1
|
Suk FM, Hsu FY, Hsu MH, Chiu WC, Fang CC, Chen TL, Liao YJ. Treatment with a new barbituric acid derivative suppresses diet-induced metabolic dysfunction and non-alcoholic fatty liver disease in mice. Life Sci 2024; 336:122327. [PMID: 38061536 DOI: 10.1016/j.lfs.2023.122327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, often accompanied by obesity, diabetes, and increased risks of depression and anxiety. Currently, there are no FDA-approved drugs to treat NAFLD and its related systemic symptoms. Previously, we identified a new barbituric acid derivative (BA-5) that expressed effectiveness against fibrosis and drug-resistant hepatocellular carcinoma. AIMS This study investigated the potential of BA-5 against high-fat diet (HFD)-induced NAFLD and mood disorders in mice. MAIN METHODS Six-weeks-old male C57BL/6 mice were fed with a 45 % HFD for 8 weeks to induce NAFLD and associated metabolic disorders. Mice were treated with a BA-5 and the therapeutic effects and the underlying molecular mechanisms were investigated. KEY FINDINGS Administration of BA-5 significantly reduced serum levels of alanine aminotransferase (ALT), low-density lipoprotein (LDL), fatty acids (FA), and triglycerides (TG) in HFD-fed mice. BA-5 treatment decreased expressions of hepatic lipogenesis-related markers (acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and ATP-citrate lyase (ACLY)), increased fatty acid oxidation markers (carnitine palmitoyltransferase 1A (CPT1A) and acyl-CoA oxidase 1 (ACOX1)), and attenuated hepatic fat accumulation in HFD-fed mice. Moreover, HFD-induced adipocyte size enlargement and activation of lipolysis markers such as phosphorylated (p)-hormone-sensitive lipase (HSL) 565, p-HSL 660, and perilipin were inhibited in BA-5-treated mice. Notably, HFD-induced anxiety- and depression-like behaviors significantly improved in the BA-5 treated group through enhanced anti-inflammatory responses in the hippocampus. SIGNIFICANCE This study provides new insights into clinical therapeutic strategies of barbituric acid derivatives for HFD-induced NAFLD and associated mood disturbances.
Collapse
Affiliation(s)
- Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Fang-Yu Hsu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Shuang-Ho Campus, New Taipei City 23561, Taiwan
| | - Ming-Hua Hsu
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; Department of Nutrition, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Cheng-Chieh Fang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Shuang-Ho Campus, New Taipei City 23561, Taiwan
| | - Tzu-Lang Chen
- Department of Medical Education, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Shuang-Ho Campus, New Taipei City 23561, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
2
|
Khan A, Andleeb A, Azam M, Tehseen S, Mehmood A, Yar M. Aloe vera and ofloxacin incorporated chitosan hydrogels show antibacterial activity, stimulate angiogenesis and accelerate wound healing in full thickness rat model. J Biomed Mater Res B Appl Biomater 2023; 111:331-342. [PMID: 36053925 DOI: 10.1002/jbm.b.35153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022]
Abstract
Burns are potentially fatal and physically debilitating injuries, causing psychological and physical scars and result in chronic disabilities. A well vascularized wound bed is required to achieve complete and scar free wound closure. For many centuries, a variety of herbal plants have been used for wound healing, among these aloe vera (AV) has been found to be very effective in wound healing. Secondly, the main reason for delayed wound healing is bacterial infections. Ofloxacin (OX) has been reported as an active antibacterial drug for topical infections and it is effective against both positive and negative bacterial strains. In current research three different concentrations of OX (0.5, 2.5, and 5 mg) were loaded into chitosan (CS)/AV based hydrogels prepared by freeze gelation. The surface morphology of prepared CS/AV based OX loaded hydrogels were evaluated by scanning electron microscopy (SEM). In drug release analysis, 0.5 mg OX loaded hydrogel showed a sustained drug release behavior over 3 days period. An effective dose dependent antibacterial activity was exhibited by OX loaded hydrogels. Alamar Blue cells viability assay revealed that 0.5 mg OX hydrogel (CA 0.5 OX) showed comparatively better 3 T3 fibroblast cells proliferation as compared to CA 2.5 OX (2.5 mg OX) and CA 5 OX hydrogel (5 mg OX). Moreover, all OX loaded hydrogels showed good angiogenic activity in CAM bioassay while higher angiogenic potential was observed from CA 0.5 OX containing comparatively lower concentration of OX. These OX incorporated CS/AV based hydrogels are promising wound dressings for future clinical use.
Collapse
Affiliation(s)
- Ahmad Khan
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Anisa Andleeb
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Maryam Azam
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Saimoon Tehseen
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Azra Mehmood
- National Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
3
|
Luan F, Xu Z, Wang K, Qi X, Guo Z. Synthesis of Water-Soluble Sulfonated Chitin Derivatives for Potential Antioxidant and Antifungal Activity. Mar Drugs 2022; 20:md20110668. [PMID: 36354991 PMCID: PMC9697452 DOI: 10.3390/md20110668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Chitin is a natural renewable and useful biopolymer limited by its insolubility; chemical derivatization can enhance the solubility and bioactivity of chitin. The purpose of this study was to synthesize novel water-soluble chitin derivatives, sulfo-chitin (SCT) and sulfopropyl-chitin (SPCT), as antioxidant and antifungal agents. The target derivatives were characterized by means of elemental analysis, FTIR, 13C NMR, TGA and XRD. Furthermore, the antioxidant activity of the chitin derivatives was estimated by free radical scavenging ability (against DPPH-radical, hydroxyl-radical and superoxide-radical) and ferric reducing power. In addition, inhibitory effects against four fungi were also tested. The findings show that antioxidant abilities and antifungal properties were in order of SPCT > SCT > CT. On the basis of the results obtained, we confirmed that the introduction of sulfonated groups on the CT backbone would help improve the antioxidant and antifungal activity of CT. Moreover, its efficacy as an antioxidant and antifungal agent increased as the chain length of the substituents increased. This derivatization strategy might provide a feasible way to broaden the utilization of chitin. It is of great significance to minimize waste and realize the high-value utilization of aquatic product wastes.
Collapse
Affiliation(s)
- Fang Luan
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264200, China
- Correspondence: (F.L.); (Z.G.); Tel.: +86-535-2109171 (F.L.); +86-6313998919 (Z.G.)
| | - Zhenhua Xu
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264200, China
| | - Kai Wang
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264200, China
| | - Xin Qi
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264200, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (F.L.); (Z.G.); Tel.: +86-535-2109171 (F.L.); +86-6313998919 (Z.G.)
| |
Collapse
|
4
|
Yang C, Wang M, Wang W, Liu H, Deng H, Du Y, Shi X. Electrodeposition induced covalent cross-linking of chitosan for electrofabrication of hydrogel contact lenses. Carbohydr Polym 2022; 292:119678. [DOI: 10.1016/j.carbpol.2022.119678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022]
|
5
|
Yang X, Chen L, Ren D, Wang S, Ren Z. Adsorption of Pb(II) from water by treatment with an O-hydroxyphenyl thiourea-modified chitosan. Int J Biol Macromol 2022; 220:280-290. [PMID: 35981675 DOI: 10.1016/j.ijbiomac.2022.08.090] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Abstract
An O-hydroxyphenyl thiourea-modified chitosan (OTCS) with excellent Pb(II) adsorption performance and selectivity was prepared as an adsorbent. The structure and morphology of the adsorbent were systematically investigated by SEM, BET, FTIR, EDX, zeta-potential measurements, XPS and XRD. The impacts of the initial Pb(II) concentration, reaction time, temperature, pH value, and coexisting ions were explored. At pH 7 and 303 K, the maximal adsorption capacity of OTCS for Pb(II) was 208.33 mg/g, which was greater than those of other adsorbing materials reported in the literature. The metal ion adsorption kinetics and isotherm models were found to obey pseudo-second-order kinetics and the Langmuir isothermal model, indicating that the adsorption process was monolayer chemisorption. The adsorption process could proceed spontaneously, and the thermodynamic results revealed that the adsorption mechanism was an endothermic reaction. The ion exchange and chelation between the sulfur, nitrogen and oxygen groups on the adsorbent and lead ions endowed the material with excellent adsorption properties. Significantly, OTCS showed excellent selectivity toward Pb(II). Therefore, the adsorbent OTCS is expected to promote the wider application of chitosan in the adsorption of Pb(II).
Collapse
Affiliation(s)
- Xiya Yang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Lingyuan Chen
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637009, China
| | - Shixing Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Zhaogang Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637009, China.
| |
Collapse
|
6
|
Shahzadi L, Jamal A, Hajivand P, Mahmood N, Chaudhry A, Rehman I, Yar M. Synthesis and wound healing performance of new
water‐soluble
chitosan derivatives. J Appl Polym Sci 2022. [DOI: 10.1002/app.51770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lubna Shahzadi
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad Lahore Campus Pakistan
| | - Arshad Jamal
- Department of Biology University of Hail Hail Saudi Arabia
| | - Pegah Hajivand
- Faculty of Materials Science and Engineering Changzhou University Changzhou Jiangsu China
| | - Nasir Mahmood
- Department of Allied Health Sciences and Chemical Pathology University of Health Sciences Lahore Pakistan
| | - Aqif Chaudhry
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad Lahore Campus Pakistan
| | | | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad Lahore Campus Pakistan
| |
Collapse
|
7
|
Yang C, Shi X, Deng H, Du Y. Antifatigue Hydration-Induced Polysaccharide Hydrogel Actuators Inspired by Crab Joint Wrinkles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6251-6260. [PMID: 35061354 DOI: 10.1021/acsami.1c24430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Joint wrinkles in animals facilitate frequent bending and contribute to the duration of the joint. Inspired by the morphology and function of joint wrinkles, we developed a bionic hydration-induced polymeric actuator with constructed wrinkles at the selected area. Specifically, we adopt electrical writing to create defined single and double cross-linking regions on chitosan (CS) hydrogel. The covalent cross-linking network was constructed by electrical writing-induced covalent cross-linking between CS chains and epichlorohydrin. Subsequent treatment of sodium dodecyl sulfate allows electrostatic cross-linking at the unwritten area with the simultaneous formation of surface wrinkles. The resulting single and double cross-linking hydrogel demonstrates spontaneous deformation behaviors by the influx and efflux of H2O to the electrostatic cross-linking domain under different ion concentrations. Importantly, the wrinkle structure endows the hydrogel with extraordinary antifatigue bending performance. By regulating the surface morphology and spatial cross-linking, we can design novel biomimetic polysaccharide hydrogel actuators with fascinating functions.
Collapse
Affiliation(s)
- Chen Yang
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Hongbing Deng
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Yumin Du
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| |
Collapse
|
8
|
Aleem AR, Shahzadi L, Nasir M, Hajivand P, Alvi F, Akhtar A, Zehra M, Mehmood A, Yar M. Developing sulfur-doped titanium oxide nanoparticles loaded chitosan/cellulose-based proangiogenic dressings for chronic ulcer and burn wounds healing. J Biomed Mater Res B Appl Biomater 2021; 110:1069-1081. [PMID: 34843162 DOI: 10.1002/jbm.b.34981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
Development of biomaterials supporting angiogenesis are highly desired in medical applications. In current work, chitosan and cellulose were cross-linked by using triethyl orthoformate and loaded with sulfur-doped titanium oxide nanoparticles. A readily available and inexpensive titanium oxide was added as a potential proangiogenic agent based on our group findings and other reports on metal oxide nanoparticles activity to stimulate angiogenesis. A simple freeze gelation method led to the development of flexible, foldable, and porous membranes. To investigate the chemical characteristics of the synthesized membranes, Fourier-transform infrared spectroscopy was used. Scanning electron microscopy equipped with energy-dispersive X-ray microanalysis was employed for surface morphological investigations. The cross-linked membranes showed higher degree of swelling capacity compared to the same material with titania-loaded nanoparticles in vitro. The synthesized materials showed higher degree of degradation in H2 O2 as compared to phosphate-buffered saline and lysozyme. Chorioallantoic membrane assay was done to investigate the angiogenic potential. Titanium oxide nanoparticles loaded membranes (CLHTS-5 wt%) exhibited the best degree of angiogenesis in comparison to the other tested materials. In CLHTS-5 wt% experimental group, a good level of attachment and ingrowth of several blood vessels was observed. Interestingly, the same tested group (CLHTS-5 wt%) had shown the increasing trend of cellular metabolic rate of the seeded cells from Day 0 to Day 7 in vitro. These findings were further confirmed by the decline in lactate dehydrogenase enzyme release which was monitored until 72 h, indicating the promising ability of this biomaterial in wound healing applications.
Collapse
Affiliation(s)
- Abdur R Aleem
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore, Pakistan.,Department of Physics, COMSATS University Islamabad Lahore Campus, Lahore, Pakistan.,Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, Qingdao University, Qingdao, China
| | - Lubna Shahzadi
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
| | - Muhammad Nasir
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
| | - Pegah Hajivand
- Faculty of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, China
| | - Farah Alvi
- Department of Physics, COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
| | - Amna Akhtar
- Department of Chemical Engineering, COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
| | - Mubashra Zehra
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore, Pakistan.,National Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Azra Mehmood
- National Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
| |
Collapse
|
9
|
Lee S, Suh YJ, Lee Y, Yang S, Hong DG, Thirumalai D, Chang SC, Chung KW, Jung YS, Moon HR, Chung HY, Lee J. Anti-Inflammatory Effects of the Novel Barbiturate Derivative MHY2699 in an MPTP-Induced Mouse Model of Parkinson's Disease. Antioxidants (Basel) 2021; 10:antiox10111855. [PMID: 34829726 PMCID: PMC8615243 DOI: 10.3390/antiox10111855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, and is caused by the death of dopamine neurons and neuroinflammation in the striatum and substantia nigra. Furthermore, the inflammatory response in PD is closely related to glial cell activation. This study examined the neuroprotective effects of the barbiturate derivative, MHY2699 [5-(4-hydroxy 3,5-dimethoxybenzyl)-2 thioxodihydropyrimidine-4,6(1H,5H)-dione] in a mouse model of PD. MHY2699 ameliorated MPP⁺-induced astrocyte activation and ROS production in primary astrocytes and inhibited the MPP⁺-induced phosphorylation of MAPK and NF-κB. The anti-inflammatory effects of MHY2699 in protecting neurons were examined in an MPTP-induced mouse model of PD. MHY2699 inhibited MPTP-induced motor dysfunction and prevented dopaminergic neuronal death, suggesting that it attenuated neuroinflammation. Overall, MHY2699 has potential as a neuroprotective treatment for PD.
Collapse
Affiliation(s)
- Seulah Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (Y.J.S.); (Y.L.); (S.Y.); (D.G.H.); (K.W.C.); (Y.-S.J.); (H.Y.C.)
- Research Institute for Drug Development, Pusan National University, Busan 46241, Korea;
| | - Yeon Ji Suh
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (Y.J.S.); (Y.L.); (S.Y.); (D.G.H.); (K.W.C.); (Y.-S.J.); (H.Y.C.)
- Research Institute for Drug Development, Pusan National University, Busan 46241, Korea;
| | - Yujeong Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (Y.J.S.); (Y.L.); (S.Y.); (D.G.H.); (K.W.C.); (Y.-S.J.); (H.Y.C.)
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Seonguk Yang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (Y.J.S.); (Y.L.); (S.Y.); (D.G.H.); (K.W.C.); (Y.-S.J.); (H.Y.C.)
- Research Institute for Drug Development, Pusan National University, Busan 46241, Korea;
| | - Dong Geun Hong
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (Y.J.S.); (Y.L.); (S.Y.); (D.G.H.); (K.W.C.); (Y.-S.J.); (H.Y.C.)
- Research Institute for Drug Development, Pusan National University, Busan 46241, Korea;
| | - Dinakaran Thirumalai
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (D.T.); (S.-C.C.)
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (D.T.); (S.-C.C.)
| | - Ki Wung Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (Y.J.S.); (Y.L.); (S.Y.); (D.G.H.); (K.W.C.); (Y.-S.J.); (H.Y.C.)
- Research Institute for Drug Development, Pusan National University, Busan 46241, Korea;
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (Y.J.S.); (Y.L.); (S.Y.); (D.G.H.); (K.W.C.); (Y.-S.J.); (H.Y.C.)
- Research Institute for Drug Development, Pusan National University, Busan 46241, Korea;
| | - Hyung Ryong Moon
- Research Institute for Drug Development, Pusan National University, Busan 46241, Korea;
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (Y.J.S.); (Y.L.); (S.Y.); (D.G.H.); (K.W.C.); (Y.-S.J.); (H.Y.C.)
- Research Institute for Drug Development, Pusan National University, Busan 46241, Korea;
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (Y.J.S.); (Y.L.); (S.Y.); (D.G.H.); (K.W.C.); (Y.-S.J.); (H.Y.C.)
- Research Institute for Drug Development, Pusan National University, Busan 46241, Korea;
- Correspondence: ; Tel.: +82-51-510-2805; Fax: +82-51-513-6754
| |
Collapse
|
10
|
A novel benzothiazole modified chitosan with excellent adsorption capacity for Au(III) in aqueous solutions. Int J Biol Macromol 2021; 193:1918-1926. [PMID: 34752796 DOI: 10.1016/j.ijbiomac.2021.11.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 01/20/2023]
Abstract
A novel benzothiazole modified chitosan (BCS) with excellent Au(III) adsorption performance and selectivity was prepared as adsorbents. The structure and morphology of the adsorbents were characterized by FTIR, SEM, XRD and XPS. The adsorption property of the adsorbents for Au(III) were investigated under different reaction time, initial concentration of Au(III), temperature, pH and coexisting ions. The maximum adsorption capacity of BCS for Au(III) was 1072.22 mg/g at 298 K and optimal pH = 4, which was better than that of other adsorbents reported in literature. The adsorption kinetics and isotherm models fit the pseudo-second-order and Langmuir equations. This shows that the adsorption process of Au(III) is a monolayer chemical adsorption. The adsorption process can proceed spontaneously and belong to the endothermic reaction according to the thermodynamic results. The excellent adsorption performance is mainly attributed to the ion exchange and chelation of the nitrogen, sulfur and oxygen groups on the adsorbent with gold ions. Significantly, BCS has excellent selectivity toward Au(III) and remarkable recycle performance. With the high adsorption capacity, excellent selectivity and outstanding reusability, the BCS adsorbent could be a promising candidate to adsorb Au(III) from wastewater.
Collapse
|
11
|
Unique vesicular nano‐architecture of thiobarbiturate derived chitosan with excellent hydrophilicity. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Zahid M, Zhang D, Xu X, Pan M, Ul Haq MH, Reda AT, Xu W. Barbituric and thiobarbituric acid-based UiO-66-NH 2 adsorbents for iodine gas capture: Characterization, efficiency and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125835. [PMID: 34492792 DOI: 10.1016/j.jhazmat.2021.125835] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 06/13/2023]
Abstract
Efficient iodine gas capture is necessitated in many industries like spent nuclear fuel off-gas treatment in view of environmental protection and resource recycling. However, the adsorption efficiency and stability of the current adsorbents are limited. In the present work, efficient and stable barbituric and thiobarbituric acid-based UiO-66-NH2 adsorbents (i.e., UiO-66-NH-B.D and UiO-66-NH-T.D, respectively) have been synthesized by post-synthetic covalent modification. Characterization approaches, including SEM-EDS, TEM, XRD, FTIR, XPS, 1H NMR, TGA and BET, are used to obtain information on the properties and adsorption mechanisms of these metal-organic framework (MOF) adsorbents. The kinetics and mechanisms involved are studied in detail. The treatment efficiency and recyclability of the adsorbents are checked and compared with the adsorbents reported in previous works. The results show that the current adsorbents are potentially suitable for efficient iodine gas capture. High maximum iodine adsorption amount by UiO-66-NH-B.D and UiO-66-NH-T.D (1.17 and 1.33 g/g) was achieved under 75 °C. These new adsorbents are thermally stable for iodine adsorption and regenerated and reused with good performance. The adsorption mechanisms were revealed based on experimental results, indicating that iodine is adsorbed by both physisorption and chemisorption.
Collapse
Affiliation(s)
- Muhammad Zahid
- College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dongxiang Zhang
- College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiyan Xu
- College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Meng Pan
- College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Muhammad Hammad Ul Haq
- College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Alemtsehay Tesfay Reda
- College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenguo Xu
- College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
13
|
Yang C, Shi X, Qi L, Zhu X, Tong J, Deng H, Du Y. Electrical Writing Induced Covalent Cross-Linking on Hydrogel for Multidimensional Structural Information Storage. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36538-36547. [PMID: 34309366 DOI: 10.1021/acsami.1c09548] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The storage of dynamic information in hydrogel is extremely interesting due to the reprogrammable and responsive features of hydrogel. Here, we report that structural information can be stored in polysaccharide hydrogel by electrically induced covalent cross-linking, and the imbedded information can be retrieved by different means (dye adsorption, protonation of chitosan, and acid dissolution). Taking the advantage of diffusible feature of hydrogel, OH- was generated from the contacting area of the electrode and controllably diffused by electrical writing, thus the high pH domain (pH ∼ 10) triggered covalent cross-linking of the hydrogel. The written area exhibits different micromorphology, chemical properties, and pH sensitivity, allowing dynamic 2D and 3D information to be stored and read when necessary. This work demonstrates the use of stable electrical inputs to store dynamic structural information in a biopolymer-based hydrogel and how the chemical and physical varies allow eye recognition to the embedded information.
Collapse
Affiliation(s)
- Chen Yang
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Luhe Qi
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Xinyi Zhu
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Jun Tong
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Hongbing Deng
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Yumin Du
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| |
Collapse
|
14
|
Shafiq N, Arshad U, Zarren G, Parveen S, Javed I, Ashraf A. A Comprehensive Review: Bio-Potential of Barbituric Acid and its Analogues. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200110094457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In our present work, we emphasized on the potential of barbituric acid (1) derivatives
as drugs like anti-bacterial, hypnotic, sedative, anti-microbial and antifungal
agents. As naturally occurring, barbituric acid (1) is inactive but in the derivative form, it
has a large number of medicinal uses and nowadays, it has a great demand in the pharmaceutical
industry. Barbituric acid has a wide range of applications in the synthesis of a diverse
class of compounds like heterocyclic, carbocyclic, synthetic alkaloids, and due to its
broad-spectrum applications, barbituric acid acquired the position of building blocks in
synthetic chemistry. Through the history of humanity, a number of bioactive agents have
been applied to cure the disease related to hypnotics and sedatives, while the exact efficacy
of these agents was found to be limited. Till now, review articles on barbituric acid
only express their specific aspect but in present review article, all aspects are discussed in detail to provide a
platform to readers and researchers so that they could obtain all information and background knowledge from a
single point.
Collapse
Affiliation(s)
- Nusrat Shafiq
- Department of Chemistry, Government College Women University, Faisalabad-38000, Pakistan
| | - Uzma Arshad
- Department of Chemistry, Government College Women University, Faisalabad-38000, Pakistan
| | - Gul Zarren
- Department of Chemistry, Government College Women University, Faisalabad-38000, Pakistan
| | - Shagufta Parveen
- Department of Chemistry, Government College Women University, Faisalabad-38000, Pakistan
| | - Irum Javed
- Department of Biochemistry, Sardar Bahadur Khan Women’s University, Quetta, Pakistan
| | - Aisha Ashraf
- Department of Chemistry, Government College Women University, Faisalabad-38000, Pakistan
| |
Collapse
|
15
|
Wang YH, Suk FM, Liu CL, Chen TL, Twu YC, Hsu MH, Liao YJ. Antifibrotic Effects of a Barbituric Acid Derivative on Liver Fibrosis by Blocking the NF-κB Signaling Pathway in Hepatic Stellate Cells. Front Pharmacol 2020; 11:388. [PMID: 32296336 PMCID: PMC7136425 DOI: 10.3389/fphar.2020.00388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatic stellate cells (HSCs) are the major profibrogenic cells that promote the pathogenesis of liver fibrosis. The crosstalk between transforming growth factor-β1 (TGF-β1) signaling and lipopolysaccharide (LPS)-induced NF-κB signaling plays a critical role in accelerating liver fibrogenesis. Until now, there have been no FDA-approved drug treatments for liver fibrosis. Barbituric acid derivatives have been used as antiasthmatic drugs in the clinic; however, the effect of barbituric acid derivatives in treating liver fibrosis remains unknown. In this study, we synthesized a series of six barbituric acid (BA) derivatives, and one of the compounds, BA-5, exhibited the best ability to ameliorate TGF-β1-induced HSC activation without overt cytotoxic effects. Then, we treated HSCs and RAW264.7 macrophages with BA-5 to analyze the cross-talk of anti-fibrotic and anti-inflammatory effects. Carbon tetrachloride (CCl4)-induced liver fibrosis mouse model was used to evaluate the therapeutic effects of BA-5. Treatment with BA-5 inhibited TGF-β1-induced α-SMA, collagen1a2, and phosphorylated smad2/3 expression in HSCs. Furthermore, BA-5 treatment reversed the LPS-induced reduction in BAMBI protein and decreased IκBα and NF-κB phosphorylation in HSCs. NF-κB nuclear translocation, MCP-1 secretion, and ICAM-1 expression were also inhibited in BA-5-treated HSCs. Conditioned medium collected from BA-5-treated HSCs showed a reduced ability to activate RAW264.7 macrophages by inhibiting the MAPK pathway. In the mouse model, BA-5 administration reduced CCl4-induced liver damage, liver fibrosis, and F4/80 expression without any adverse effects. In conclusion, our study showed that the barbituric acid derivative BA-5 inhibits HSCs activation and liver fibrosis by blocking both the TGF-β1 and LPS-induced NF-κB signaling pathways and further inhibits macrophages recruitment and activation.
Collapse
Affiliation(s)
- Yuan-Hsi Wang
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan.,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Lang Chen
- Department of Medical Education, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Hua Hsu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Xie YL, Jiang W, Li F, Zhang Y, Liang XY, Wang M, Zhou X, Wu SY, Zhang CH. Controlled Release of Spirotetramat Using Starch-Chitosan-Alginate-Encapsulation. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:149-155. [PMID: 31784766 DOI: 10.1007/s00128-019-02752-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
This study was intended to develop an environment-friendly controlled release system for spirotetramat in an alginate matrix. Four formulations, starch-chitosan-calcium alginate (SCCA), starch-calcium alginate (SCA), chitosan-calcium alginate (CCA), and calcium alginate (CA) complex gel beads, were prepared by the extrusion-exogenous gelation method. The properties of the formulations were studied. The results showed that the release behaviors of the formulations in water could be well described by the logistic model, and the release occurred through Fickian diffusion. Among the four formulations, SCCA showed the highest entrapment efficiency, drug loading and the slowest release rate. Degradation studies revealed that the SCCA formulation exhibited an obvious slower degradation rate of spirotetramat in soils than the commercially available formulation. The estimated half-life of the SCCA formulation was 2.31, 3.25, and 4.51 days in waterloggogenic paddy soil, purplish soil, and montmorillonite, respectively, when the soils were moistened to 60% of its dry weight. This study provided a possible approach to prolong the duration of spirotetramat and to reduce environmental contamination.
Collapse
Affiliation(s)
- Yan-Li Xie
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
- Analysis and Testing Center, Hainan University, Haikou, 570228, China
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, 571101, China
| | - Wayne Jiang
- Department of Entomology, Michigan State University, East Lansing, MI, 48824, USA
| | - Fen Li
- College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Yu Zhang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, 571101, China
- College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Xiao-Yu Liang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, 571101, China
- College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Meng Wang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, 571101, China
- College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Xueqing Zhou
- Analysis and Testing Center, Hainan University, Haikou, 570228, China
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, 571101, China
| | - Shao-Ying Wu
- College of Plant Protection, Hainan University, Haikou, 570228, China.
| | - Cheng-Hui Zhang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, 571101, China.
| |
Collapse
|
17
|
Zhai X, Ren Y, Wang N, Guan F, Agievich M, Duan J, Hou B. Microbial Corrosion Resistance and Antibacterial Property of Electrodeposited Zn-Ni-Chitosan Coatings. Molecules 2019; 24:E1974. [PMID: 31121968 PMCID: PMC6572311 DOI: 10.3390/molecules24101974] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 11/16/2022] Open
Abstract
Microbial corrosion is a universal phenomenon in salt water media such as seawater and wastewater environments. As a kind of efficient protective metal coating for steel, the damage of the Zn-Ni alloy coating was found to be accelerated under microbial corrosive conditions. To solve this problem, chitosan, which is considered a natural product with high antibacterial efficiency, was added to Zn-Ni electrolytes as a functional ingredient of electrodeposited Zn-Ni-chitosan coatings. It was found that the addition of chitosan significantly and negatively shifted the electrodeposition potentials and influenced the Ni contents, the phase composition, and the surface morphologies. By exposing the coatings in a sulfate-reducing bacteria medium, the microbial corrosion resistance was investigated. The results showed that compared to the Zn-Ni alloy coating, Zn-Ni-chitosan coatings showed obvious inhibiting effects on sulfate-reducing bacteria (SRB) and the corrosion rates of these coatings were mitigated to some degree. Further research on the coatings immersed in an Escherichia coli-suspended phosphate buffer saline medium showed that the bacteria attachment on the coating surface was effectively reduced, which indicated enhanced antibacterial properties. As a result, the Zn-Ni-chitosan coatings showed remarkably enhanced anticorrosive and antibacterial properties.
Collapse
Affiliation(s)
- Xiaofan Zhai
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), No.1 Wenhai Road, Qingdao 266235, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Yadong Ren
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
- School of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| | - Nan Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), No.1 Wenhai Road, Qingdao 266235, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Fang Guan
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), No.1 Wenhai Road, Qingdao 266235, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Maria Agievich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 14 A. Nevskogo ul., 236016 Kaliningrad, Russia.
| | - Jizhou Duan
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), No.1 Wenhai Road, Qingdao 266235, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Baorong Hou
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), No.1 Wenhai Road, Qingdao 266235, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
18
|
Ahtzaz S, Sher Waris T, Shahzadi L, Anwar Chaudhry A, Ur Rehman I, Yar M. Boron for tissue regeneration-it’s loading into chitosan/collagen hydrogels and testing on chorioallantoic membrane to study the effect on angiogenesis. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1581202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Samreen Ahtzaz
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University, Lahore, Pakistan
| | - Tayyaba Sher Waris
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University, Lahore, Pakistan
| | - Lubna Shahzadi
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University, Lahore, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University, Lahore, Pakistan
| | - Ihtesham Ur Rehman
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University, Lahore, Pakistan
- Engineering Department, Lancaster University, Lancaster, UK
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University, Lahore, Pakistan
| |
Collapse
|
19
|
Bhatt R, Kushwaha S, Bojja S, Padmaja P. Chitosan-Thiobarbituric Acid: A Superadsorbent for Mercury. ACS OMEGA 2018; 3:13183-13194. [PMID: 31458039 PMCID: PMC6644366 DOI: 10.1021/acsomega.8b01837] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/20/2018] [Indexed: 06/10/2023]
Abstract
In the present investigation, chitosan (CH) was supramolecularly cross-linked with thiobarbituric acid to form CT. CT was well characterized by UV, scanning electron microscopy-energy-dispersive X-ray analysis, Fourier transform infrared, NMR, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction analyses, and its adsorption potential for elemental mercury (Hg0), inorganic mercury (Hg2+), and methyl mercury (CH3Hg+) was investigated. Adsorption experiments were conducted to optimize the parameters for removal of the mercury species under study, and the data were analyzed using Langmuir, Freundlich, and Temkin adsorption isotherm models. CT was found to have high adsorption capacities of 1357.69, 2504.86, and 2475.38 mg/g for Hg0, Hg2+, and CH3Hg+, respectively. The adsorbent CT could be reused up to three cycles by eluting elemental mercury using 0.01 N thiourea, inorganic mercury using 0.01 N perchloric acid, and methyl mercury with 0.2 N NaCl.
Collapse
Affiliation(s)
- Rahul Bhatt
- Department
of Chemistry, Faculty of Science, M. S.
University of Baroda, Sayajigunj, Vadodara 390002, Gujarat, India
| | - Shilpi Kushwaha
- Organic
Chemistry Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Sreedhar Bojja
- Department
of Inorganic & Physical Chemistry, CSIR-Indian
Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - P. Padmaja
- Department
of Chemistry, Faculty of Science, M. S.
University of Baroda, Sayajigunj, Vadodara 390002, Gujarat, India
| |
Collapse
|
20
|
Zhang J, Luan F, Li Q, Gu G, Dong F, Guo Z. Synthesis of Novel Chitin Derivatives Bearing Amino Groups and Evaluation of Their Antifungal Activity. Mar Drugs 2018; 16:E380. [PMID: 30314267 PMCID: PMC6212816 DOI: 10.3390/md16100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 12/02/2022] Open
Abstract
Chemical modification is one of the most effective methods to improve the biological activity of chitin. In the current study, we modified C3-OH and C6-OH of chitin (CT) and successfully synthesized 6-amino-chitin (NCT) and 3,6-diamino-chitin (DNCT) through a series of chemical reactions. The structure of NCT and DNCT were characterized by elemental analyses, FT-IR, 13C NMR, XRD, and SEM. The inhibitory effects of CT, NCT, and DNCT against six kinds of phytopathogen (F. oxysporum f. sp. cucumerium, B. cinerea, C. lagenarium, P. asparagi, F. oxysporum f. niveum, and G. zeae) were evaluated using disk diffusion method in vitro. Meanwhile, carbendazim and amphotericin B were used as positive controls. Results revealed that 6-amino-chitin (NCT) and 3,6-diamino-chitin (DNCT) showed improved antifungal properties compared with pristine chitin. Moreover, DNCT exhibited the better antifungal property than NCT. Especially, while the inhibition zone diameters of NCT are ranged from 11.2 to 16.3 mm, DNCT are about 11.4⁻20.4 mm. These data demonstrated that the introduction of amino group into chitin derivatives could be key to increasing the antifungal activity of such compounds, and the greater the number of amino groups in the chitin derivatives, the better their antifungal activity was.
Collapse
Affiliation(s)
- Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fang Luan
- Navigation College, Shandong Jiaotong University, Weihai 264209, China.
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Guodong Gu
- Alliance Pharma, Inc., 17 Lee Boulevard, Malvern, PA 19355, USA.
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Monier M, Abdel-Latif D. Fabrication of Au(III) ion-imprinted polymer based on thiol-modified chitosan. Int J Biol Macromol 2017; 105:777-787. [DOI: 10.1016/j.ijbiomac.2017.07.098] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/12/2017] [Accepted: 07/15/2017] [Indexed: 11/16/2022]
|
22
|
Abstract
BACKGROUND Reconstruction of the conjunctiva is an essential part of ocular surface reconstruction. Clinically applied and experimentally tested tissue- and stem-cell-based approaches are presented and evaluated. MATERIALS AND METHODS Current literature and our own results will be presented. RESULTS Autologous conjunctiva, mucous membrane of the mouth or nose, and amniotic membrane are routinely used for conjunctival reconstruction. Limitations are limited availability, involvement in autoimmune diseases, donor heterogeneity, and degradation in an inflamed environment. Experimentally tested matrices as tissues made from extracellular matrix proteins, synthetic polymers, temperature-sensitive culture dishes, and decellularized conjunctiva have been tested in vitro and partly in vivo. To replace conjunctival cells, cells of conjunctiva and mucous membrane of mouth and nose have been evaluated and show progenitor cell properties as well as secretory capacity (goblet cell differentiation). CONCLUSIONS Although different matrices are available for conjunctival reconstruction there is-due to specific limitations of existing tissues-a need for the development of new therapies for conjunctival replacement. Matrices produced in the laboratory have already been partly investigated in vivo and may thus be clinically applicable in the near future. Adult mucous membrane cells show many properties of conjunctival epithelium after expansion in vitro and thus are a promising cell source for conjunctival tissue engineering. Other stem cells sources require further evaluation.
Collapse
|
23
|
Rizwan M, Yahya R, Hassan A, Yar M, Anita Omar R, Azari P, Danial Azzahari A, Selvanathan V, Rageh Al-Maleki A, Venkatraman G. Synthesis of a novel organosoluble, biocompatible, and antibacterial chitosan derivative for biomedical applications. J Appl Polym Sci 2017. [DOI: 10.1002/app.45905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Muhammad Rizwan
- Department of Chemistry; Universiti Malaya; 50603 Kuala Lumpur Malaysia
| | - Rosiyah Yahya
- Department of Chemistry; Universiti Malaya; 50603 Kuala Lumpur Malaysia
| | - Aziz Hassan
- Department of Chemistry; Universiti Malaya; 50603 Kuala Lumpur Malaysia
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology; 54000 Lahore Pakistan
| | - Ros Anita Omar
- Department of Restorative Dentistry, Faculty of Dentistry; Universiti Malaya; 50603 Kuala Lumpur Malaysia
| | - Pedram Azari
- Department of Biomedical Engineering, Faculty of Engineering; University of Malaya; 50603 Kuala Lumpur Malaysia
| | | | | | - Anis Rageh Al-Maleki
- Department of Medical Microbiology, Faculty of Medicine; Universiti Malaya; 50603 Kuala Lumpur Malaysia
| | - Gopinath Venkatraman
- Department of Medical Microbiology, Faculty of Medicine; Universiti Malaya; 50603 Kuala Lumpur Malaysia
| |
Collapse
|
24
|
Intestine-targeted delivery potency of the O-carboxymethyl chitosan–gum Arabic coacervate: Effects of coacervation acidity and possible mechanism. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Design, synthesis of novel chitosan derivatives bearing quaternary phosphonium salts and evaluation of antifungal activity. Int J Biol Macromol 2017; 102:704-711. [DOI: 10.1016/j.ijbiomac.2017.04.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/27/2017] [Accepted: 04/09/2017] [Indexed: 01/01/2023]
|
26
|
Preparation and Characterization of Novel Cationic Chitosan Derivatives Bearing Quaternary Ammonium and Phosphonium Salts and Assessment of Their Antifungal Properties. Molecules 2017; 22:molecules22091438. [PMID: 28858241 PMCID: PMC6151502 DOI: 10.3390/molecules22091438] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/29/2017] [Indexed: 01/09/2023] Open
Abstract
Chitosan is an abundant and renewable polysaccharide, its derivatives exhibit attractive bioactivities and the wide applications in various biomedical fields. In this paper, two novel cationic chitosan derivatives modified with quaternary phosphonium salts were successfully synthesized via trimethylation, chloride acetylation, and quaternization with tricyclohexylphosphine and triphenylphosphine. The structures and properties of synthesized products in the reactions were characterized by FTIR spectroscopy, 1H-NMR, 31P-NMR, elemental and thermogravimetric analysis. The antifungal activities of chitosan derivatives against four kinds of phytopathogens, including Phomopsis asparagi, Watermelon fusarium, Colletotrichum lagenarium, and Fusarium oxysporum were tested using the radial growth assay in vitro. The results revealed that the synthesized cationic chitosan derivatives showed significantly improved antifungal efficiency compared to chitosan. It was reasonably suggested that quaternary phosphonium groups enabled the obviously stronger antifungal activity of the synthesized chitosans. Especially, the triphenylphosphonium-functionalized chitosan derivative inhibited the growth of Phomopsis asparagi most effectively, with inhibitory indices of about 80% at 0.5 mg/mL. Moreover, the data demonstrated that the substituted groups with stronger electron-withdrawing ability relatively possessed greater antifungal activity. The results suggest the possibility that cationic chitosan derivatives bearing quaternary phosphonium salts could be effectively employed as novel antifungal biomaterials for application in the field of agriculture.
Collapse
|
27
|
Wu JZ, Bremner DH, Li HY, Niu SW, Li SD, Zhu LM. Phenylboronic acid-diol crosslinked 6-O-vinylazeloyl-d-galactose nanocarriers for insulin delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:845-855. [PMID: 28482599 DOI: 10.1016/j.msec.2017.03.139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/28/2022]
Abstract
A new block polymer named poly 3-acrylamidophenylboronic acid-b-6-O-vinylazeloyl-d-galactose (p(AAPBA-b-OVZG)) was prepared using 3-acrylamidophenylboronic acid (AAPBA) and 6-O-vinylazeloyl-d-galactose (OVZG) via a two-step procedure involving S-1-dodecyl-S-(α', α'-dimethyl-α″-acetic acid) trithiocarbonate (DDATC) as chain transfer agent, 2,2-azobisisobutyronitrile (AIBN) as initiator and dimethyl formamide (DMF) as solvent. The structures of the polymer were examined by Fourier transform infrared spectroscopy (FT-IR) and 1H NMR and the thermal stability was determined by thermal gravimetric analysis (TG/DTG). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were utilized to evaluate the morphology and properties of the p(AAPBA-b-OVZG) nanoparticles. The cell toxicity, animal toxicity and therapeutic efficacy were also investigated. The results indicate the p(AAPBA-b-OVZG) was successfully synthesized and had excellent thermal stability. Moreover, the p(AAPBA-b-OVZG) nanoparticles were submicron in size and glucose-sensitive in phosphate-buffered saline (PBS). In addition, insulin as a model drug had a high encapsulation efficiency and loading capacity and the release of insulin was increased at higher glucose levels. Furthermore, the nanoparticles showed a low-toxicity in cell and animal studies and they were effective at decreasing blood glucose levels of mice over 96h. These p(AAPBA-b-OVZG) nanoparticles show promise for applications in diabetes treatment using insulin or other hypoglycemic proteins.
Collapse
Affiliation(s)
- Jun-Zi Wu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - David H Bremner
- School of Science, Engineering and Technology, Kydd Building, Abertay University, Dundee DD1 1HG, Scotland, UK
| | - He-Yu Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Shi-Wei Niu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Shu-De Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650228, PR China
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
28
|
Yar M, Shahzad S, Shahzadi L, Shahzad SA, Mahmood N, Chaudhry AA, Rehman IU, MacNeil S. Heparin binding chitosan derivatives for production of pro-angiogenic hydrogels for promoting tissue healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 74:347-356. [PMID: 28254303 DOI: 10.1016/j.msec.2016.12.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/10/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022]
Abstract
Our aim was to develop a biocompatible hydrogel that could be soaked in heparin and placed on wound beds to improve the vasculature of poorly vascularized wound beds. In the current study, a methodology was developed for the synthesis of a new chitosan derivative (CSD-1). Hydrogels were synthesized by blending CSD-1 for either 4 or 24h with polyvinyl alcohol (PVA). The physical/chemical interactions and the presence of specific functional groups were confirmed by Fourier transform infrared (FT-IR) spectroscopy and proton nuclear magnetic resonance (1H NMR). The porous nature of the hydrogels was confirmed by scanning electron microscopy (SEM). Thermal gravimetric analysis (TGA) showed that these hydrogels have good thermal stability which was slightly increased as the blending time was increased. Hydrogels produced with 24h of blending supported cell attachment more and could be loaded with heparin to induce new blood vessel formation in a chick chorionic allantoic membrane assay.
Collapse
Affiliation(s)
- Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan.
| | - Sohail Shahzad
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan; Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Lubna Shahzadi
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Nasir Mahmood
- Department of Allied Health Sciences and Chemical Pathology, University of Health Sciences, Lahore, Pakistan; Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - Ihtesham Ur Rehman
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan; Materials Science and Engineering, North Campus, University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK
| | - Sheila MacNeil
- Materials Science and Engineering, North Campus, University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK.
| |
Collapse
|