1
|
Gradinaru VR, Bercea M, Gradinaru LM, Puiu A, Lupu A, Petre BA. Targeting Injectable Hydrogels: The Role of Diphenylalanine Peptide Derivative in the Gelation Dynamics of Pluronic ® F127. Polymers (Basel) 2025; 17:930. [PMID: 40219321 PMCID: PMC11991411 DOI: 10.3390/polym17070930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
The fluorenyl methyl oxycarbonyl phenylalanyl-phenylalanine methyl ester (Fmoc-Phe-Phe-Ome) was synthetized using the liquid phase synthesis strategy. This derivative was separated by hydrophobic interaction chromatography, its purity was analyzed by RP-HPLC and it was characterized by mass spectrometry. This extremely hydrophobic peptide conjugate was incorporated into aqueous solutions of Pluronic® F127 at low temperatures (below 10 °C). The temperature induced sol-gel transition was investigated by rheological measurements. A delay of the sol-gel transition, caused by the presence of low concentrations of Fmoc-Phe-Phe-Ome (up to 1%), enables better control of the gelation process. The viscoelastic properties of hybrid networks were investigated at 37 °C in different shear conditions. The Pluronic/peptide systems reported herein provide promising alternatives for developing innovative injectable gels as suitable platforms in cancer treatment.
Collapse
Affiliation(s)
- Vasile Robert Gradinaru
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bd., 700506 Iasi, Romania; (A.P.); (B.A.P.)
| | - Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.B.); (L.M.G.); (A.L.)
| | - Luiza Madalina Gradinaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.B.); (L.M.G.); (A.L.)
| | - Alexandru Puiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bd., 700506 Iasi, Romania; (A.P.); (B.A.P.)
| | - Alexandra Lupu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.B.); (L.M.G.); (A.L.)
| | - Brindusa Alina Petre
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bd., 700506 Iasi, Romania; (A.P.); (B.A.P.)
- Center of Fundamental Research and Experimental Development in Translational Medicine (TRANSCEND), Regional Institute of Oncology, General Henri Mathias, No. 2–4, 700483 Iasi, Romania
| |
Collapse
|
2
|
Rosa M, Gallo E, Pellegrino P, Mercurio FA, Leone M, Cascione M, Carrese B, Morelli G, Accardo A, Diaferia C. Inclusion of Cationic Amphiphilic Peptides in Fmoc-FF Generates Multicomponent Functional Hydrogels. ACS APPLIED BIO MATERIALS 2025; 8:488-502. [PMID: 39648955 DOI: 10.1021/acsabm.4c01409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Peptide building blocks have been recently proposed for the fabrication of supramolecular nanostructures able to encapsulate and in vivo deliver drugs of a different nature. The primary sequence design is essential for nanostructure property modulation, directing and affecting affinity for specific drugs. For instance, the presence of positively charged residues of lysine (K) or arginine (R) could allow improving electrostatic interactions and, in turn, the encapsulation of negatively charged active pharmaceutical ingredients, including nucleic acids. In this context, here, we describe the formulation and the multiscale structural characterization of hybrid cationic peptide containing hydrogels (HGs). In these matrices, the well-known low-molecular-weight hydrogelator, Fmoc-diphenylalanine (Fmoc-FF, Fmoc = fluorenyl methoxycarbonyl), was mixed with a library of cationic amphiphilic peptides (CAPs) differing for their alkyl chain (from C8 to C18) in a 1/1 mol/mol ratio. The structural characterization highlighted that in mixed HGs, the aggregation is guided by Fmoc-FF, whereas the cationic peptides are only partially immobilized into the hydrogelated matrix. Moreover, morphology, stiffness, topography, and toxicity are significantly affected by the length of the alkyl chain. The capability of the hydrogels to encapsulate negative drugs was evaluated using the 5-carboxyfluorescein (5-FAM) dye as a model.
Collapse
Affiliation(s)
- Mariangela Rosa
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via T. De Amicis 95, Naples 80145, Italy
| | - Enrico Gallo
- IRCCS SYNLAB SDN, Via G. Ferraris 144, Naples 80146, Italy
| | - Paolo Pellegrino
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, Lecce 73100, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Monteroni, Lecce 73100, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging (IBB), CNR, Via P. Castellino 111, Naples 80131, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging (IBB), CNR, Via P. Castellino 111, Naples 80131, Italy
| | - Mariafrancesca Cascione
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, Lecce 73100, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Monteroni, Lecce 73100, Italy
| | | | - Giancarlo Morelli
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via T. De Amicis 95, Naples 80145, Italy
| | - Antonella Accardo
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via T. De Amicis 95, Naples 80145, Italy
| | - Carlo Diaferia
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via T. De Amicis 95, Naples 80145, Italy
| |
Collapse
|
3
|
Yamdech R, Terahsongkran V, Terahsongkran V, Cherdchom S, Aramwit P. Development of Antioxidant-Active Sericin-Curcumin-Loaded Sodium Alginate/Polyvinyl Alcohol Films Crosslinked with Calcium Chloride as a Promising Wound Dressing Application. Polymers (Basel) 2024; 16:3197. [PMID: 39599288 PMCID: PMC11598768 DOI: 10.3390/polym16223197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Silk sericin (SS) and curcumin (Cur) possess significant antioxidant properties, making them highly beneficial for wound healing applications. This study aimed to develop SS-Cur-loaded sodium alginate/polyvinyl alcohol (SA/PVA) films crosslinked with calcium chloride, creating a biomaterial with enhanced stability and antioxidant properties. Wound dressings containing SS-Cur were fabricated by mixing SA and PVA at different ratios of 1:1, 1:2, 1:4, and 1:6. The resulting films were then crosslinked with calcium chloride in an ethanol solution to enhance film integrity. These films were characterized using several techniques, revealing that the presence of ethanol in calcium chloride affected film properties, including the gel fraction, swelling, film thickness, and FTIR analysis. The presence of ethanol in calcium chloride revealed the highest drug content in the SA/PVA films. In vitro release studies demonstrated sustained release of SS-Cur from all formulations. Cytotoxicity and antioxidant activity tests showed that SS-Cur-loaded SA/PVA films with ethanol in calcium chloride increased cell viability and enhanced antioxidant effects in L929 cells. In conclusion, this study demonstrates that the presence of ethanol in the crosslinking solution improved the functionality of SS-Cur-loaded SA/PVA films, making them promising candidates for wound healing and soft tissue regeneration.
Collapse
Affiliation(s)
- Rungnapha Yamdech
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Vareesa Terahsongkran
- Mater Dei School, 534 Phloen Chit Rd., Lumphini, Pathum Wan, Bangkok 10330, Thailand;
| | - Varis Terahsongkran
- Patumwan Demonstration School, Srinakharinwirot University, Henri Dunant Rd., Pathum Wan, Bangkok 10330, Thailand;
| | - Sarocha Cherdchom
- Department of Preventive and Social Medicine and Center of Excellence in Nanomedicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand;
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok 10330, Thailand
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
4
|
Huang TH, Chen JY, Suo WH, Shao WR, Huang CY, Li MT, Li YY, Li YH, Liang EL, Chen YH, Lee IT. Unlocking the Future of Periodontal Regeneration: An Interdisciplinary Approach to Tissue Engineering and Advanced Therapeutics. Biomedicines 2024; 12:1090. [PMID: 38791052 PMCID: PMC11118048 DOI: 10.3390/biomedicines12051090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Periodontal defects present a significant challenge in dentistry, necessitating innovative solutions for comprehensive regeneration. Traditional restoration methods have inherent limitations in achieving complete and functional periodontal tissue reconstruction. Tissue engineering, a multidisciplinary approach integrating cells, biomaterials, and bioactive factors, holds tremendous promise in addressing this challenge. Central to tissue engineering strategies are scaffolds, pivotal in supporting cell behavior and orchestrating tissue regeneration. Natural and synthetic materials have been extensively explored, each offering unique advantages in terms of biocompatibility and tunable properties. The integration of growth factors and stem cells further amplifies the regenerative potential, contributing to enhanced tissue healing and functional restoration. Despite significant progress, challenges persist. Achieving the seamless integration of regenerated tissues, establishing proper vascularization, and developing biomimetic scaffolds that faithfully replicate the natural periodontal environment are ongoing research endeavors. Collaborative efforts across diverse scientific disciplines are essential to overcoming these hurdles. This comprehensive review underscores the critical need for continued research and development in tissue engineering strategies for periodontal regeneration. By addressing current challenges and fostering interdisciplinary collaborations, we can unlock the full regenerative potential, paving the way for transformative advancements in periodontal care. This research not only enhances our understanding of periodontal tissues but also offers innovative approaches that can revolutionize dental therapies, improving patient outcomes and reshaping the future of periodontal treatments.
Collapse
Affiliation(s)
- Tsung-Hsi Huang
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan; (T.-H.H.); (Y.-H.C.)
| | - Jui-Yi Chen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (J.-Y.C.); (W.-H.S.); (W.-R.S.); (C.-Y.H.); (M.-T.L.); (Y.-Y.L.); (Y.-H.L.); (E.-L.L.)
| | - Wei-Hsin Suo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (J.-Y.C.); (W.-H.S.); (W.-R.S.); (C.-Y.H.); (M.-T.L.); (Y.-Y.L.); (Y.-H.L.); (E.-L.L.)
| | - Wen-Rou Shao
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (J.-Y.C.); (W.-H.S.); (W.-R.S.); (C.-Y.H.); (M.-T.L.); (Y.-Y.L.); (Y.-H.L.); (E.-L.L.)
| | - Chih-Ying Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (J.-Y.C.); (W.-H.S.); (W.-R.S.); (C.-Y.H.); (M.-T.L.); (Y.-Y.L.); (Y.-H.L.); (E.-L.L.)
| | - Ming-Tse Li
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (J.-Y.C.); (W.-H.S.); (W.-R.S.); (C.-Y.H.); (M.-T.L.); (Y.-Y.L.); (Y.-H.L.); (E.-L.L.)
| | - Yu-Ying Li
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (J.-Y.C.); (W.-H.S.); (W.-R.S.); (C.-Y.H.); (M.-T.L.); (Y.-Y.L.); (Y.-H.L.); (E.-L.L.)
| | - Yuan-Hong Li
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (J.-Y.C.); (W.-H.S.); (W.-R.S.); (C.-Y.H.); (M.-T.L.); (Y.-Y.L.); (Y.-H.L.); (E.-L.L.)
| | - En-Lun Liang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (J.-Y.C.); (W.-H.S.); (W.-R.S.); (C.-Y.H.); (M.-T.L.); (Y.-Y.L.); (Y.-H.L.); (E.-L.L.)
| | - Yu-Hsu Chen
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan; (T.-H.H.); (Y.-H.C.)
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (J.-Y.C.); (W.-H.S.); (W.-R.S.); (C.-Y.H.); (M.-T.L.); (Y.-Y.L.); (Y.-H.L.); (E.-L.L.)
| |
Collapse
|
5
|
Gomes JM, Marques CF, Rodrigues LC, Silva TH, Silva SS, Reis RL. 3D bioactive ionic liquid-based architectures: An anti-inflammatory approach for early-stage osteoarthritis. Acta Biomater 2024; 173:298-313. [PMID: 37979636 DOI: 10.1016/j.actbio.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
3D bioprinting enables the fabrication of biomimetic cell-laden constructs for cartilage regeneration, offering exclusive strategies for precise pharmacological screenings in osteoarthritis (OA). Synovial inflammation plays a crucial role in OA's early stage and progression, characterized by the increased of the synovial pro-inflammatory mediators and cytokines and chondrocyte apoptosis. Therefore, there is an urgent need to develop solutions for effectively managing the primary events associated with OA. To address these issues, a phenolic-based biocompatible ionic liquid approach, combining alginate (ALG), acemannan (ACE), and cholinium caffeate (Ch[Caffeate]), was used to produce easily printable bioinks. Through the use of this strategy 3D constructs with good printing resolution and high structural integrity were obtained. The encapsulation of chondrocytes like ATDC5 cells provided structures with good cell distribution, viability, and growth, for up to 14 days. The co-culture of the constructs with THP-1 macrophages proved their ability to block pro-inflammatory cytokines (TNF-α and IL-6) and mediators (GM-CSF), released by the cultured cells. Moreover, incorporating the biocompatible ionic liquid into the system significantly improved its bioactive performance without compromising its physicochemical features. These findings demonstrate that ALG/ACE/Ch[Caffeate] bioinks have great potential for bioengineering cartilage tissue analogs. Besides, the developed ALG/ACE/Ch[Caffeate] bioinks protected encapsulated chondrocyte-like cells from the effect of the inflammation, assessed by a co-culture system with THP-1 macrophages. These results support the increasing use of Bio-ILs in the biomedical field, particularly for developing 3D bioprinting-based constructs to manage inflammatory-based changes in OA. STATEMENT OF SIGNIFICANCE: Combining natural resources with active biocompatible ionic liquids (Bio-IL) for 3D printing is herein presented as an approach for the development of tools to manage inflammatory osteoarthritis (OA). We propose combining alginate (ALG), acemannan (ACE), and cholinium caffeate (Ch[Caffeate]), a phenolic-based Bio-IL with anti-inflammatory and antioxidant features, to produce bioinks that allow to obtain 3D constructs with good printing resolution, structural integrity, and that provide encapsulated chondrocyte-like cells good viability. The establishment of a co-culture system using the printed constructs and THP-1-activated macrophages allowed us to study the encapsulated chondrocyte-like cells behaviour within an inflammatory scenario, a typical event in early-stage OA. The obtained outcomes support the beneficial use of Bio-ILs in the biomedical field, particularly for the development of 3D bioprinting-based models that allow the monitoring of inflammatory-based events in OA.
Collapse
Affiliation(s)
- Joana M Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Catarina F Marques
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Luísa C Rodrigues
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Simone S Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
6
|
Yu S, Huang Y, Shen B, Zhang W, Xie Y, Gao Q, Zhao D, Wu Z, Liu Y. Peptide hydrogels: Synthesis, properties, and applications in food science. Compr Rev Food Sci Food Saf 2023; 22:3053-3083. [PMID: 37194927 DOI: 10.1111/1541-4337.13171] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 02/26/2023] [Accepted: 04/21/2023] [Indexed: 05/18/2023]
Abstract
Due to the unique and excellent biological, physical, and chemical properties of peptide hydrogels, their application in the biomedical field is extremely wide. The applications of peptide hydrogels are closely related to their unique responsiveness and excellent properties. However, its defects in mechanical properties, stability, and toxicity limit its application in the food field. In this review, we focus on the fabrication methods of peptide hydrogels through the physical, chemical, and biological stimulations. In addition, the functional design of peptide hydrogels by the incorporation with materials is discussed. Meanwhile, the excellent properties of peptide hydrogels such as the stimulus responsiveness, biocompatibility, antimicrobial properties, rheology, and stability are reviewed. Finally, the application of peptide hydrogel in the food field is summarized and prospected.
Collapse
Affiliation(s)
- Shuang Yu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Yueying Huang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Biao Shen
- Zhoushan Customs District, Zhoushan, P. R. China
| | - Wang Zhang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Yan Xie
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Qi Gao
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Dan Zhao
- School of Marine Science, Ningbo University, Ningbo, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Zou S, Ye J, Wei Y, Xu J. Characterization of 3D-Bioprinted In Vitro Lung Cancer Models Using RNA-Sequencing Techniques. Bioengineering (Basel) 2023; 10:667. [PMID: 37370598 DOI: 10.3390/bioengineering10060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVE To construct an in vitro lung cancer model using 3D bioprinting and evaluate the feasibility of the model. Transcriptome sequencing was used to compare the differential genes and functions of 2D and 3D lung cancer cells. METHODS 1. A549 cells were mixed with sodium alginate/gelatine/fibrinogen as 3D-printed biological ink to construct a hydrogel scaffold for the in vitro model of lung cancer; 2. A hydrogel scaffold was printed using a extrusion 3D bioprinter; 3. The printed lung cancer model was evaluated in vitro; and 4. A549 cells cultured in 2D and 3D tumour models in vitro were collected, and RNA-seq conducted bioinformatics analysis. RESULTS 1. The in vitro lung cancer model printed using 3D-bioprinting technology was a porous microstructure model, suitable for the survival of A549 cells. Compared with the 2D cell-line model, the 3D model is closer to the fundamental human growth environment; 2. There was no significant difference in cell survival rate between the 2D and 3D groups; 3. In the cell proliferation rate measurement, it was found that the cells in the 2D group had a speedy growth rate in the first five days, but after five days, the growth rate slowed down. Cell proliferation showed a declining process after the ninth day of cell culture. However, cells in the 3D group showed a slow growth process at the beginning, and the growth rate reached a peak on the 12th day. Then, the growth rate showed a downward trend; and 4. RNA-seq compared A549 cells from 2D and 3D lung cancer models. A total of 3112 genes were differentially expressed, including 1189 up-regulated and 1923 down-regulated genes, with p-value ≤ 0.05 and |Log2Ratio| ≥ 1 as screening conditions. After functional enrichment analysis of differential genes, these differential genes affect the biological regulation of A549 cells, thus promoting lung cancer progression. CONCLUSION This study uses 3D-bioprinting technology to construct a tumour model of lung cancer that can grow sustainably in vitro. Three-dimensional bioprinting may provide a new research platform for studying the lung cancer TME mechanism and anticancer drug screening.
Collapse
Affiliation(s)
- Sheng Zou
- The Second Affiliated Hospital of Nanchang University, Nanchang 330030, China
| | - Jiayue Ye
- The Second Affiliated Hospital of Nanchang University, Nanchang 330030, China
| | - Yiping Wei
- The Second Affiliated Hospital of Nanchang University, Nanchang 330030, China
| | - Jianjun Xu
- The Second Affiliated Hospital of Nanchang University, Nanchang 330030, China
| |
Collapse
|
8
|
Gomes JM, Silva SS, Rodrigues LLC, Reis RL. Alginate/acemannan-based beads loaded with a biocompatible ionic liquid as a bioactive delivery system. Int J Biol Macromol 2023:125026. [PMID: 37244345 DOI: 10.1016/j.ijbiomac.2023.125026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/08/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Combining biomacromolecules with green chemistry principles and clean technologies has proven to be an effective approach for drug delivery, providing a prolonged and sustained release of the encapsulated material. The current study investigates the potential of cholinium caffeate (Ch[Caffeate]), a phenolic-based biocompatible ionic liquid (Bio-IL) entrapped in alginate/acemannan beads, as a drug delivery system able to reduce local joint inflammation on osteoarthritis (OA) treatment. The synthesized Bio-IL has antioxidant and anti-inflammatory actions that, combined with biopolymers as 3D architectures, promote the entrapment and sustainable release of the bioactive molecules over time. The physicochemical and morphological characterization of the beads (ALC, ALAC0,5, ALAC1, and ALAC3, containing 0, 0.5, 1, and 3 %(w/v) of Ch[Caffeate], respectively) revealed a porous and interconnected structure, with medium pore sizes ranging from 209.16 to 221.30 μm, with a high swelling ability (up 2400 %). Ch[Caffeate] significantly improved the antioxidant activities of the constructs by 95 % and 97 % for ALAC1 and ALAC3, respectively, when compared to ALA (56 %). Besides, the structures provided the environment for ATDC5 cell proliferation, and cartilage-like ECM formation, supported by the increased GAGs in ALAC1 and ALAC3 formulations after 21 days. Further, the ability to block the secretion of pro-inflammatory cytokines (TNF-α and IL-6), from differentiated THP-1 was evidenced by ChAL-Ch[Caffeate] beads. These outcomes suggest that the established strategy based on using natural and bioactive macromolecules to develop 3D constructs has great potential to be used as therapeutic tools for patients with OA.
Collapse
Affiliation(s)
- Joana M Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Simone S Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Luísa L C Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
9
|
Wang Y, Geng Q, Zhang Y, Adler-Abramovich L, Fan X, Mei D, Gazit E, Tao K. Fmoc-diphenylalanine gelating nanoarchitectonics: A simplistic peptide self-assembly to meet complex applications. J Colloid Interface Sci 2023; 636:113-133. [PMID: 36623365 DOI: 10.1016/j.jcis.2022.12.166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
9-fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF), has been has been extensively explored due to its ultrafast self-assembly kinetics, inherent biocompatibility, tunable physicochemical properties, and especially, the capability of forming self-sustained gels under physiological conditions. Consequently, various methodologies to develop Fmoc-FF gels and their corresponding applications in biomedical and industrial fields have been extensively studied. Herein, we systemically summarize the mechanisms underlying Fmoc-FF self-assembly, discuss the preparation methodologies of Fmoc-FF hydrogels, and then deliberate the properties as well as the diverse applications of Fmoc-FF self-assemblies. Finally, the contemporary shortcomings which limit the development of Fmoc-FF self-assembly are raised and the alternative solutions are proposed, along with future research perspectives.
Collapse
Affiliation(s)
- Yunxiao Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
| | - Qiang Geng
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yan Zhang
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| | - Xinyuan Fan
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman, Tel Aviv University, 6997801 Tel Aviv, Israel; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| |
Collapse
|
10
|
Gila-Vilchez C, Mañas-Torres MC, García-García ÓD, Escribano-Huesca A, Rodríguez-Arco L, Carriel V, Rodriguez I, Alaminos M, Lopez-Lopez MT, Álvarez de Cienfuegos L. Biocompatible Short-Peptides Fibrin Co-assembled Hydrogels. ACS APPLIED POLYMER MATERIALS 2023; 5:2154-2165. [PMID: 36935654 PMCID: PMC10013376 DOI: 10.1021/acsapm.2c02164] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Fibrin hydrogels made by self-assembly of fibrinogen obtained from human plasma have shown excellent biocompatible and biodegradable properties and are widely used in regenerative medicine. The fibrinogen self-assembly process can be triggered under physiological conditions by the action of thrombin, allowing the injection of pregel mixtures that have been used as cell carriers, wound-healing systems, and bio-adhesives. However, access to fibrinogen from human plasma is expensive and fibrin gels have limited mechanical properties, which make them unsuitable for certain applications. One solution to these problems is to obtain composite gels made of fibrin and other polymeric compounds that improve their mechanical properties and usage. Herein, we prepared composite hydrogels made by the self-assembly of fibrinogen together with Fmoc-FF (Fmoc-diphenylalanine) and Fmoc-RGD (Fmoc-arginine-glycine-aspartic acid). We have shown that the mixture of these three peptides co-assembles and gives rise to a unique type of supramolecular fiber, whose morphology and mechanical properties can be modulated. We have carried out a complete characterization of these materials from chemical, physical, and biological points of view. Composite gels have improved mechanical properties compared to pure fibrin gels, as well as showing excellent biocompatibility ex vivo. In vivo experiments have shown that these gels do not cause any type of inflammatory response or tissue damage and are completely resorbed in short time, which would enable their use as vehicles for cell, drug, or growth factor release.
Collapse
Affiliation(s)
- Cristina Gila-Vilchez
- Departamento
de Física Aplicada, Universidad de
Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Mari Carmen Mañas-Torres
- Departamento
de Química Orgánica, Unidad de Excelencia Química
Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Óscar Darío García-García
- Department
of Histology, Universidad de Granada (UGR), Avenida de Madrid 11, 18012 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Alfredo Escribano-Huesca
- Departamento
de Física Aplicada, Universidad de
Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
| | - Laura Rodríguez-Arco
- Departamento
de Física Aplicada, Universidad de
Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Víctor Carriel
- Department
of Histology, Universidad de Granada (UGR), Avenida de Madrid 11, 18012 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Ismael Rodriguez
- Department
of Histology, Universidad de Granada (UGR), Avenida de Madrid 11, 18012 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Miguel Alaminos
- Department
of Histology, Universidad de Granada (UGR), Avenida de Madrid 11, 18012 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Modesto Torcuato Lopez-Lopez
- Departamento
de Física Aplicada, Universidad de
Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Departamento
de Química Orgánica, Unidad de Excelencia Química
Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| |
Collapse
|
11
|
Halperin-Sternfeld M, Pokhojaev A, Ghosh M, Rachmiel D, Kannan R, Grinberg I, Asher M, Aviv M, Ma PX, Binderman I, Sarig R, Adler-Abramovich L. Immunomodulatory fibrous hyaluronic acid-Fmoc-diphenylalanine-based hydrogel induces bone regeneration. J Clin Periodontol 2023; 50:200-219. [PMID: 36110056 PMCID: PMC10086858 DOI: 10.1111/jcpe.13725] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 01/18/2023]
Abstract
AIM To investigate the potential of an ultrashort aromatic peptide hydrogelator integrated with hyaluronic acid (HA) to serve as a scaffold for bone regeneration. MATERIALS AND METHODS Fluorenylmethyloxycarbonyl-diphenylalanine (FmocFF)/HA hydrogel was prepared and characterized using microscopy and rheology. Osteogenic differentiation of MC3T3-E1 preosteoblasts was investigated using Alizarin red, alkaline phosphatase and calcium deposition assays. In vivo, 5-mm-diameter calvarial critical-sized defects were prepared in 20 Sprague-Dawley rats and filled with either FmocFF/HA hydrogel, deproteinized bovine bone mineral, FmocFF/Alginate hydrogel or left unfilled. Eight weeks after implantation, histology and micro-computed tomography analyses were performed. Immunohistochemistry was performed in six rats to assess the hydrogel's immunomodulatory effect. RESULTS A nanofibrous FmocFF/HA hydrogel with a high storage modulus of 46 KPa was prepared. It supported osteogenic differentiation of MC3T3-E1 preosteoblasts and facilitated calcium deposition. In vivo, the hydrogel implantation resulted in approximately 93% bone restoration. It induced bone deposition not only around the margins, but also generated bony islets along the defect. Elongated M2 macrophages lining at the periosteum-hydrogel interface were observed 1 week after implantation. After 3 weeks, these macrophages were dispersed through the regenerating tissue surrounding the newly formed bone. CONCLUSIONS FmocFF/HA hydrogel can serve as a cell-free, biomimetic, immunomodulatory scaffold for bone regeneration.
Collapse
Affiliation(s)
- Michal Halperin-Sternfeld
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Pokhojaev
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moumita Ghosh
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.,Department of Chemistry, Techno India University, Kolkata, West Bengal, India
| | - Dana Rachmiel
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Raha Kannan
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Itzhak Grinberg
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Asher
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moran Aviv
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.,School of Mechanical Engineering, Afeka Tel Aviv Academic College of Engineering, Tel Aviv, Israel
| | - Peter X Ma
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Itzhak Binderman
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Sarig
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Poirier A, Le Griel P, Hoffmann I, Perez J, Pernot P, Fresnais J, Baccile N. Ca 2+ and Ag + orient low-molecular weight amphiphile self-assembly into "nano-fishnet" fibrillar hydrogels with unusual β-sheet-like raft domains. SOFT MATTER 2023; 19:378-393. [PMID: 36562421 DOI: 10.1039/d2sm01218a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Low-molecular weight gelators (LMWGs) are small molecules (Mw < ∼1 kDa), which form self-assembled fibrillar network (SAFiN) hydrogels in water when triggered by an external stimulus. A great majority of SAFiN gels involve an entangled network of self-assembled fibers, in analogy to a polymer in a good solvent. In some rare cases, a combination of attractive van der Waals and repulsive electrostatic forces drives the formation of bundles with a suprafibrillar hexagonal order. In this work, an unexpected micelle-to-fiber transition is triggered by Ca2+ or Ag+ ions added to a micellar solution of a novel glycolipid surfactant, whereas salt-induced fibrillation is not common for surfactants. The resulting SAFiN, which forms a hydrogel above 0.5 wt%, has a "nano-fishnet" structure, characterized by a fibrous network of both entangled fibers and β-sheet-like rafts, generally observed for silk fibroin, actin hydrogels or mineral imogolite nanotubes, but not known for SAFiNs. The β-sheet-like raft domains are characterized by a combination of cryo-TEM and SAXS and seem to contribute to the stability of glycolipid gels. Furthermore, glycolipid is obtained by fermentation from natural resources (glucose, rapeseed oil), thus showing that naturally engineered compounds can have unprecedented properties, when compared to the wide range of chemically derived amphiphiles.
Collapse
Affiliation(s)
- Alexandre Poirier
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| | - Patrick Le Griel
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| | | | - Javier Perez
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette Cedex, France
| | - Petra Pernot
- ESRF - The European Synchrotron, CS40220, 38043 Grenoble, France
| | - Jérôme Fresnais
- Sorbonne Université, CNRS, Laboratoire de Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX - UMR 8234, F-75252, Paris Cedex 05, France
| | - Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| |
Collapse
|
13
|
Yalgın A, Köse FA, Gökçe EH. The effect of cyclosporine A and co-enzyme Q10 loaded solid lipid nanoparticles on 3D printed human auricular model: Evaluation of cell growth. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Wulf V, Bisker G. Single-Walled Carbon Nanotubes as Fluorescent Probes for Monitoring the Self-Assembly and Morphology of Peptide/Polymer Hybrid Hydrogels. NANO LETTERS 2022; 22:9205-9214. [PMID: 36259520 PMCID: PMC9706665 DOI: 10.1021/acs.nanolett.2c01587] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/12/2022] [Indexed: 05/20/2023]
Abstract
Hydrogels formed via supramolecular self-assembly of fluorenylmethyloxycarbonyl (Fmoc)-conjugated amino acids provide excellent scaffolds for 3D cell culture, tissue engineering, and tissue recovery matrices. Such hydrogels are usually characterized by rheology or electron microscopy, which are invasive and cannot provide real-time information. Here, we incorporate near-infrared fluorescent single-walled carbon nanotubes (SWCNTs) into Fmoc-diphenylalanine hydrogels as fluorescent probes, reporting in real-time on the morphology and time-dependent structural changes of the self-assembled hydrogels in the transparency window of biological tissue. We further demonstrate that the gelation process and structural changes upon the addition of cross-linking ions are transduced into spectral modulations of the SWCNT-fluorescence. Moreover, morphological differences of the hydrogels induced by polymer additives are manifested in unique features in fluorescence images of the incorporated SWCNTs. SWCNTs can thus serve as optical probes for noninvasive, long-term monitoring of the self-assembly gelation process and the fate of the resulting peptide hydrogel during long-term usage.
Collapse
Affiliation(s)
- Verena Wulf
- Department
of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
- Center
for Light Matter Interaction, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
15
|
Du H, Liu J, Pan B, Yang HY, Liu GB, Lu K. Fabrication of the low molecular weight peptide-based hydrogels and analysis of gelation behaviors. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
New Fmoc-Amino Acids/Peptides-Based Supramolecular Gels Obtained through Co-Assembly Process: Preparation and Characterization. Polymers (Basel) 2022; 14:polym14163354. [PMID: 36015611 PMCID: PMC9415181 DOI: 10.3390/polym14163354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
One of the methods of obtaining supramolecular gels consists of the possibility of self-assembly of low molecular weight gelators (LMWGs). However, LMWG-based gels are often difficult to handle, easy to destroy and have poor rheological performance. In order to improve the gels’ properties, the LMWGs molecules are co-assembled, which induces more cross-links with more stable structures. Starting from these aspects, the present study refers to the preparation of a bionic hydrogel stabilized with a physiologically occurring, bifunctional biomolecule, L-lysine, co-assembled with other amino acids or peptides (such as a modified amino acid (Fmoc-serine or Fmoc-glutamic acid) or a tripeptide (Fmoc-Gly-Gly-Gly)) with the potential to support the repair of injuries or the age-related impaired structures or functions of living tissues. The introduction of a copartner aims to improve hydrogel characteristics from a morphological, rheological and structural point of view. On the other hand, the process will allow the understanding of the phenomenon of specific self-association and molecular recognition. Various characterization techniques were used to assess the ability to co-assemble: DLS, FT-IR, SEM and fluorescence microscopy, rheology and thermal analysis. Studies have confirmed that the supramolecular structure occurs through the formation of inter- and intramolecular physical bonds that ensure the formation of fibrils organized into 3D networks. The rheological data, namely the G′ > G″ and tan δ approximately 0.1−0.2 gel-like behavior observed for all studied samples, demonstrate and sustain the appearance of the co-assembly processes and the ability of the samples to act as LMWG. From the studied systems, the Fmoc−Lys−Fmoc_ Fmoc−Glu sample presented the best rheological characteristics that are consistent with the observations that resulted from the dichroism, fluorescence and SEM investigations.
Collapse
|
17
|
Shahbazizadeh S, Naji-Tabasi S, Shahidi-Noghabi M. Entrapment of curcumin in isolated soy protein-alginate nanogels: antioxidant stability and in vitro gastrointestinal digestion. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Luo S, Song J, Xu P, Dai Z, Wu C, Li Y. Release characteristics and bioaccessability of lutein from calcium alginate hydrogels during simulated digestion
in vitro. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Shuwei Luo
- College of Light Industry and Food Engineering Nanjing Forestry University Nanjing 210037 China
- Institute of Agro‐product Processing Academy of Agricultural Sciences Jiangsu Nanjing 210014 China
| | - Jiangfeng Song
- Institute of Agro‐product Processing Academy of Agricultural Sciences Jiangsu Nanjing 210014 China
| | - Pengxiang Xu
- College of Light Industry and Food Engineering Nanjing Forestry University Nanjing 210037 China
- Institute of Agro‐product Processing Academy of Agricultural Sciences Jiangsu Nanjing 210014 China
| | - Zhuqing Dai
- Institute of Agro‐product Processing Academy of Agricultural Sciences Jiangsu Nanjing 210014 China
| | - Caie Wu
- College of Light Industry and Food Engineering Nanjing Forestry University Nanjing 210037 China
| | - Ying Li
- Institute of Agro‐product Processing Academy of Agricultural Sciences Jiangsu Nanjing 210014 China
| |
Collapse
|
19
|
Thixotropic Red Microalgae Sulfated Polysaccharide-Peptide Composite Hydrogels as Scaffolds for Tissue Engineering. Biomedicines 2022; 10:biomedicines10061388. [PMID: 35740409 PMCID: PMC9220243 DOI: 10.3390/biomedicines10061388] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
Sulfated polysaccharides of red marine microalgae have recently gained much attention for biomedical applications due to their anti-inflammatory and antioxidant properties. However, their low mechanical properties limit their use in tissue engineering. Herein, to enhance the mechanical properties of the sulfated polysaccharide produced by the red marine microalga, Porphyridium sp. (PS), it was integrated with the fluorenylmethoxycarbonyl diphenylalanine (FmocFF) peptide hydrogelator. Transparent, stable hydrogels were formed when mixing the two components at a 1:1 ratio in three different concentrations. Electron microscopy showed that all hydrogels exhibited a nanofibrous structure, mimicking the extracellular matrix. Furthermore, the hydrogels were injectable, and tunable mechanical properties were obtained by changing the hydrogel concentration. The composite hydrogels allowed the sustained release of curcumin which was controlled by the change in the hydrogel concentration. Finally, the hydrogels supported MC3T3-E1 preosteoblasts viability and calcium deposition. The synergy between the sulfated polysaccharide, with its unique bioactivities, and FmocFF peptide, with its structural and mechanical properties, bears a promising potential for developing novel tunable scaffolds for tissue engineering that may allow cell differentiation into various lineages.
Collapse
|
20
|
Yadav A, Ghosh S, Samanta A, Pal J, Srivastava RK. Emulsion templated scaffolds of poly(ε-caprolactone) - a review. Chem Commun (Camb) 2022; 58:1468-1480. [PMID: 35014993 DOI: 10.1039/d1cc04941k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The role of poly(ε-caprolactone) (PCL) and its 3D scaffolds in tissue engineering has already been established due to its ease of processing into long-term degradable implants and approval from the FDA. This review presents the role of high internal phase emulsion (HIPE) templating in the fabrication of PCL scaffolds, and the versatility of the technique along with challenges associated with it. Considering the huge potential of HIPE templating, which so far has mainly been focused on free radical polymerization of aqueous HIPEs, we provide a summary of how the technique has been expanded to non-aqueous HIPEs and other modes of polymerization such as ring-opening. The scope of coupling of HIPE templating with some of the advanced fabrication methods such as 3D printing or electrospinning is also explored.
Collapse
Affiliation(s)
- Anilkumar Yadav
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 1100016, India.
| | - Sagnik Ghosh
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 1100016, India.
| | - Archana Samanta
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 1100016, India.
| | - Jit Pal
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 1100016, India.
| | - Rajiv K Srivastava
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 1100016, India.
| |
Collapse
|
21
|
Effect of Ca 2+ cross-linking on the properties and structure of lutein-loaded sodium alginate hydrogels. Int J Biol Macromol 2021; 193:53-63. [PMID: 34688674 DOI: 10.1016/j.ijbiomac.2021.10.114] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 11/21/2022]
Abstract
In order to construct nano-lutein hydrogels with sustained release properties, the basic properties and structure of nano-lutein hydrogels cross-linked with different concentrations of Ca2+ were investigated. The results showed that the highest loading capacity for lutein reached 770.88 μg/g, while the encapsulation efficiency was as high as 99.39%. When Ca2+ concentration was lower than 7.5 mM, the filling of lutein nanoparticles reduced the hardness and gumminess of the hydrogel. The resilience and cohesiveness of the hydrogel decreased as the concentration of Ca2+ increased. Filling with lutein nanoparticles and increasing Ca2+ concentration both increased the G' and G″. The hydrogel loaded with lutein showed different swelling properties in different pH environments, the filling of lutein nanoparticles inhibited the swelling of the hydrogel. When Ca2+ concentration was greater than 7.5 mM, the cut-off amount of lutein on the surface of the Ca2+ cross-linked hydrogel was larger. The digestive enzymes quickly degraded the hydrogel structure, resulting in a high initial release of lutein. DSC and FTIR results showed that lutein nanoparticles were mainly physically trapped in the hydrogel network structure. Lutein nanoparticles and excessive Ca2+ affected the stability of cross-linked ionic bonds in the hydrogel, thereby reducing its thermodynamic stability.
Collapse
|
22
|
Shahbazizadeh S, Naji-Tabasi S, Shahidi-Noghabi M, Pourfarzad A. Development of cress seed gum hydrogel and investigation of its potential application in the delivery of curcumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6505-6513. [PMID: 34002390 DOI: 10.1002/jsfa.11322] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bioactive compound delivery systems must provide stability against severe food processing and environmental conditions. Cress seed gum (CSG) with high thermal stability can be a promising polysaccharide for preparing physically cross-linked hydrogel as a curcumin delivery system. In the present study, CSG (0.05, 0.10 and 0.15 g kg-1 ) and calcium chloride (CaCl2 ) (0.00, 0.02, 0.04, 0.06 and 0.10 g kg-1 ) solutions were used for hydrogel fabrication. RESULTS Physicochemical properties of hydrogels were evaluated by entrapment efficiency, loading capacity and swelling degree, differential scanning calorimetry, scanning electron microscopy, in vitro release and free radical scavenging capacity assessments. Accordingly, 0.15 g kg-1 CSG-0.02 g kg-1 CaCl2 hydrogel was revealed to have high entrapment efficiency (93.6 ± 1.59%), loading capacity (0.92 ± 0.00%) and swelling degree (105.96 ± 12.99%), as well as heat stability above 103 °C. CSG hydrogel significantly (P < 0.05) protected the antioxidant activity of curcumin against thermal process. The curcumin release in the acidic stomach medium was negligible, although it increased significantly in the simulated intestinal environment (42.5 ± 0.75%), which followed the Peppas model. CONCLUSION As a result, CSG hydrogel can protect curcumin during food thermal processing and digestion time. Therefore, CSG hydrogel can play a valued role in modern-day food formulations with an increasing consumer preference for plant-derived materials. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Saeedeh Shahbazizadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Sara Naji-Tabasi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Mostafa Shahidi-Noghabi
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Amir Pourfarzad
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
23
|
Shim J, Kang J, Yun SI. Chitosan-dipeptide hydrogels as potential anticancer drug delivery systems. Int J Biol Macromol 2021; 187:399-408. [PMID: 34314799 DOI: 10.1016/j.ijbiomac.2021.07.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022]
Abstract
A novel chitosan-dipeptide hydrogel was fabricated through a combination of self-assembly of 9-fluorenylmethoxycarbonyl-modified diphenylalanine (Fmoc-FF) and its electrostatic interaction with glycol chitosan (GCS). Hydrogel strength and stability depended on its composition. The highest gel strength was observed at a Fmoc-FF mass fraction (ϕFF) of 0.85, whereby the highest combined strength of the two interactions was achieved. As the ϕFF increased above 0.6, gel stability decreased in buffered solution at pH 7.46. The incorporation of doxorubicin (DOX) as a cationic model drug significantly increased the stability of the complex hydrogels. DOX-loaded hydrogels exhibited slow DOX release, probably due to the drug's strong binding to Fmoc-FF via electrostatic attraction and the high gel stability. These hydrogels also exhibited excellent thixotropic features that facilitated the development of injectable self-healing drug delivery systems. Notably, DOX release was significantly accelerated as the pH of the medium decreased from 7.46 to 5.5 and 4.0, possibly due to hydrogel components' protonation. The DOX-loaded hydrogel exhibited notable cytotoxicity against A549 human lung cancer cells, which suggests the newly developed hydrogel to be a promising candidate vehicle for the localized and controlled drug delivery in cancer therapy.
Collapse
Affiliation(s)
- Jaemin Shim
- Department of Chemical Engineering and Materials Science, Sangmyung University, Seoul 110-743, Republic of Korea
| | - Jiseon Kang
- Department of Chemical Engineering and Materials Science, Sangmyung University, Seoul 110-743, Republic of Korea
| | - Seok Il Yun
- Department of Chemical Engineering and Materials Science, Sangmyung University, Seoul 110-743, Republic of Korea.
| |
Collapse
|
24
|
Firipis K, Boyd-Moss M, Long B, Dekiwadia C, Hoskin W, Pirogova E, Nisbet DR, Kapsa RMI, Quigley AF, Williams RJ. Tuneable Hybrid Hydrogels via Complementary Self-Assembly of a Bioactive Peptide with a Robust Polysaccharide. ACS Biomater Sci Eng 2021; 7:3340-3350. [PMID: 34125518 DOI: 10.1021/acsbiomaterials.1c00675] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic materials designed for improved biomimicry of the extracellular matrix must contain fibrous, bioactive, and mechanical cues. Self-assembly of low molecular weight gelator (LMWG) peptides Fmoc-DIKVAV (Fmoc-aspartic acid-isoleucine-lysine-valine-alanine-valine) and Fmoc-FRGDF (Fmoc-phenylalanine-arginine-glycine-aspartic acid-phenylalanine) creates fibrous and bioactive hydrogels. Polysaccharides such as agarose are biocompatible, degradable, and non-toxic. Agarose and these Fmoc-peptides have both demonstrated efficacy in vitro and in vivo. These materials have complementary properties; agarose has known mechanics in the physiological range but is inert and would benefit from bioactive and topographical cues found in the fibrous, protein-rich extracellular matrix. Fmoc-DIKVAV and Fmoc-FRGDF are synthetic self-assembling peptides that present bioactive cues "IKVAV" and "RGD" designed from the ECM proteins laminin and fibronectin. The work presented here demonstrates that the addition of agarose to Fmoc-DIKVAV and Fmoc-FRGDF results in physical characteristics that are dependent on agarose concentration. The networks are peptide-dominated at low agarose concentrations, and agarose-dominated at high agarose concentrations, resulting in distinct changes in structural morphology. Interestingly, at mid-range agarose concentration, a hybrid network is formed with structural similarities to both peptide and agarose systems, demonstrating reinforced mechanical properties. Bioactive-LMWG polysaccharide hydrogels demonstrate controllable microenvironmental properties, providing the ability for tissue-specific biomaterial design for tissue engineering and 3D cell culture.
Collapse
Affiliation(s)
- Kate Firipis
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.,Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Mitchell Boyd-Moss
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.,Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.,Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Benjamin Long
- Faculty of Science and Technology, Federation University, Mt. Helen, VIC 3350, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and MicroAnalysis Facility (RMMF), RMIT University, Melbourne, Vic 3000, Australia
| | - William Hoskin
- Faculty of Science and Technology, Federation University, Mt. Helen, VIC 3350, Australia
| | - Elena Pirogova
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, The Australian National University, Acton, Canberra 2601, Australia
| | - Robert M I Kapsa
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.,Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.,ARC Centre of Excellence in Electromaterials Science, Department of Medicine, Melbourne University, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Vic 3065, Australia
| | - Anita F Quigley
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.,Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.,ARC Centre of Excellence in Electromaterials Science, Department of Medicine, Melbourne University, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Vic 3065, Australia
| | - Richard J Williams
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.,Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
25
|
Vakili N, Asefnejad A. Titanium coating: introducing an antibacterial and bioactive chitosan-alginate film on titanium by spin coating. ACTA ACUST UNITED AC 2020; 65:621-630. [PMID: 32333647 DOI: 10.1515/bmt-2018-0108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/06/2018] [Indexed: 01/13/2023]
Abstract
Coating of titanium (Ti) implants with biocompatible polymers were performed to improve bone healing. In this study, pure Ti implants were coated via chitosan and alginate by spin coating method at 1000, 4000, and 8000 rpm. The coating layer was cross-linked by calcium chloride. Their chemical structures were analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) evaluations. The morphology of the created coating was observed by scanning electron microscopy (SEM), and the best uniformity was observed in the prepared coating at 8000 rpm (6093× g) spinal speed. The adhesion strength of the coating layer on the substrate was evaluated by the adhesion pull-off test. Also, the best adhesion strength was achieved at an 8000 rpm (6093× g) coating rate. Bioactivity of the chitosan-alginate coating on Ti sheets was evaluated by soaking the samples in a simulated body fluid (SBF) solution. The apatite formation on prepared Ti sheets was investigated by SEM, XRD, and energy dispersive X-ray spectroscopy (EDS). A higher mineralization appeared on coated samples compared with pure Ti. The antibacterial behavior of the implants was analyzed by bacterial counting against Escherichia coli. The presence of chitosan and alginate on the Ti sheets resulted in a better antibacterial effect. In-vitro experiments, with L929 fibroblast cells, confirmed the biocompatibility of the implants. Coating the Ti implants with chitosan and alginate improved biomineralization and biological behavior of the implant especially at the spinal speed of 8000 rpm (6093× g). These implants can support osteoblast cell adhesion and facilitate bone regeneration.
Collapse
Affiliation(s)
- Nasim Vakili
- Department of Biomedical Engineering, Tehran Science and Research Branch, Islamic Azad University, Tehran 4515-775, Iran
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Tehran Science and Research Branch, Islamic Azad University, Tehran 4515-775, Iran
| |
Collapse
|
26
|
Shigemitsu H, Kubota R, Nakamura K, Matsuzaki T, Minami S, Aoyama T, Urayama K, Hamachi I. Protein-responsive protein release of supramolecular/polymer hydrogel composite integrating enzyme activation systems. Nat Commun 2020; 11:3859. [PMID: 32737298 PMCID: PMC7395795 DOI: 10.1038/s41467-020-17698-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/10/2020] [Indexed: 11/23/2022] Open
Abstract
Non-enzymatic proteins including antibodies function as biomarkers and are used as biopharmaceuticals in several diseases. Protein-responsive soft materials capable of the controlled release of drugs and proteins have potential for use in next-generation diagnosis and therapies. Here, we describe a supramolecular/agarose hydrogel composite that can release a protein in response to a non-enzymatic protein. A non-enzymatic protein-responsive system is developed by hybridization of an enzyme-sensitive supramolecular hydrogel with a protein-triggered enzyme activation set. In situ imaging shows that the supramolecular/agarose hydrogel composite consists of orthogonal domains of supramolecular fibers and agarose, which play distinct roles in protein entrapment and mechanical stiffness, respectively. Integrating the enzyme activation set with the composite allows for controlled release of the embedded RNase in response to an antibody. Such composite hydrogels would be promising as a matrix embedded in a body, which can autonomously release biopharmaceuticals by sensing biomarker proteins.
Collapse
Affiliation(s)
- Hajime Shigemitsu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura, Kyoto, 615-8510, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura, Kyoto, 615-8510, Japan
| | - Keisuke Nakamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura, Kyoto, 615-8510, Japan
| | - Tomonobu Matsuzaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura, Kyoto, 615-8510, Japan
| | - Saori Minami
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto, 606-8585, Japan
| | - Takuma Aoyama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto, 606-8585, Japan
| | - Kenji Urayama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto, 606-8585, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura, Kyoto, 615-8510, Japan.
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Nishikyo-ku, Kyoto, 615-8530, Japan.
| |
Collapse
|
27
|
Tuning the gelation behavior of short laminin derived peptides via solvent mediated self-assembly. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110483. [DOI: 10.1016/j.msec.2019.110483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022]
|
28
|
Piras CC, Slavik P, Smith DK. Self-Assembling Supramolecular Hybrid Hydrogel Beads. Angew Chem Int Ed Engl 2020; 59:853-859. [PMID: 31697017 PMCID: PMC6973155 DOI: 10.1002/anie.201911404] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Indexed: 12/11/2022]
Abstract
With the goal of imposing shape and structure on supramolecular gels, we combine a low-molecular-weight gelator (LMWG) with the polymer gelator (PG) calcium alginate in a hybrid hydrogel. By imposing thermal and temporal control of the orthogonal gelation methods, the system either forms an extended interpenetrating network or core-shell-structured gel beads-a rare example of a supramolecular gel formulated inside discrete gel spheres. The self-assembled LMWG retains its unique properties within the beads, such as remediating PdII and reducing it in situ to yield catalytically active Pd0 nanoparticles. A single PdNP-loaded gel bead can catalyse the Suzuki-Miyaura reaction, constituting a simple and easy-to-use reaction-dosing form. These uniquely shaped and structured LMWG-filled gel beads are a versatile platform technology with great potential in a range of applications.
Collapse
Affiliation(s)
- Carmen C. Piras
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Petr Slavik
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - David K. Smith
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
29
|
Mondal A, Gebeyehu A, Miranda M, Bahadur D, Patel N, Ramakrishnan S, Rishi AK, Singh M. Characterization and printability of Sodium alginate -Gelatin hydrogel for bioprinting NSCLC co-culture. Sci Rep 2019; 9:19914. [PMID: 31882581 PMCID: PMC6934877 DOI: 10.1038/s41598-019-55034-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 11/08/2019] [Indexed: 11/08/2022] Open
Abstract
3D bioprinting improves orientation of in vitro tumor models by offering layer by layer positioning of cancer cells and cancer associated fibroblasts (CAFs) which can replicate tumor microenvironment. Aim of this study was to develop a sodium alginate -gelatin (SA-GL) hydrogel by optimizing rheological parameters to print non-small cell lung cancer (NSCLC) patient derived xenograft (PDX) cells and lung CAFs co-cultures. SA-GL hydrogels were prepared, and rheological properties were evaluated. Both the cells were mixed with the hydrogel and printed using INKREDIBLE bioprinter. Hydrogels prepared with 3.25% and 3.5% (w/v) SA and 4% (w/v) GL showed higher printability and cell viability. A significant decline in viscosity with shear rate was observed in these hydrogels suggesting the shear thinning property of hydrogels. Spheroid size distribution after 15 days was in the diameter range of 50-1100 µm. Up-regulation of vimentin, α-SMA and loss of E-cadherin in co-culture spheroids confirmed cellular crosstalk. This study demonstrates that rheological optimization of SA-GL hydrogel enhances printability and viability of NSCLC PDX and CAF co-culture which allows 3D co-culture spheroid formation within the printed scaffold. Therefore, this model can be used for studying high throughput drug screening and other pre-clinical applications.
Collapse
Affiliation(s)
- Arindam Mondal
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307, USA
| | - Aragaw Gebeyehu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307, USA
| | - Mariza Miranda
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307, USA
| | - Divya Bahadur
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Nilkumar Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307, USA
| | - Subhramanian Ramakrishnan
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Arun K Rishi
- John D. Dingell VA Medical Center, Detroit, MI, 48201, USA
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307, USA.
| |
Collapse
|
30
|
Gultekinoglu M, Öztürk Ş, Chen B, Edirisinghe M, Ulubayram K. Preparation of poly(glycerol sebacate) fibers for tissue engineering applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109297] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Piras CC, Slavik P, Smith DK. Self‐Assembling Supramolecular Hybrid Hydrogel Beads. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Carmen C. Piras
- Department of ChemistryUniversity of York Heslington York YO10 5DD UK
| | - Petr Slavik
- Department of ChemistryUniversity of York Heslington York YO10 5DD UK
| | - David K. Smith
- Department of ChemistryUniversity of York Heslington York YO10 5DD UK
| |
Collapse
|
32
|
Tavakoli J, Laisak E, Gao M, Tang Y. AIEgen quantitatively monitoring the release of Ca2+ during swelling and degradation process in alginate hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109951. [DOI: 10.1016/j.msec.2019.109951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/04/2019] [Accepted: 07/05/2019] [Indexed: 12/26/2022]
|
33
|
Eroglu I, Gultekinoglu M, Bayram C, Erikci A, Ciftci SY, Ayse Aksoy E, Ulubayram K. Gel network comprising UV crosslinked PLGA-b-PEG-MA nanoparticles for ibuprofen topical delivery. Pharm Dev Technol 2019; 24:1144-1154. [PMID: 31298072 DOI: 10.1080/10837450.2019.1643880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ibuprofen is a non-steroidal anti-inflammatory drug for the treatment of Rheumatoid Arthritis and osteoarthritis. In this study, we prepared topical gel network for enhancement of ibuprofen penetration, maintenance of controlled release and increased patient compliance. Nanoparticles containing ibuprofen were prepared by means of emulsion formation/solvent diffusion method using synthesized copolymer. Nanoparticles were then conjugated with aminoethylmethacrylate, resulting in ibuprofen-loaded nanoparticles in PLGA-b-PEG-MA structure. Ibuprofen-loaded gel networks were developed by crosslinking nanoparticles via UV exposure. Suitability for topical application has been assessed through characterization of particle size, zeta potential, morphology, encapsulation efficiency, in vitro release, cytotoxicity and enhancement of in vitro wound healing. The mean diameter of nanoparticles was measured as 230 ± 20 nm. Gel network formulations with higher particle size (2800 ± 350 nm) and zeta potential (39.8 ± 9.2 mV), depending on conjugation of methacrylate within copolymeric structure, and having encapsulation efficacy of 73.6 ± 2.8% were prepared. The in vitro release of ibuprofen was sustained for more than 7 hours. Gel network improved collagen synthesis, type I collagen mRNA expression and fibrosis in dose dependent manner. Based on this, we can conclude that PLGA-b-PEG gel network might be a promising systems for the local delivery of ibuprofen in RA patients.
Collapse
Affiliation(s)
- Ipek Eroglu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University , Ankara , Turkey
| | - Merve Gultekinoglu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University , Ankara , Turkey.,Bioengineering Division, Institute for Graduate Studies in Science & Engineering, Hacettepe University , Ankara , Turkey
| | - Cem Bayram
- Advanced Technologies Application and Research Center, Hacettepe University , Ankara , Turkey
| | - Acelya Erikci
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University , Ankara , Turkey
| | | | - Eda Ayse Aksoy
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University , Ankara , Turkey
| | - Kezban Ulubayram
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University , Ankara , Turkey.,Bioengineering Division, Institute for Graduate Studies in Science & Engineering, Hacettepe University , Ankara , Turkey
| |
Collapse
|
34
|
Diaferia C, Morelli G, Accardo A. Fmoc-diphenylalanine as a suitable building block for the preparation of hybrid materials and their potential applications. J Mater Chem B 2019; 7:5142-5155. [PMID: 31380554 DOI: 10.1039/c9tb01043b] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Due to its capability to self-assemble in self-supporting hydrogels (HG) under physiological conditions, Fmoc-FF is one of the most studied ultra-short peptide. The structural properties of the resulting hydrogel (mechanical rigidity, entanglement of the fibrillary network, and the thickness of the fibers) strictly depend on the experimental conditions used during the preparation. In the past few years, a broad range of applications in different fields, such as biomedical and industrial fields, have been proposed. However, the research on novel materials with enhanced mechanical properties, stability, and biocompatibility has brought about the development of novel Fmoc-FF-based hybrid systems, in which the ultra-short hydrogelator is combined with others entities such as polysaccharides, polymers, peptides, or organic molecules. The structural features and the potential applications of these novel hybrid materials, with particular attention to tissue engineering, drug delivery, and catalysis, are described here. The aim is to give the readers a tool to design new hybrid nanomaterials based on the Fmoc-FF dipeptide hydrogelator, with appropriate properties for specific applications.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134-Naples, Italy.
| | - Giancarlo Morelli
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134-Naples, Italy.
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134-Naples, Italy.
| |
Collapse
|
35
|
Ghosh M, Halperin-Sternfeld M, Grinberg I, Adler-Abramovich L. Injectable Alginate-Peptide Composite Hydrogel as a Scaffold for Bone Tissue Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E497. [PMID: 30939729 PMCID: PMC6523611 DOI: 10.3390/nano9040497] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/17/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022]
Abstract
The high demand for tissue engineering scaffolds capable of inducing bone regeneration using minimally invasive techniques prompts the need for the development of new biomaterials. Herein, we investigate the ability of Alginate incorporated with the fluorenylmethoxycarbonyl-diphenylalanine (FmocFF) peptide composite hydrogel to serve as a potential biomaterial for bone regeneration. We demonstrate that the incorporation of the self-assembling peptide, FmocFF, in sodium alginate leads to the production of a rigid, yet injectable, hydrogel without the addition of cross-linking agents. Scanning electron microscopy reveals a nanofibrous structure which mimics the natural bone extracellular matrix. The formed composite hydrogel exhibits thixotropic behavior and a high storage modulus of approximately 10 kPA, as observed in rheological measurements. The in vitro biocompatibility tests carried out with MC3T3-E1 preosteoblast cells demonstrate good cell viability and adhesion to the hydrogel fibers. This composite scaffold can induce osteogenic differentiation and facilitate calcium mineralization, as shown by Alizarin red staining, alkaline phosphatase activity and RT-PCR analysis. The high biocompatibility, excellent mechanical properties and similarity to the native extracellular matrix suggest the utilization of this hydrogel as a temporary three-dimensional cellular microenvironment promoting bone regeneration.
Collapse
Affiliation(s)
- Moumita Ghosh
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Michal Halperin-Sternfeld
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Itzhak Grinberg
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
36
|
Polysaccharides for tissue engineering: Current landscape and future prospects. Carbohydr Polym 2018; 205:601-625. [PMID: 30446147 DOI: 10.1016/j.carbpol.2018.10.039] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/28/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022]
Abstract
Biological studies on the importance of carbohydrate moieties in tissue engineering have incited a growing interest in the application of polysaccharides as scaffolds over the past two decades. This review provides a perspective of the recent approaches in developing polysaccharide scaffolds, with a focus on their chemical modification, structural versatility, and biological applicability. The current major limitations are assessed, including structural reproducibility, the narrow scope of polysaccharide modifications being applied, and the effective replication of the extracellular environment. Areas with opportunities for further development are addressed with an emphasis on the application of rationally designed polysaccharides and their importance in elucidating the molecular interactions necessary to properly design tissue engineering materials.
Collapse
|
37
|
Gultekinoglu M, Jiang X, Bayram C, Ulubayram K, Edirisinghe M. Honeycomb-like PLGA- b-PEG Structure Creation with T-Junction Microdroplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7989-7997. [PMID: 29772899 DOI: 10.1021/acs.langmuir.8b00886] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amphiphilic block copolymers are widely used in science owing to their versatile properties. In this study, amphiphilic block copolymer poly(lactic- co-glycolic acid)- block-poly(ethylene glycol) (PLGA- b-PEG) was used to create microdroplets in a T-junction microfluidic device with a well-defined geometry. To compare interfacial characteristics of microdroplets, dichloromethane (DCM) and chloroform were used to prepare PLGA- b-PEG solution as an oil phase. In the T-junction device, water and oil phases were manipulated at variable flow rates from 50 to 300 μL/min by increments of 50 μL/min. Fabricated microdroplets were directly collected on a glass slide. After a drying period, porous two-dimensional and three-dimensional structures were obtained as honeycomb-like structure. Pore sizes were increased according to increased water/oil flow rate for both DCM and chloroform solutions. Also, it was shown that increasing polymer concentration decreased the pore size of honeycomb-like structures at a constant water/oil flow rate (50:50 μL/min). Additionally, PLGA- b-PEG nanoparticles were also obtained on the struts of honeycomb-like structures according to the water solubility, volatility, and viscosity properties of oil phases, by the aid of Marangoni flow. The resulting structures have a great potential to be used in biomedical applications, especially in drug delivery-related studies, with nanoparticle forming ability and cellular responses in different surface morphologies.
Collapse
Affiliation(s)
| | - Xinyue Jiang
- Department of Mechanical Engineering , University College London (UCL) , London WC1E 7JE , U.K
| | | | | | - Mohan Edirisinghe
- Department of Mechanical Engineering , University College London (UCL) , London WC1E 7JE , U.K
| |
Collapse
|
38
|
Ganguly S, Maity PP, Mondal S, Das P, Bhawal P, Dhara S, Das NC. Polysaccharide and poly(methacrylic acid) based biodegradable elastomeric biocompatible semi-IPN hydrogel for controlled drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:34-51. [PMID: 30184759 DOI: 10.1016/j.msec.2018.06.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 05/21/2018] [Accepted: 06/14/2018] [Indexed: 01/10/2023]
Abstract
Nanoparticles embedded semi-interpenetrating (semi-IPNs) polymeric hydrogels with enhanced mechanical toughness and biocompatibility could have splendid biomedical acceptance. Here we propose poly(methacrylic acid) grafted polysaccharide based semi-IPNs filled with nanoclay via in situ Michael type reaction associated with covalent crosslinking with N,N-methylenebisacrylamide (MBA). The effect of nanoclay in the semi-IPN hydrogel has been investigated which showed significant improvement of mechanical robustness. Meanwhile, the hydrogels showed reversible ductility up to 70% in response to cyclic loading-unloading cycle which is an obvious phenomenon of rubber-like elasticity. The synthesized semi-IPN hydrogel show biodegradability and non-cytotoxic nature against human cells. The live-dead assay showed that the prepared hydrogel is a viable platform for cell growth without causing severe cell death. The in vitro drug release study in psychological pH (pH = 7.4) reveals that the controlled drug release phenomena can be tuned by simulating the environment pH. Such features in a single hydrogel assembly can propose this as high performance; biodegradable and non-cytotoxic 3D scaffold based promising biomaterial for tissue engineering.
Collapse
Affiliation(s)
- Sayan Ganguly
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721301, India
| | - Priti Prasanna Maity
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721301, India
| | - Subhadip Mondal
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721301, India
| | - Poushali Das
- School of Nanoscience and Technology, Indian Institute of Technology, Kharagpur 721301, India
| | - Poushali Bhawal
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721301, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721301, India
| | - Narayan Ch Das
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721301, India.
| |
Collapse
|
39
|
Chen J, Tao N, Fang S, Chen Z, Liang L, Sun X, Li J, Liu YN. Incorporation of Fmoc-Y nanofibers into Ca-alginate hydrogels for improving their mechanical properties and the controlled release of small molecules. NEW J CHEM 2018. [DOI: 10.1039/c8nj00729b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A robust interpenetrating network (IPN) hydrogel was assembled from calcium alginate and Fmoc-tyrosine for the controlled release of small molecules.
Collapse
Affiliation(s)
- Jiahui Chen
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Na Tao
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Shiqi Fang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Zewen Chen
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Li Liang
- State Key Lab of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| | - Xiaoyi Sun
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Juan Li
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| |
Collapse
|
40
|
Chivers PRA, Smith DK. Spatially-resolved soft materials for controlled release - hybrid hydrogels combining a robust photo-activated polymer gel with an interactive supramolecular gel. Chem Sci 2017; 8:7218-7227. [PMID: 29081954 PMCID: PMC5633784 DOI: 10.1039/c7sc02210g] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Hybrid hydrogels based on self-assembling low-molecular-weight gelator (LMWG) DBS-CONHNH2 (DBS = 1,3;2,4-dibenzylidene-d-sorbitol) and crosslinked polymer gelator (PG) PEGDM (poly(ethyleneglycol) dimethacrylate) are reported, and an active pharmaceutical ingredient (naproxen, NPX) is incorporated. The use of PEGDM as PG enhances the mechanical stiffness of the hybrid gel (G' increases from 400 to 4500 Pa) - the LMWG enhances its stability to very high frequency. Use of DBS-CONHNH2 as LMWG enables interactions with NPX and hence allows pH-mediated NPX release - the PG network is largely orthogonal and only interferes to a limited extent. Use of photo-activated PEGDM as PG enables spatially-resolved photo-patterning of robust hybrid gel domains within a preformed LMWG network - the presence of the LMWG enhances the spatial resolution. The photo-patterned multi-domain gel retains pH-mediated NPX release properties and directionally releases NPX into a compartment of higher pH. The two components within these hybrid PG/LMWG hydrogels therefore act largely independently of one another, although they do modify each others properties in subtle ways. Hybrid hydrogels capable of spatially controlled unidirectional release have potential applications in tissue engineering and drug-delivery.
Collapse
Affiliation(s)
- Phillip R A Chivers
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK . ; http://www.york.ac.uk/chemistry/staff/academic/o-s/dsmith/
| | - David K Smith
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK . ; http://www.york.ac.uk/chemistry/staff/academic/o-s/dsmith/
| |
Collapse
|
41
|
Amiri M, Salavati-Niasari M, Pardakhty A, Ahmadi M, Akbari A. Caffeine: A novel green precursor for synthesis of magnetic CoFe2O4 nanoparticles and pH-sensitive magnetic alginate beads for drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1085-1093. [DOI: 10.1016/j.msec.2017.03.208] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
|
42
|
Zanna N, Focaroli S, Merlettini A, Gentilucci L, Teti G, Falconi M, Tomasini C. Thixotropic Peptide-Based Physical Hydrogels Applied to Three-Dimensional Cell Culture. ACS OMEGA 2017; 2:2374-2381. [PMID: 30023662 PMCID: PMC6044849 DOI: 10.1021/acsomega.7b00322] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/26/2017] [Indexed: 05/24/2023]
Abstract
Pseudopeptides containing the d-Oxd or the d-pGlu [Oxd = (4R,5S)-4-methyl-5-carboxyl-oxazolidin-2-one, pGlu = pyroglutamic acid] moiety and selected amino acids were used as low-molecular-weight gelators to prepare strong and thixotropic hydrogels at physiological pH. The addition of calcium chloride to the gelator solutions induces the formation of insoluble salts that get organized in fibers at a pH close to the physiological one. Physical characterization of hydrogels was carried out by morphologic evaluation and rheological measurements and demonstrated that the analyzed hydrogels are thixotropic, as they have the capability to recover their gel-like behavior. As these hydrogels are easily injectable and may be used for regenerative medicine, they were biologically assessed by cell seeding and viability tests. Human gingival fibroblasts were embedded in 2% hydrogels; all of the hydrogels allow the growth of encapsulated cells with a very good viability. The gelator toxicity may be correlated with their tendency to self-assemble and is totally absent when the hydrogel is formed.
Collapse
Affiliation(s)
- Nicola Zanna
- Dipartimento
di Chimica Ciamician, Alma Mater Studiorum
Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Stefano Focaroli
- Dipartimento
di Scienze Biomediche e Neuromotorie, Alma
Mater Studiorum Università di Bologna, Via Ugo Foscolo, 7, 40123 Bologna, Italy
| | - Andrea Merlettini
- Dipartimento
di Chimica Ciamician, Alma Mater Studiorum
Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Luca Gentilucci
- Dipartimento
di Chimica Ciamician, Alma Mater Studiorum
Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Gabriella Teti
- Dipartimento
di Scienze Biomediche e Neuromotorie, Alma
Mater Studiorum Università di Bologna, Via Ugo Foscolo, 7, 40123 Bologna, Italy
| | - Mirella Falconi
- Dipartimento
di Scienze Biomediche e Neuromotorie, Alma
Mater Studiorum Università di Bologna, Via Ugo Foscolo, 7, 40123 Bologna, Italy
| | - Claudia Tomasini
- Dipartimento
di Chimica Ciamician, Alma Mater Studiorum
Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy
| |
Collapse
|
43
|
Song Y, Zhang C, Wang P, Wang L, Bao C, Weir MD, Reynolds MA, Ren K, Zhao L, Xu HHK. Engineering bone regeneration with novel cell-laden hydrogel microfiber-injectable calcium phosphate scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:895-905. [PMID: 28415545 DOI: 10.1016/j.msec.2017.02.158] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 02/05/2023]
Abstract
Cell-based tissue engineering is promising to create living functional tissues for bone regeneration. The implanted cells should be evenly distributed in the scaffold, be fast-released to the defect and maintain high viability in order to actively participate in the regenerative process. Herein, we report an injectable calcium phosphate cement (CPC) scaffold containing cell-encapsulating hydrogel microfibers with desirable degradability that could deliver cells in a timely manner and maintain cell viability. Microfibers were synthesized using partially-oxidized alginate with various concentrations (0-0.8%) of fibrinogen to optimize the degradation rate of the alginate-fibrin microfibers (Alg-Fb MF). A fibrin concentration of 0.4% in Alg-Fb MF resulted in the greatest enhancement of cell migration, release and proliferation. Interestingly, a significant amount of cell-cell contact along the long-axis of the microfibers was established in Alg-0.4%Fb MF as early as day 2. The injectable tissue engineered construct for bone reconstruct was fabricated by mixing the fast-degradable Alg-0.4%Fb MF with CPC paste at 1:1 volume ratio. In vitro study showed that cells re-collected from the construct maintained good viability and osteogenic potentials. In vivo study demonstrated that the hBMSC-encapsulated CPC-MF tissue engineered construct displayed a robust capacity for bone regeneration. At 12weeks after implantation, osseous bridge in the rat mandibular defect was observed in CPC-MF-hBMSCs group with a new bone area fraction of (42.1±7.8) % in the defects, which was >3-fold that of the control group. The novel tissue-engineered construct presents an excellent prospect for a wide range of dental, craniofacial and orthopedic applications.
Collapse
Affiliation(s)
- Yang Song
- Department of Prosthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Chi Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ping Wang
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Lin Wang
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130011, China
| | - Chunyun Bao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Michael D Weir
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Mark A Reynolds
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ke Ren
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA
| | - Liang Zhao
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Hockin H K Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|