1
|
Ziegelmeyer T, Martins de Sousa K, Liao TY, Lartizien R, Delay A, Vollaire J, Josserand V, Linklater D, Le PH, Coll JL, Bettega G, Ivanova EP, Martel-Frachet V. Multifunctional micro/nano-textured titanium with bactericidal, osteogenic, angiogenic and anti-inflammatory properties: Insights from in vitro and in vivo studies. Mater Today Bio 2025; 32:101710. [PMID: 40230651 PMCID: PMC11994386 DOI: 10.1016/j.mtbio.2025.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/06/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
Titanium (Ti) is widely used as an implantable material for bone repair in orthopedics and dentistry. However, Ti implants are vulnerable to bacterial infections, which can compromise patient recovery and lead to implant failure. While a controlled inflammatory response promotes bone regeneration, chronic inflammation caused by infections can lead to implant failure. Bone repair is a complex process in which inflammation, angiogenesis and osteogenesis are tightly interconnected, requiring cooperation between mesenchymal stem cells (MSC), macrophages and endothelial cells. Here, we fabricated bio-inspired Ti implants with either microstructured (Micro Ti) or nanostructured (Nano Ti) surface textures that exhibit robust mechano-bactericidal properties. In vitro, both textured surfaces improved blood coagulation and osteogenic marker expression compared to smooth Ti surfaces. Additionally, Nano Ti promoted macrophage polarization towards the M2 phenotype and enhanced the paracrine effects of MSCs on angiogenesis, key processes in tissue regeneration. In vivo kinetic analysis of bone reconstruction in a rat calvarial model showed that Nano Ti improved osseointegration, as evidenced by increased bone volume, mineral density, and bone-implant contact. Notably, the Micro Ti surface showed no significant differences from the control implants. These findings highlight the potential of mechano-bactericidal surface nanopatterns to simultaneously prevent infections and enhance osseointegration by modulating protein adsorption, inflammation, angiogenesis and osteogenesis. This study provides new insights into the development of bifunctional Ti implants, offering new perspectives for the next generation of implantable bone-related biomaterials.
Collapse
Affiliation(s)
- Théo Ziegelmeyer
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, F38000, Grenoble, France
| | | | - Tzu-Ying Liao
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Rodolphe Lartizien
- Service de Chirurgie Maxillo-Faciale, Centre Hospitalier Annecy Genevois, 1 Avenue de L'hôpital, Epagny Metz-Tessy, F-74370, France
| | - Alexandra Delay
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, F38000, Grenoble, France
| | - Julien Vollaire
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, F38000, Grenoble, France
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Optimal Platform, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Véronique Josserand
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, F38000, Grenoble, France
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Optimal Platform, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Denver Linklater
- Department of Biomedical Engineering, The Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Phuc H. Le
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Jean-Luc Coll
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, F38000, Grenoble, France
| | - Georges Bettega
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, F38000, Grenoble, France
- Service de Chirurgie Maxillo-Faciale, Centre Hospitalier Annecy Genevois, 1 Avenue de L'hôpital, Epagny Metz-Tessy, F-74370, France
| | - Elena P. Ivanova
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Véronique Martel-Frachet
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, F38000, Grenoble, France
- University PSL Research, EPHE, F75014, Paris, France
| |
Collapse
|
2
|
Zhang Y, Li M, Zhang H, You J, Zhou J, Ren S, Feng J, Han Y, Zhang Y, Zhou Y. 3D-printed intelligent photothermal conversion Nb 2C MXene composite scaffolds facilitate the regulation of angiogenesis-osteogenesis coupling for vascularized bone regeneration. Mater Today Bio 2025; 31:101647. [PMID: 40161928 PMCID: PMC11950769 DOI: 10.1016/j.mtbio.2025.101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/18/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
Personalized porous scaffold materials for bone defect repair, with adjustable mechanical strength and porosity via 3D printing technology, have made significant strides in the bone tissue engineering. However, their ability to regulate the angiogenesis processes at the defect site remains constrained, hindering the effective coupling of angiogenesis-bone regeneration. In this study, we incorporated Nb2C MXene as a photothermal agent and enhancer for both angiogenesis and osteogenesis, embedded into a poly (lactic-co-glycolic acid)/β-tricalcium phosphate (PLGA/β-TCP) composite biological ink. Nb releasing and precisely gentle thermotherapy successfully enhanced both angiogenesis and bone regeneration while promoting their coupling. The in vitro experiments demonstrate that the scaffold induces the upregulation of MMP family members, particularly MMP-1, MMP-3, and MMP-10, during the initial stage of bone defect repair under mild hyperthermia conditions. It promotes vascular basement membrane degradation, effectively initiating angiogenesis. Moreover, it directly activates the HIF-1/STAT3/VEGF pathway in HUVECs and triggers HSP90 expression, which stabilizes and activates the PI3K-AKT pathway in BMSCs. Consequently, this sequential linkage between PI3K-AKT and HIF-1 pathways enhances bone formation while facilitating angiogenic bone regeneration, as evidenced by the increased expression of specialized H-type vessels in rat cranial critical defect models. In vivo experimental findings further validate the effective promotion of angiogenic bone regeneration by this precision-designed PTMN scaffold under mild hyperthermia conditions, making it an effective solution for large-area bone defect repair. In summary, the precise design and manufacture of the PTMN scaffold using mild hyperthermia to fix large bone defects is a promising approach that has huge implications.
Collapse
Affiliation(s)
- Yi Zhang
- Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Affiliated Maternal and Child Health Care Hospital of Nantong University, Nantong, 226000, Jiangsu, China
| | - Mucong Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Hao Zhang
- Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Department of Stomatology, People's Hospital of Xizang Autonomous Region, Xizang, 850000, China
| | - Jiaqian You
- Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, Guangdong, China
| | - Jing Zhou
- Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Sicong Ren
- Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Jian Feng
- Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Yuzhu Han
- Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Yidi Zhang
- Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Yanmin Zhou
- Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| |
Collapse
|
3
|
Chen X, Ji X, Lao Z, Pan B, Qian Y, Yang W. Role of YAP/TAZ in bone diseases: A transductor from mechanics to biology. J Orthop Translat 2025; 51:13-23. [PMID: 39902099 PMCID: PMC11787699 DOI: 10.1016/j.jot.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 02/05/2025] Open
Abstract
Wolff's Law and the Mechanostat Theory elucidate how bone tissues detect and convert mechanical stimuli into biological signals, crucial for maintaining bone equilibrium. Abnormal mechanics can lead to diseases such as osteoporosis, osteoarthritis, and nonunion fractures. However, the detailed molecular mechanisms by which mechanical cues are transformed into biological responses in bone remain underexplored. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), key regulators of bone homeostasis, are instrumental in this process. Emerging research highlights bone cells' ability to sense various mechanical stimuli and relay these signals intracellularly. YAP/TAZ are central in receiving these mechanical cues and converting them into signals that influence bone cell behavior. Abnormal YAP/TAZ activity is linked to several bone pathologies, positioning these proteins as promising targets for new treatments. Thus, this review aims to provide an in-depth examination of YAP/TAZ's critical role in the interpretation of mechanical stimuli to biological signals, with a special emphasis on their involvement in bone cell mechanosensing, mechanotransduction, and mechanoresponse. The translational potential of this article: Clinically, appropriate stress stimulation promotes fracture healing, while bed rest can lead to disuse osteoporosis and excessive stress can cause osteoarthritis or bone spurs. Recent advancements in the understanding of YAP/TAZ-mediated mechanobiological signal transduction in bone diseases have been significant, yet many aspects remain unknown. This systematic review summarizes current research progress, identifies unaddressed areas, and highlights potential future research directions. Advancements in this field facilitate a deeper understanding of the molecular mechanisms underlying bone mechanics regulation and underscore the potential of YAP/TAZ as therapeutic targets for bone diseases such as fractures, osteoporosis, and osteoarthritis.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Xing Ji
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zhaobai Lao
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Bin Pan
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Yu Qian
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Wanlei Yang
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| |
Collapse
|
4
|
Zheng W, Ma L, Luo X, Xu R, Cao Z, He Y, Chang Y, You Y, Chen T, Liu H. Ultrasound-triggered functional hydrogel promotes multistage bone regeneration. Biomaterials 2024; 311:122650. [PMID: 38889598 DOI: 10.1016/j.biomaterials.2024.122650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
The dysfunction of bone mesenchymal stem cells (BMSCs), caused by the physical and chemical properties of the inflammatory and repair phases of bone regeneration, contributes to the failure of bone regeneration. To meet the spatiotemporal needs of BMSCs in different phases, designing biocompatible materials that respond to external stimuli, improve migration in the inflammatory phase, reduce apoptosis in the proliferative phase, and clear the hurdle in the differentiation phase of BMSCs is an effective strategy for multistage repair of bone defects. In this study, we designed a cascade-response functional composite hydrogel (Gel@Eb/HA) to regulate BMSCs dysfunction in vitro and in vivo. Gel@Eb/HA improved the migration of BMSCs by upregulating the expression of chemokine (C-C motif) ligand 5 (CCL5) during the inflammatory phase. Ultrasound (US) triggered the rapid release of Ebselen (Eb), eliminating the accumulation of reactive oxygen species (ROS) in BMSCs, and reversing apoptosis under oxidative stress. Continued US treatment accelerated the degradation of the materials, thereby providing Ca2+ for the osteogenic differentiation of BMSCs. Altogether, our study highlights the prospects of US-controlled intelligent system, that provides a novel strategy for addressing the complexities of multistage bone repair.
Collapse
Affiliation(s)
- Wenyi Zheng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Li Ma
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Xueshi Luo
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Renhao Xu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Zhiying Cao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Yanni He
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Yanzhou Chang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yuanyuan You
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China; Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| | - Hongmei Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China.
| |
Collapse
|
5
|
Cotrut CM, Blidisel A, Vranceanu DM, Vladescu (Dragomir) A, Ungureanu E, Pana I, Dinu M, Vitelaru C, Parau AC, Pruna V, Magurean MS, Titorencu I. Evaluation of the In Vitro Behavior of Electrochemically Deposited Plate-like Crystal Hydroxyapatite Coatings. Biomimetics (Basel) 2024; 9:704. [PMID: 39590276 PMCID: PMC11592108 DOI: 10.3390/biomimetics9110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The purpose of coatings is to protect or enhance the functionality of the substrate material, irrespective of the field in which the material was designed. The use of coatings in medicine is rapidly expanding with the objective of enhancing the osseointegration ability of metallic materials such as titanium. The aim of this study was to obtain biomimetic hydroxyapatite (HAp)-based coatings on titanium by using the pulsed galvanostatic method. The morphology of the HAp-based coatings revealed the presence of very thin and wide plate-like crystals, grown perpendicular to the Ti substrate, while the chemical composition highlighted a Ca/P ratio of 1.66, which is close to that of stoichiometric HAp (1.67). The main phases and chemical bonds identified confirmed the presence of the HAp phase in the developed coatings. A roughness of 228 nm and a contact angle of approx. 17° were obtained for the HAp coatings, highlighting a hydrophilic character. In terms of biomineralization and electrochemical behavior, it was shown that the HAp coatings have significantly enhanced the titanium properties. Finally, the in vitro cell tests carried out with human mesenchymal stem cells showed that the Ti samples coated with HAp have increased cell viability, extracellular matrix, and Ca intracellular deposition when compared with the uncoated Ti, indicating the beneficial effect.
Collapse
Affiliation(s)
- Cosmin M. Cotrut
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (C.M.C.); (E.U.)
| | - Alexandru Blidisel
- Hepato-Bilio-Pancreatic Surgery Center, University Clinic Surgical Semiology and Thoracic Surgery, “Victor Babes” University of Medicine and Pharmacy, Sq. Eftimie Murgu No. 2, 300041 Timisoara, Romania
| | - Diana M. Vranceanu
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (C.M.C.); (E.U.)
| | - Alina Vladescu (Dragomir)
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Elena Ungureanu
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (C.M.C.); (E.U.)
| | - Iulian Pana
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Mihaela Dinu
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Catalin Vitelaru
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Anca C. Parau
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Vasile Pruna
- Romanian Academy Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 8 B.P. Hasdeu, 050568 Bucharest, Romania
| | | | - Irina Titorencu
- Romanian Academy Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 8 B.P. Hasdeu, 050568 Bucharest, Romania
| |
Collapse
|
6
|
Hu Z, Yang F, Xiang P, Luo Z, Liang T, Xu H. Effect of polydimethylsiloxane surface morphology on osteogenic differentiation of mesenchymal stem cells through SIRT1 signalling pathway. Proc Inst Mech Eng H 2024; 238:537-549. [PMID: 38561625 DOI: 10.1177/09544119241242964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Constructing surface topography with a certain roughness is a widely used, non-toxic, cost-effective and effective method for improving the microenvironment of cells, promoting the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs), and promoting the osseointegration of grafts and further improving their biocompatibility under clinical environmental conditions. SIRT1 plays an important regulatory role in the osteogenic differentiation of bone marrow-derived MSCs (BM-MSCs). However, it remains unknown whether SIRT1 plays an important regulatory role in the osteogenic differentiation of BM-MSCs with regard to surface morphology. Polydimethylsiloxane (PDMS) with different surface morphologies were prepared using different grits of sandpaper. The value for BMSCs added on different surfaces was detected by cell proliferation assays. RT-qPCR and Western blotting were performed to detect SIRT1 activation and osteogenic differentiation of MSCs. Osteogenesis of MSCs was detected by alkaline phosphatase (ALP) and alizarin red S staining. SIRT1 inhibition experiments were performed to investigate the role of SIRT1 in the osteogenic differentiation of MSCs induced by surface morphology. We found that BM-MSCs have better value and osteogenic differentiation ability on a surface with roughness of PDMS-1000M. SIRT1 showed higher gene and protein expression on a PDMS-1000M surface with a roughness of 13.741 ± 1.388 µm. The promotion of the osteogenic differentiation of MSCs on the PDMS-1000M surface was significantly decreased after inhibiting SIRT1 expression. Our study demonstrated that a surface morphology with certain roughness can activate the SIRT1 pathway of MSCs and promote the osteogenic differentiation of BMSCs via the SIRT1 pathway.
Collapse
Affiliation(s)
- Zezun Hu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Fanlei Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Pan Xiang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Zongping Luo
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Ting Liang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Hao Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
7
|
Parmentier L, D'Haese S, Duquesne J, Bray F, Van der Meeren L, Skirtach AG, Rolando C, Dmitriev RI, Van Vlierberghe S. 2D fibrillar osteoid niche mimicry through inclusion of visco-elastic and topographical cues in gelatin-based networks. Int J Biol Macromol 2024; 254:127619. [PMID: 37898251 DOI: 10.1016/j.ijbiomac.2023.127619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Given the clinical need for osteoregenerative materials incorporating controlled biomimetic and biophysical cues, a novel highly-substituted norbornene-modified gelatin was developed enabling thiol-ene crosslinking exploiting thiolated gelatin as cell-interactive crosslinker. Comparing the number of physical crosslinks, the degree of hydrolytic degradation upon modification, the network density and the chemical crosslinking type, the osteogenic effect of visco-elastic and topographical properties was evaluated. This novel network outperformed conventional gelatin-based networks in terms of osteogenesis induction, as evidenced in 2D dental pulp stem cell seeding assays, resulting from the presentation of both a local (substrate elasticity, 25-40 kPa) and a bulk (compressive modulus, 25-45 kPa) osteogenic substrate modulus in combination with adequate fibrillar cell adhesion spacing to optimally transfer traction forces from the fibrillar ECM (as evidenced by mesh size determination with the rubber elasticity theory) and resulting in a 1.7-fold increase in calcium production (compared to the gold standard gelatin methacryloyl (GelMA)).
Collapse
Affiliation(s)
- Laurens Parmentier
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Sophie D'Haese
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Jessie Duquesne
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Fabrice Bray
- Miniaturisation pour la synthèse, l'analyse et la protéomique (MSAP), CNRS, Université de Lille, F-59000 Lille, France
| | - Louis Van der Meeren
- Nano-biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent university, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Andre G Skirtach
- Nano-biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent university, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Christian Rolando
- Miniaturisation pour la synthèse, l'analyse et la protéomique (MSAP), CNRS, Université de Lille, F-59000 Lille, France
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medical and Health Sciences, Ghent university, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium.
| |
Collapse
|
8
|
Chen J. Current advances in anisotropic structures for enhanced osteogenesis. Colloids Surf B Biointerfaces 2023; 231:113566. [PMID: 37797464 DOI: 10.1016/j.colsurfb.2023.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Bone defects are a challenge to healthcare systems, as the aging population experiences an increase in bone defects. Despite the development of biomaterials for bone fillers and scaffolds, there is still an unmet need for a bone-mimetic material. Cortical bone is highly anisotropic and displays a biological liquid crystalline (LC) arrangement, giving it exceptional mechanical properties and a distinctive microenvironment. However, the biofunctions, cell-tissue interactions, and molecular mechanisms of cortical bone anisotropic structure are not well understood. Incorporating anisotropic structures in bone-facilitated scaffolds has been recognised as essential for better outcomes. Various approaches have been used to create anisotropic micro/nanostructures, but biomimetic bone anisotropic structures are still in the early stages of development. Most scaffolds lack features at the nanoscale, and there is no comprehensive evaluation of molecular mechanisms or characterisation of calcium secretion. This manuscript provides a review of the latest development of anisotropic designs for osteogenesis and discusses current findings on cell-anisotropic structure interactions. It also emphasises the need for further research. Filling knowledge gaps will enable the fabrication of scaffolds for improved and more controllable bone regeneration.
Collapse
Affiliation(s)
- Jishizhan Chen
- UCL Mechanical Engineering, University College London, WC1E 7JE, UK.
| |
Collapse
|
9
|
Bakhshandeh B, Sorboni SG, Ranjbar N, Deyhimfar R, Abtahi MS, Izady M, Kazemi N, Noori A, Pennisi CP. Mechanotransduction in tissue engineering: Insights into the interaction of stem cells with biomechanical cues. Exp Cell Res 2023; 431:113766. [PMID: 37678504 DOI: 10.1016/j.yexcr.2023.113766] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Stem cells in their natural microenvironment are exposed to biochemical and biophysical cues emerging from the extracellular matrix (ECM) and neighboring cells. In particular, biomechanical forces modulate stem cell behavior, biological fate, and early developmental processes by sensing, interpreting, and responding through a series of biological processes known as mechanotransduction. Local structural changes in the ECM and mechanics are driven by reciprocal activation of the cell and the ECM itself, as the initial deposition of matrix proteins sequentially affects neighboring cells. Recent studies on stem cell mechanoregulation have provided insight into the importance of biomechanical signals on proper tissue regeneration and function and have shown that precise spatiotemporal control of these signals exists in stem cell niches. Against this background, the aim of this work is to review the current understanding of the molecular basis of mechanotransduction by analyzing how biomechanical forces are converted into biological responses via cellular signaling pathways. In addition, this work provides an overview of advanced strategies using stem cells and biomaterial scaffolds that enable precise spatial and temporal control of mechanical signals and offer great potential for the fields of tissue engineering and regenerative medicine will be presented.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | | | - Nika Ranjbar
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Roham Deyhimfar
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Sadat Abtahi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrnaz Izady
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Navid Kazemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Atefeh Noori
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Denmark.
| |
Collapse
|
10
|
Shibing X, Xugang L, Siqi Z, Yifan C, Jun C, Changsheng W, Simeng W, Bangcheng Y. Osteogenic properties of bioactive titanium in inflammatory environment. Dent Mater 2023; 39:929-937. [PMID: 37640634 DOI: 10.1016/j.dental.2023.08.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVES It is very important that the effects of surface modified titanium on osteogenic differentiation of bone marrow mesenchymal stem cells in the process of bone regeneration. The bio-function of modified titanium could be affected by the inflammatory micro-environment. The aim of this study was to investigate the effects of modified titanium on osteogenic differentiation in the inflammatory conditions and the osteogenic properties of the modified titanium dental implant in vivo. METHODS The medical pure titanium metals (PT-Ti) subjected to Anodic Oxidation (AO-Ti), Sand Blasting/acid etching (SLA-Ti) and Plasma-sprayed HA coating (HA coating-Ti) were used for regulating the osteogenic properties of MSCs in the normal and inflammatory conditions. RESULTS The amount of the MSCs in the inflammatory environment were more similar to that in the non-inflammatory environment after cultured on AO-Ti samples for 7D. However, the proliferation of the MSCs was obviously inhibited on the other groups in the inflammatory condition. The morphology of MSC cells on the modified titanium surface was affected in the inflammatory conditions and the AO-Ti was more conducive to maintain the skeletal morphology of MSCs. The results of osteogenic related proteins expression showed that the amount of BMP-2 on AO-Ti group was the highest in the inflammatory conditions, and followed the order of AO-Ti > HA coating-Ti > SLA-Ti > PT-Ti. What's more, the AO-Ti samples were more beneficial to promote the expression of osteogenic genes ALP, OCN, COL-I and Runx2 in the inflammatory conditions. The results of osteogenic properties in vivo showed that the gingival depth of the AO-Ti group was smaller than that on the other groups. Some new bone could be observed around the AO-Ti implant at two weeks. The bone binding rates on AO-Ti group was the highest of 81.3% after implanted for one year. SIGNIFICANCE The AO-Ti was beneficial to osteogenic differentiation than other modified titanium metals in inflammatory condition. The anodic oxidation is an effective surface modification method on titanium to promote bone regeneration.
Collapse
Affiliation(s)
- Xiong Shibing
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China; National Engineering Research Center for Biomaterials, Chengdu 610064, China; Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Lu Xugang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China; National Engineering Research Center for Biomaterials, Chengdu 610064, China; Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhang Siqi
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China; National Engineering Research Center for Biomaterials, Chengdu 610064, China; Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cui Yifan
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China; National Engineering Research Center for Biomaterials, Chengdu 610064, China; Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Chen Jun
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China; National Engineering Research Center for Biomaterials, Chengdu 610064, China; Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Wei Changsheng
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China; National Engineering Research Center for Biomaterials, Chengdu 610064, China; Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Wang Simeng
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China; National Engineering Research Center for Biomaterials, Chengdu 610064, China; Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yang Bangcheng
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China; National Engineering Research Center for Biomaterials, Chengdu 610064, China; Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
11
|
Rosado-Galindo H, Domenech M. Substrate topographies modulate the secretory activity of human bone marrow mesenchymal stem cells. Stem Cell Res Ther 2023; 14:208. [PMID: 37605275 PMCID: PMC10441765 DOI: 10.1186/s13287-023-03450-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) secrete a diversity of factors with broad therapeutic potential, yet current culture methods limit potency outcomes. In this study, we used topographical cues on polystyrene films to investigate their impact on the secretory profile and potency of bone marrow-derived MSCs (hBM-MSCs). hBM-MSCs from four donors were cultured on topographic substrates depicting defined roughness, curvature, grooves and various levels of wettability. METHODS The topographical PS-based array was developed using razor printing, polishing and plasma treatment methods. hBM-MSCs from four donors were purchased from RoosterBio and used in co-culture with peripheral blood mononuclear cells (PBMCs) from Cell Applications Inc. in an immunopotency assay to measure immunosuppressive capacity. Cells were cultured on low serum (2%) for 24-48 h prior to analysis. Image-based analysis was used for cell quantification and morphology assessment. Metabolic activity of BM-hMSCs was measured as the mitochondrial oxygen consumption rate using an extracellular flux analyzer. Conditioned media samples of BM-hMSCs were used to quantify secreted factors, and the data were analyzed using R statistics. Enriched bioprocesses were identify using the Gene Ontology tool enrichGO from the clusterprofiler. One-way and two-way ANOVAs were carried out to identify significant changes between the conditions. Results were deemed statistically significant for combined P < 0.05 for at least three independent experiments. RESULTS Cell viability was not significantly affected in the topographical substrates, and cell elongation was enhanced at least twofold in microgrooves and surfaces with a low contact angle. Increased cell elongation correlated with a metabolic shift from oxidative phosphorylation to a glycolytic state which is indicative of a high-energy state. Differential protein expression and gene ontology analyses identified bioprocesses enriched across donors associated with immune modulation and tissue regeneration. The growth of peripheral blood mononuclear cells (PBMCs) was suppressed in hBM-MSCs co-cultures, confirming enhanced immunosuppressive potency. YAP/TAZ levels were found to be reduced on these topographies confirming a mechanosensing effect on cells and suggesting a potential role in the immunomodulatory function of hMSCs. CONCLUSIONS This work demonstrates the potential of topographical cues as a culture strategy to improve the secretory capacity and enrich for an immunomodulatory phenotype in hBM-MSCs.
Collapse
Affiliation(s)
- Heizel Rosado-Galindo
- Bioengineering Program, University of Puerto Rico-Mayagüez, Road 108, KM 1.1., Mayagüez, PR, 00680, USA
| | - Maribella Domenech
- Bioengineering Program, University of Puerto Rico-Mayagüez, Road 108, KM 1.1., Mayagüez, PR, 00680, USA.
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Road 108, KM 1.1., Mayagüez, PR, 00680, USA.
| |
Collapse
|
12
|
Kang MS, Park R, Jo HJ, Shin YC, Kim CS, Hyon SH, Hong SW, Oh J, Han DW. Spontaneous Osteogenic Differentiation of Human Mesenchymal Stem Cells by Tuna-Bone-Derived Hydroxyapatite Composites with Green Tea Polyphenol-Reduced Graphene Oxide. Cells 2023; 12:1448. [PMID: 37296569 PMCID: PMC10252354 DOI: 10.3390/cells12111448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
In recent years, bone tissue engineering (BTE) has made significant progress in promoting the direct and functional connection between bone and graft, including osseointegration and osteoconduction, to facilitate the healing of damaged bone tissues. Herein, we introduce a new, environmentally friendly, and cost-effective method for synthesizing reduced graphene oxide (rGO) and hydroxyapatite (HAp). The method uses epigallocatechin-3-O-gallate (EGCG) as a reducing agent to synthesize rGO (E-rGO), and HAp powder is obtained from Atlantic bluefin tuna (Thunnus thynnus). The physicochemical analysis indicated that the E-rGO/HAp composites had exceptional properties for use as BTE scaffolds, as well as high purity. Moreover, we discovered that E-rGO/HAp composites facilitated not only the proliferation, but also early and late osteogenic differentiation of human mesenchymal stem cells (hMSCs). Our work suggests that E-rGO/HAp composites may play a significant role in promoting the spontaneous osteogenic differentiation of hMSCs, and we envision that E-rGO/HAp composites could serve as promising candidates for BTE scaffolds, stem-cell differentiation stimulators, and implantable device components because of their biocompatible and bioactive properties. Overall, we suggest a new approach for developing cost-effective and environmentally friendly E-rGO/HAp composite materials for BTE application.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; (M.S.K.); (R.P.); (H.J.J.); (C.-S.K.)
| | - Rowoon Park
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; (M.S.K.); (R.P.); (H.J.J.); (C.-S.K.)
| | - Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; (M.S.K.); (R.P.); (H.J.J.); (C.-S.K.)
| | - Yong Cheol Shin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; (M.S.K.); (R.P.); (H.J.J.); (C.-S.K.)
- Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan 46241, Republic of Korea
| | | | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; (M.S.K.); (R.P.); (H.J.J.); (C.-S.K.)
- Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Ohlabs Corporation, Busan 48513, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; (M.S.K.); (R.P.); (H.J.J.); (C.-S.K.)
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
13
|
Bakhshandeh B, Ranjbar N, Abbasi A, Amiri E, Abedi A, Mehrabi M, Dehghani Z, Pennisi CP. Recent progress in the manipulation of biochemical and biophysical cues for engineering functional tissues. Bioeng Transl Med 2023; 8:e10383. [PMID: 36925674 PMCID: PMC10013802 DOI: 10.1002/btm2.10383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/28/2022] [Accepted: 07/16/2022] [Indexed: 11/11/2022] Open
Abstract
Tissue engineering (TE) is currently considered a cutting-edge discipline that offers the potential for developing treatments for health conditions that negatively affect the quality of life. This interdisciplinary field typically involves the combination of cells, scaffolds, and appropriate induction factors for the regeneration and repair of damaged tissue. Cell fate decisions, such as survival, proliferation, or differentiation, critically depend on various biochemical and biophysical factors provided by the extracellular environment during developmental, physiological, and pathological processes. Therefore, understanding the mechanisms of action of these factors is critical to accurately mimic the complex architecture of the extracellular environment of living tissues and improve the efficiency of TE approaches. In this review, we recapitulate the effects that biochemical and biophysical induction factors have on various aspects of cell fate. While the role of biochemical factors, such as growth factors, small molecules, extracellular matrix (ECM) components, and cytokines, has been extensively studied in the context of TE applications, it is only recently that we have begun to understand the effects of biophysical signals such as surface topography, mechanical, and electrical signals. These biophysical cues could provide a more robust set of stimuli to manipulate cell signaling pathways during the formation of the engineered tissue. Furthermore, the simultaneous application of different types of signals appears to elicit synergistic responses that are likely to improve functional outcomes, which could help translate results into successful clinical therapies in the future.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
| | - Nika Ranjbar
- Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Elahe Amiri
- Department of Life Science Engineering, Faculty of New Sciences and TechnologyUniversity of TehranTehranIran
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and TechnologyUniversity of TehranTehranIran
| | - Mohammad‐Reza Mehrabi
- Department of Microbial Biotechnology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Zahra Dehghani
- Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and TechnologyAalborg UniversityAalborgDenmark
| |
Collapse
|
14
|
Wang Q, Liu Q, Gao J, He J, Zhang H, Ding J. Stereo Coverage and Overall Stiffness of Biomaterial Arrays Underly Parts of Topography Effects on Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6142-6155. [PMID: 36637977 DOI: 10.1021/acsami.2c19742] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface topography is a biophysical factor affecting cell behaviors, yet the underlying cues are still not clear. Herein, we hypothesized that stereo coverage and overall stiffness of biomaterial arrays on the scale of single cells underly parts of topography effects on cell adhesion. We fabricated a series of microarrays (micropillar, micropit, and microtube) of poly(l-lactic acid) (PLLA) using mold casting based on pre-designed templates. The characteristic sizes of array units were less than that of a single cell, and thus, each cell could sense the micropatterns with varied roughness. With human umbilical vein endothelial cells (HUVECs) as the model cell type, we examined spreading areas and cell viabilities on different surfaces. "Stereo coverage" was defined to quantify the actual cell spreading fraction on a topographic surface. Particularly in the case of high micropillars, cells were confirmed not able to touch the bottom and had to partially hang among the micropillars. Then, in our opinion, a cell sensed the overall stiffness combining the bulk stiffness of the raw material and the stiffness of the culture medium. Spreading area and single cell viability were correlated to coverage and topographic feature of the prepared microarrays in particular with the significantly protruded geometry feather. Cell traction forces exerted on micropillars were also discussed. These findings provide new insights into the surface modifications toward biomedical implants.
Collapse
Affiliation(s)
- Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Qingsong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Junhao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| |
Collapse
|
15
|
Xiao X, Liu Z, Shu R, Wang J, Zhu X, Bai D, Lin H. Periodontal bone regeneration with a degradable thermoplastic HA/PLCL bone graft. J Mater Chem B 2023; 11:772-786. [PMID: 36444735 DOI: 10.1039/d2tb02123d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Strategic bone grafts are required to regenerate periodontal bone defects owing to limited self-healing. Current bioceramic particle or deproteinized bovine bone (DBB) products are not able to ideally meet clinical requirements, such as insufficient operability and slow degradation rates. Herein, a strong-interacted bone graft was designed and synthesized by modifying hydroxyapatite (HA) with a lactide-caprolactone copolymer (PLCL) to improve component homogeneity and mechanical properties. The physical-chemical analysis indicated that HA particles were homogenously distributed in HA/PLCL bone grafts, possessed outstanding thermoplasticity, and facilitated clinic operability and initial mechanical support. The in vitro study suggested that HA/PLCL bone graft degraded in a spatiotemporal model. Micropores were formed on the non-porous surface at the beginning, and interconnected porous structures were gradually generated. Furthermore, HA/PLCL bone grafts exhibited excellent biocompatibility and osteogenic ability as revealed in vitro cell culture and in vivo animal experiments. When applied to rat periodontal bone defects, the HA/PLCL bone graft showed a non-inferior bone regeneration compared to the commercial DBB. This study proposes a potential bone graft for periodontal bone repair with thermoplastic, spatiotemporal degraded, and osteogenic characteristics.
Collapse
Affiliation(s)
- Xueling Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zhanhong Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jiangyue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. .,Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
16
|
Wang H, Li X, Lai S, Cao Q, Liu Y, Li J, Zhu X, Fu W, Zhang X. Construction of Vascularized Tissue Engineered Bone with nHA-Coated BCP Bioceramics Loaded with Peripheral Blood-Derived MSC and EPC to Repair Large Segmental Femoral Bone Defect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:249-264. [PMID: 36548196 DOI: 10.1021/acsami.2c15000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The regenerative repair of segmental bone defect (SBD) is an urgent problem in the field of orthopedics. Rapid induction of angiogenesis and osteoinductivity after implantation of scaffold is critical. In this study, a unique tissue engineering strategy with mixture of peripheral blood-derived mesenchymal stem cells (PBMSC) and endothelial progenitor cells (PBEPC) was applied in a 3D-printed biphasic calcium phosphate (BCP) scaffold with highly bioactive nano hydroxyapatite (nHA) coating (nHA/BCP) to construct a novel vascularized tissue engineered bone (VTEB) for rabbit femoral SBD repair. The 2D coculture of PBMSC and PBEPC showed that they could promote the osteogenic or angiogenic differentiation of the cells from each other, especially in the group of PBEPC/PBMSC = 75:25. Besides, the 3D coculture results exhibited that the nHA coating could further promote PBEPC/PBMSC adhesion, proliferation, and osteogenic and angiogenic differentiation on the BCP scaffold. In vivo experiments showed that among the four groups (BCP, BCP-PBEPC/PBMSC, nHA/BCP, and nHA/BCP-PBEPC/PBMSC), the nHA/BCP-PBEPC/PBMSC group induced the best formation of blood vessels and new bone and, thus, the good repair of SBD. It revealed the synergistic effect of nHA and PBEPC/PBMSC on the angiogenesis and osteogenesis of the BCP scaffold. Therefore, the construction of VTEB in this study could provide a possibility for the regenerative repair of SBD.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Sike Lai
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Quanle Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yunyi Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jian Li
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Weili Fu
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
17
|
Shi J, Dai W, Gupta A, Zhang B, Wu Z, Zhang Y, Pan L, Wang L. Frontiers of Hydroxyapatite Composites in Bionic Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238475. [PMID: 36499970 PMCID: PMC9738134 DOI: 10.3390/ma15238475] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 05/31/2023]
Abstract
Bone defects caused by various factors may cause morphological and functional disorders that can seriously affect patient's quality of life. Autologous bone grafting is morbid, involves numerous complications, and provides limited volume at donor site. Hence, tissue-engineered bone is a better alternative for repair of bone defects and for promoting a patient's functional recovery. Besides good biocompatibility, scaffolding materials represented by hydroxyapatite (HA) composites in tissue-engineered bone also have strong ability to guide bone regeneration. The development of manufacturing technology and advances in material science have made HA composite scaffolding more closely related to the composition and mechanical properties of natural bone. The surface morphology and pore diameter of the scaffold material are more important for cell proliferation, differentiation, and nutrient exchange. The degradation rate of the composite scaffold should match the rate of osteogenesis, and the loading of cells/cytokine is beneficial to promote the formation of new bone. In conclusion, there is no doubt that a breakthrough has been made in composition, mechanical properties, and degradation of HA composites. Biomimetic tissue-engineered bone based on vascularization and innervation show a promising future.
Collapse
Affiliation(s)
- Jingcun Shi
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Tissue Engineering Key Laboratory, Shanghai Research Institute of Plastic and Reconstructive Surgey, Shanghai 200011, China
| | - Anand Gupta
- Department of Dentistry, Government Medical College & Hospital, Chandigarh 160017, India
| | - Bingqing Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Ziqian Wu
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Yuhan Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Lisha Pan
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Lei Wang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| |
Collapse
|
18
|
Lafuente-Merchan M, Ruiz-Alonso S, García-Villén F, Zabala A, de Retana AMO, Gallego I, Saenz-Del-Burgo L, Pedraz JL. 3D Bioprinted Hydroxyapatite or Graphene Oxide Containing Nanocellulose-Based Scaffolds for Bone Regeneration. Macromol Biosci 2022; 22:e2200236. [PMID: 35981208 DOI: 10.1002/mabi.202200236] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Indexed: 12/25/2022]
Abstract
Bone tissue is usually damaged after big traumas, tumors, and increasing aging-related diseases such as osteoporosis and osteoarthritis. Current treatments are based on implanting grafts, which are shown to have several inconveniences. In this regard, tissue engineering through the 3D bioprinting technique has arisen to manufacture structures that would be a feasible therapeutic option for bone regenerative medicine. In this study, nanocellulose-alginate (NC-Alg)-based bioink is improved by adding two different inorganic components such as hydroxyapatite (HAP) and graphene oxide (GO). First, ink rheological properties and biocompatibility are evaluated as well as the influence of the sterilization process on them. Then, scaffolds are characterized. Finally, biological studies of embedded murine D1 mesenchymal stem cells engineered to secrete erythropoietin are performed. Results show that the addition of both HAP and GO prevents NC-Alg ink from viscosity lost in the sterilization process. However, GO is reduced due to short cycle autoclave sterilization, making it incompatible with this ink. In addition, HAP and GO have different influences on scaffold architecture and surface as well as in swelling capacity. Scaffolds mechanics, as well as cell viability and functionality, are promoted by both elements addition. Additionally, GO demonstrates an enhanced bone differentiation capacity.
Collapse
Affiliation(s)
- Markel Lafuente-Merchan
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU)., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Health Institute Carlos III., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Bioaraba, NanoBioCel Resarch Group, Vitoria-Gasteiz, 01009, Spain
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU)., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Health Institute Carlos III., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Bioaraba, NanoBioCel Resarch Group, Vitoria-Gasteiz, 01009, Spain
| | - Fátima García-Villén
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU)., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Health Institute Carlos III., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Bioaraba, NanoBioCel Resarch Group, Vitoria-Gasteiz, 01009, Spain
| | - Alaitz Zabala
- Mechanical and Industrial Manufacturing Department, Mondragon Unibertsitatea, Loramendi 4, Mondragón, 20500, Spain
| | - Ana M Ochoa de Retana
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria, 01006, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU)., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Health Institute Carlos III., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Bioaraba, NanoBioCel Resarch Group, Vitoria-Gasteiz, 01009, Spain
| | - Laura Saenz-Del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU)., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Health Institute Carlos III., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Bioaraba, NanoBioCel Resarch Group, Vitoria-Gasteiz, 01009, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU)., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Health Institute Carlos III., Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Bioaraba, NanoBioCel Resarch Group, Vitoria-Gasteiz, 01009, Spain
| |
Collapse
|
19
|
Zhang Y, Fan Z, Xing Y, Jia S, Mo Z, Gong H. Effect of microtopography on osseointegration of implantable biomaterials and its modification strategies. Front Bioeng Biotechnol 2022; 10:981062. [PMID: 36225600 PMCID: PMC9548570 DOI: 10.3389/fbioe.2022.981062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Orthopedic implants are widely used for the treatment of bone defects caused by injury, infection, tumor and congenital diseases. However, poor osseointegration and implant failures still occur frequently due to the lack of direct contact between the implant and the bone. In order to improve the biointegration of implants with the host bone, surface modification is of particular interest and requirement in the development of implant materials. Implant surfaces that mimic the inherent surface roughness and hydrophilicity of native bone have been shown to provide osteogenic cells with topographic cues to promote tissue regeneration and new bone formation. A growing number of studies have shown that cell attachment, proliferation and differentiation are sensitive to these implant surface microtopography. This review is to provide a summary of the latest science of surface modified bone implants, focusing on how surface microtopography modulates osteoblast differentiation in vitro and osseointegration in vivo, signaling pathways in the process and types of surface modifications. The aim is to systematically provide comprehensive reference information for better fabrication of orthopedic implants.
Collapse
Affiliation(s)
- Yingying Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Zhenmin Fan
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, China
| | - Yanghui Xing
- Department of Biomedical Engineering, Shantou University, Shantou, China
| | - Shaowei Jia
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhongjun Mo
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, China
- *Correspondence: Zhongjun Mo, ; He Gong,
| | - He Gong
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- *Correspondence: Zhongjun Mo, ; He Gong,
| |
Collapse
|
20
|
Luo J, Walker M, Xiao Y, Donnelly H, Dalby MJ, Salmeron-Sanchez M. The influence of nanotopography on cell behaviour through interactions with the extracellular matrix – A review. Bioact Mater 2022; 15:145-159. [PMID: 35386337 PMCID: PMC8940943 DOI: 10.1016/j.bioactmat.2021.11.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Nanotopography presents an effective physical approach for biomaterial cell manipulation mediated through material-extracellular matrix interactions. The extracellular matrix that exists in the cellular microenvironment is crucial for guiding cell behaviours, such as determination of integrin ligation and interaction with growth factors. These interactions with the extracellular matrix regulate downstream mechanotransductive pathways, such as rearrangements in the cytoskeleton and activation of signal cascades. Protein adsorption onto nanotopography strongly influences the conformation and distribution density of extracellular matrix and, therefore, subsequent cell responses. In this review, we first discuss the interactive mechanisms of protein physical adsorption on nanotopography. Secondly, we summarise advances in creating nanotopographical features to instruct desired cell behaviours. Lastly, we focus on the cellular mechanotransductive pathways initiated by nanotopography. This review provides an overview of the current state-of-the-art designs of nanotopography aiming to provide better biomedical materials for the future. A comprehensive overview of nanotopography fabrication, and nanotopography regulates various cell behaviours. The interactive physical adsorption between nanotopography and extracellular matrix. Nanotopography initiates the cellular mechanotransductive pathways and downstream signalling cascades.
Collapse
|
21
|
Sasikumar S, Chameettachal S, Kingshott P, Cromer B, Pati F. Hepatogenic differentiation of adipose-derived mesenchymal stem cells directed by topographical cues: a proof of concept study. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
22
|
Yan M, Pan Y, Lu S, Li X, Wang D, Shao T, Wu Z, Zhou Q. Chitosan-CaP microflowers and metronidazole loaded calcium alginate sponges with enhanced antibacterial, hemostatic and osteogenic properties for the prevention of dry socket after tooth removal. Int J Biol Macromol 2022; 212:134-145. [PMID: 35588978 DOI: 10.1016/j.ijbiomac.2022.05.094] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
Tooth removal, particularly for patients with severe periodontitis, can frequently cause massive bleeding, postoperative infection, and bone resorption, resulting in a dry socket. Thus, developing bio-multifunctional materials with excellent antibacterial, hemostatic, and osteogenic characteristics for the prevention of dry sockets after tooth removal is highly desirable in clinical applications. Herein, chitosan-CaP microflowers (CM) and metronidazole (MD) loaded calcium alginate (CA) sponges (CA@CM/MD) with enhanced antibacterial, hemostatic, and osteogenic properties were developed via Ca2+ crosslinking, lyophilization, and electrostatic interaction for the prevention of dry socket after tooth removal. The fabricated CM particles display 3-dimensional, relatively homogeneous, and flower-shaped architectures. The CA@CM/MD composite sponges were facilely shaped into the tooth root as well as exhibit interconnected porous and lamellar structures with remarkable porosity, suitable maximum swelling ratio, as well as excellent compressive and hemostatic performance. Besides, the in vitro cellular assessment demonstrates that the prepared CA@CM/MD composite sponges possess satisfactory cytocompatibility. Importantly, the designed sponges significantly suppress the growth of S. aureus and E. coli, as well as promote cellular osteogenic differentiation by upregulating the formation of alkaline phosphatase. Our findings indicate that the tooth root-shaped composite sponges hold great promise for wound management after tooth removal.
Collapse
Affiliation(s)
- Mingzhe Yan
- Department of Human Anatomy, Histology and Embryology, School of basic medicine, Qingdao University, Qingdao 266073, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Yingxiao Pan
- School of Stomatology, Qingdao University, Qingdao 266003, China; Oral department of Qingdao Municipal Hospital, Qingdao 266011, China
| | - Shulai Lu
- Oral department of Qingdao Municipal Hospital, Qingdao 266011, China
| | - Xin Li
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Danyang Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Tianyi Shao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Zhihang Wu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China; Department of Biomedical Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Qihui Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China; School of Stomatology, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
23
|
Nabizadeh Z, Nasrollahzadeh M, Daemi H, Baghaban Eslaminejad M, Shabani AA, Dadashpour M, Mirmohammadkhani M, Nasrabadi D. Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:363-389. [PMID: 35529803 PMCID: PMC9039523 DOI: 10.3762/bjnano.13.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/24/2022] [Indexed: 05/12/2023]
Abstract
Osteoarthritis, which typically arises from aging, traumatic injury, or obesity, is the most common form of arthritis, which usually leads to malfunction of the joints and requires medical interventions due to the poor self-healing capacity of articular cartilage. However, currently used medical treatment modalities have reported, at least in part, disappointing and frustrating results for patients with osteoarthritis. Recent progress in the design and fabrication of tissue-engineered microscale/nanoscale platforms, which arises from the convergence of stem cell research and nanotechnology methods, has shown promising results in the administration of new and efficient options for treating osteochondral lesions. This paper presents an overview of the recent advances in osteochondral tissue engineering resulting from the application of micro- and nanotechnology approaches in the structure of biomaterials, including biological and microscale/nanoscale topographical cues, microspheres, nanoparticles, nanofibers, and nanotubes.
Collapse
Affiliation(s)
- Zahra Nabizadeh
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Hamed Daemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Akbar Shabani
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Mirmohammadkhani
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Davood Nasrabadi
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
24
|
Machado-Paula MM, Corat MAF, de Vasconcellos LMR, Araújo JCR, Mi G, Ghannadian P, Toniato TV, Marciano FR, Webster TJ, Lobo AO. Rotary Jet-Spun Polycaprolactone/Hydroxyapatite and Carbon Nanotube Scaffolds Seeded with Bone Marrow Mesenchymal Stem Cells Increase Bone Neoformation. ACS APPLIED BIO MATERIALS 2022; 5:1013-1024. [PMID: 35171572 DOI: 10.1021/acsabm.1c00365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clinically, bone tissue replacements and/or bone repair are challenging. Strategies based on well-defined combinations of osteoconductive materials and osteogenic cells are promising to improve bone regeneration but still require improvement. Herein, we combined polycaprolactone (PCL) fibers, carbon nanotubes (CNT), and hydroxyapatite (nHap) nanoparticles to develop the next generation of bone regeneration material. Fibers formed by rotary jet spinning (RJS) instead of traditional electrospinning (ES) with embedded bone marrow mesenchymal stem cells (BMMSCs) showed the best outcomes to repair rat calvarial defects after 6 weeks. To understand this, it was observed that different morphologies were formed depending on the manufacturing method used. RJS fibers presented a particular topography with rough fibers, which allowed for better cellular growth and cell spreading in vitro around and into a three-dimensional (3D) mesh, while fibers made by ES were more smooth and cellular growth was only measured on the 3D mesh surface. The fibers with incorporated nHap/CNT nanoparticles enhanced in vitro cell performance as indicated by more cellular proliferation, alkaline phosphatase activity, proliferation, and deposition of calcium. Greater bone neoformation occurred by combining three characteristics: the presence of nHap and CNT nanoparticles, the topography of the RJS fibers, and the addition of BMMSCs. RJS fibers with nanoparticles and seeded with BMMSCs showed 10 136 mm3 of bone neoformation, meaning a 10-fold increase compared to using RJS only and BMMSCs (0.853 mm3) and a 5-fold increase from using ES only (2054 mm3) after 6 weeks of implantation. Conversely, none of these approaches used individually showed any significant difference for in vivo bone neoformation, suggesting that their combination is essential for optimizing bone formation. In summary, our work generated a potential material composed of well-defined combinations of suitable scaffolds seeded with BMMSCs for enhancing numerous orthopedic tissue engineering applications.
Collapse
Affiliation(s)
- Mirian M Machado-Paula
- Institute of Research and Development, University of Vale do Paraiba, São José dos Campos, SP 12244 - 000, Brazil.,Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States.,Multidisciplinary Center for Biological Research, State University of Campinas, Campinas, SP 13083-877, Brazil
| | - Marcus A F Corat
- Multidisciplinary Center for Biological Research, State University of Campinas, Campinas, SP 13083-877, Brazil
| | - Luana M R de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao Jose dos Campos, Sao Paulo 12245000, Brazil
| | - Juliani C R Araújo
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao Jose dos Campos, Sao Paulo 12245000, Brazil
| | - Gujie Mi
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Paria Ghannadian
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Tatiane V Toniato
- Institute of Research and Development, University of Vale do Paraiba, São José dos Campos, SP 12244 - 000, Brazil
| | - Fernanda R Marciano
- Department of Physics, UFPI - Federal University of Piaui, 64049-550 Teresina, PI, Brazil
| | - Thomas J Webster
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Anderson O Lobo
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States.,LIMAV-Interdisciplinary Laboratory for Advanced Materials, BioMatLab, UFPI - Federal University of Piaui, 64049-550 Teresina, PI, Brazil
| |
Collapse
|
25
|
Carthew J, Taylor JBJ, Garcia-Cruz MR, Kiaie N, Voelcker NH, Cadarso VJ, Frith JE. The Bumpy Road to Stem Cell Therapies: Rational Design of Surface Topographies to Dictate Stem Cell Mechanotransduction and Fate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23066-23101. [PMID: 35192344 DOI: 10.1021/acsami.1c22109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells sense and respond to a variety of physical cues from their surrounding microenvironment, and these are interpreted through mechanotransductive processes to inform their behavior. These mechanisms have particular relevance to stem cells, where control of stem cell proliferation, potency, and differentiation is key to their successful application in regenerative medicine. It is increasingly recognized that surface micro- and nanotopographies influence stem cell behavior and may represent a powerful tool with which to direct the morphology and fate of stem cells. Current progress toward this goal has been driven by combined advances in fabrication technologies and cell biology. Here, the capacity to generate precisely defined micro- and nanoscale topographies has facilitated the studies that provide knowledge of the mechanotransducive processes that govern the cellular response as well as knowledge of the specific features that can drive cells toward a defined differentiation outcome. However, the path forward is not fully defined, and the "bumpy road" that lays ahead must be crossed before the full potential of these approaches can be fully exploited. This review focuses on the challenges and opportunities in applying micro- and nanotopographies to dictate stem cell fate for regenerative medicine. Here, key techniques used to produce topographic features are reviewed, such as photolithography, block copolymer lithography, electron beam lithography, nanoimprint lithography, soft lithography, scanning probe lithography, colloidal lithography, electrospinning, and surface roughening, alongside their advantages and disadvantages. The biological impacts of surface topographies are then discussed, including the current understanding of the mechanotransductive mechanisms by which these cues are interpreted by the cells, as well as the specific effects of surface topographies on cell differentiation and fate. Finally, considerations in translating these technologies and their future prospects are evaluated.
Collapse
Affiliation(s)
- James Carthew
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jason B J Taylor
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maria R Garcia-Cruz
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nasim Kiaie
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nicolas H Voelcker
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Victor J Cadarso
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
26
|
Effect of Controlled Microtopography on Osteogenic Differentiation of Mesenchymal Stem Cells. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7179723. [PMID: 35126944 PMCID: PMC8816539 DOI: 10.1155/2022/7179723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
Various kinds of controlled microtopographies can promote osteogenic differentiation of mesenchymal stem cells (MSCs), such as microgrooves, micropillars, and micropits. However, the optimal shape, size, and mechanism remain unclear. In this review, we summarize the relationship between the parameters of different microtopographies and the behavior of MSCs. Then, we try to reveal the potential mechanism between them. The results showed that the microgrooves with a width of 4–60 μm and ridge width <10 μm, micropillars with parameters less than 10 μm, and square micropits had the full potential to promote osteogenic differentiation of MSCs, while the micromorphology of the same size could induce larger focal adhesions (FAs), well-organized cytoskeleton, and superior cell areas. Therefore, such events are possibly mediated by microtopography-induced mechanotransduction pathways.
Collapse
|
27
|
Chen J, Huang Z, Wang F, Gong M, Zhang X, Wang Y, Hu Z, Zeng Z, Wang Y. The restricted adhesion of bone marrow mesenchymal stem cells by stepped structures on surfaces of hydroxyapatite. RSC Adv 2022; 12:12002-12010. [PMID: 35481104 PMCID: PMC9019829 DOI: 10.1039/d2ra00756h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/09/2022] [Indexed: 01/27/2023] Open
Abstract
Currently, many researches have developed several strategies to design the surface structures of hydroxyapatite (HA), and have proved that the surface structures are pivotal in guiding the adhesion of bone marrow mesenchymal stem cells (BMSCs) as well as subsequent cellular behaviours. Most of these strategies, such as altering roughness and constructing surface patterning of HA, involve the construction of geometric topographies at the micro/nanoscale. However, besides geometric topographies, crystal defects are also important characteristics of surface structures and would alter many local physicochemical properties, which is critical for contact between cells and bioceramic surfaces. For the practical applications of crystal defects, a major hindrance is that crystal defects are usually unstable and easily eliminated during crystallization, which limits the large-scale fabrication of materials with crystal defects. In this work, given that stepped structures contain massive stable crystal defects on their step edges and kinks, we proposed a feasible and efficient method to fabricate HA dishes with stepped structures on their surfaces. First, plate-like HA mesocrystals were prepared from CaHPO4via topotactic transformation, and were shaped into HA dishes by vacuum-filtration. Then, a sintering process was applied to facilitate the formation of stepped structures on the surfaces. We demonstrated that the generation of stepped structures could restrict the adhesion of BMSCs and showed the restriction effect is highly correlated with the density of exposed stepped structures. This phenomenon is interesting and the construction of a cell adhesion model is robust and easy, the underlying mechanisms of which deserve further exploration. Furthermore, constructing stepped structures on surfaces may be a new useful strategy to regulate cell adhesion and could also cooperate with other methods that do not need change in the surface crystal structure. Stepped structures largely exposed on surfaces of HA significantly restrict the adhesion of bone marrow mesenchymal stem cells.![]()
Collapse
Affiliation(s)
- Jin Chen
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Zhuo Huang
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Fang Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Min Gong
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Xueli Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Yajing Wang
- The Affiliated Stomatological Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Zuquan Hu
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Zhu Zeng
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Yun Wang
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, P. R. China
| |
Collapse
|
28
|
Font Tellado S, Delgado JA, Poh SPP, Zhang W, García-Vallés M, Martínez S, Gorustovich A, Morejón L, van Griensven M, Balmayor ER. Phosphorous pentoxide-free bioactive glass exhibits dose-dependent angiogenic and osteogenic capacities which are retained in glass polymeric composite scaffolds. Biomater Sci 2021; 9:7876-7894. [PMID: 34676835 DOI: 10.1039/d1bm01311d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioactive glasses (BGs) are attractive materials for bone tissue engineering because of their bioactivity and osteoinductivity. In this study, we report the synthesis of a novel phosphorous pentoxide-free, silicate-based bioactive glass (52S-BG) composed of 52.1% SiO2, 23.2% Na2O and 22.6% CaO (wt%). The glass was thoroughly characterized. The biocompatibility and osteogenic properties of 52S-BG particles were analyzed in vitro with human adipose-derived mesenchymal stem cells (AdMSCs) and human osteoblasts. 52S-BG particles were biocompatible and induced mineralized matrix deposition and the expression of osteogenic markers (RunX2, alkaline phosphatase, osteocalcin, osteopontin, collagen I) and the angiogenic marker vascular endothelial growth factor (VEGF). Angiogenic properties were additionally confirmed in a zebrafish embryo model. 52S-BG was added to poly-ε-caprolactone (PCL) to obtain a composite with 10 wt% glass content. Composite PCL/52S-BG scaffolds were fabricated by additive manufacturing and displayed high porosity (76%) and pore interconnectivity. The incorporation of 52S-BG particles increased the Young's modulus of PCL scaffolds from 180 to 230 MPa. AdMSC seeding efficiency and proliferation were higher in PCL/52S-BG compared to PCL scaffolds, indicating improved biocompatibility. Finally, 52S-BG incorporation improved the scaffolds' osteogenic and angiogenic properties by increasing mineral deposition and inducing relevant gene expression and VEGF protein secretion. Overall, 52S-BG particles and PCL/52S-BG composites may be attractive for diverse bone engineering applications requiring concomitant angiogenic properties.
Collapse
Affiliation(s)
- Sonia Font Tellado
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - José Angel Delgado
- Center for Biomaterials, University of Havana, 10400 Havana, Cuba.,Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| | - Su Ping Patrina Poh
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Wen Zhang
- Institute of Molecular Immunology and Experimental Oncology, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,Ethris GmbH, 82152 Planegg, Germany
| | - Maite García-Vallés
- Mineralogy, Petrology and Applied Geology Department, University of Barcelona, 08028 Barcelona, Spain
| | - Salvador Martínez
- Mineralogy, Petrology and Applied Geology Department, University of Barcelona, 08028 Barcelona, Spain
| | - Alejandro Gorustovich
- Interdisciplinary Materials Group-IESIING-UCASAL, INTECIN UBA-CONICET, A4400EDD Salta, Argentina
| | - Lizette Morejón
- Center for Biomaterials, University of Havana, 10400 Havana, Cuba
| | - Martijn van Griensven
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,cBITE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Elizabeth Rosado Balmayor
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,IBE, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, the Netherlands.
| |
Collapse
|
29
|
Zhu G, Zhang T, Chen M, Yao K, Huang X, Zhang B, Li Y, Liu J, Wang Y, Zhao Z. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact Mater 2021; 6:4110-4140. [PMID: 33997497 PMCID: PMC8091181 DOI: 10.1016/j.bioactmat.2021.03.043] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023] Open
Abstract
Bone-tissue defects affect millions of people worldwide. Despite being common treatment approaches, autologous and allogeneic bone grafting have not achieved the ideal therapeutic effect. This has prompted researchers to explore novel bone-regeneration methods. In recent decades, the development of bone tissue engineering (BTE) scaffolds has been leading the forefront of this field. As researchers have provided deep insights into bone physiology and the bone-healing mechanism, various biomimicking and bioinspired BTE scaffolds have been reported. Now it is necessary to review the progress of natural bone physiology and bone healing mechanism, which will provide more valuable enlightenments for researchers in this field. This work details the physiological microenvironment of the natural bone tissue, bone-healing process, and various biomolecules involved therein. Next, according to the bone physiological microenvironment and the delivery of bioactive factors based on the bone-healing mechanism, it elaborates the biomimetic design of a scaffold, highlighting the designing of BTE scaffolds according to bone biology and providing the rationale for designing next-generation BTE scaffolds that conform to natural bone healing and regeneration.
Collapse
Affiliation(s)
- Guanyin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Miao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Ke Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yazhen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
30
|
Zhu GY, Liu YH, Liu W, Huang XQ, Zhang B, Zheng ZL, Wei X, Xu JZ, Zhao ZH. Surface Epitaxial Nano-Topography Facilitates Biomineralization to Promote Osteogenic Differentiation and Osteogenesis. ACS OMEGA 2021; 6:21792-21800. [PMID: 34471781 PMCID: PMC8388092 DOI: 10.1021/acsomega.1c03462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Biomimetic modification of hydroxyapatite on a polymer surface is a potent strategy for activating biological functions in bone tissue engineering applications. However, the polymer surface is bioinert, and it is difficult to introduce a uniform calcium phosphate (CaP) layer. To overcome this limitation, we constructed a specific nano-topographical structure onto a poly(ε-caprolactone) substrate via surface-directed epitaxial crystallization. Formation of the CaP layer on the nano-topological surface was enhanced by 2.34-fold compared to that on a smooth surface. This effect was attributed to the abundant crystallization sites for CaP deposition because of the increased surface area and roughness. Bone marrow mesenchymal stromal cells (BMSCs) were used to examine the biological effect of biomineralized surfaces. We clearly demonstrated that BMSCs responded to surface biomineralization. Osteogenic differentiation and proliferation of BMSCs were significantly promoted on the biomineralized nano-topological surface. The expression of alkaline phosphatase and osteogenic-related genes as well as extracellular matrix mineralization was significantly enhanced. The proposed strategy shows potential for designing bone repair scaffolds.
Collapse
Affiliation(s)
- Guan-Yin Zhu
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ya-Hui Liu
- College
of Polymer Science and Engineering and State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Liu
- College
of Polymer Science and Engineering and State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xin-Qi Huang
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bo Zhang
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zi-Li Zheng
- College
of Polymer Science and Engineering and State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Wei
- College
of Polymer Science and Engineering and State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jia-Zhuang Xu
- College
of Polymer Science and Engineering and State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhi-He Zhao
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
31
|
Wang Z, Mei L, Liu X, Zhou Q. Hierarchically hybrid biocoatings on Ti implants for enhanced antibacterial activity and osteogenesis. Colloids Surf B Biointerfaces 2021; 204:111802. [PMID: 33964526 DOI: 10.1016/j.colsurfb.2021.111802] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
Titanium (Ti) is widely applied as bone-anchoring implants in dental and orthopedic applications owing to its superior mechanical characteristics, high corrosion resistance, and excellent biocompatibility. Nevertheless, Ti-based implants with the deficiencies of insufficient osteoinduction and associated infections can result in implant failure, which significantly limits its applications in some cases. In this work, hierarchically hybrid biocoatings on Ti implants are developed by gradual incorporation of polydopamine (PDA), ZnO nanoparticles (nZnO), and chitosan (CS)/nanocrystal hydroxyapatite (nHA) via oxidative self-polymerization, nanoparticle deposition, solvent casting and evaporation methods for enhancing their antibacterial activity and osteogenesis. The modification of PDA on porous reticular Ti substrates greatly reduces the surface roughness, wettability, protein adsorption, and provides high adhesion to the deposited nZnO. Further, incorporating nZnO on PDA-coated Ti surfaces affects the surface structure and wettability, significantly inhibits the growth of both Staphylococcus aureus and Escherichia coli. Moreover, the CS/nHA-doped coating on the nZnO-modified Ti surfaces remarkably improves cytocompatibility and enhances the osteogenic differentiation of MC3T3-E1 cells by upregulating the protein expression of alkaline phosphatase. This work offers a promising alternative for developing Ti implants with long-lifetime bioactivity to achieve strong antibacterial ability and enhanced bone formation for potential dental/orthopedic applications.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Li Mei
- School of Stomatology, Qingdao University, Qingdao, 266003, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xinqiang Liu
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266003, China.
| | - Qihui Zhou
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, 266003, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
32
|
Yang Y, Cheng Y, Deng F, Shen L, Zhao Z, Peng S, Shuai C. A bifunctional bone scaffold combines osteogenesis and antibacterial activity via in situ grown hydroxyapatite and silver nanoparticles. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00130-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Zhu Y, Goh C, Shrestha A. Biomaterial Properties Modulating Bone Regeneration. Macromol Biosci 2021; 21:e2000365. [PMID: 33615702 DOI: 10.1002/mabi.202000365] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/17/2021] [Indexed: 12/19/2022]
Abstract
Biomaterial scaffolds have been gaining momentum in the past several decades for their potential applications in the area of tissue engineering. They function as three-dimensional porous constructs to temporarily support the attachment of cells, subsequently influencing cell behaviors such as proliferation and differentiation to repair or regenerate defective tissues. In addition, scaffolds can also serve as delivery vehicles to achieve sustained release of encapsulated growth factors or therapeutic agents to further modulate the regeneration process. Given the limitations of current bone grafts used clinically in bone repair, alternatives such as biomaterial scaffolds have emerged as potential bone graft substitutes. This review summarizes how physicochemical properties of biomaterial scaffolds can influence cell behavior and its downstream effect, particularly in its application to bone regeneration.
Collapse
Affiliation(s)
- Yi Zhu
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario, M5G 1G6, Canada
| | - Cynthia Goh
- Department of Chemistry, University of Toronto, 80 George Street, Toronto, Ontario, M5S 3H6, Canada.,Department of Materials Science and Engineering, University of Toronto, 84 College Street, Suite 140, Toronto, Ontario, M5S 3E4, Canada
| | - Annie Shrestha
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario, M5G 1G6, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
34
|
Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. An overview of signaling pathways regulating YAP/TAZ activity. Cell Mol Life Sci 2021; 78:497-512. [PMID: 32748155 PMCID: PMC11071991 DOI: 10.1007/s00018-020-03579-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/07/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
YAP and TAZ are ubiquitously expressed homologous proteins originally identified as penultimate effectors of the Hippo signaling pathway, which plays a key role in maintaining mammalian tissue/organ size. Presently, it is known that YAP/TAZ also interact with various non-Hippo signaling pathways, and have diverse roles in multiple biological processes, including cell proliferation, tissue regeneration, cell lineage fate determination, tumorigenesis, and mechanosensing. In this review, we first examine the various microenvironmental cues and signaling pathways that regulate YAP/TAZ activation, through the Hippo and non-Hippo signaling pathways. This is followed by a brief summary of the interactions of YAP/TAZ with TEAD1-4 and a diverse array of other non-TEAD transcription factors. Finally, we offer a critical perspective on how increasing knowledge of the regulatory mechanisms of YAP/TAZ signaling might open the door to novel therapeutic applications in the interrelated fields of biomaterials, tissue engineering, regenerative medicine and synthetic biology.
Collapse
Affiliation(s)
- Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
- Faculty of Science and Technology, Sunway University, Selangor Darul Ehsan, Malaysia
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Dominique Aubel
- IUTA, Departement Genie Biologique, Universite, Claude Bernard Lyon 1, Villeurbanne Cedex, France
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH-Zurich, Mattenstrasse 26, Basel, 4058, Switzerland.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
35
|
Abstract
Compared with non-degradable materials, biodegradable biomaterials play an increasingly important role in the repairing of severe bone defects, and have attracted extensive attention from researchers. In the treatment of bone defects, scaffolds made of biodegradable materials can provide a crawling bridge for new bone tissue in the gap and a platform for cells and growth factors to play a physiological role, which will eventually be degraded and absorbed in the body and be replaced by the new bone tissue. Traditional biodegradable materials include polymers, ceramics and metals, which have been used in bone defect repairing for many years. Although these materials have more or fewer shortcomings, they are still the cornerstone of our development of a new generation of degradable materials. With the rapid development of modern science and technology, in the twenty-first century, more and more kinds of new biodegradable materials emerge in endlessly, such as new intelligent micro-nano materials and cell-based products. At the same time, there are many new fabrication technologies of improving biodegradable materials, such as modular fabrication, 3D and 4D printing, interface reinforcement and nanotechnology. This review will introduce various kinds of biodegradable materials commonly used in bone defect repairing, especially the newly emerging materials and their fabrication technology in recent years, and look forward to the future research direction, hoping to provide researchers in the field with some inspiration and reference.
Collapse
Affiliation(s)
- Shuai Wei
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Tianjin, 300211 China
| | - Jian-Xiong Ma
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Tianjin, 300211 China
| | - Lai Xu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong, 226001 China
| | - Xiao-Song Gu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, No. 19 Qixiu Road, Chongchuan District, Nantong, 226001 China
| | - Xin-Long Ma
- Tianjin Hospital, Tianjin University, No. 406 Jiefang South Road, Tianjin, 300211 China
| |
Collapse
|
36
|
Cun X, Hosta-Rigau L. Topography: A Biophysical Approach to Direct the Fate of Mesenchymal Stem Cells in Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2070. [PMID: 33092104 PMCID: PMC7590059 DOI: 10.3390/nano10102070] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022]
Abstract
Tissue engineering is a promising strategy to treat tissue and organ loss or damage caused by injury or disease. During the past two decades, mesenchymal stem cells (MSCs) have attracted a tremendous amount of interest in tissue engineering due to their multipotency and self-renewal ability. MSCs are also the most multipotent stem cells in the human adult body. However, the application of MSCs in tissue engineering is relatively limited because it is difficult to guide their differentiation toward a specific cell lineage by using traditional biochemical factors. Besides biochemical factors, the differentiation of MSCs also influenced by biophysical cues. To this end, much effort has been devoted to directing the cell lineage decisions of MSCs through adjusting the biophysical properties of biomaterials. The surface topography of the biomaterial-based scaffold can modulate the proliferation and differentiation of MSCs. Presently, the development of micro- and nano-fabrication techniques has made it possible to control the surface topography of the scaffold precisely. In this review, we highlight and discuss how the main topographical features (i.e., roughness, patterns, and porosity) are an efficient approach to control the fate of MSCs and the application of topography in tissue engineering.
Collapse
Affiliation(s)
| | - Leticia Hosta-Rigau
- DTU Health Tech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark;
| |
Collapse
|
37
|
Litvinova L, Yurova K, Shupletsova V, Khaziakhmatova O, Malashchenko V, Shunkin E, Melashchenko E, Todosenko N, Khlusova M, Sharkeev Y, Komarova E, Sedelnikova M, Khlusov I. Gene Expression Regulation and Secretory Activity of Mesenchymal Stem Cells upon In Vitro Contact with Microarc Calcium Phosphate Coating. Int J Mol Sci 2020; 21:E7682. [PMID: 33081386 PMCID: PMC7589914 DOI: 10.3390/ijms21207682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
The manufacture of biomaterial surfaces with desired physical and chemical properties that can directly induce osteogenic differentiation without the need for biochemical additives is an excellent strategy for controlling the behavior of mesenchymal stem cells (MSCs) in vivo. We studied the cellular and molecular reactions of MSCs to samples with a double-sided calcium phosphate (CaP) coating and an average roughness index (Ra) of 2.4-4.6 µm. The study aimed to evaluate the effect of a three-dimensional matrix on the relative mRNA expression levels of genes associated with the differentiation and maturation of MSCs toward osteogenesis (RUNX2, BMP2, BMP6, BGLAP, and ALPL) under conditions of distant interaction in vitro. Correlations were revealed between the mRNA expression of some osteogenic and cytokine/chemokine genes and the secretion of cytokines and chemokines that may potentiate the differentiation of cells into osteoblasts, which indicates the formation of humoral components of the extracellular matrix and the creation of conditions supporting the establishment of hematopoietic niches.
Collapse
Affiliation(s)
- Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Valeria Shupletsova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Egor Shunkin
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Elena Melashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
| | - Marina Khlusova
- Department of Pathophysiology, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Yurii Sharkeev
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, SB RAS, 634055 Tomsk, Russia; (Y.S.); (E.K.); (M.S.)
- Research School of High-Energy Physics, Tomsk Polytechnic University, 634055 Tomsk, Russia
| | - Ekaterina Komarova
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, SB RAS, 634055 Tomsk, Russia; (Y.S.); (E.K.); (M.S.)
| | - Maria Sedelnikova
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, SB RAS, 634055 Tomsk, Russia; (Y.S.); (E.K.); (M.S.)
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236000 Kaliningrad, Russia; (K.Y.); (V.S.); (O.K.); (V.M.); (E.S.); (E.M.); (N.T.); (I.K.)
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
38
|
Physicochemical properties and cytocompatibility assessment of non-degradable scaffolds for bone tissue engineering applications. J Mech Behav Biomed Mater 2020; 112:103997. [PMID: 32836095 DOI: 10.1016/j.jmbbm.2020.103997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 11/21/2022]
Abstract
Bone is a dynamic tissue with an amazing but yet limited capacity of self-healing. Bone is the second most transplanted tissue in the world and there is a huge need for bone grafts and substitutes which lead to a decrease in bone banks donors. In this study, we developed three-dimensional scaffolds based on Ti6Al4V, ZrO2 and PEEK targeting bone tissue engineering applications. Experimental mechanical compressive tests and finite element analyses were carried out to study the mechanical performance of the scaffolds. Overall, the scaffolds presented different hydrophilicity properties and a reduced elastic modulus when compared with the corresponding solid materials which can in some extension minimize the phenomenon of stress shielding. The ability as a scaffold material for bone tissue regeneration applications was evaluated in vitro by seeding human osteosarcoma (SaOS-2) cells onto the scaffolds. Then, the successful culture of SaOS-2 cells on developed scaffolds was monitored by assessment of cell's viability, proliferation and alkaline phosphatase (ALP) activity up to 14 days of culturing. The in vitro results revealed that Ti6Al4V, ZrO2 and PEEK scaffolds were cytocompatible allowing the successful culture of an osteoblastic cell line, suggesting their potential application in bone tissue engineering. Statement of Significance. The work presented is timely and relevant since it gathers both the mechanical and cellular study of non-degradable cellular structures with the potential to be used as bone scaffolds. This work allow to investigate three possible bone scaffolds solutions which exhibit a significantly reduced elastic modulus when compared with conventional solid materials. While it is generally accepted that the Ti6Al4V, ZrO2 and PEEK are candidates for such applications a further study of their features and their comparison is extremely important for a better understanding of their potential.
Collapse
|
39
|
Jia Y, Qin L, Gong Y, Chen R, Yang Y, Yang W, Cai K. Experimental and theoretical investigations of the influences of one-dimensional hydroxyapatite nanostructures on cytocompatibility. J Biomed Mater Res A 2020; 109:804-813. [PMID: 32720439 DOI: 10.1002/jbm.a.37068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 11/09/2022]
Abstract
Due to their simple crystal structures, one-dimensional hydroxyapatite (HA) nanostructures are easily to be applied to understand the fundamental concepts about the influences of HA dimensionality on physical, chemical, and biological properties. So, in this work, three typical HA one-dimensional nanostructures, HA nanotubes, HA nanowires, and HA nanospheres, were prepared, whose theoretical structures were built also. in vitro cytocompatibility test proved that, contrasting with TCPS, HA one-dimensional nanostructures had certain degree of cytotoxicity because HA nanostructures increase the generation of intracellular reactive oxygen species (ROS) and intracellular calcium. Theoretical simulation indicated that HA nanosphere has higher intracellular ROS generation and lower ROS storage amount than HA nanowire and HA nanotube, which were the possible reasons for its stronger cytotoxicity. Among these typical one-dimensional nanostructures, owing to higher drug storage amount and sustained delivery ability, HA nanotube was more potential application in orthopedics. The tubular structure of HA nanotubes could be used as reservoirs for small molecule drugs or growth factors. The cytocompatibility of HA nanostructures can be improved obviously when they were produced into two-dimensional structures. The prepared multilayer structure can simulate lamellar structures of Harvard system and enhance the cytocompatibility of Ti substrate. Therefore, the method used in this work is a prospective method to improve the inherently bio-inert of Ti when used in hard tissue repairing.
Collapse
Affiliation(s)
- Yile Jia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Qin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yi Gong
- Department of Hematology-Oncology, Chongqing Cancer Institute/Hospital, Chongqing, China
| | - Rui Chen
- Department of Pathology, Chongqing Cancer Institute/Hospital, Chongqing, China
| | - Yulu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
40
|
Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. Role of YAP/TAZ in Cell Lineage Fate Determination and Related Signaling Pathways. Front Cell Dev Biol 2020; 8:735. [PMID: 32850847 PMCID: PMC7406690 DOI: 10.3389/fcell.2020.00735] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
The penultimate effectors of the Hippo signaling pathways YAP and TAZ, are transcriptional co-activator proteins that play key roles in many diverse biological processes, ranging from cell proliferation, tumorigenesis, mechanosensing and cell lineage fate determination, to wound healing and regeneration. In this review, we discuss the regulatory mechanisms by which YAP/TAZ control stem/progenitor cell differentiation into the various major lineages that are of interest to tissue engineering and regenerative medicine applications. Of particular interest is the key role of YAP/TAZ in maintaining the delicate balance between quiescence, self-renewal, proliferation and differentiation of endogenous adult stem cells within various tissues/organs during early development, normal homeostasis and regeneration/healing. Finally, we will consider how increasing knowledge of YAP/TAZ signaling might influence the trajectory of future progress in regenerative medicine.
Collapse
Affiliation(s)
- Boon C. Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- Faculty of Science and Technology, Sunway University, Subang Jaya, Malaysia
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Dominique Aubel
- IUTA Department Genie Biologique, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH-Zürich, Basel, Switzerland
| | - Xuliang Deng
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
41
|
Patel KD, Kim TH, Mandakhbayar N, Singh RK, Jang JH, Lee JH, Kim HW. Coating biopolymer nanofibers with carbon nanotubes accelerates tissue healing and bone regeneration through orchestrated cell- and tissue-regulatory responses. Acta Biomater 2020; 108:97-110. [PMID: 32165193 DOI: 10.1016/j.actbio.2020.03.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Tailoring the surface of biomaterial scaffolds has been a key strategy to modulate the cellular interactions that are helpful for tissue healing process. In particular, nanotopological surfaces have been demonstrated to regulate diverse behaviors of stem cells, such as initial adhesion, spreading and lineage specification. Here, we tailor the surface of biopolymer nanofibers with carbon nanotubes (CNTs) to create a unique bi-modal nanoscale topography (500 nm nanofiber with 25 nm nanotubes) and report the performance in modulating diverse in vivo responses including inflammation, angiogenesis, and bone regeneration. When administered to a rat subcutaneous site, the CNT-coated nanofiber exhibited significantly reduced inflammatory signs (down-regulated pro-inflammatory cytokines and macrophages gathering). Moreover, the CNT-coated nanofibers showed substantially promoted angiogenic responses, with enhanced neoblood vessel formation and angiogenic marker expression. Such stimulated tissue healing events by the CNT interfacing were evidenced in a calvarium bone defect model. The in vivo bone regeneration of the CNT- coated nanofibers was significantly accelerated, with higher bone mineral density and up-regulated osteogenic signs (OPN, OCN, BMP2) of in vivo bone forming cells. The in vitro studies using MSCs could demonstrate accelerated adhesion and osteogenic differentiation and mineralization, supporting the osteo-promoting mechanism behind the in vivo bone forming event. These findings highlight that the CNTs interfacing of biopolymer nanofibers is highly effective in reducing inflammation, promoting angiogenesis, and driving adhesion and osteogenesis of MSCs, which eventually orchestrate to accelerate tissue healing and bone regeneration process. STATEMENT OF SIGNIFICANCE: Here we demonstrate that the interfacing of biopolymer nanofibers with carbon nanotubes (CNTs) could modulate multiple interactions of cells and tissues that are ultimately helpful for the tissue healing and bone regeneration process. The CNT-coated scaffolds significantly reduced the pro-inflammatory signals while stimulating the angiogenic marker expressions. Furthermore, the CNT-coated scaffolds increased the bone matrix production of bone forming cells in vivo as well as accelerated the adhesion and osteogenic differentiation of MSCs in vitro. These collective findings highlight that the CNTs coated on the biopolymer nanofibers allow the creation of a promising platform for nanoscale engineering of biomaterial surface that can favor tissue healing and bone regeneration process, through a series of orchestrated events in anti-inflammation, pro-angiogenesis, and stem cell stimulation.
Collapse
Affiliation(s)
- Kapil D Patel
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Tae-Hyun Kim
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K Singh
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, Inha University, Incheon, Republic of Korea
| | - Jung-Hwan Lee
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institue of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
42
|
Xiao D, Zhang J, Zhang C, Barbieri D, Yuan H, Moroni L, Feng G. The role of calcium phosphate surface structure in osteogenesis and the mechanisms involved. Acta Biomater 2020; 106:22-33. [PMID: 31926336 DOI: 10.1016/j.actbio.2019.12.034] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/11/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Calcium phosphate (CaP) ceramics have been widely used for bone regeneration because of their ability to induce osteogenesis. Surface properties, including chemical composition and surface structure, are known to play a crucial role in osteoconduction and osteoinduction. This review systematically analyzes the effects of surface properties, in particular the surface structure, of CaP scaffolds on cell behavior and new bone formation. We also summarize the possible signaling pathways involved in the osteogenic differentiation of bone-related cells when cultured on surfaces with various structures in vitro. The significant immune response initiated by surface structure involved in osteogenic differentiation of cells is also discussed in this review. Taken together, the new biological principle for advanced biomaterials is not only to directly stimulate osteogenic differentiation of bone-related cells but also to modulate the immune response in vivo. Although the reaction mechanism responsible for bone formation induced by CaP surface structure is not clear yet, the insights on surface structure-mediated osteogenic differentiation and osteoimmunomodulation could aid the optimization of CaP-based biomaterials for bone regeneration. STATEMENT OF SIGNIFICANCE: CaP ceramics have similar inorganic composition with natural bone, which have been widely used for bone tissue scaffolds. CaP themselves are not osteoinductive; however, osteoinductive properties could be introduced to CaP materials by surface engineering. This paper systematically summarizes the effects of surface properties, especially surface structure, of CaP scaffolds on bone formation. Additionally, increasing evidence has proved that the bone healing process is not only affected by the osteogenic differentiation of bone-related cells, but also relevant to the the cooperation of immune system. Thus, we further review the possible signaling pathways involved in the osteogenic differentiation and immune response of cells cultured on scaffold surface. These insights into surface structure-mediated osteogenic differentiation and osteoimmunomodulated-based strategy could aid the optimization of CaP-based biomaterials.
Collapse
|
43
|
|
44
|
Gosling S, Scott R, Greenwood C, Bouzy P, Nallala J, Lyburn ID, Stone N, Rogers K. Calcification Microstructure Reflects Breast Tissue Microenvironment. J Mammary Gland Biol Neoplasia 2019; 24:333-342. [PMID: 31807966 PMCID: PMC6908550 DOI: 10.1007/s10911-019-09441-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/27/2019] [Indexed: 10/27/2022] Open
Abstract
Microcalcifications are important diagnostic indicators of disease in breast tissue. Tissue microenvironments differ in many aspects between normal and cancerous cells, notably extracellular pH and glycolytic respiration. Hydroxyapatite microcalcification microstructure is also found to differ between tissue pathologies, including differential ion substitutions and the presence of additional crystallographic phases. Distinguishing between tissue pathologies at an early stage is essential to improve patient experience and diagnostic accuracy, leading to better disease outcome. This study explores the hypothesis that microenvironment features may become immortalised within calcification crystallite characteristics thus becoming indicators of tissue pathology. In total, 55 breast calcifications incorporating 3 tissue pathologies (benign - B2, ductal carcinoma in-situ - B5a and invasive malignancy - B5b) from archive formalin-fixed paraffin-embedded core needle breast biopsies were analysed using X-ray diffraction. Crystallite size and strain were determined from 548 diffractograms using Williamson-Hall analysis. There was an increased crystallinity of hydroxyapatite with tissue malignancy compared to benign tissue. Coherence length was significantly correlated with pathology grade in all basis crystallographic directions (P < 0.01), with a greater difference between benign and in situ disease compared to in-situ disease and invasive malignancy. Crystallite size and non-uniform strain contributed to peak broadening in all three pathologies. Furthermore, crystallite size and non-uniform strain normal to the basal planes increased significantly with malignancy (P < 0.05). Our findings support the view that tissue microenvironments can influence differing formation mechanisms of hydroxyapatite through acidic precursors, leading to differential substitution of carbonate into the hydroxide and phosphate sites, causing significant changes in crystallite size and non-uniform strain.
Collapse
Affiliation(s)
- Sarah Gosling
- Cranfield Forensic Institute, Cranfield University, Shrivenham, UK.
| | - Robert Scott
- Cranfield Forensic Institute, Cranfield University, Shrivenham, UK
| | - Charlene Greenwood
- School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, UK
| | - Pascaline Bouzy
- School of Physics and Astronomy, University of Exeter, Exeter, UK
| | | | - Iain D Lyburn
- Thirlestaine Breast Centre, Gloucestershire Hospitals NHS Foundation Trust, Cheltenham, Gloucestershire, UK
| | - Nicholas Stone
- School of Physics and Astronomy, University of Exeter, Exeter, UK
| | - Keith Rogers
- Cranfield Forensic Institute, Cranfield University, Shrivenham, UK
| |
Collapse
|
45
|
Yin HM, Liu W, Huang YF, Ren Y, Xu L, Xu JZ, Zhao B, Li ZM. Surface Epitaxial Crystallization-Directed Nanotopography for Accelerating Preosteoblast Proliferation and Osteogenic Differentiation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42956-42963. [PMID: 31661240 DOI: 10.1021/acsami.9b14800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface nanotopography provides a physical stimulus to direct cell fate, especially in the case of osteogenic differentiation. However, fabrication of nanopatterns usually suffers from complex procedures. Herein, a feasible and versatile method was presented to create unique nanosheets on a poly(ε-caprolactone) (PCL) substrate via surface epitaxial crystallization. The thickness, periodic distance, and root-mean-square nanoroughness of surface nanosheets were tunable by simply altering the PCL concentration in the growth solution. Epitaxial nanosheets possessed an identical composition as the substrate, being a prerequisite to revealing the independent effect of biophysical linkage on the osteogenic mechanism of the patterned surface. Preosteoblasts' response to the epitaxial nanosheets was examined in the aspect of preosteoblast proliferation and osteogenic differentiation. The expression of alkaline phosphatase, collagen type I, osteopontin, and osteocalcin as well as mineralization was significantly promoted by the epitaxial nanosheets. Acceleration of osteogenic differentiation was attributed to activating the TAZ/RUNX2 signaling pathway. The findings demonstrate that surface epitaxial crystallization is a feasible approach to design and construct nanotopography for bone tissue engineering.
Collapse
Affiliation(s)
- Hua-Mo Yin
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Wei Liu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Yan-Fei Huang
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Yue Ren
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Ling Xu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Baisong Zhao
- Department of Anesthesiology , Guangzhou Women and Children's Medical Center , Guangzhou 510623 , China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| |
Collapse
|
46
|
Albulescu R, Popa AC, Enciu AM, Albulescu L, Dudau M, Popescu ID, Mihai S, Codrici E, Pop S, Lupu AR, Stan GE, Manda G, Tanase C. Comprehensive In Vitro Testing of Calcium Phosphate-Based Bioceramics with Orthopedic and Dentistry Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:3704. [PMID: 31717621 PMCID: PMC6888321 DOI: 10.3390/ma12223704] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
Recently, a large spectrum of biomaterials emerged, with emphasis on various pure, blended, or doped calcium phosphates (CaPs). Although basic cytocompatibility testing protocols are referred by International Organization for Standardization (ISO) 10993 (parts 1-22), rigorous in vitro testing using cutting-edge technologies should be carried out in order to fully understand the behavior of various biomaterials (whether in bulk or low-dimensional object form) and to better gauge their outcome when implanted. In this review, current molecular techniques are assessed for the in-depth characterization of angiogenic potential, osteogenic capability, and the modulation of oxidative stress and inflammation properties of CaPs and their cation- and/or anion-substituted derivatives. Using such techniques, mechanisms of action of these compounds can be deciphered, highlighting the signaling pathway activation, cross-talk, and modulation by microRNA expression, which in turn can safely pave the road toward a better filtering of the truly functional, application-ready innovative therapeutic bioceramic-based solutions.
Collapse
Affiliation(s)
- Radu Albulescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department Pharmaceutical Biotechnology, National Institute for Chemical-Pharmaceutical R&D, 031299, Bucharest, Romania
| | - Adrian-Claudiu Popa
- National Institute of Materials Physics, 077125 Magurele, Romania (G.E.S.)
- Army Centre for Medical Research, 010195 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Lucian Albulescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Maria Dudau
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Ionela Daniela Popescu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Simona Mihai
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Elena Codrici
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Sevinci Pop
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Andreea-Roxana Lupu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Cantacuzino National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania
| | - George E. Stan
- National Institute of Materials Physics, 077125 Magurele, Romania (G.E.S.)
| | - Gina Manda
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, 050096 Bucharest, Romania; (R.A.); (L.A.); (M.D.); (I.D.P.); (S.M.); (E.C.); (S.P.); (A.-R.L.); (G.M.)
- Cajal Institute, Titu Maiorescu University, 004051 Bucharest, Romania
| |
Collapse
|
47
|
Wei T, Li J, Sun H, Jiang M, Yang Y, Luo X, Liu T. Verification of osteoblast differentiation on airborne-particle abrasion, large-grit, acid-etched surface of titanium implants regulated by yes-associated protein and transcriptional coactivator with PDZ-binding motif. J Oral Sci 2019; 61:431-440. [PMID: 31327805 DOI: 10.2334/josnusd.18-0112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Although airborne-particle abrasion, large-grit, acid-etched (SLA) surface technology can promote implant osseointegration; its mechanism remains unclear. By preparing the SLA titanium (Ti) plate (SLA Ti) and Polished Ti plate (Polished Ti), this experiment investigates the expression and distribution of the Yes-associated protein (YAP) and transcriptional coactivator with the PDZ-binding motif (TAZ) in MC3T3-E1 cells. In addition, gene YAP and TAZ silencing on the SLA Ti was conducted to observe changes in the osteoblast differentiation markers, runt-related transcription factor-2 (Runx2) and bone sialoprotein (BSP). The results demonstrated that SLA Ti surface microtopography could induce YAP/TAZ's transfer from the cytoplasm to the nuclei of MC3T3-E1 cells. The expression of YAP/TAZ increased in terms of mRNA and protein. After silencing the YAP/TAZ genes, Runx2 and BSP decreased, suggesting that YAP/TAZ plays an important regulatory role in this process. Meanwhile, the results also showed that SLA microtopography enhanced the expression of integrins α1, α2, and β1. After silencing the integrin α1, α2, and β1 genes, YAP and TAZ decreased in terms of mRNA and protein. Therefore, this experiment was the first to confirm that SLA surface microtopography facilitates osteoblast differentiation by regulating YAP/TAZ and confirms that the process can be related to integrins α1, α2, and β1.
Collapse
Affiliation(s)
- Ting Wei
- Department of Prosthodontics, School of Stomatology, Shandong University.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University
| | - Jiayi Li
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Huiqiang Sun
- Department of Prosthodontics, School of Stomatology, Shandong University.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University
| | - Mengyang Jiang
- Department of Prosthodontics, School of Stomatology, Shandong University
| | - Yun Yang
- Department of Prosthodontics, School of Stomatology, Shandong University
| | - Xiayan Luo
- Department of Prosthodontics, School of Stomatology, Shandong University
| | - Tingsong Liu
- Department of Prosthodontics, School of Stomatology, Shandong University
| |
Collapse
|
48
|
Brusatin G, Panciera T, Gandin A, Citron A, Piccolo S. Biomaterials and engineered microenvironments to control YAP/TAZ-dependent cell behaviour. NATURE MATERIALS 2018; 17:1063-1075. [PMID: 30374202 PMCID: PMC6992423 DOI: 10.1038/s41563-018-0180-8] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/29/2018] [Indexed: 05/11/2023]
Abstract
Mechanical signals are increasingly recognized as overarching regulators of cell behaviour, controlling stemness, organoid biology, tissue development and regeneration. Moreover, aberrant mechanotransduction is a driver of disease, including cancer, fibrosis and cardiovascular defects. A central question remains how cells compute a host of biomechanical signals into meaningful biological behaviours. Biomaterials and microfabrication technologies are essential to address this issue. Here we review a large body of evidence that connects diverse biomaterial-based systems to the functions of YAP/TAZ, two highly related mechanosensitive transcriptional regulators. YAP/TAZ orchestrate the response to a suite of engineered microenviroments, emerging as a universal control system for cells in two and three dimensions, in static or dynamic fashions, over a range of elastic and viscoelastic stimuli, from solid to fluid states. This approach may guide the rational design of technological and material-based platforms with dramatically improved functionalities and inform the generation of new biomaterials for regenerative medicine applications.
Collapse
Affiliation(s)
- Giovanna Brusatin
- Department of Industrial Engineering (DII) and INSTM, University of Padua, Padua, Italy
| | - Tito Panciera
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, Padua, Italy
| | - Alessandro Gandin
- Department of Industrial Engineering (DII) and INSTM, University of Padua, Padua, Italy
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, Padua, Italy
| | - Anna Citron
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, Padua, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, Padua, Italy.
- IFOM-the FIRC Institute of Molecular Oncology, .
| |
Collapse
|
49
|
Ort C, Dayekh K, Xing M, Mequanint K. Emerging Strategies for Stem Cell Lineage Commitment in Tissue Engineering and Regenerative Medicine. ACS Biomater Sci Eng 2018; 4:3644-3657. [PMID: 33429592 DOI: 10.1021/acsbiomaterials.8b00532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stem cells have transformed the fields of tissue engineering and regenerative medicine, and their potential to further advance these fields cannot be overstated. The stem cell niche is a dynamic microenvironment that determines cell fate during development and tissue repair following an injury. Classically, stem cells were studied in isolation of their microenvironment; however, contemporary research has produced a myriad of evidence that shows the importance of multiple aspects of the stem cell niche in regulating their processes. In the context of tissue engineering and regenerative medicine studies, the niche is an artificial environment provided by culture conditions. In vitro culture conditions may involve coculturing with other cell types, developing specific biomaterials, and applying relevant forces to promote the desired lineage commitment. Considerable advance has been made over the past few years toward directed stem cell differentiation; however, the unspecific differentiation of stem cells yielding a mixed population of cells has been a challenge. In this review, we provide a systematic review of the emerging strategies used for lineage commitment within the context of tissue engineering and regenerative medicine. These strategies include scaffold pore-size and pore-shape gradients, stress relaxation, sonic and electromagnetic effects, and magnetic forces. Finally, we provide insights and perspectives into future directions focusing on signaling pathways activated during lineage commitment using external stimuli.
Collapse
Affiliation(s)
| | | | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, 66 Chancellors Circle, Winnipeg R3T 2N2, Canada
| | | |
Collapse
|
50
|
Quantifying the ultrastructure changes of air-dried and irradiated human amniotic membrane using atomic force microscopy: a preliminary study. Cell Tissue Bank 2018; 19:613-622. [PMID: 30056604 DOI: 10.1007/s10561-018-9711-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/07/2018] [Indexed: 10/28/2022]
Abstract
Air-dried and sterilized amnion has been widely used as a dressing to treat burn and partial thickness wounds. Sterilisation at the standard dose of 25 kGy was reported to cause changes in the morphological structure as observed under the scanning electron microscope. This study aimed to quantify the changes in the ultrastructure of the air-dried amnion after gamma-irradiated at several doses by using atomic force microscope. Human placentae were retrieved from mothers who had undergone cesarean elective surgery. Amnion separated from chorion was processed and air-dried for 16 h. It was cut into 10 × 10 mm, individually packed and exposed to gamma irradiation at 5, 15, 25 and 35 kGy. Changes in the ultrastructural images of the amnion were quantified in term of diameter of the epithelial cells, size of the intercellular gap and membrane surface roughness. The longest diameter of the amnion cells reduced significantly after radiation (p < 0.01) however the effect was not dose dependent. No significant changes in the shortest diameter after radiation, except at 35 kGy which decreased significantly when compared to 5 kGy (p < 0.01). The size of the irradiated air-dried amnion cells reduced in the same direction without affecting the gross ultrastructure. At 15 kGy the intercellular gap decreased significantly (p < 0.01) with Ra and Rq, values reflecting surface roughness, were significantly the highest (p < 0.01). Changes in the ultrastructure quantified by using atomic force microscope could complement results from other microscopic techniques.
Collapse
|