1
|
Wang Z, Ma D, Liu J, Xu S, Qiu F, Hu L, Liu Y, Ke C, Ruan C. 4D printing polymeric biomaterials for adaptive tissue regeneration. Bioact Mater 2025; 48:370-399. [PMID: 40083775 PMCID: PMC11904411 DOI: 10.1016/j.bioactmat.2025.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/13/2025] [Accepted: 01/26/2025] [Indexed: 03/16/2025] Open
Abstract
4D printing polymeric biomaterials can change their morphology or performance in response to stimuli from the external environment, compensating for the shortcomings of traditional 3D-printed static structures. This paper provides a systematic overview of 4D printing polymeric biomaterials for tissue regeneration and provides an in-depth discussion of the principles of these materials, including various smart properties, unique deformation mechanisms under stimulation conditions, and so on. A series of typical polymeric biomaterials and their composites are introduced from structural design and preparation methods, and their applications in tissue regeneration are discussed. Finally, the development prospect of 4D printing polymeric biomaterials is envisioned, aiming to provide innovative ideas and new perspectives for their more efficient and convenient application in tissue regeneration.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Duo Ma
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Liu
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Liqiu Hu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yueming Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Changneng Ke
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Changshun Ruan
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Verbroekken RM, Savchak OK, Alofs TF, Schenning AP, Gumuscu B. Light-Responsive Liquid Crystal Surface Topographies for Dynamic Stimulation of Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27871-27881. [PMID: 40318038 PMCID: PMC12086769 DOI: 10.1021/acsami.5c02526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
All biological surfaces possess distinct dynamic surface topographies. Due to their versatility, these topographies play a crucial role in modulating cell behavior and, when intentionally designed, can precisely guide cellular responses. So far, biomechanical responses have predominantly been studied on static surfaces, overlooking the dynamic environment in the body, where cells constantly interact with shifting biomechanical cues. In this work, we designed and fabricated a light-responsive liquid crystal polymer film to study the effect of micrometer-scale, dynamic surface topographies on cells under physiologically relevant conditions. The light-responsive liquid crystal polymers enable on-demand surface topographical changes, reaching pillar heights of 800 nm and grooved topographies with 700 nm height differences at 37 °C in water. The light-induced surface topographies increased mechanosensitive cell signaling by up to 2-fold higher yes-associated protein (YAP) translocation to the nucleus, as well as up to 3-fold more heterogeneity in distribution of focal adhesions, in a topography-related manner. The pillared topography was seen to cause a lower cellular response, while the grooved topography caused an increased mechanical activation, as well as cell alignment due to a more continuous and aligned physical cue that enhances cell organization. Excitingly, we observed that subsequent surface topography changes induced a 3-fold higher YAP nuclear translocation in fibroblast cells, as well as a 5-fold higher vinculin heterogeneity distribution, indicating that multiple cycles of topography exposure ampliated the cell response. Our work emphasizes the potential of light-responsive liquid crystal polymer films generating dynamic biomechanical cues that allow us to modulate and steer cells in vitro.
Collapse
Affiliation(s)
- Ruth M.C. Verbroekken
- Stimuli-Responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Oksana K. Savchak
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
- Biosensors
and Devices Laboratory, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Thom F.J. Alofs
- Stimuli-Responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Albert P.H.J. Schenning
- Stimuli-Responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Burcu Gumuscu
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
- Biosensors
and Devices Laboratory, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
3
|
Zhang Y, Fang M, Yu L, Liu X, Wang J, Li N, Li L, Zhou C. Enhanced cellular viability and osteogenic activity in oxygen-self-generating and magnetically responsive alginate microgels as advanced cell carriers. BIOMATERIALS ADVANCES 2025; 170:214198. [PMID: 39893887 DOI: 10.1016/j.bioadv.2025.214198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/09/2025] [Accepted: 01/19/2025] [Indexed: 02/04/2025]
Abstract
Improving the accuracy of in vitro three-dimensional (3D) cellular cultures more closely replicates the in vivo microenvironment by mimicking the complex tissue structures, enhancing cell-cell interactions, and increasing differentiation potential along with functional capabilities. Natural materials aid in cell adhesion and proliferation within the 3D matrix, providing a more realistic growth environment. Oxygen availability is also critical for cell survival in 3D cultures, as a lack of oxygen can impede proliferation, reduce functionality, and ultimately result in cell death. To address the issue of oxygen supply in such systems, a novel magnetic alginate-based microcarrier that generates oxygen autonomously has been developed. This microcarrier contains calcium peroxide encapsulated within polylactic acid microspheres (CP), which act as an internal oxygen reservoir. The release of calcium ions results in weak interactions with alginate, thus improving structural integrity while also supporting bone marrow stromal cells (BMSCs) and creating a more in vivo-like microenvironment. Notably, when exposed to an external magnetic field, BMSCs on these CP/Fe3O4/SA microcarriers show improved viability, a marked decrease in hypoxia-inducible factor-1α (HIF-1α), and increased osteogenic gene expression. Therefore, the CP/Fe3O4/SA microcarriers represent a promising approach for enhancing in vitro 3D culture methods and offer significant potential for tissue repair and regeneration.
Collapse
Affiliation(s)
- Yifan Zhang
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Min Fang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Lanqin Yu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Xinshuo Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jizhuang Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Na Li
- Foshan Stomatology Hospital, School of Medicine, Foshan University, Foshan 528225, China
| | - Lihua Li
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Changren Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Luo X, Zhao S, Wang T, He X, Yang M, Tao J, Zhu S, Zhao H. "Bioactive" Therapeutic Contact Lens Triggered by Biomimetic Chiral Helical Nanoarchitectonics for Rapid Corneal Repair. ACS NANO 2025; 19:9250-9264. [PMID: 39999297 DOI: 10.1021/acsnano.5c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Consistent corneal epithelial injury would cause chronic inflammation, neovascularization, and even corneal scarring, resulting in vision loss. Rapid repair is crucial for treatment, within which the use of therapeutic contact lenses presents great promise. A great challenge is how to achieve rapid repair of severely deficient corneal epithelium and regulation of the oxidative stress environment simultaneously. Herein, a "bioactive" therapeutic contact lens, mimicking the layered helical structure of the native cornea, is designed based on the assembly of cellulose nanocrystals (CNCs) inside poly(hydroxyethyl methacrylate) (PHEMA) with CeOx formed on the CNCs' surface (CeOx/CNC@CNC-PHEMA). The obtained CeOx/CNC@CNC-PHEMA hydrogel possesses a chiral helical structure that regulates the microenvironment, and the nanoscaled CeOx on the CNCs' surface (CeOx/CNC) acts as a reactive oxygen species (ROS) scavenger and triggers a "bioactive" therapeutic contact lens for rapid corneal repair. This hydrogel meets the conditions of a therapeutic contact lens, including high degree of transparency, excellent mechanical properties, great ROS-scavenging efficacy, and a significant enhancement of biocompatibility. Importantly, the adhesion and proliferation of human corneal epithelial cells on the CeOx/CNC@CNC-PHEMA hydrogels are successful. An in vitro corneal oxidative damage model and in vivo animal model of corneal injury experiments were conducted, and results revealed that the hydrogel realized rapid corneal epithelial cells migration with antioxidant, anti-inflammatory, and antineovascular effects, achieving modulation of the ocular surface microenvironment, evidencing a "bioactive" property of the hydrogel as a therapeutic contact lens. This biotopological hydrogel with a biomimetic corneal architecture has provided a rational strategy for rapid corneal repair.
Collapse
Affiliation(s)
- Xiaoying Luo
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Songjiao Zhao
- Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai Key Clinical Specialty, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Tao Wang
- Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai Key Clinical Specialty, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xin He
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingxuan Yang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jie Tao
- Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai Key Clinical Specialty, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Zhao
- Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai Key Clinical Specialty, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
5
|
Pinchin NP, Guo H, Meteling H, Deng Z, Priimagi A, Shahsavan H. Liquid Crystal Networks Meet Water: It's Complicated! ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303740. [PMID: 37392137 DOI: 10.1002/adma.202303740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
Soft robots are composed of compliant materials that facilitate high degrees of freedom, shape-change adaptability, and safer interaction with humans. An attractive choice of material for soft robotics is crosslinked networks of liquid crystal polymers (LCNs), as they are responsive to a wide variety of external stimuli and capable of undergoing fast, programmable, complex shape morphing, which allows for their use in a wide range of soft robotic applications. However, unlike hydrogels, another popular material in soft robotics, LCNs have limited applicability in flooded or aquatic environments. This can be attributed not only to the poor efficiency of common LCN actuation methods underwater but also to the complicated relationship between LCNs and water. In this review, the relationship between water and LCNs is elaborated and the existing body of literature is surveyed where LCNs, both hygroscopic and non-hygroscopic, are utilized in aquatic soft robotic applications. Then the challenges LCNs face in widespread adaptation to aquatic soft robotic applications are discussed and, finally, possible paths forward for their successful use in aquatic environments are envisaged.
Collapse
Affiliation(s)
- Natalie P Pinchin
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hongshuang Guo
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Henning Meteling
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Zixuan Deng
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Hamed Shahsavan
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
6
|
Yang H, Wu D, Zheng S, Yu Y, Ren L, Li J, Ke H, Lv P, Wei Q. Fabrication and Photothermal Actuation Performances of Electrospun Carbon Nanotube/Liquid Crystal Elastomer Blend Yarn Actuators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9313-9322. [PMID: 38323399 DOI: 10.1021/acsami.3c18164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Liquid crystal elastomers (LCEs) are a kind of polymer network that combines the entropic elasticity of polymer networks and the mesogenic unit by means of mild cross-linking. LCEs have been extensively investigated in various fields, including artificial muscles, actuators, and microrobots. However, LCEs are characterized by the poor mechanical properties of the light polymers themselves. In this study, we propose to prepare a carbon nanotube/liquid crystal elastomer (CNT/LCE) composite yarn by electrospinning technology and a two-step cross-linking strategy. The CNT/LCE composite yarn exhibits a reversible shrinkage ratio of nearly 70%, a tensile strength of 16.45 MPa, and a relatively sensitive response speed of ∼3 s, enabling a fast response by photothermal actuation. The research disclosed in this article may provide new insights for the development of artificial muscles and next-generation smart robots.
Collapse
Affiliation(s)
- Hanrui Yang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Dingsheng Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Key Laboratory of Textile Fabrics, College of Textiles and Clothing, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
| | - Siming Zheng
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Yajing Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Lingyun Ren
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jie Li
- Jiangsu Textiles Quality Services Inspection Testing Institute, Nanjing 210007, P. R. China
| | - Huizhen Ke
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, P. R. China
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, P. R. China
| |
Collapse
|
7
|
Nanocomposite Hydrogels as Functional Extracellular Matrices. Gels 2023; 9:gels9020153. [PMID: 36826323 PMCID: PMC9957407 DOI: 10.3390/gels9020153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Over recent years, nano-engineered materials have become an important component of artificial extracellular matrices. On one hand, these materials enable static enhancement of the bulk properties of cell scaffolds, for instance, they can alter mechanical properties or electrical conductivity, in order to better mimic the in vivo cell environment. Yet, many nanomaterials also exhibit dynamic, remotely tunable optical, electrical, magnetic, or acoustic properties, and therefore, can be used to non-invasively deliver localized, dynamic stimuli to cells cultured in artificial ECMs in three dimensions. Vice versa, the same, functional nanomaterials, can also report changing environmental conditions-whether or not, as a result of a dynamically applied stimulus-and as such provide means for wireless, long-term monitoring of the cell status inside the culture. In this review article, we present an overview of the technological advances regarding the incorporation of functional nanomaterials in artificial extracellular matrices, highlighting both passive and dynamically tunable nano-engineered components.
Collapse
|
8
|
Zhang X, Yao L, Yan H, Zhang Y, Han D, He Y, Li C, Zhang J. Optical wavelength selective actuation of dye doped liquid crystalline elastomers by quasi-daylight. SOFT MATTER 2022; 18:9181-9196. [PMID: 36437786 DOI: 10.1039/d2sm01256a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We explore obtaining different photo responses of liquid crystalline elastomer (LCE) materials through modulating the optical wavelengths in order to promote the development of precise photocontrol on LCE actuators, and thus study the effect of light-absorbing dyes with different absorption bands on the selective actuation of LCE materials. The dye-doped LCEs were prepared by incorporating special visible absorber dyes into thiol-acrylate main chain LCE (MC-LCE) matrices. The dyes showed photo actuation performance to LCEs due to the photothermal effects. But, every dye-doped LCE could be effectively actuated by light irradiation whose wavelength was inside its absorption band, but could not be effectively actuated by the light whose wavelength was beyond its absorption band. Wavelength selective actuation effects, no matter actuating deformation or actuating force, could be remarkably demonstrated by these dye-doped LCEs through filtering the same quasi-daylight source to be different wavelength bands. Our work opens up a significant way for the precise and convenient photo actuation of LCE actuators, while expanding the utilization potential of quasi-daylight, and further natural sunlight.
Collapse
Affiliation(s)
- Xinyu Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Liru Yao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Huixuan Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yuhe Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Dongxu Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yifan He
- Institute of Regulatory Science, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Chensha Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Jianqi Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| |
Collapse
|
9
|
He Q, Lin J, Zhou F, Cai D, Yan Y, Shan Y, Zhang S, Li T, Yao X, Ouyang H. “Musical dish” efficiently induces osteogenic differentiation of mesenchymal stem cells through music derived micro‐stretch with variable frequency. Bioeng Transl Med 2022; 7:e10291. [PMID: 35600662 PMCID: PMC9115692 DOI: 10.1002/btm2.10291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Nonuniform microstretching (NUMS) naturally occurs in real bone tissues in vivo, but its profound effects have not been identified yet. In order to explore the biological effects of NUMS and static stretch (uniform stretch [US]) on cells, a new “musical dish” device was developed. Musical signal was used to provide NUMS to cells. More stress fibers, arranging along the long axis of cells, were formed throughout the cells under NUMS, compared with US and untreated control group, although cell morphology did not show any alteration. Whole transcriptome sequencing revealed enhanced osteogenic differentiation of cells after NUMS treatment. Cells in the NUMS group showed a higher expression of bone‐related genes, while genes related to stemness and other lineages were down‐regulated. Our results give insights into the biological effects of NUMS and US on stem cell osteogenic differentiation, suggesting beneficial effects of micromechanical stimulus for osteogenesis. The newly developed device provides a basis for the development of NUMS derived rehabilitation technology to promote bone healing.
Collapse
Affiliation(s)
- Qiulin He
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Zhejiang University‐University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine Hangzhou China
| | - Junxin Lin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Zhejiang University‐University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine Hangzhou China
| | - Fanghao Zhou
- Center for X‐Mechanics, Department of Engineering Mechanics Zhejiang University Hangzhou China
| | - Dandan Cai
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Zhejiang University‐University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine Hangzhou China
| | - Yiyang Yan
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Zhejiang University‐University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine Hangzhou China
| | - Yejie Shan
- Center for X‐Mechanics, Department of Engineering Mechanics Zhejiang University Hangzhou China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Zhejiang University‐University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine Hangzhou China
- China Orthopedic Regenerative Medicine Group (CORMed) Hangzhou China
| | - Tiefeng Li
- Center for X‐Mechanics, Department of Engineering Mechanics Zhejiang University Hangzhou China
| | - Xudong Yao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine Yiwu China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
- Department of Sports Medicine Zhejiang University School of Medicine Hangzhou China
- Zhejiang University‐University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine Hangzhou China
- China Orthopedic Regenerative Medicine Group (CORMed) Hangzhou China
| |
Collapse
|
10
|
Sun D, Zhang J, Li H, Shi Z, Meng Q, Liu S, Chen J, Liu X. Toward Application of Liquid Crystalline Elastomer for Smart Robotics: State of the Art and Challenges. Polymers (Basel) 2021; 13:1889. [PMID: 34204168 PMCID: PMC8201031 DOI: 10.3390/polym13111889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 11/17/2022] Open
Abstract
Liquid crystalline elastomers (LCEs) are lightly crosslinked polymers that combine liquid crystalline order and rubber elasticity. Owing to their unique anisotropic behavior and reversible shape responses to external stimulation (temperature, light, etc.), LCEs have emerged as preferred candidates for actuators, artificial muscles, sensors, smart robots, or other intelligent devices. Herein, we discuss the basic action, control mechanisms, phase transitions, and the structure-property correlation of LCEs; this review provides a comprehensive overview of LCEs for applications in actuators and other smart devices. Furthermore, the synthesis and processing of liquid crystal elastomer are briefly discussed, and the current challenges and future opportunities are prospected. With all recent progress pertaining to material design, sophisticated manipulation, and advanced applications presented, a vision for the application of LCEs in the next generation smart robots or automatic action systems is outlined.
Collapse
Affiliation(s)
- Dandan Sun
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China; (D.S.); (Z.S.); (Q.M.); (J.C.); (X.L.)
| | - Juzhong Zhang
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China; (D.S.); (Z.S.); (Q.M.); (J.C.); (X.L.)
| | - Hongpeng Li
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Zhengya Shi
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China; (D.S.); (Z.S.); (Q.M.); (J.C.); (X.L.)
| | - Qi Meng
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China; (D.S.); (Z.S.); (Q.M.); (J.C.); (X.L.)
| | - Shuiren Liu
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China; (D.S.); (Z.S.); (Q.M.); (J.C.); (X.L.)
| | - Jinzhou Chen
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China; (D.S.); (Z.S.); (Q.M.); (J.C.); (X.L.)
| | - Xuying Liu
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China; (D.S.); (Z.S.); (Q.M.); (J.C.); (X.L.)
| |
Collapse
|
11
|
Kim H, Choi J. Interfacial and mechanical properties of liquid crystalline elastomer nanocomposites with grafted Au nanoparticles: A molecular dynamics study. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Liu Z, He L, Gui Q, Yuan Y, Zhang H. Preparation, property manipulation and application of ɑ-cyanostilbene-containing photoresponsive liquid crystal elastomers with different alkoxy tail length. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Zhang J, Guo Y, Hu W, Soon RH, Davidson ZS, Sitti M. Liquid Crystal Elastomer-Based Magnetic Composite Films for Reconfigurable Shape-Morphing Soft Miniature Machines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006191. [PMID: 33448077 PMCID: PMC7610459 DOI: 10.1002/adma.202006191] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/30/2020] [Indexed: 05/08/2023]
Abstract
Stimuli-responsive and active materials promise radical advances for many applications. In particular, soft magnetic materials offer precise, fast, and wireless actuation together with versatile functionality, while liquid crystal elastomers (LCEs) are capable of large reversible and programmable shape-morphing with high work densities in response to various environmental stimuli, e.g., temperature, light, and chemical solutions. Integrating the orthogonal stimuli-responsiveness of these two kinds of active materials could potentially enable new functionalities and future applications. Here, magnetic microparticles (MMPs) are embedded into an LCE film to take the respective advantages of both materials without compromising their independent stimuli-responsiveness. This composite material enables reconfigurable magnetic soft miniature machines that can self-adapt to a changing environment. In particular, a miniature soft robot that can autonomously alter its locomotion mode when it moves from air to hot liquid, a vine-like filament that can sense and twine around a support, and a light-switchable magnetic spring are demonstrated. The integration of LCEs and MMPs into monolithic structures introduces a new dimension in the design of soft machines and thus greatly enhances their use in applications in complex environments, especially for miniature soft robots, which are self-adaptable to environmental changes while being remotely controllable.
Collapse
Affiliation(s)
- Jiachen Zhang
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgart70569Germany
| | - Yubing Guo
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgart70569Germany
| | - Wenqi Hu
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgart70569Germany
| | - Ren Hao Soon
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgart70569Germany
| | - Zoey S. Davidson
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgart70569Germany
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent SystemsStuttgart70569Germany
- Department of Information Technology and Electrical EngineeringETH ZürichZürich8092Switzerland
| |
Collapse
|
14
|
Özkale B, Sakar MS, Mooney DJ. Active biomaterials for mechanobiology. Biomaterials 2021; 267:120497. [PMID: 33129187 PMCID: PMC7719094 DOI: 10.1016/j.biomaterials.2020.120497] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Active biomaterials offer novel approaches to study mechanotransduction in mammalian cells. These material systems probe cellular responses by dynamically modulating their resistance to endogenous forces or applying exogenous forces on cells in a temporally controlled manner. Stimuli-responsive molecules, polymers, and nanoparticles embedded inside cytocompatible biopolymer networks transduce external signals such as light, heat, chemicals, and magnetic fields into changes in matrix elasticity (few kPa to tens of kPa) or forces (few pN to several μN) at the cell-material interface. The implementation of active biomaterials in mechanobiology has generated scientific knowledge and therapeutic potential relevant to a variety of conditions including but not limited to cancer metastasis, fibrosis, and tissue regeneration. We discuss the repertoire of cellular responses that can be studied using these platforms including receptor signaling as well as downstream events namely, cytoskeletal organization, nuclear shuttling of mechanosensitive transcriptional regulators, cell migration, and differentiation. We highlight recent advances in active biomaterials and comment on their future impact.
Collapse
Affiliation(s)
- Berna Özkale
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA
| | - Mahmut Selman Sakar
- Institute of Mechanical Engineering and Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| | - David J Mooney
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA.
| |
Collapse
|
15
|
Wang X, Wang Y, Wang X, Niu H, Ridi B, Shu J, Fang X, Li C, Wang B, Gao Y, Sun L, Cao M. A study of the microwave actuation of a liquid crystalline elastomer. SOFT MATTER 2020; 16:7332-7341. [PMID: 32685953 DOI: 10.1039/d0sm00493f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a method for actuating LCE materials by microwave radiation. The microwave actuation performance of a polysiloxane-based nematic liquid crystalline elastomer (LCE) was investigated. The microwave-material interaction caused a dipolar loss, which created a heating effect to trigger the nematic-isotropic transition of the LCE matrix, thus leading to the deformation actuation of the LCE material. This energy conversion from radiant energy to thermal energy provided a contactless pathway to actuate the LCE material without the aid of other components acting as energy converters. The LCE demonstrated rapid maximum contraction upon microwave irradiation, and this microwave-stimulated response was fully reversible when the microwave irradiation was switched off. More importantly, the microwave actuation exhibited superiority relative to photo-actuation, which is the usual method of contactless actuation. The microwaves can penetrate the opaque thick barriers to effectively actuate the LCE due to their strong penetrability; they can also penetrate multiple LCE samples and actuate them almost simultaneously. By taking advantage of the salient features of microwave actuation, a microwave detector system, implementing the LCE as an actuator material, was fabricated. This demonstrated the performance of monitoring microwave irradiation intensities with good sensitivity and convenient manipulation.
Collapse
Affiliation(s)
- Xiuxiu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China. and Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yuchang Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Xixi Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Hongyan Niu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Buyinga Ridi
- Key Laboratory of Electronics Engineering, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, P. R. China.
| | - Jincheng Shu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Xiaoyong Fang
- School of Science, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Chensha Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Binsong Wang
- Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yachen Gao
- Key Laboratory of Electronics Engineering, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, P. R. China.
| | - Liguo Sun
- Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Maosheng Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
16
|
Wang Y, McKinstry AH, Burke KA. Main-Chain Liquid Crystalline Hydrogels that Support 3D Stem Cell Culture. Biomacromolecules 2020; 21:2365-2375. [DOI: 10.1021/acs.biomac.0c00316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yongjian Wang
- Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road Unit 3222, Storrs, Connecticut 06269-3222, United States
| | - Amy H. McKinstry
- Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road Unit 3222, Storrs, Connecticut 06269-3222, United States
| | - Kelly A. Burke
- Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road Unit 3222, Storrs, Connecticut 06269-3222, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, Connecticut 06269-3136, United States
- Biomedical Engineering, University of Connecticut, 260 Glenbrook Road Unit 3247, Storrs, Connecticut 06269-3247, United States
| |
Collapse
|
17
|
McCune JA, Mommer S, Parkins CC, Scherman OA. Design Principles for Aqueous Interactive Materials: Lessons from Small Molecules and Stimuli-Responsive Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906890. [PMID: 32227391 DOI: 10.1002/adma.201906890] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Interactive materials are at the forefront of current materials research with few examples in the literature. Researchers are inspired by nature to develop materials that can modulate and adapt their behavior in accordance with their surroundings. Stimuli-responsive systems have been developed over the past decades which, although often described as "smart," lack the ability to act autonomously. Nevertheless, these systems attract attention on account of the resultant materials' ability to change their properties in a predicable manner. These materials find application in a plethora of areas including drug delivery, artificial muscles, etc. Stimuli-responsive materials are serving as the precursors for next-generation interactive materials. Interest in these systems has resulted in a library of well-developed chemical motifs; however, there is a fundamental gap between stimuli-responsive and interactive materials. In this perspective, current state-of-the-art stimuli-responsive materials are outlined with a specific emphasis on aqueous macroscopic interactive materials. Compartmentalization, critical for achieving interactivity, relies on hydrophobic, hydrophilic, supramolecular, and ionic interactions, which are commonly present in aqueous systems and enable complex self-assembly processes. Relevant examples of aqueous interactive materials that do exist are given, and design principles to realize the next generation of materials with embedded autonomous function are suggested.
Collapse
Affiliation(s)
- Jade A McCune
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Stefan Mommer
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Christopher C Parkins
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
18
|
Qin B, Yang W, Xu J, Wang X, Li X, Li C, Gao Y, Wang QE. Photo-Actuation of Liquid Crystalline Elastomer Materials Doped with Visible Absorber Dyes under Quasi-Daylight. Polymers (Basel) 2019; 12:polym12010054. [PMID: 31906200 PMCID: PMC7023533 DOI: 10.3390/polym12010054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 11/26/2022] Open
Abstract
We studied the effect of visible absorber dyes on the photo-actuation performances of liquid crystalline elastomer (LCE) materials under quasi-daylight irradiation. The dye-doped LCE materials were prepared through infiltrating visible absorber dyes into a polysiloxane-based LCE matrix based on its solvent-swollen characteristic. They demonstrated well absorption properties in visible spectrum range and performed strong actuation upon the irradiation from quasi-daylight source, thus indicating that the presence of visible absorber dyes effectively sensitized the LCE materials to light irradiation since the light energy was absorbed by the dyes and then converted into heat to trigger the phase change of LCE matrix. The photo-actuation properties of dye-doped LCE materials with different visible absorber dyes, varied dye contents, and irradiation intensities were investigated. It was shown that the visible absorber dyes with different absorption bands created different photo-actuation performances of LCE materials, the one whose absorption band is near the intensity peak position of quasi-daylight spectrum created the optimum photo-actuation performance. The result disclosed a valuable light utilization way for photo-controlled LCE materials since it revealed that a light-absorbing dye, whose absorption band is in the high intensity region of light spectrum, is capable of effectively utilizing light energy to drive the actuation of LCE materials.
Collapse
Affiliation(s)
- Ban Qin
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China; (B.Q.); (J.X.); (X.W.)
| | - Wenlong Yang
- Department of Applied Science, Harbin University of Science and Technology, Harbin 150080, China;
| | - Jiaojiao Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China; (B.Q.); (J.X.); (X.W.)
| | - Xiuxiu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China; (B.Q.); (J.X.); (X.W.)
| | - Xiangman Li
- Women and Children Health Centre of Xiangfang District, Harbin 150040, China;
| | - Chensha Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China; (B.Q.); (J.X.); (X.W.)
- Correspondence: (C.L.); (Q.-eW.); Tel.: +86-451-8660-8610 (C.L.); +86-10-6898-7110 (Q.-eW.)
| | - Yachen Gao
- Key Laboratory of Electronics Engineering, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China;
| | - Qiao-e Wang
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (C.L.); (Q.-eW.); Tel.: +86-451-8660-8610 (C.L.); +86-10-6898-7110 (Q.-eW.)
| |
Collapse
|
19
|
Xu J, Chen S, Yang W, Qin B, Wang X, Wang Y, Cao M, Gao Y, Li C, Dong Y. Photo actuation of liquid crystalline elastomer nanocomposites incorporated with gold nanoparticles based on surface plasmon resonance. SOFT MATTER 2019; 15:6116-6126. [PMID: 31286128 DOI: 10.1039/c9sm00984a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, according to the characteristic of surface plasmon resonance (SPR) of metallic nanoparticles, we investigated the photo actuation performance of a liquid crystalline elastomer (LCE) nanocomposite with incorporated gold nanoparticles (nano-gold/LCE nanocomposite). The nano-gold/LCE nanocomposites were fabricated by incorporating gold nanoparticles into a polysiloxane-based LCE matrix via a novel experimental protocol, and characterized by a well-developed SPR absorption band in the visible spectrum range. The nano-gold/LCE nanocomposites demonstrated strong actuation upon irradiation with a quasi-daylight source; the reason lay in that the SPR response of gold nanoparticles performed efficient energy conversion from light energy to thermal energy, and thus offered an activation pathway for the nematic-isotropic transition of the LCE matrix. The nano-gold/LCE nanocomposites underwent rapid maximum axial contraction up to about one third of the original length under light irradiation, and this photo-stimulated muscle-like actuation was fully reversible via the on-off switching of the light source. The photo actuation properties of nano-gold/LCE nanocomposites with varying irradiation intensities and gold nanoparticle content were also investigated. In addition, the nano-gold/LCE nanocomposites demonstrated superior optical nonlinear properties, and revealed potential for the application area of mode-locking for laser technology.
Collapse
Affiliation(s)
- Jiaojiao Xu
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Shuang Chen
- Key Laboratory of Electronics Engineering, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, P. R. China.
| | - Wenlong Yang
- Department of Applied Science, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - Ban Qin
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Xiuxiu Wang
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yuchang Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Maosheng Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yachen Gao
- Key Laboratory of Electronics Engineering, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, P. R. China.
| | - Chensha Li
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yinmao Dong
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, P. R. China.
| |
Collapse
|
20
|
|
21
|
Cresta V, Romano G, Kolpak A, Zalar B, Domenici V. Nanostructured Composites Based on Liquid-Crystalline Elastomers. Polymers (Basel) 2018; 10:E773. [PMID: 30960698 PMCID: PMC6403803 DOI: 10.3390/polym10070773] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022] Open
Abstract
Liquid-crystalline elastomers (LCEs) are the object of many research investigations due to their reversible and controllable shape deformations, and their high potential for use in the field of soft robots and artificial muscles. This review focuses on recent studies about polymer composites based on LCEs and nanomaterials having different chemistry and morphology, with the aim of instilling new physical properties into LCEs. The synthesis, physico-chemical characterization, actuation properties, and applications of LCE-based composites reported in the literature are reviewed. Several cases are discussed: (1) the addition of various carbon nanomaterials to LCEs, from carbon black to carbon nanotubes, to the recent attempts to include graphene layers to enhance the thermo-mechanic properties of LCEs; (2) the use of various types of nanoparticles, such as ferroelectric ceramics, gold nanoparticles, conductive molybdenum-oxide nanowires, and magnetic iron-oxide nanoparticles, to induce electro-actuation, magnetic-actuation, or photo-actuation into the LCE-based composites; (3) the deposition on LCE surfaces of thin layers of conductive materials (i.e., conductive polymers and gold nanolayers) to produce bending actuation by applying on/off voltage cycles or surface-wrinkling phenomena in view of tunable optical applications. Some future perspectives of this field of soft materials conclude the review.
Collapse
Affiliation(s)
- Vanessa Cresta
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124 Pisa, Italy.
| | - Giuseppe Romano
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA.
| | - Alexej Kolpak
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA.
| | - Boštjan Zalar
- Department of Condensed Matter Physics, Jozef Stefan Institute, Jamova Cesta 39, SI 1000 Ljubljana, Slovenia.
| | - Valentina Domenici
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
22
|
Martella D, Parmeggiani C. Advances in Cell Scaffolds for Tissue Engineering: The Value of Liquid Crystalline Elastomers. Chemistry 2018; 24:12206-12220. [DOI: 10.1002/chem.201800477] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Daniele Martella
- Chemistry Department “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 Sesto Fiorentino Italy
- CNR-INO; European Laboratory for Non-Linear Spectroscopy (LENS); University of Florence; via Nello Carrara 1 Sesto Fiorentino Italy
| | - Camilla Parmeggiani
- Chemistry Department “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 Sesto Fiorentino Italy
- CNR-INO; European Laboratory for Non-Linear Spectroscopy (LENS); University of Florence; via Nello Carrara 1 Sesto Fiorentino Italy
| |
Collapse
|
23
|
Escalera-López D, Garcia-Amorós J, Velasco D. Smectic-B Liquid Single Crystal Elastomers as Efficient Optical Mechanotransducers. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201700550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel Escalera-López
- Grup de Materials Orgànics; Institut de Nanociència i Nanotecnologia (IN2UB); Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica); Universitat de Barcelona; Martí i Franquès 1 E-08028 Barcelona Spain
| | - Jaume Garcia-Amorós
- Grup de Materials Orgànics; Institut de Nanociència i Nanotecnologia (IN2UB); Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica); Universitat de Barcelona; Martí i Franquès 1 E-08028 Barcelona Spain
| | - Dolores Velasco
- Grup de Materials Orgànics; Institut de Nanociència i Nanotecnologia (IN2UB); Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica); Universitat de Barcelona; Martí i Franquès 1 E-08028 Barcelona Spain
| |
Collapse
|
24
|
Prévôt ME, Ustunel S, Hegmann E. Liquid Crystal Elastomers-A Path to Biocompatible and Biodegradable 3D-LCE Scaffolds for Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E377. [PMID: 29510523 PMCID: PMC5872956 DOI: 10.3390/ma11030377] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 11/25/2022]
Abstract
The development of appropriate materials that can make breakthroughs in tissue engineering has long been pursued by the scientific community. Several types of material have been long tested and re-designed for this purpose. At the same time, liquid crystals (LCs) have captivated the scientific community since their discovery in 1888 and soon after were thought to be, in combination with polymers, artificial muscles. Within the past decade liquid crystal elastomers (LCE) have been attracting increasing interest for their use as smart advanced materials for biological applications. Here, we examine how LCEs can potentially be used as dynamic substrates for culturing cells, moving away from the classical two-dimensional cell-culture nature. We also briefly discuss the integration of a few technologies for the preparation of more sophisticated LCE-composite scaffolds for more dynamic biomaterials. The anisotropic properties of LCEs can be used not only to promote cell attachment and the proliferation of cells, but also to promote cell alignment under LCE-stimulated deformation. 3D LCEs are ideal materials for new insights to simulate and study the development of tissues and the complex interplay between cells.
Collapse
Affiliation(s)
- Marianne E Prévôt
- Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Senay Ustunel
- Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Chemical Physics Interdisciplinary Program (CPIP), Kent State University, Kent, OH 44242, USA.
| | - Elda Hegmann
- Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Chemical Physics Interdisciplinary Program (CPIP), Kent State University, Kent, OH 44242, USA.
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
25
|
Pennacchio FA, Fedele C, De Martino S, Cavalli S, Vecchione R, Netti PA. Three-Dimensional Microstructured Azobenzene-Containing Gelatin as a Photoactuable Cell Confining System. ACS APPLIED MATERIALS & INTERFACES 2018; 10:91-97. [PMID: 29260543 DOI: 10.1021/acsami.7b13176] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In materials science, there is a considerable interest in the fabrication of highly engineered biomaterials that can interact with cells and control their shape. In particular, from the literature, the role played by physical cell confinement in cellular structural organization and thus in the regulation of its functions has been well-established. In this context, the addition of a dynamic feature to physically confining platforms aiming at reproducing in vitro the well-known dynamic interaction between the cells and their microenvironment would be highly desirable. To this aim, we have developed an advanced gelatin-based hydrogel that can be finely micropatterned by two-photon polymerization and stimulated in a controlled way by light irradiation thanks to the presence of an azobenzene cross-linker. Light-triggered expansion of gelatin microstructures induced an in-plane nuclear deformation of physically confined NIH-3T3 cells. The microfabricated photoactuable gelatin shown in this work paves the way to new "dynamic" caging culture systems that can find applications, for example, as "engineered stem cell niches".
Collapse
Affiliation(s)
- Fabrizio A Pennacchio
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, DICMAPI, Università degli Studi di Napoli Federico II , Piazzale Tecchio, 80, 80125 Napoli, Italy
| | - Chiara Fedele
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, DICMAPI, Università degli Studi di Napoli Federico II , Piazzale Tecchio, 80, 80125 Napoli, Italy
| | - Selene De Martino
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, DICMAPI, Università degli Studi di Napoli Federico II , Piazzale Tecchio, 80, 80125 Napoli, Italy
| | - Silvia Cavalli
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, DICMAPI, Università degli Studi di Napoli Federico II , Piazzale Tecchio, 80, 80125 Napoli, Italy
| | - Paolo A Netti
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, DICMAPI, Università degli Studi di Napoli Federico II , Piazzale Tecchio, 80, 80125 Napoli, Italy
| |
Collapse
|
26
|
Fedele C, Netti PA, Cavalli S. Azobenzene-based polymers: emerging applications as cell culture platforms. Biomater Sci 2018. [DOI: 10.1039/c8bm00019k] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This minireview highlights the fundamental landmarks towards the application of azobenzene-containing materials as light-responsive cell culture substrates.
Collapse
Affiliation(s)
- C. Fedele
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale
- DICMAPI
- Università degli Studi di Napoli Federico II
- Napoli
- Italy
| | - P. A. Netti
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale
- DICMAPI
- Università degli Studi di Napoli Federico II
- Napoli
- Italy
| | - S. Cavalli
- Center for Advanced Biomaterials for Healthcare
- Istituto Italiano di Tecnologia
- Naples
- Italy
| |
Collapse
|
27
|
Niu H, Wang Y, Wang J, Yang W, Dong Y, Bi M, Zhang J, Xu J, Bi S, Wang B, Gao Y, Li C, Zhang J. Reducing the actuation threshold by incorporating a nonliquid crystal chain into a liquid crystal elastomer. RSC Adv 2018; 8:4857-4866. [PMID: 35539513 PMCID: PMC9077755 DOI: 10.1039/c7ra11165g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/22/2018] [Indexed: 12/31/2022] Open
Abstract
The incorporation of nonliquid crystal chains made the actuation threshold of LCE being obviously decreased, and the LCE material can be effectively actuated by a lower energy intensity of the applied stimulus.
Collapse
|
28
|
Agrawal A, Chen H, Kim H, Zhu B, Adetiba O, Miranda A, Cristian Chipara A, Ajayan PM, Jacot JG, Verduzco R. Electromechanically Responsive Liquid Crystal Elastomer Nanocomposites for Active Cell Culture. ACS Macro Lett 2016; 5:1386-1390. [PMID: 35651216 DOI: 10.1021/acsmacrolett.6b00554] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Liquid crystal elastomers (LCEs) are unique among shape-responsive materials in that they exhibit large and reversible shape changes and can respond to a variety of stimuli. However, only a handful of studies have explored LCEs for biomedical applications. Here, we demonstrate that LCE nanocomposites (LCE-NCs) exhibit a fast and reversible electromechanical response and can be employed as dynamic substrates for cell culture. A two-step method for preparing conductive LCE-NCs is described, which produces materials that exhibit rapid (response times as fast at 0.6 s), large-amplitude (contraction by up to 30%), and fully reversible shape changes (stable to over 5000 cycles) under externally applied voltages (5-40 V). The electromechanical response of the LCE-NCs is tunable through variation of the electrical potential and LCE-NC composition. We utilize conductive LCE-NCs as responsive substrates to culture neonatal rat ventricular myocytes (NRVM) and find that NRVM remain viable on both stimulated and static LCE-NC substrates. These materials provide a reliable and simple route to materials that exhibit a fast, reversible, and large-amplitude electromechanical response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jeffrey G. Jacot
- Congenital
Heart Surgery, Texas Children’s Hospital, Houston, Texas 77030, United States
| | | |
Collapse
|