target site. Temperature cycling facilitated a 2.5:1 to 6:1 on/off rhodamine release ratio when the nanocomposites were switched between 37 and 45 °C; release was similarly enhanced by exposing the nanocomposite hydrogel to an AMF to drive heating, with enhanced release upon pulsing observed even 1 week after injection. Coupled with the apparent cytocompatibility of all of the nanocomposite components, these injectable nanocomposite hydrogels are promising as minimally invasive but remotely actuated release delivery vehicles capable of complex release kinetics with high on-off resolution.
Collapse
Affiliation(s)
- Scott Campbell
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
| | - Nahieli Preciado Rivera
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
| | - Somiraa Said
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
- Department of Pharmaceutics, Alexandria University, Alexandria 21521, Egypt
| | - Angus Lam
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
| | - Lauren Weir
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
| | - Jared Gour
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
| | - Niels M B Smeets
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton L8S 4L7, Ontario, Canada
| |
Collapse
|
9
|
Kaur K, Murphy CM. Advances in the Development of Nano-Engineered Mechanically Robust Hydrogels for Minimally Invasive Treatment of Bone Defects. Gels 2023; 9:809. [PMID: 37888382 PMCID: PMC10606921 DOI: 10.3390/gels9100809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Injectable hydrogels were discovered as attractive materials for bone tissue engineering applications given their outstanding biocompatibility, high water content, and versatile fabrication platforms into materials with different physiochemical properties. However, traditional hydrogels suffer from weak mechanical strength, limiting their use in heavy load-bearing areas. Thus, the fabrication of mechanically robust injectable hydrogels that are suitable for load-bearing environments is of great interest. Successful material design for bone tissue engineering requires an understanding of the composition and structure of the material chosen, as well as the appropriate selection of biomimetic natural or synthetic materials. This review focuses on recent advancements in materials-design considerations and approaches to prepare mechanically robust injectable hydrogels for bone tissue engineering applications. We outline the materials-design approaches through a selection of materials and fabrication methods. Finally, we discuss unmet needs and current challenges in the development of ideal materials for bone tissue regeneration and highlight emerging strategies in the field.
Collapse
Affiliation(s)
- Kulwinder Kaur
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Ciara M. Murphy
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin (TCD), D02 PN40 Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin (TCD), D02 PN40 Dublin, Ireland
| |
Collapse
|
10
|
Wang YW, Du MZ, Wu T, Su T, Ai LY, Jiang D. The application of ECM-derived biomaterials in cartilage tissue engineering. MECHANOBIOLOGY IN MEDICINE 2023; 1:100007. [PMID: 40395868 PMCID: PMC12082134 DOI: 10.1016/j.mbm.2023.100007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 05/22/2025]
Abstract
Given the tremendous increase in the risks of cartilage defects in the sports and aging population, current treatments are limited, and new repair strategies are needed. Cartilage tissue engineering (CTE) is a promising approach to handle this burden and several fabrication technologies and biomaterials have been developed these years. The extracellular matrix (ECM) of cartilage consists of a tissue-specific 3D microenvironment with excellent biomechanical and biochemical properties, which regulates cell proliferation, adhesion, migration, and differentiation, thus attracting a great deal of attention to the rapid development of CTE based on ECM components. New generations of biomaterials are being developed rapidly for use as scaffolds to mimic the natural ECM environment. In this review, we discuss such CTE scaffolds based on ECM-derived biomaterials by reviewing the biomaterials for CTE, the applications in different scaffolds and their processing approaches, as well as the current clinical applications of those ECM-based CTE scaffolds.
Collapse
Affiliation(s)
- Yu-wei Wang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ming-ze Du
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Tuo Wu
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tong Su
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Li-ya Ai
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Dong Jiang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| |
Collapse
|
11
|
Fani N, Peshkova M, Bikmulina P, Golroo R, Timashev P, Vosough M. Fabricating the cartilage: recent achievements. Cytotechnology 2023; 75:269-292. [PMID: 37389132 PMCID: PMC10299965 DOI: 10.1007/s10616-023-00582-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
This review aims to describe the most recent achievements and provide an insight into cartilage engineering and strategies to restore the cartilage defects. Here, we discuss cell types, biomaterials, and biochemical factors applied to form cartilage tissue equivalents and update the status of fabrication techniques, which are used at all stages of engineering the cartilage. The actualized concept to improve the cartilage tissue restoration is based on applying personalized products fabricated using a full cycle platform: a bioprinter, a bioink consisted of ECM-embedded autologous cell aggregates, and a bioreactor. Moreover, in situ platforms can help to skip some steps and enable adjusting the newly formed tissue in the place during the operation. Only some achievements described have passed first stages of clinical translation; nevertheless, the number of their preclinical and clinical trials is expected to grow in the nearest future.
Collapse
Affiliation(s)
- Nesa Fani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Polina Bikmulina
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, Russia
| | - Reihaneh Golroo
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
12
|
Aldhaher A, Shahabipour F, Shaito A, Al-Assaf S, Elnour AA, Sallam EB, Teimourtash S, Elfadil AA. 3D hydrogel/ bioactive glass scaffolds in bone tissue engineering: Status and future opportunities. Heliyon 2023; 9:e17050. [PMID: 37483767 PMCID: PMC10362084 DOI: 10.1016/j.heliyon.2023.e17050] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Repairing significant bone defects remains a critical challenge, raising the clinical demand to design novel bone biomaterials that incorporate osteogenic and angiogenic properties to support the regeneration of vascularized bone. Bioactive glass scaffolds can stimulate angiogenesis and osteogenesis. In addition, natural or synthetic polymers exhibit structural similarity with extracellular matrix (ECM) components and have superior biocompatibility and biodegradability. Thus, there is a need to prepare composite scaffolds of hydrogels for vascularized bone, which incorporate to improve the mechanical properties and bioactivity of natural polymers. In addition, those composites' 3-dimensional (3D) form offer regenerative benefits such as direct doping of the scaffold with ions. This review presents a comprehensive discussion of composite scaffolds incorporated with BaG, focusing on their effects on osteo-inductivity and angiogenic properties. Moreover, the adaptation of the ion-doped hydrogel composite scaffold into a 3D scaffold for the generation of vascularized bone tissue is exposed. Finally, we highlight the challenges and future of manufacturing such biomaterials.
Collapse
Affiliation(s)
- Abdullah Aldhaher
- Department of Chemistry, Faculty of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Fahimeh Shahabipour
- Orthopedic Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Abdullah Shaito
- Biomedical Research Center, College of Medicine, And Department of Biomedical Sciences at College of Health Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Saphwan Al-Assaf
- Hydrocolloids Research Centre, University of Chester, Chester, United Kingdom
| | - Ahmed A.M. Elnour
- Faculty of Chemical and Process Engineering Technology, University of Malaysia Pahang-UMP, Malaysia
| | | | - Shahin Teimourtash
- Department of Healthcare Science Center, McMaster University, Toronto, Canada
| | - Abdelgadir A. Elfadil
- Department of Environmental Science, Faculty of Science and Technology, Al-Neelain University, P. O. Box: 12702, Sudan
| |
Collapse
|
13
|
Xing X, Han Y, Cheng H. Biomedical applications of chitosan/silk fibroin composites: A review. Int J Biol Macromol 2023; 240:124407. [PMID: 37060984 DOI: 10.1016/j.ijbiomac.2023.124407] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
Natural polymers have been used in the biomedical fields for decades, mainly derived from animals and plants with high similarities with biomacromolecules in the human body. As an alkaline polysaccharide, chitosan (CS) attracts much attention in tissue regeneration and drug delivery with favorable biocompatibility, biodegradation, and antibacterial activity. However, to overcome its mechanical properties and degradation behavior drawbacks, a robust fibrous protein-silk fibroin (SF) was introduced to prepare the CS/SF composites. Not only can CS be combined with SF via the amide and hydrogen bond formation, but also their functions are complementary and tunable with the blending ratio. To further improve the performances of CS/SF composites, natural (e.g., hyaluronic acid and collagen) and synthetic biopolymers (e.g., polyvinyl alcohol and hexanone) were incorporated. Also, the CS/SF composites acted as slow-release carriers for inorganic non-metals (e.g., hydroxyapatite and graphene) and metal particles (e.g., silver and magnesium), which could enhance cell functions, facilitate tissue healing, and inhibit bacterial growth. This review presents the state-of-the-art and future perspectives of different biomaterials combined with CS/SF composites as sponges, hydrogels, membranes, particles, and coatings. Emphasis is devoted to the biological potentialities of these hybrid systems, which look rather promising toward a multitude of applications.
Collapse
Affiliation(s)
- Xiaojie Xing
- Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
| | - Yu Han
- Division of Craniofacial Development and Regeneration, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hui Cheng
- Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian 350002, China.
| |
Collapse
|
14
|
Effects of Calcium Carbonate Microcapsules and Nanohydroxyapatite on Properties of Thermosensitive Chitosan/Collagen Hydrogels. Polymers (Basel) 2023; 15:polym15020416. [PMID: 36679297 PMCID: PMC9861171 DOI: 10.3390/polym15020416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Thermosensitive chitosan/collagen hydrogels are osteoconductive and injectable materials. In this study, we aimed to improve these properties by adjusting the ratio of nanohydroxyapatite particles to calcium carbonate microcapsules in a β-glycerophosphate-crosslinked chitosan/collagen hydrogel. Two hydrogel systems with 2% and 5% nanohydroxyapatite particles were studied, each of which had varying microcapsule content (i.e., 0%, 1%, 2%, and 5%). Quercetin-incorporated calcium carbonate microcapsules were prepared. Calcium carbonate microcapsules and nanohydroxyapatite particles were then added to the hydrogel according to the composition of the studied system. The properties of the hydrogels, including cytotoxicity and biocompatibility, were investigated in mice. The calcium carbonate microcapsules were 2-6 µm in size, spherical, with rough and nanoporous surfaces, and thus exhibited a burst release of impregnated quercetin. The 5% nanohydroxyapatite system is a solid particulate gel that supports homogeneous distribution of microcapsules in the three-dimensional matrix of the hydrogels. Calcium carbonate microcapsules increased the mechanical and physical strength, viscoelasticity, and physical stability of the nanohydroxyapatite hydrogels while decreasing their porosity, swelling, and degradation rates. The calcium carbonate microcapsules-nanohydroxyapatite hydrogels were noncytotoxic and biocompatible. The properties of the hydrogel can be tailored by adjusting the ratio of calcium carbonate microcapsules to the nanohydroxyapatite particles. The 1% calcium carbonate microcapsules containing 5% nanohydroxyapatite particle-chitosan/collagen hydrogel exhibited mechanical and physical strength, permeability, and prolonged release profiles of quercetin, which were superior to those of the other studied systems and were optimal for promoting bone regeneration and delivering natural flavonoids.
Collapse
|
15
|
Rahimnejad M, Charbonneau C, He Z, Lerouge S. Injectable cell-laden hybrid bioactive scaffold containing bioactive glass microspheres. J Biomed Mater Res A 2023; 111:1031-1043. [PMID: 36597835 DOI: 10.1002/jbm.a.37487] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/18/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023]
Abstract
The rising incidence of bone disorders has resulted in the need for minimally invasive therapies to meet this demand. Injectable bioactive filler, alone or with cells, could be applied in a minimally invasive manner to fulfill irregular cavities in non-load bearing sites, which do not require high mechanical properties. Thermosensitive chitosan hydrogels that transition from a liquid to a mechanically stable solid at body temperature provide interesting features as in-situ injectable cytocompatible biomaterials, but they are not osteoconductive. Osteoconductivity can be applied in combination with bioactive ceramics e.g., 45S5-Bioglass® (BG). However, BG addition in chitosan hydrogels results in pH elevation, due to rapid ions release, which adversely affects gel formation, mechanical properties, and cytocompatibility. To address this, we created hybrid hydrogels, where BG is concentrated in chitosan-based microbeads, incorporated in in-situ gelling chitosan hydrogels. We then compared the hybrid hydrogels' properties to chitosan hydrogels with homogenously distributed BG. By varying the stirred emulsification process, BG percentage, and CH formulation, we could tune the microbeads' properties. Incorporation of BG microbeads drastically improved the hydrogel's compressive modulus in comparison to homogeneously distributed BG. It also strongly increased the survival and metabolic activities of encapsulated cells. Calcium/phosphate increase on BG microbeads suggests hydroxyapatite formation. The small diameter of microbeads allows minimally invasive injection through small needles. The feasibility of freezing and thawing microbeads provides the possibility of long-term storage for potential clinical applications. These data indicate that this hybrid hydrogel forms a promising injectable cell-laden bioactive biomaterial for the treatment of unloaded bone defects.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, Université de Montreal, Montreal, QC - Québec, Canada.,Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC - Québec, Canada
| | - Cindy Charbonneau
- National Research Council Canada/Government of Canada, Boucherville, QC - Québec, Canada
| | - Zinan He
- National Research Council Canada/Government of Canada, Boucherville, QC - Québec, Canada
| | - Sophie Lerouge
- Biomedical Engineering Institute, Université de Montreal, Montreal, QC - Québec, Canada.,Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC - Québec, Canada.,Department of Mechanical Engineering, École de technologie supérieure (ÉTS), Montreal, QC - Québec, Canada
| |
Collapse
|
16
|
Li K, Zhao D, Chen H, Zhang W, Zhao W, Zhang Z. Thermo-sensitive hydrogel-mediated locally sequential release of doxorubicin and palbociclib for chemo-immunotherapy of osteosarcoma. MATERIALS & DESIGN 2022; 224:111365. [DOI: 10.1016/j.matdes.2022.111365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Heng TT, Tey JY, Soon KS, Woo KK. Utilizing Fish Skin of Ikan Belida (Notopterus lopis) as a Source of Collagen: Production and Rheology Properties. Mar Drugs 2022; 20:md20080525. [PMID: 36005530 PMCID: PMC9410226 DOI: 10.3390/md20080525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Collagen hydrogels have been extensively applied in biomedical applications. However, their mechanical properties are insufficient for such applications. Our previous study showed improved mechanical properties when collagen was blended with alginate. The current study aims to analyze the physico-chemical properties of collagen-alginate (CA) films such as swelling, porosity, denaturation temperature (Td), and rheology properties. Collagen was prepared from discarded fish skin of Ikan Belida (Notopterus lopis) that was derived from fish ball manufacturing industries and cross-linked with alginate from brown seaweed (Sargasum polycystum) of a local species as a means to benefit the downstream production of marine industries. CA hydrogels were fabricated with ratios (v/v) of 1:1, 1:4, 3:7, 4:1, and 7:3 respectively. FTIR spectrums of CA film showed an Amide I shift of 1636.12 cm−1 to 1634.64 cm−1, indicating collagen-alginate interactions. SEM images of CA films show a porous structure that varied from pure collagen. DSC analysis shows Td was improved from 61.26 °C (collagen) to 83.11 °C (CA 3:7). CA 4:1 swelled nearly 800% after 48 h, correlated with the of hydrogels porosity. Most CA demonstrated visco-elastic solid characteristics with greater storage modulus (G′) than lost modulus (G″). Shear thinning and non-Newtonian behavior was observed in CA with 0.4% to 1.0% (w/v) CaCl2. CA hydrogels that were derived from discarded materials shows promising potential to serve as a wound dressing or ink for bio printing in the future.
Collapse
Affiliation(s)
- Tzen T. Heng
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
| | - Jing Y. Tey
- Department of Mechanical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
| | - Kean S. Soon
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
| | - Kwan K. Woo
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
18
|
Advances in nanoenabled 3D matrices for cartilage repair. Acta Biomater 2022; 150:1-21. [PMID: 35902038 DOI: 10.1016/j.actbio.2022.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
Cartilage repair strategies are evolving at a fast pace with technology development. Matrices that offer multifaceted functions and a full adaption to the cartilage defect are of pivotal interest. Current cartilage repair strategies face numerous challenges, mostly related to the development of highly biomimetic materials, non-invasive injectable solutions, and adequate degradation rates. These strategies often fail due to feeble mechanical properties, the inability to sustain cell adhesion, growth, and differentiation or by underestimating other players of cartilage degeneration, such as the installed pro-inflammatory microenvironment. The integration of nanomaterials (NMs) into 3D scaffolds, hydrogels and bioinks hold great potential in the improvement of key features of materials that are currently applied in cartilage tissue engineering strategies. NMs offer a high surface to volume ratio and their multiple applications can be explored to enhance cartilage mechanical properties, biocompatibility, cell differentiation, inflammation modulation, infection prevention and even to function as diagnostic tools or as stimuli-responsive cues in these 3D structures. In this review, we have critically reviewed the latest advances in the development of nanoenabled 3D matrices - enhanced by means of NMs - in the context of cartilage regeneration. We have provided a wide perspective of the synergistic effect of combining 3D strategies with NMs, with emphasis on the benefits brought by NMs in achieving functional and enhanced therapeutic outcomes. STATEMENT OF SIGNIFICANCE: Cartilage is one of the most challenging tissues to treat owing to its limited self-regeneration potential. Novel strategies using nanoenabled 3D matrices have emerged from the need to design more efficient solutions for cartilage repair, that take into consideration its unique mechanical properties and can direct specific cell behaviours. Here we aim to provide a comprehensive review on the synergistic effects of 3D matrices nanoenrichment in the context of cartilage regeneration, with emphasis on the heightening brought by nanomaterials in achieving functional and enhanced therapeutic outcomes. We anticipate this review to provide a wide perspective on the past years' research on the field, demonstrating the great potential of these approaches in the treatment and diagnosis of cartilage-related disorders.
Collapse
|
19
|
Ding YF, Huang Q, Quan X, Cheng Q, Li S, Zhao Y, Mok GSP, Wang R. Supramolecularly functionalized platelets for rapid control of hemorrhage. Acta Biomater 2022; 149:248-257. [PMID: 35820594 DOI: 10.1016/j.actbio.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/01/2022]
Abstract
Excessive bleeding has always been of great medical challenge, particularly in trauma and surgery. Due to the fast clearance of medicine and complex hemodynamics during hemorrhage, it is often difficult to achieve rapid and effective hemostasis on irregularly shaped, noncompressible visceral bleeding wounds. Herein, we report a hemostatic derived from supramolecularly functionalized platelets (SPLTs), showing rapid hemorrhage controlling effects via efficiently targeting injured vessels and in-situ aggregation. Von Willebrand factor-binding peptide (VBP) modified hyaluronic acid (HA-VBP) decorated platelets (PLTs) were fabricated via supramolecular host-guest interactions between cucurbit[7]uril (CB[7], a host molecule) modified on HA-VBP (HA-CB[7]-VBP) and adamantane (ADA, a guest molecule) anchored on the surface of PLTs (ADA-PLTs). The SPLTs demonstrated approximately 10-fold improvements than the native PLTs in the targeting efficiency into the injured vessels in mice upon intravenous injection. More significantly, the total bleeding time and bleeding volume were dramatically reduced down to less than 1/4 and 1/10 of the control group, respectively, in both external and internal major bleeding mice models. This SPLTs provide a facile yet effective approach for rapid control of major hemorrhage and offers important new insights to the design and development PLTs-based hemostatics. STATEMENT OF SIGNIFICANCE: Hemorrhage is one of the greatest threats to humans in trauma and surgery. To reduce bleeding volume and time, transfusion of hematological products such as platelets (PLTs)-rich plasma is one of the most commonly used therapeutics, but with low targeting and hemostatic efficiency. Thus, engineered PLTs with expanded structural repertoire and functionalities are in urgent clinical needs. Herein, we developed supramolecularly functionalized PLTs (SPLTs), prepared with a mild and facile approach, for rapid control of hemorrhage with significantly enhanced targeting efficiency. The SPLTs not only provide a facile approach for rapid control of major hemorrhage, but also offer important new insights into the development PLTs-based hemostatics.
Collapse
Affiliation(s)
- Yuan-Fu Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Taipa, Macau, China
| | - Qiaoxian Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Xingping Quan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Qian Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Shengke Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Taipa, Macau, China.
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
20
|
Ohmes J, Saure LM, Schütt F, Trenkel M, Seekamp A, Scherließ R, Adelung R, Fuchs S. Injectable Thermosensitive Chitosan-Collagen Hydrogel as A Delivery System for Marine Polysaccharide Fucoidan. Mar Drugs 2022; 20:402. [PMID: 35736205 PMCID: PMC9229026 DOI: 10.3390/md20060402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 01/26/2023] Open
Abstract
Fucoidans, sulfated polysaccharides from brown algae, possess multiple bioactivities in regard to osteogenesis, angiogenesis, and inflammation, all representing key molecular processes for successful bone regeneration. To utilize fucoidans in regenerative medicine, a delivery system is needed which temporarily immobilizes the polysaccharide at the injured site. Hydrogels have become increasingly interesting biomaterials for the support of bone regeneration. Their structural resemblance with the extracellular matrix, their flexible shape, and capacity to deliver bioactive compounds or stem cells into the affected tissue make them promising materials for the support of healing processes. Especially injectable hydrogels stand out due to their minimal invasive application. In the current study, we developed an injectable thermosensitive hydrogel for the delivery of fucoidan based on chitosan, collagen, and β-glycerophosphate (β-GP). Physicochemical parameters such as gelation time, gelation temperature, swelling capacity, pH, and internal microstructure were studied. Further, human bone-derived mesenchymal stem cells (MSC) and human outgrowth endothelial cells (OEC) were cultured on top (2D) or inside the hydrogels (3D) to assess the biocompatibility. We found that the sol-gel transition occurred after approximately 1 min at 37 °C. Fucoidan integration into the hydrogel had no or only a minor impact on the mentioned physicochemical parameters compared to hydrogels which did not contain fucoidan. Release assays showed that 60% and 80% of the fucoidan was released from the hydrogel after two and six days, respectively. The hydrogel was biocompatible with MSC and OEC with a limitation for OEC encapsulation. This study demonstrates the potential of thermosensitive chitosan-collagen hydrogels as a delivery system for fucoidan and MSC for the use in regenerative medicine.
Collapse
Affiliation(s)
- Julia Ohmes
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (J.O.); (A.S.)
| | - Lena Marie Saure
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany; (L.M.S.); (F.S.); (R.A.)
| | - Fabian Schütt
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany; (L.M.S.); (F.S.); (R.A.)
| | - Marie Trenkel
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, 24118 Kiel, Germany; (M.T.); (R.S.)
| | - Andreas Seekamp
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (J.O.); (A.S.)
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, 24118 Kiel, Germany; (M.T.); (R.S.)
| | - Rainer Adelung
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany; (L.M.S.); (F.S.); (R.A.)
| | - Sabine Fuchs
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (J.O.); (A.S.)
| |
Collapse
|
21
|
Kocak FZ, Yar M, Rehman IU. Hydroxyapatite-Integrated, Heparin- and Glycerol-Functionalized Chitosan-Based Injectable Hydrogels with Improved Mechanical and Proangiogenic Performance. Int J Mol Sci 2022; 23:ijms23105370. [PMID: 35628172 PMCID: PMC9140455 DOI: 10.3390/ijms23105370] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
The investigation of natural bioactive injectable composites to induce angiogenesis during bone regeneration has been a part of recent minimally invasive regenerative medicine strategies. Our previous study involved the development of in situ-forming injectable composite hydrogels (Chitosan/Hydroxyapatite/Heparin) for bone regeneration. These hydrogels offered facile rheology, injectability, and gelation at 37 °C, as well as promising pro-angiogenic abilities. In the current study, these hydrogels were modified using glycerol as an additive and a pre-sterile production strategy to enhance their mechanical strength. These modifications allowed a further pH increment during neutralisation with maintained solution homogeneity. The synergetic effect of the pH increment and further hydrogen bonding due to the added glycerol improved the strength of the hydrogels substantially. SEM analyses showed highly cross-linked hydrogels (from high-pH solutions) with a hierarchical interlocking pore morphology. Hydrogel solutions showed more elastic flow properties and incipient gelation times decreased to just 2 to 3 min at 37 °C. Toluidine blue assay and SEM analyses showed that heparin formed a coating at the top layer of the hydrogels which contributed anionic bioactive surface features. The chick chorioallantoic membrane (CAM) assay confirmed significant enhancement of angiogenesis with chitosan-matrixed hydrogels comprising hydroxyapatite and small quantities of heparin (33 µg/mL) compared to basic chitosan hydrogels.
Collapse
Affiliation(s)
- Fatma Z. Kocak
- Engineering-Architecture Faculty, Metallurgy and Material Engineering, Nevsehir Haci Bektas Veli University, Nevsehir 50300, Turkey;
- Engineering Department, Lancaster University, Lancaster LA1 4YW, UK
| | - Muhammad Yar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan;
| | - Ihtesham U. Rehman
- Engineering-Architecture Faculty, Metallurgy and Material Engineering, Nevsehir Haci Bektas Veli University, Nevsehir 50300, Turkey;
- Correspondence:
| |
Collapse
|
22
|
Yang Y, Xu L, Wang J, Meng Q, Zhong S, Gao Y, Cui X. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydr Polym 2022; 283:119161. [DOI: 10.1016/j.carbpol.2022.119161] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
|
23
|
Khadem E, Kharaziha M, Bakhsheshi-Rad HR, Das O, Berto F. Cutting-Edge Progress in Stimuli-Responsive Bioadhesives: From Synthesis to Clinical Applications. Polymers (Basel) 2022; 14:1709. [PMID: 35566878 PMCID: PMC9104595 DOI: 10.3390/polym14091709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
With the advent of "intelligent" materials, the design of smart bioadhesives responding to chemical, physical, or biological stimuli has been widely developed in biomedical applications to minimize the risk of wounds reopening, chronic pain, and inflammation. Intelligent bioadhesives are free-flowing liquid solutions passing through a phase shift in the physiological environment due to stimuli such as light, temperature, pH, and electric field. They possess great merits, such as ease to access and the ability to sustained release as well as the spatial transfer of a biomolecule with reduced side effects. Tissue engineering, wound healing, drug delivery, regenerative biomedicine, cancer therapy, and other fields have benefited from smart bioadhesives. Recently, many disciplinary attempts have been performed to promote the functionality of smart bioadhesives and discover innovative compositions. However, according to our knowledge, the development of multifunctional bioadhesives for various biomedical applications has not been adequately explored. This review aims to summarize the most recent cutting-edge strategies (years 2015-2021) developed for stimuli-sensitive bioadhesives responding to external stimuli. We first focus on five primary categories of stimuli-responsive bioadhesive systems (pH, thermal, light, electric field, and biomolecules), their properties, and limitations. Following the introduction of principal criteria for smart bioadhesives, their performances are discussed, and certain smart polymeric materials employed in their creation in 2015 are studied. Finally, advantages, disadvantages, and future directions regarding smart bioadhesives for biomedical applications are surveyed.
Collapse
Affiliation(s)
- Elham Khadem
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran;
| | - Oisik Das
- Structural and Fire Engineering Division, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden;
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
24
|
Dukle A, Murugan D, Nathanael AJ, Rangasamy L, Oh TH. Can 3D-Printed Bioactive Glasses Be the Future of Bone Tissue Engineering? Polymers (Basel) 2022; 14:1627. [PMID: 35458377 PMCID: PMC9027654 DOI: 10.3390/polym14081627] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
According to the Global Burden of Diseases, Injuries, and Risk Factors Study, cases of bone fracture or injury have increased to 33.4% in the past two decades. Bone-related injuries affect both physical and mental health and increase the morbidity rate. Biopolymers, metals, ceramics, and various biomaterials have been used to synthesize bone implants. Among these, bioactive glasses are one of the most biomimetic materials for human bones. They provide good mechanical properties, biocompatibility, and osteointegrative properties. Owing to these properties, various composites of bioactive glasses have been FDA-approved for diverse bone-related and other applications. However, bone defects and bone injuries require customized designs and replacements. Thus, the three-dimensional (3D) printing of bioactive glass composites has the potential to provide customized bone implants. This review highlights the bottlenecks in 3D printing bioactive glass and provides an overview of different types of 3D printing methods for bioactive glass. Furthermore, this review discusses synthetic and natural bioactive glass composites. This review aims to provide information on bioactive glass biomaterials and their potential in bone tissue engineering.
Collapse
Affiliation(s)
- Amey Dukle
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Dhanashree Murugan
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
| | - Loganathan Rangasamy
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
| | - Tae-Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
25
|
Workie AB, Sefene EM. Ion-doped mesoporous bioactive glass: preparation, characterization, and applications using the spray pyrolysis method. RSC Adv 2022; 12:1592-1603. [PMID: 35425153 PMCID: PMC8979097 DOI: 10.1039/d1ra06113e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023] Open
Abstract
Biotechnology is used extensively in medical procedures, dentistry, statures, biosensors, bio electrodes, skin substitutes, and medicine delivery systems. Glass is biocompatible and can be used in permanent implantation applications without risk. The porosity of BG matrixes, combined with their huge specific surface area, greatly aids the formation of hydroxyl carbonate apatite. Zn-Doped bioglass can be made in the lab in a variety of ways, depending on how it will be used in medical treatment. The melt-quenching technique, spray pyrolysis method, sol-gel process for BG fabrication, spray drying method, and modified Stöber method are examples of such strategies. Spray pyrolysis is a comprehensive approach that is an undeniably versatile and effective material synthesis technology. It is a low-cost, non-vacuum method for producing materials in the form of powders and films that may be deposited on a variety of substrates, and is a straightforward method to adapt for large-area deposition and industrial production processes. For better utility in medical care, MBG fabricated in the laboratory should be characterized using various characterization methods such as SEM, TEM, BET, and XRD.
Collapse
Affiliation(s)
- Andualem Belachew Workie
- Faculty of Mechanical and Industrial Engineering, Bahir Dar Institute of Technology, Bahir Dar University P.O. Box 26 Bahir Dar Ethiopia +251-910-894795 +251-918-161601
| | - Eyob Messele Sefene
- Faculty of Mechanical and Industrial Engineering, Bahir Dar Institute of Technology, Bahir Dar University P.O. Box 26 Bahir Dar Ethiopia +251-910-894795 +251-918-161601
| |
Collapse
|
26
|
Sadeghian A, Kharaziha M, Khoroushi M. Osteoconductive visible light-crosslinkable nanocomposite for hard tissue engineering. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127761] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Xiang ZX, Gong JS, Li H, Shi WT, Jiang M, Xu ZH, Shi JS. Heterologous expression, fermentation strategies and molecular modification of collagen for versatile applications. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34907819 DOI: 10.1080/10408398.2021.2016599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collagen is a kind of high macromolecular protein with unique tissue distribution and distinctive functions in the body. At present, most collagen products are extracted from the tissues and organs of mammals or marine fish. However, this method exhibits several disadvantages, including low efficiency and serious waste generation, which makes it difficult to meet the current market demand. With the rapid development of synthetic biology and the deepening of high-density fermentation technology, the collagen preparation by biosynthesis strategy emerges as the times require. Co-expression with the proline hydroxylase gene can solve the problem of non-hydroxylated collagen, but the yield may be affected. Therefore, improving the expression through molecular modification and dynamic regulation of synthesis is an entry point for future research. Due to the defects in certain properties of the natural collagen, modification of properties would be benefit for meeting the requirements of practical application. In this paper, in-depth investigations on recombinant expression, fermentation, and modification studies of collagen are conducted. Also, it summarizes the research progress of collagen in food, medicine, and beauty industry in recent years. Furthermore, the future development trend and application prospect of collagen are discussed, which would provide guidance for its preparation and application.
Collapse
Affiliation(s)
- Zhi-Xiang Xiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Wei-Ting Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, PR China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| |
Collapse
|
28
|
Mellati A, Hasanzadeh E, Gholipourmalekabadi M, Enderami SE. Injectable nanocomposite hydrogels as an emerging platform for biomedical applications: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112489. [PMID: 34857275 DOI: 10.1016/j.msec.2021.112489] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022]
Abstract
Hydrogels have attracted much attention for biomedical and pharmaceutical applications due to the similarity of their biomimetic structure to the extracellular matrix of natural living tissues, tunable soft porous microarchitecture, superb biomechanical properties, proper biocompatibility, etc. Injectable hydrogels are an exciting type of hydrogels that can be easily injected into the target sites using needles or catheters in a minimally invasive manner. The more comfortable use, less pain, faster recovery period, lower costs, and fewer side effects make injectable hydrogels more attractive to both patients and clinicians in comparison to non-injectable hydrogels. However, it is difficult to achieve an ideal injectable hydrogel using just a single material (i.e., polymer). This challenge can be overcome by incorporating nanofillers into the polymeric matrix to engineer injectable nanocomposite hydrogels with combined or synergistic properties gained from the constituents. This work aims to critically review injectable nanocomposite hydrogels, their preparation methods, properties, functionalities, and versatile biomedical and pharmaceutical applications such as tissue engineering, drug delivery, and cancer labeling and therapy. The most common natural and synthetic polymers as matrices together with the most popular nanomaterials as reinforcements, including nanoceramics, carbon-based nanostructures, metallic nanomaterials, and various nanosized polymeric materials, are highlighted in this review.
Collapse
Affiliation(s)
- Amir Mellati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Elham Hasanzadeh
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ehsan Enderami
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
29
|
Zeimaran E, Pourshahrestani S, Fathi A, Razak NABA, Kadri NA, Sheikhi A, Baino F. Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Acta Biomater 2021; 136:1-36. [PMID: 34562661 DOI: 10.1016/j.actbio.2021.09.034] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Successful tissue regeneration requires a scaffold with tailorable biodegradability, tissue-like mechanical properties, structural similarity to extracellular matrix (ECM), relevant bioactivity, and cytocompatibility. In recent years, injectable hydrogels have spurred increasing attention in translational medicine as a result of their tunable physicochemical properties in response to the surrounding environment. Furthermore, they have the potential to be implanted via minimally invasive procedures while enabling deep penetration, which is considered a feasible alternative to traditional open surgical procedures. However, polymeric hydrogels may lack sufficient stability and bioactivity in physiological environments. Composite hydrogels containing bioactive glass (BG) particulates, synergistically combining the advantages of their constituents, have emerged as multifunctional biomaterials with tailored mechanical properties and biological functionalities. This review paper highlights the recent advances in injectable composite hydrogel systems based on biodegradable polymers and BGs. The influence of BG particle geometry, composition, and concentration on gel formation, rheological and mechanical behavior as well as hydration and biodegradation of injectable hydrogels have been discussed. The applications of these composite hydrogels in tissue engineering are additionally described, with particular attention to bone and skin. Finally, the prospects and current challenges in the development of desirable injectable bioactive hydrogels for tissue regeneration are discussed to outline a roadmap for future research. STATEMENT OF SIGNIFICANCE: Developing a biomaterial that can be readily available for surgery, implantable via minimally invasive procedures, and be able to effectively stimulate tissue regeneration is one of the grand challenges in modern biomedicine. This review summarizes the state-of-the-art of injectable bioactive glass-polymer composite hydrogels to address several challenges in bone and soft tissue repair. The current limitations and the latest evolutions of these composite biomaterials are critically examined, and the roles of design parameters, such as composition, concentration, and size of the bioactive phase, and polymer-glass interactions on the rheological, mechanical, biological, and overall functional performance of hydrogels are detailed. Existing results and new horizons are discussed to provide a state-of-the-art review that may be useful for both experienced and early-stage researchers in the biomaterials community.
Collapse
|
30
|
Jampilek J, Placha D. Advances in Use of Nanomaterials for Musculoskeletal Regeneration. Pharmaceutics 2021; 13:1994. [PMID: 34959276 PMCID: PMC8703496 DOI: 10.3390/pharmaceutics13121994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Since the worldwide incidence of bone disorders and cartilage damage has been increasing and traditional therapy has reached its limits, nanomaterials can provide a new strategy in the regeneration of bones and cartilage. The nanoscale modifies the properties of materials, and many of the recently prepared nanocomposites can be used in tissue engineering as scaffolds for the development of biomimetic materials involved in the repair and healing of damaged tissues and organs. In addition, some nanomaterials represent a noteworthy alternative for treatment and alleviating inflammation or infections caused by microbial pathogens. On the other hand, some nanomaterials induce inflammation processes, especially by the generation of reactive oxygen species. Therefore, it is necessary to know and understand their effects in living systems and use surface modifications to prevent these negative effects. This contribution is focused on nanostructured scaffolds, providing a closer structural support approximation to native tissue architecture for cells and regulating cell proliferation, differentiation, and migration, which results in cartilage and bone healing and regeneration.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Daniela Placha
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
- Centre ENET, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
| |
Collapse
|
31
|
Qin D, Wang N, You XG, Zhang AD, Chen XG, Liu Y. Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives. Biomater Sci 2021; 10:318-353. [PMID: 34783809 DOI: 10.1039/d1bm01294k] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone is a hard-connective tissue composed of matrix, cells and bioactive factors with a hierarchical structure, where the matrix is mainly composed of type I collagen and hydroxyapatite. Collagen fibers assembled by collagen are the template for mineralization and make an important contribution to bone formation and the bone remodeling process. Therefore, collagen has been widely clinically used for bone/cartilage defect regeneration. However, pure collagen implants, such as collagen scaffolds or sponges, have limitations in the bone/cartilage regeneration process due to their poor mechanical properties and osteoinductivity. Different forms of collagen-based composites prepared by incorporating natural/artificial polymers or bioactive inorganic substances are characterized by their interconnected porous structure and promoting cell adhesion, while they improve the mechanical strength, structural stability and osteogenic activities of the collagen matrix. In this review, various forms of collagen-based biocomposites, such as scaffolds, sponges, microspheres/nanoparticles, films and microfibers/nanofibers prepared by natural/synthetic polymers, bioactive ceramics and carbon-based materials compounded with collagen are reviewed. In addition, the application of collagen-based biocomposites as cytokine, cell or drug (genes, proteins, peptides and chemosynthetic) delivery platforms for proangiogenesis and bone/cartilage tissue regeneration is also discussed. Finally, the potential application, research and development direction of collagen-based biocomposites in future bone/cartilage tissue regeneration are discussed.
Collapse
Affiliation(s)
- Di Qin
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Na Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xin-Guo You
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - An-Di Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| |
Collapse
|
32
|
Ardean C, Davidescu CM, Nemeş NS, Negrea A, Ciopec M, Duteanu N, Negrea P, Duda-Seiman D, Muntean D. Antimicrobial Activities of Chitosan Derivatives. Pharmaceutics 2021; 13:pharmaceutics13101639. [PMID: 34683932 PMCID: PMC8541518 DOI: 10.3390/pharmaceutics13101639] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Considering the challenge created by the development of bacterial and fungal strains resistant to multiple therapeutic variants, new molecules and materials with specific properties against these microorganisms can be synthesized, like those synthesized from biopolymers such as chitosan with improved antimicrobial activities. Antimicrobial activities of seven obtained materials were tested on four reference strains belonging to American Type Culture Collection. The best antimicrobial activity was obtained by functionalization by impregnation of chitosan with quaternary ammonium salts, followed by that obtained by functionalization of chitosan with phosphonium. The lowest antibacterial and antifungal effects were expressed by Ch-THIO and Ch-MBT, but new materials obtained with these extractants may be precursors with a significant role in the direct control of active molecules, such as cell growth factors or cell signaling molecules.
Collapse
Affiliation(s)
- Cristina Ardean
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (P.N.)
| | - Corneliu Mircea Davidescu
- Renewable Energy Research Institute-ICER, University Politehnica of Timisoara, 138 Gavril Musicescu Street, 300501 Timisoara, Romania;
| | - Nicoleta Sorina Nemeş
- Renewable Energy Research Institute-ICER, University Politehnica of Timisoara, 138 Gavril Musicescu Street, 300501 Timisoara, Romania;
- Correspondence: (N.S.N.); (N.D.); (D.D.-S.)
| | - Adina Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (P.N.)
| | - Mihaela Ciopec
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (P.N.)
| | - Narcis Duteanu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (P.N.)
- Correspondence: (N.S.N.); (N.D.); (D.D.-S.)
| | - Petru Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (P.N.)
| | - Daniel Duda-Seiman
- Department of Cardiology, Victor Babes University of Medicine and Pharmacy Timişoara, 2 Piata Eftimie Murgu, 300041 Timisoara, Romania
- Correspondence: (N.S.N.); (N.D.); (D.D.-S.)
| | - Delia Muntean
- Multidisciplinary Research Center on Antimicrobial Resistance, Department of Microbiology, Victor Babes University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| |
Collapse
|
33
|
Rahimnejad M, Rezvaninejad R, Rezvaninejad R, França R. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies. Biomed Phys Eng Express 2021; 7. [PMID: 34438382 DOI: 10.1088/2057-1976/ac21ab] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022]
Abstract
This review focuses on recently developed printable biomaterials for bone and mineralized tissue engineering. 3D printing or bioprinting is an advanced technology to design and fabricate complex functional 3D scaffolds, mimicking native tissue forin vivoapplications. We categorized the biomaterials into two main classes: 3D printing and bioprinting. Various biomaterials, including natural, synthetic biopolymers and their composites, have been studied. Biomaterial inks or bioinks used for bone and mineralized tissue regeneration include hydrogels loaded with minerals or bioceramics, cells, and growth factors. In 3D printing, the scaffold is created by acellular biomaterials (biomaterial inks), while in 3D bioprinting, cell-laden hydrogels (bioinks) are used. Two main classes of bioceramics, including bioactive and bioinert ceramics, are reviewed. Bioceramics incorporation provides osteoconductive properties and induces bone formation. Each biopolymer and mineral have its advantages and limitations. Each component of these composite biomaterials provides specific properties, and their combination can ameliorate the mechanical properties, bioactivity, or biological integration of the 3D printed scaffold. Present challenges and future approaches to address them are also discussed.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, Université de Montreal, Montreal, QC, Canada
| | - Raziyehsadat Rezvaninejad
- Department of Oral Medicine, Faculty of Dentistry, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | | | - Rodrigo França
- Department of Restorative Dentistry, College of Dentistry, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
34
|
Aslankoohi N, Mequanint K. Intrinsically fluorescent bioactive glass-poly(ester amide) hybrid microparticles for dual drug delivery and bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112288. [PMID: 34474839 DOI: 10.1016/j.msec.2021.112288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/27/2021] [Accepted: 06/26/2021] [Indexed: 12/19/2022]
Abstract
The bone extracellular matrix (ECM) is a composite scaffold having inorganic hydroxyapatite and organic collagen fibers. Synthetic bone repair scaffolds that mimic the chemical composition of the native ECM and capable of delivering therapeutics are beneficial. In this study, we prepared intrinsically fluorescent organic-inorganic hybrid microparticle biomaterials by sol-gel process. Unlike the conventional Stöber process which requires an alkaline condition for microparticle formation, an acidic condition in the presence of a biodegradable poly(ester amide) (PEA) polymer was used to prepare silica and tertiary bioactive glass hybrids. During their preparation, one or two model drugs were loaded in the microparticles. Our results showed that a gelation temperature between 40 °C-60 °C and the inclusion of PEA were critical for microparticle formation. Unexpectedly, the hybrid microparticles were fluorescent with tunable emission by changing the excitation wavelengths ranging from 300 to 565 nm for potential multiplex imaging. Gene expression studies showed that the hybrid materials induce osteogenic differentiation of 10T1/2 cells without adding exogenous biochemical factors. The bioactivity of the inorganic phase and the dual drug release from homogenous, biodegradable, biocompatible, osteoinductive, and intrinsically fluorescent microparticles may offer a unique platform for bone regeneration and therapy.
Collapse
Affiliation(s)
- Neda Aslankoohi
- School of Biomedical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Kibret Mequanint
- School of Biomedical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada; Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada.
| |
Collapse
|
35
|
Kaur K, Paiva SS, Caffrey D, Cavanagh BL, Murphy CM. Injectable chitosan/collagen hydrogels nano-engineered with functionalized single wall carbon nanotubes for minimally invasive applications in bone. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112340. [PMID: 34474890 DOI: 10.1016/j.msec.2021.112340] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Mechanical robustness is an essential consideration in the development of hydrogel platforms for bone regeneration, and despite significant advances in the field of injectable hydrogels, many fail in this regard. Inspired by the mechanical properties of carboxylated single wall carbon nanotubes (COOH-SWCNTs) and the biological advantages of natural polymers, COOH-SWCNTs were integrated into chitosan and collagen to formulate mechanically robust, injectable and thermoresponsive hydrogels with interconnected molecular structure for load-bearing applications. This study presents a complete characterisation of the structural and biological properties, and mechanism of gelation of these novel formulated hydrogels. Results demonstrate that β-glycerophosphate (β-GP) and temperature play important roles in attaining gelation at physiological conditions, and the integration with COOH-SWCNTs significantly changed the structural morphology of the hydrogels to a more porous and aligned network. This led to a crystalline structure and significantly increased the mechanical strength of the hydrogels from kPa to MPa, which is closer to the mechanical strength of the bone. Moreover, increased osteoblast proliferation and rapid adsorption of hydroxyapatite on the surface of the hydrogels indicates increased bioactivity with addition of COOH-SWCNTs. Therefore, these nano-engineered hydrogels are expected to have wide utility in the area of bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Kulwinder Kaur
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland
| | - Silvia Sa' Paiva
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland
| | - David Caffrey
- School of Physics and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, D02 PN40, Ireland
| | - Brenton L Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin D02YN77, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin D02YN7, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
36
|
3D Printing and Bioprinting to Model Bone Cancer: The Role of Materials and Nanoscale Cues in Directing Cell Behavior. Cancers (Basel) 2021; 13:cancers13164065. [PMID: 34439218 PMCID: PMC8391202 DOI: 10.3390/cancers13164065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Bone cancer, both primary and metastatic, is characterized by a low survival rate. Currently, available models lack in mimicking the complexity of bone, of cancer, and of their microenvironment, leading to poor predictivity. Three-dimensional technologies can help address this need, by developing predictive models that can recapitulate the conditions for cancer development and progression. Among the existing tools to obtain suitable 3D models of bone cancer, 3D printing and bioprinting appear very promising, as they enable combining cells, biomolecules, and biomaterials into organized and complex structures that can reproduce the main characteristic of bone. The challenge is to recapitulate a bone-like microenvironment for analysis of stromal-cancer cell interactions and biological mechanics leading to tumor progression. In this review, existing approaches to obtain in vitro 3D-printed and -bioprinted bone models are discussed, with a focus on the role of biomaterials selection in determining the behavior of the models and its degree of customization. To obtain a reliable 3D bone model, the evaluation of different polymeric matrices and the inclusion of ceramic fillers is of paramount importance, as they help reproduce the behavior of both normal and cancer cells in the bone microenvironment. Open challenges and future perspectives are discussed to solve existing shortcomings and to pave the way for potential development strategies.
Collapse
|
37
|
de Laia AGS, Valverde TM, Barrioni BR, Cunha PDS, de Goes AM, de Miranda MC, Gomes DA, Queiroz-Junior CM, de Sá MA, de Magalhães Pereira M. Cobalt-containing bioactive glass mimics vascular endothelial growth factor A and hypoxia inducible factor 1 function. J Biomed Mater Res A 2021; 109:1051-1064. [PMID: 32876363 DOI: 10.1002/jbm.a.37095] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Bioactive glasses (BGs) have shown great potential for tissue regeneration and their composition flexibility allows the incorporation of different ions with physiological activities and therapeutic properties in the glass network. Among the many ions that could be incorporated, cobalt (Co) is a significant one, as it mimics hypoxia, triggering the formation of new blood vessels by the vascular endothelial growth factor A (VEGFA), due to the stabilizing effect on the hypoxia inducible factor 1 subunit alpha (HIF1A), an activator of angiogenesis-related genes, and is therefore of great interest for tissue engineering applications. However, despite its promising properties, the effects of glasses incorporated with Co on angiogenesis, through human umbilical cord vein endothelial cells (HUVECs) studies, need to be further investigated. Therefore, this work aimed to evaluate the biocompatibility and angiogenic potential of a new sol-gel BG, derived from the SiO2 -CaO-P2 O5 -CoO system. The structural evaluation showed the predominance of an amorphous glass structure, and the homogeneous presence of cobalt in the samples was confirmed. in vitro experiments showed that Co-containing glasses did not affect the viability of HUVECs, stimulated the formation of tubes and the gene expression of HIF1A and VEGFA. in vivo experiments showed that Co-containing glasses stimulated VEGFA and HIF1A expression in blood vessels and cell nuclei, respectively, in the deep dermis layer of the dorsal region of rats, featuring considerable local stimulation of the angiogenesis process due to Co-release. Co-containing glasses showed therapeutic effect, and Co incorporation is a promising strategy for obtaining materials with superior angiogenesis properties for tissue engineering applications.
Collapse
Affiliation(s)
- Andréia Grossi Santos de Laia
- Department of Metallurgical and Materials Engineering, Engineering School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thalita Marcolan Valverde
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Breno Rocha Barrioni
- Department of Metallurgical and Materials Engineering, Engineering School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pricila da Silva Cunha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alfredo Miranda de Goes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Coutinho de Miranda
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Dawidson Assis Gomes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcos Augusto de Sá
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marivalda de Magalhães Pereira
- Department of Metallurgical and Materials Engineering, Engineering School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
38
|
Ghanbari M, Salavati-Niasari M, Mohandes F. Thermosensitive alginate-gelatin-nitrogen-doped carbon dots scaffolds as potential injectable hydrogels for cartilage tissue engineering applications. RSC Adv 2021; 11:18423-18431. [PMID: 35480940 PMCID: PMC9033430 DOI: 10.1039/d1ra01496j] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/08/2021] [Indexed: 12/21/2022] Open
Abstract
Hybrid injectable and biodegradable hydrogels based on oxidized alginate/gelatin and containing nitrogen-doped carbon dots (NCDs) as a reinforcement have been fabricated and crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) as the chemical crosslinking agents in the hydrogel system. The idea of composite hydrogels relies on the assumption that they supply a microenvironment that is convenient for the exchange of nutrients via a porous structure and cell proliferation and have mechanical characteristics that approximately match natural tissue. The effect of the NCD content on the morphology structure, mechanical strength, swelling ratio, and biodegradation has been investigated. The results indicate that nanocomposite hydrogels containing a higher content of NCDs have smaller pore sizes and higher mechanical properties. The in vitro biodegradation and swelling behavior demonstrated that increasing the amount of NCDs up to 0.06% decreased the swelling ratio and weight loss of the hydrogels. The composite hydrogels are biocompatible, as verified by the MTT assay of MG-63 cells. The N-doped graphene quantum dots considerably affect degradation and interaction within the cells and hydrogels. The low gelation time (120 s) and gelation temperature at body temperature (37 °C) make oxidized alginate/gelatin/NCDs hydrogels suitable as temperature-sensitive injectable hydrogels for cartilage tissue engineering.![]()
Collapse
Affiliation(s)
- Mojgan Ghanbari
- Institute of Nano Science and Nano Technology, University of Kashan P. O. Box. 87317-51167 Kashan I. R. Iran +98 31 55913201 +98 31 5591 2383
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan P. O. Box. 87317-51167 Kashan I. R. Iran +98 31 55913201 +98 31 5591 2383
| | - Fatemeh Mohandes
- Institute of Nano Science and Nano Technology, University of Kashan P. O. Box. 87317-51167 Kashan I. R. Iran +98 31 55913201 +98 31 5591 2383
| |
Collapse
|
39
|
The influence of 3‐glycidyloxypropyl trimethoxysilane on the rheological and in‐vitro behavior of injectable composites containing
64S
bioactive glass, chitosan, and gelatin. J Appl Polym Sci 2021. [DOI: 10.1002/app.50963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Sánchez-Aguinagalde O, Lejardi A, Meaurio E, Hernández R, Mijangos C, Sarasua JR. Novel Hydrogels of Chitosan and Poly(vinyl alcohol) Reinforced with Inorganic Particles of Bioactive Glass. Polymers (Basel) 2021; 13:691. [PMID: 33668909 PMCID: PMC7956335 DOI: 10.3390/polym13050691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022] Open
Abstract
Chitosan (CS) and poly(vinyl alcohol) (PVA) hydrogels, a polymeric system that shows a broad potential in biomedical applications, were developed. Despite the advantages they present, their mechanical properties are insufficient to support the loads that appear on the body. Thus, it was proposed to reinforce these gels with inorganic glass particles (BG) in order to improve mechanical properties and bioactivity and to see how this reinforcement affects levofloxacin drug release kinetics. Scanning electron microscopy (SEM), X-ray diffraction (XRD), swelling tests, rheology and drug release studies characterized the resulting hydrogels. The experimental results verified the bioactivity of these gels, showed an improvement of the mechanical properties and proved that the added bioactive glass does affect the release kinetics.
Collapse
Affiliation(s)
- O. Sánchez-Aguinagalde
- Department of Mining-Metallurgy Engineering and Materials Science and POLYMAT, School of Engineering, University of the Basque Country (EHU-UPV), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; (O.S.-A.); (E.M.); (J.-R.S.)
| | - Ainhoa Lejardi
- Department of Mining-Metallurgy Engineering and Materials Science and POLYMAT, School of Engineering, University of the Basque Country (EHU-UPV), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; (O.S.-A.); (E.M.); (J.-R.S.)
| | - Emilio Meaurio
- Department of Mining-Metallurgy Engineering and Materials Science and POLYMAT, School of Engineering, University of the Basque Country (EHU-UPV), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; (O.S.-A.); (E.M.); (J.-R.S.)
| | - Rebeca Hernández
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, c/Juan de la Cierva 3, 28006 Madrid, Spain; (R.H.); (C.M.)
| | - Carmen Mijangos
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, c/Juan de la Cierva 3, 28006 Madrid, Spain; (R.H.); (C.M.)
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science and POLYMAT, School of Engineering, University of the Basque Country (EHU-UPV), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; (O.S.-A.); (E.M.); (J.-R.S.)
| |
Collapse
|
41
|
Zheng K, Sui B, Ilyas K, Boccaccini AR. Porous bioactive glass micro- and nanospheres with controlled morphology: developments, properties and emerging biomedical applications. MATERIALS HORIZONS 2021; 8:300-335. [PMID: 34821257 DOI: 10.1039/d0mh01498b] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In recent years, porous bioactive glass micro/nanospheres (PBGSs) have emerged as attractive biomaterials in various biomedical applications where such engineered particles provide suitable functions, from tissue engineering to drug delivery. The design and synthesis of PBGSs with controllable particle size and pore structure are critical for such applications. PBGSs have been successfully synthesized using melt-quenching and sol-gel based methods. The morphology of PBGSs is controllable by tuning the processing parameters and precursor characteristics during the synthesis. In this comprehensive review on PBGSs, we first overview the synthesis approaches for PBGSs, including both melt-quenching and sol-gel based strategies. Sol-gel processing is the primary technology used to produce PBGSs, allowing for control over the chemical compositions and pore structure of particles. Particularly, the influence of pore-forming templates on the morphology of PBGSs is highlighted. Recent progress in the sol-gel synthesis of PBGSs with sophisticated pore structures (e.g., hollow mesoporous, dendritic fibrous mesoporous) is also covered. The challenges regarding the control of particle morphology, including the influence of metal ion precursors and pore expansion, are discussed in detail. We also highlight the recent achievements of PBGSs in a number of biomedical applications, including bone tissue regeneration, wound healing, therapeutic agent delivery, bioimaging, and cancer therapy. Finally, we conclude with our perspectives on the directions of future research based on identified challenges and potential new developments and applications of PBGSs.
Collapse
Affiliation(s)
- Kai Zheng
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | | | | | | |
Collapse
|
42
|
Poustchi F, Amani H, Ahmadian Z, Niknezhad SV, Mehrabi S, Santos HA, Shahbazi M. Combination Therapy of Killing Diseases by Injectable Hydrogels: From Concept to Medical Applications. Adv Healthc Mater 2021; 10:e2001571. [PMID: 33274841 DOI: 10.1002/adhm.202001571] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/13/2020] [Indexed: 01/16/2023]
Abstract
The complexity of hard-to-treat diseases strongly undermines the therapeutic potential of available treatment options. Therefore, a paradigm shift from monotherapy toward combination therapy has been observed in clinical research to improve the efficiency of available treatment options. The advantages of combination therapy include the possibility of synchronous alteration of different biological pathways, reducing the required effective therapeutic dose, reducing drug resistance, and lowering the overall costs of treatment. The tunable physical properties, excellent biocompatibility, facile preparation, and ease of administration with minimal invasiveness of injectable hydrogels (IHs) have made them excellent candidates to solve the clinical and pharmacological limitations of present systems for multitherapy by direct delivery of therapeutic payloads and improving therapeutic responses through the formation of depots containing drugs, genes, cells, or a combination of them in the body after a single injection. In this review, currently available methods for the design and fabrication of IHs are systematically discussed in the first section. Next, as a step toward establishing IHs for future multimodal synergistic therapies, recent advances in cancer combination therapy, wound healing, and tissue engineering are addressed in detail in the following sections. Finally, opportunities and challenges associated with IHs for multitherapy are listed and further discussed.
Collapse
Affiliation(s)
- Fatemeh Poustchi
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Department of Nanotechnology University of Guilan Rasht Guilan 41996‐13765 Iran
| | - Hamed Amani
- Faculty of Advanced Technologies in Medicine, Department of Medical Nanotechnology Iran University of Medical Science Tehran 14496‐14535 Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics School of Pharmacy Zanjan University of Medical Science Zanjan 45139‐56184 Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center Shiraz University of Medical Sciences Shiraz 71987‐54361 Iran
| | - Soraya Mehrabi
- Faculty of Medicine, Department of Physiology Iran University of Medical Sciences Tehran 14496‐14535 Iran
| | - Hélder A. Santos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki Helsinki FI‐00014 Finland
| | - Mohammad‐Ali Shahbazi
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) Zanjan University of Medical Sciences Zanjan 45139‐56184 Iran
| |
Collapse
|
43
|
Goel H, Gupta N, Santhiya D, Dey N, Bohidar HB, Bhattacharya A. Bioactivity reinforced surface patch bound collagen-pectin hydrogel. Int J Biol Macromol 2021; 174:240-253. [PMID: 33515570 DOI: 10.1016/j.ijbiomac.2021.01.166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 01/10/2023]
Abstract
In this report, we discuss the design of a novel collagen/pectin (CP) hybrid composite hydrogel (CPBG) containing in-situ mineralized bioactive glass (BG) particles to simulate an integrative 3D cell environment. Systematic analysis of the CP sol revealed collagen and pectin molecules interacted regardless of both possessing similar net negative charge through the mechanism of surface patch binding interaction. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) confirmed this associative interaction which resulted in the formation of a hybrid crosslinked network with the BG nanoparticles acting as pseudo crosslink junctions. Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX) and Transmission Electron Microscopy (TEM) results confirmed uniform mineralization of BG particles, and their synergetic interaction with the network. The in-vitro bioactivity tests on CPBG indicated the formation of bone-like hydroxyapatite (Ca10(PO4)6(OH)2) microcrystals on its surface after interaction with simulated body fluid. This hydrogel was loaded with a model antifungal drug amphotericin-B (AmB) and tested against Candida albicans. The AmB release kinetics from the hydrogel followed the Fickian mechanism and showed direct proportionality to gel swelling behavior. Rheological analysis revealed the viscoelastic compatibility of CPBG for the mechanical load bearing applications. Cell viability tests indicated appreciable compatibility of the hydrogel against U2OS and HaCaT cell lines. FDA/PI on the hydrogel portrayed preferential U2OS cell adhesion on hydrophobic hydroxyapatite layer compared to hydrophilic surfaces, thereby promising the regeneration of both soft and hard tissues.
Collapse
Affiliation(s)
- Himansh Goel
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India
| | - Nidhi Gupta
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India; School of Physical Science, Jawaharlal Nehru University, New Delhi, India
| | - Deenan Santhiya
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India.
| | - Namit Dey
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India; Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Himadri B Bohidar
- School of Physical Science, Jawaharlal Nehru University, New Delhi, India.
| | - Aditi Bhattacharya
- Department of Biochemistry, All India Institute of Medical Science, New Delhi, India
| |
Collapse
|
44
|
Paramita P, Ramachandran M, Narashiman S, Nagarajan S, Sukumar DK, Chung TW, Ambigapathi M. Sol-gel based synthesis and biological properties of zinc integrated nano bioglass ceramics for bone tissue regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:5. [PMID: 33471255 PMCID: PMC7817593 DOI: 10.1007/s10856-020-06478-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/18/2020] [Indexed: 06/01/2023]
Abstract
Bone is a flexible and electro active tissue that is vulnerable to various traumatic injuries. The self-healing of damaged bone tissue towards reconstruction is limited due to the lack of proper niche compliances. Nevertheless, the classical grafting techniques like autograft/allograft for bone repair pose challenges like bacterial infections and donor-site morbidity with unsatisfactory outcomes. The use of appropriate biomaterial with osteogenic potential can meet these challenges. In this regard, bioactive glass ceramics is widely used as a bone filler or graft material because of its bonding affinity to bone leading towards bone reconstruction applications without the challenge of post implant infections. Hence, the current study is aimed at addressing this potentiality of zinc (Zn) for doped the bioglass at nano-scale advantages for bone tissue repair. Since, Zn has been demonstrated to have not only antibacterial property but also the stimulatory effect on osteoblasts differentiation, mineralization by enhancing the osteogenic genes expression. In view of these, the present study is focused on sol-gel synthesis and pysico-chemical characterization of Zinc-doped bioglass nanoparticles (Zn-nBGC) and also analyzing its biological implications. The surface morphological and physiochemical characterizations using SEM, EDX, FT-IR and XRD analysis has shown the increased surface area of Zn-nBGC particles providing a great platform for biomolecular interaction, cytocompatibility, cell proliferation and osteogenic differentiation. The obtaining hydroxy apatite groups have initiated in vitro mineralization towards osteogenic lineage formation. Zn has not only involved in enhancing cellular actions but also strengthen the ceramic nanoparticles towards antibacterial application. Hence the finding suggests a biomaterial synthesis of better biomaterial for bone tissue engineering application by preventing post-operative bacterial infection.
Collapse
Affiliation(s)
- Pragyan Paramita
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| | - Murugesan Ramachandran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| | - Srinivasan Narashiman
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| | - Selvamurugan Nagarajan
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, 603203, India
| | - Dinesh Kumar Sukumar
- Department of Biomedical Science, Peptide Biochemistry, Chosun University, Gwangju, 61452, Republic of Korea
| | - Tze-Wen Chung
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Moorthi Ambigapathi
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India.
| |
Collapse
|
45
|
Geanaliu-Nicolae RE, Andronescu E. Blended Natural Support Materials-Collagen Based Hydrogels Used in Biomedicine. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5641. [PMID: 33321865 PMCID: PMC7764196 DOI: 10.3390/ma13245641] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 01/17/2023]
Abstract
Due to their unique properties-the are biocompatible, easily accessible, and inexpensive with programmable properties-biopolymers are used in pharmaceutical and biomedical research, as well as in cosmetics and food. Collagen is one of the most-used biomaterials in biomedicine, being the most abundant protein in animals with a triple helices structure, biocompatible, biomimetic, biodegradable, and hemostatic. Its disadvantages are its poor mechanical and thermal properties and enzymatic degradation. In order to solve this problem and to use its benefits, collagen can be used blended with other biomaterials such as alginate, chitosan, and cellulose. The purpose of this review article is to offer a brief paper with updated information on blended collagen-based formulations and their potential application in biomedicine.
Collapse
Affiliation(s)
- Ruxandra-Elena Geanaliu-Nicolae
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | | |
Collapse
|
46
|
Antimicrobial Activity and Biocompatibility of Antibiotic-Loaded Chitosan Hydrogels as a Potential Scaffold in Regenerative Endodontic Treatment. J Endod 2020; 46:1867-1875. [DOI: 10.1016/j.joen.2020.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/15/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022]
|
47
|
Pereira I, Pereira JE, Maltez L, Rodrigues A, Rodrigues C, Oliveira M, Silva DM, Caseiro AR, Prada J, Maurício AC, Santos JD, Gama M. Regeneration of critical-sized defects, in a goat model, using a dextrin-based hydrogel associated with granular synthetic bone substitute. Regen Biomater 2020; 8:rbaa036. [PMID: 33732486 PMCID: PMC7947577 DOI: 10.1093/rb/rbaa036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/27/2022] Open
Abstract
The development of injectable bone substitutes (IBS) have obtained great importance in the bone regeneration field, as a strategy to reach hardly accessible defects using minimally invasive techniques and able to fit to irregular topographies. In this scenario, the association of injectable hydrogels and bone graft granules is emerging as a well-established trend. Particularly, in situ forming hydrogels have arisen as a new IBS generation. An in situ forming and injectable dextrin-based hydrogel (HG) was developed, aiming to act as a carrier of granular bone substitutes and bioactive agents. In this work, the HG was associated to a granular bone substitute (Bonelike®) and implanted in goat critical-sized calvarial defects (14 mm) for 3, 6 and 12 weeks. The results showed that HG improved the handling properties of the Bonelike® granules and did not affect its osteoconductive features, neither impairing the bone regeneration process. Human multipotent mesenchymal stromal cells from the umbilical cord, extracellular matrix hydrolysates and the pro-angiogenic peptide LLKKK18 were also combined with the IBS. These bioactive agents did not enhance the new bone formation significantly under the conditions tested, according to micro-computed tomography and histological analysis.
Collapse
Affiliation(s)
- Isabel Pereira
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
- Correspondence address. CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. Tel: +351-253-604-418; E-mail:
| | - José Eduardo Pereira
- CECAV, Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
| | - Luís Maltez
- CECAV, Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
| | - Alexandra Rodrigues
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Catarina Rodrigues
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Manuela Oliveira
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Dina M Silva
- Biosckin, Molecular and Cell Therapies S.A., Laboratório Criovida, TecMaia, Rua Engenheiro Frederico Ulrich 2650, Moreira da Maia 4470-605, Portugal
| | - Ana Rita Caseiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto 4051-401 Portugal
- Centro de Investigação Vasco da Gama (CIVG)/Escola Universitária Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, n.° 197 Lordemão, Coimbra 3020-210, Portugal
| | - Justina Prada
- CECAV, Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto 4051-401 Portugal
| | - José Domingos Santos
- REQUIMTE/LAQV, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr Roberto Frias, Porto 4200-495, Portugal
| | - Miguel Gama
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| |
Collapse
|
48
|
Chitosan Composite Biomaterials for Bone Tissue Engineering—a Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00187-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Watanabe T, Takabatake K, Tsujigiwa H, Watanabe S, Nakagiri R, Nakano K, Nagatsuka H, Kimata Y. Effect of Honeycomb β-TCP Geometrical Structure on Bone Tissue Regeneration in Skull Defect. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4761. [PMID: 33113818 PMCID: PMC7663559 DOI: 10.3390/ma13214761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 11/30/2022]
Abstract
The effect of the geometric structure of artificial biomaterials on skull regeneration remains unclear. In a previous study, we succeeded in developing honeycomb β-tricalcium phosphate (β-TCP), which has through-and-through holes and is able to provide the optimum bone microenvironment for bone tissue regeneration. We demonstrated that β-TCP with 300-μm hole diameters induced vigorous bone formation. In the present study, we investigated how differences in hole directions of honeycomb β-TCP (horizontal or vertical holes) influence bone tissue regeneration in skull defects. Honeycomb β-TCP with vertical and horizontal holes was loaded with BMP-2 using Matrigel and Collagen gel as carriers, and transplanted into skull bone defect model rats. The results showed that in each four groups (Collagen alone group, Matrigel alone group, Collagen + BMP group and Matrigel + BMP-2), vigorous bone formation was observed on the vertical β-TCP compared with horizontal β-TCP. The osteogenic area was larger in the Matrigel groups (with and without BMP-2) than in the Collagen group (with and without BMP-2) in both vertical β-TCP and horizontal β-TCP. However, when BMP-2 was added, the bone formation area was not significantly different between the Collagen group and the Matrigel group in the vertical β-TCP. Histological finding showed that, in vertical honeycomb β-TCP, new bone formation extended to the upper part of the holes and was observed from the dura side to the periosteum side as added to the inner walls of the holes. Therefore, we can control efficient bone formation by creating a bone microenvironment provided by vertical honeycomb β-TCP. Vertical honeycomb β-TCP has the potential to be an excellent biomaterial for bone tissue regeneration in skull defects and is expected to have clinical applications.
Collapse
Affiliation(s)
- Toshiyuki Watanabe
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008525, Japan; (T.W.); (S.W.); (R.N.); (Y.K.)
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008525, Japan; (K.N.); (H.N.)
| | - Hidetsugu Tsujigiwa
- Department of Life Science, Faculty of Science, Okayama University Science, Okayama 7000005, Japan;
| | - Satoko Watanabe
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008525, Japan; (T.W.); (S.W.); (R.N.); (Y.K.)
| | - Ryoko Nakagiri
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008525, Japan; (T.W.); (S.W.); (R.N.); (Y.K.)
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008525, Japan; (K.N.); (H.N.)
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008525, Japan; (K.N.); (H.N.)
| | - Yoshihiro Kimata
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008525, Japan; (T.W.); (S.W.); (R.N.); (Y.K.)
| |
Collapse
|
50
|
Hybrid gelatin/oxidized chondroitin sulfate hydrogels incorporating bioactive glass nanoparticles with enhanced mechanical properties, mineralization, and osteogenic differentiation. Bioact Mater 2020; 6:890-904. [PMID: 33073063 PMCID: PMC7548431 DOI: 10.1016/j.bioactmat.2020.09.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Biopolymer based hydrogels are characteristic of their biocompatibility and capability of mimicking extracellular matrix structure to support cellular behavior. However, these hydrogels suffer from low mechanical properties, uncontrolled degradation, and insufficient osteogenic activity, which limits their applications in bone regeneration. In this study, we developed hybrid gelatin (Gel)/oxidized chondroitin sulfate (OCS) hydrogels that incorporated mesoporous bioactive glass nanoparticles (MBGNs) as bioactive fillers for bone regeneration. Gel-OCS hydrogels could be self-crosslinked in situ under physiological conditions in the presence of borax. The incorporation of MBGNs enhanced the crosslinking and accelerated the gelation. The gelation time decreased with increasing the concentration of MBGNs added. Incorporation of MBGNs in the hydrogels significantly improved the mechanical properties in terms of enhanced storage modulus and compressive strength. The injectability of the hydrogels was not significantly affected by the MBGN incorporation. Also, the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells in vitro and rat cranial defect restoration in vivo were significantly promoted by the hydrogels in the presence of MBGNs. The hybrid Gel-OCS/MBGN hydrogels show promising potential as injectable biomaterials or scaffolds for bone regeneration/repair applications given their tunable degradation and gelation behavior as well as favorable mechanical behavior and osteogenic activities. In situ self-crosslinking of hybrid Gel-OCS/MBGN hydrogels. Hybrid hydrogels are porous, injectable and bioadhesive. Incorporation of MBGNs enhances mechanical and mineralization properties of hydrogels. Osteogenic differentiation of BMSCs enhanced after incorporating MBGNs into hydrogels. The presence of MBGNs enhances in vivo rat cranial defect restoration.
Collapse
|