1
|
Negi A, Pandey M, Yassin MT, Al-Otibi FO, Sharma S. Wastewater remediation and enhanced energy harvesting by La-doped in rGO embedded with chitosan decorated gum rosin matrix. Int J Biol Macromol 2025; 309:142525. [PMID: 40174822 DOI: 10.1016/j.ijbiomac.2025.142525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/06/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
This research presents the synthesis and application of a hybrid nanomaterial, Lanthanum (La) doped in reduced graphene oxide (rGO), embedded with a chitosan-decorated gum rosin (CS-GR) matrix mediated via pine tree, which is designed to address these dual challenges. The La-rGO/CS-GR nanomembrane (NMb) shows enhanced mechanical properties, with a tensile strength of 46 MPa at 4 wt% La-rGO doping, and achieves high adsorption efficiency for pollutants. The 4 wt% La-rGO/CS-GR: NMb demonstrated 85 % dye rejection efficiency for Congo red dye under filtration conditions, while also facilitating bio-electrochemical energy harvesting. Additionally, the composite exhibited superior hydrogen generation with a yield of 5312 L mol g-1 cat. of H2 with the rate of 2425.67 L mol g-1 cat h-1catalyst during photocatalytic hydrogen evolution. The study includes antifouling tests and bacterial studies, revealing the strong resistance of membrane to fouling and superior antibacterial activity reducing bacterial colony counts to 9.5 × 102 CFU/mL.
Collapse
Affiliation(s)
- Aayasha Negi
- Department of Chemistry, IFTM University Moradabad, Lodhipur Rajput, Uttar Pradesh 244102, India.
| | - Minakshi Pandey
- Department of Chemistry, IFTM University Moradabad, Lodhipur Rajput, Uttar Pradesh 244102, India
| | - Mohamed Taha Yassin
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Fatimah O Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shubham Sharma
- Department of Chemistry, G.B. Pant University of Agriculture and Technology, Udham Singh Nagar, Uttarakhand, India
| |
Collapse
|
2
|
de Maria Aguiar Carvalho C, da Silva BB, Brianezi SFS, Sanfelice RC, Balogh DT, Assis L, Tim CR, Pavinatto A. Chitosan-based structures for skin repair: A literature review. Int J Biol Macromol 2025; 306:141426. [PMID: 40010450 DOI: 10.1016/j.ijbiomac.2025.141426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/16/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
The use of chitosan in technological and biomedical applications has gained significant relevance due to its functional properties. Among its biological activities, its hemostatic, analgesic, antibacterial and anti-inflammatory activities make this natural biopolymer one of the most promising in the development of structures for skin repair. Its application and effects can be optimized by exploring efficient structuring techniques. In this context, this review is based on scientific evidence reported in the last decade regarding the development and use of chitosan-based structures in the skin repair process to show the most common structuring methods, the main mechanisms of action of chitosan, and its potential applications in skin repair processes. Additionally, this article brings a compilation of scientific and commercial works on the use of chitosan-based structures, in addition to vitro and/or in vivo results.
Collapse
Affiliation(s)
| | - Bruno Batista da Silva
- Institute of Energy and Nuclear Research, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | | | | | - Debora Terezia Balogh
- São Carlos Institute of Physics, University of São Paulo, 13566-970 São Carlos, SP, Brazil
| | - Lívia Assis
- Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Carla Roberta Tim
- Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Adriana Pavinatto
- Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil; Luiz de Queiroz College of Agriculture, University of São Paulo, PO Box 9, Piracicaba, São Paulo 13418-970, Brazil.
| |
Collapse
|
3
|
Khan NU, Chengfeng X, Jiang MQ, Khan ZU, Razzaq A, Ullah A, Ni J, Abdullah, Iqbal H, Jin ZM. Obstructed vein delivery of ceftriaxone via poly(vinyl-pyrrolidone)-iodine-chitosan nanofibers for the management of diabetic foot infections and burn wounds. Int J Biol Macromol 2024; 277:134166. [PMID: 39084444 DOI: 10.1016/j.ijbiomac.2024.134166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Superficial skin injuries especially burn injuries and unhealed diabetic foot open wounds remain troubling for public health. The healing process is often interrupted by the invasion of resistant pathogens that results in the failure of conventional procedures outside the clinical settings. Herein, we designed nanofibers dressing with intrinsic antibacterial potential of poly(vinyl-pyrrolidone)-iodine/ poly (vinyl)-alcohol by electrospinning with chitosan encapsulating ceftriaxone (CPC/NFs). The optimized electrospun CPC/NFs exhibited smooth surface morphology with average diameter of 165 ± 7.1 nm, drug entrapment and loading efficiencies of 76.97 ± 4.7 % and 8.32 ± 1.73 %, respectively. The results displayed smooth and uniformed fibers with adequate thermal stability and ensured chemical doping. The enhanced in vitro antibacterial efficacy of CPC/NFs against resistant E. coli isolates and biosafety studies encourage the use of designed nanofibers dressing for burn injuries and diabetic foot injuries. In vivo studies proved the healing power of dressing for burn wounds model and diabetic infected wounds model. Immunofluorescence investigation of the wound tissue also suggested promising healing ability of CPC/NFs. The designed approach would be helpful to treat these infected skin open wounds in the hospitals and outside the clinical settings.
Collapse
Affiliation(s)
- Naveed Ullah Khan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China
| | - Xie Chengfeng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China
| | - Meng-Qin Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China
| | - Zaheer Ullah Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Asmat Ullah
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China
| | - Jiang Ni
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214000, PR China
| | - Abdullah
- College of Food Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China
| | - Haroon Iqbal
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, PR China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China.
| | - Zhi Min Jin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, PR China.
| |
Collapse
|
4
|
Katiyar S, Tripathi AD, Singh RK, Kumar Chaurasia A, Srivastava PK, Mishra A. Graphene-silymarin-loaded chitosan/gelatin/hyaluronic acid hybrid constructs for advanced full-thickness burn wound management. Int J Pharm 2024; 659:124238. [PMID: 38768692 DOI: 10.1016/j.ijpharm.2024.124238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Burn wounds (BWs) with extensive blood loss, along with bacterial infections and poor healing, may become detrimental and pose significant rehabilitation obstacles in medical facilities. Therefore, the freeze-drying method synthesized novel hemocompatible chitosan, gelatin, and hyaluronic acid infused with graphene oxide-silymarin (CGH-SGO) hybrid constructs for application as a BW patch. Most significantly, synthesized hybrid constructs exhibited an interconnected-porous framework with precise pore sizes (≈118.52 µm) conducive to biological functions. Furthermore, the FTIR and XRD analyses document the constructs' physiochemical interactions. Similarly, enhanced swelling ratios, adequate WVTR (736 ± 78 g m-2 hr-1), and bio-degradation rates were seen during the physiological examination of constructs. Following the in vitro investigations, SMN-GO added to constructs improved their anti-bacterial (against E.coli and S. aureus), anti-oxidant, hemocompatible, and bio-compatible characteristics in conjunction with prolonged drug release. Furthermore, in vivo, implanting constructs on wounds exhibited significant acceleration in full-thickness burn wound (FT-BW) healing on the 14th day (CGH-SGO: 95 ± 2.1 %) in contrast with the control (Gauze: 71 ± 4.2 %). Additionally, contrary to gauze, the in vivo rat tail excision model administered with constructs assured immediate blood clotting. Therefore, CGH-SGO constructs with an improved porous framework, anti-bacterial activity, hemocompatibility, and biocompatibility could represent an attractive option for healing FT-BWs.
Collapse
Affiliation(s)
- Soumya Katiyar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Abhay Dev Tripathi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ritika K Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Avinash Kumar Chaurasia
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep K Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
5
|
Bauso LV, La Fauci V, Longo C, Calabrese G. Bone Tissue Engineering and Nanotechnology: A Promising Combination for Bone Regeneration. BIOLOGY 2024; 13:237. [PMID: 38666849 PMCID: PMC11048357 DOI: 10.3390/biology13040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Large bone defects are the leading contributor to disability worldwide, affecting approximately 1.71 billion people. Conventional bone graft treatments show several disadvantages that negatively impact their therapeutic outcomes and limit their clinical practice. Therefore, much effort has been made to devise new and more effective approaches. In this context, bone tissue engineering (BTE), involving the use of biomaterials which are able to mimic the natural architecture of bone, has emerged as a key strategy for the regeneration of large defects. However, although different types of biomaterials for bone regeneration have been developed and investigated, to date, none of them has been able to completely fulfill the requirements of an ideal implantable material. In this context, in recent years, the field of nanotechnology and the application of nanomaterials to regenerative medicine have gained significant attention from researchers. Nanotechnology has revolutionized the BTE field due to the possibility of generating nanoengineered particles that are able to overcome the current limitations in regenerative strategies, including reduced cell proliferation and differentiation, the inadequate mechanical strength of biomaterials, and poor production of extrinsic factors which are necessary for efficient osteogenesis. In this review, we report on the latest in vitro and in vivo studies on the impact of nanotechnology in the field of BTE, focusing on the effects of nanoparticles on the properties of cells and the use of biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| | | | | | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| |
Collapse
|
6
|
Sadeghi-Aghbash M, Rahimnejad M, Adeli H, Feizi F. Catecholamines polymerization crosslinking for alginate-based burn wound dressings developed with ciprofloxacin and zinc oxide interactions. Int J Biol Macromol 2024; 260:129400. [PMID: 38224799 DOI: 10.1016/j.ijbiomac.2024.129400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
There is an increasing demand for stable and durable wound dressings to treat burn injuries and infections. Bioactive electrospun nanofibrous mats with antibacterial properties are promising for wound dressing usage. Electrospinning of biopolymers for wound dressing applications needs post-spinning crosslinking to prevent mat dissolution in moist wound environments. Here, we prepared durable wound dressing by using the Dopamine (DA) polymerization crosslinking in Alginate (ALG)/Polyvinyl alcohol (PVA) nanofibrous mats, which are developed by Ciprofloxacin (CIP) and Zinc oxide (ZO). The nanofibrous mats were investigated by FESEM, FTIR, mechanical strength, water contact angle, degradation, degree of swelling, and WVTR tests. The analyses demonstrate the nanofibrous mats with uniform and unbranched fibers, with a hydrophilic nature, which was porous, durable, and stable. Also, it showed the CIP and ZO addition enhanced their durability by crosslinking reinforcement. In addition, the drug release and antibacterial assays demonstrated the pH-sensitive release with more drug release at higher pH (bacterial invasion) and impressive antibacterial activity (up to 99 %). In the burn wound model in rats, the ALG/PVA/DA/CIP/ZO nanofibrous mats displayed excellent wound healing ability in wound closure and tissue regeneration. Also, complete re-epithelization and remodeling and highest collagen synthesis in histological assessment.
Collapse
Affiliation(s)
- Mona Sadeghi-Aghbash
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran.
| | - Hassan Adeli
- Department of Chemical Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran.
| | - Farideh Feizi
- Department of Anatomical Sciences, School of Medicine, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Mazandaran, Iran
| |
Collapse
|
7
|
Sánchez-Machado DI, Maldonado-Cabrera A, López-Cervantes J, Maldonado-Cabrera B, Chávez-Almanza AF. Therapeutic effects of electrospun chitosan nanofibers on animal skin wounds: A systematic review and meta-analysis. Int J Pharm X 2023; 5:100175. [PMID: 36950662 PMCID: PMC10025980 DOI: 10.1016/j.ijpx.2023.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Electrospun chitosan nanofibers (QSNFs) enhance the healing process by mimicking skin structure and function. The aim of this study was to analyze the therapeutic effects of QSNFs application on animal skin wounds to identify a potential direction for translational research in dermatology. The PRISMA methodology and the PICO scheme were used. A random effects model and mean difference analysis were applied for the meta-analysis. A meta-regression model was constructed, risk of bias was determined, and methodological quality assessment was performed. Of the 2370 articles collected, 54 studies were selected based on the inclusion and exclusion criteria. The wound healing area was used for building models on the 3rd, 7th, and 14th days of follow-up; the results were - 10.4% (95% CI, -18.2% to -2.6%, p = 0.001), -21.0% (95% CI, -27.3% to -14.7%, p = 0.001), and - 14.0% (95% CI, -19.1 to -8.8%, p = 0.001), respectively. Antioxidants and synthetic polymers combined with QSNFs further reduced skin wound areas (p < 0.05). The results show a more efficient reduction in wound area percentages in experimental groups than in control groups, so QSNFs could potentially be applied in translational human medicine research.
Collapse
Affiliation(s)
| | - Anahí Maldonado-Cabrera
- Technologic Institute of Sonora (ITSON), Ciudad Obregon MX-85000, Sonora, Mexico
- Mexican Social Security Institute (IMSS), Hermosillo MX-83000, Sonora, Mexico
| | - Jaime López-Cervantes
- Technologic Institute of Sonora (ITSON), Ciudad Obregon MX-85000, Sonora, Mexico
- Corresponding author.
| | | | | |
Collapse
|
8
|
Tyubaeva PM, Gasparyan KG, Fedotov AY, Lobzhanidze PV, Baranov OV, Egorov AA, Sirotinkin VP, Komlev VS, Olkhov AA. Development of Nonwoven Fibrous Materials Based on Poly-3-Hydroxybutyrate with a High Content of α-Tricalcium Phosphate. Polymers (Basel) 2023; 15:3167. [PMID: 37571064 PMCID: PMC10421182 DOI: 10.3390/polym15153167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
α-tricalcium (α-TCP) phosphate is widely used as an osteoinductive biocompatible material, serving as an alternative to synthetic porous bone materials. The objective of this study is to obtain a highly filled fibrous nonwoven material composed of poly-3-hydroxybutyrate (PHB) and α-TCP and to investigate the morphology, structure, and properties of the composite obtained by the electrospinning method (ES). The addition of α-TCP had a significant effect on the supramolecular structure of the material, allowing it to control the crystallinity of the material, which was accompanied by changes in mechanical properties, FTIR spectra, and XRD curves. The obtained results open the way to the creation of new osteoconductive materials with a controlled release of the source of calcium into the living organism.
Collapse
Affiliation(s)
- Polina M. Tyubaeva
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia; (P.M.T.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia
| | - Kristina G. Gasparyan
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia; (P.M.T.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia
| | - Alexander Yu. Fedotov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky Prospect 49, 119334 Moscow, Russia (V.P.S.)
| | - Pavel V. Lobzhanidze
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky Prospect 49, 119334 Moscow, Russia (V.P.S.)
| | - Oleg V. Baranov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky Prospect 49, 119334 Moscow, Russia (V.P.S.)
| | - Alexey A. Egorov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky Prospect 49, 119334 Moscow, Russia (V.P.S.)
| | - Vladimir P. Sirotinkin
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky Prospect 49, 119334 Moscow, Russia (V.P.S.)
| | - Vladimir S. Komlev
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky Prospect 49, 119334 Moscow, Russia (V.P.S.)
| | - Anatoly A. Olkhov
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia; (P.M.T.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia
| |
Collapse
|
9
|
Shariati A, Hosseini SM, Chegini Z, Seifalian A, Arabestani MR. Graphene-Based Materials for Inhibition of Wound Infection and Accelerating Wound Healing. Biomed Pharmacother 2023; 158:114184. [PMID: 36587554 DOI: 10.1016/j.biopha.2022.114184] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Bacterial infection of the wound could potentially cause serious complications and an enormous medical and financial cost to the rapid emergence of drug-resistant bacteria. Nanomaterials are an emerging technology, that has been researched as possible antimicrobial nanomaterials for the inhibition of wound infection and enhancement of wound healing. Graphene is 2-dimensional (2D) sheet of sp2 carbon atoms in a honeycomb structure. It has superior properties, strength, conductivity, antimicrobial, and molecular carrier abilities. Graphene and its derivatives, Graphene oxide (GO) and reduced GO (rGO), have antibacterial activity and could damage bacterial morphology and lead to the leakage of intracellular substances. Besides, for wound infection management, Graphene-platforms could be functionalized by different antibacterial agents such as metal-nanoparticles, natural compounds, and antibiotics. The Graphene structure can absorb near-infrared wavelengths, allowing it to be used as antimicrobial photodynamic therapy. Therefore, Graphene-based material could be used to inhibit pathogens that cause serious skin infections and destroy their biofilm community, which is one of the biggest challenges in treating wound infection. Due to its agglomerated structure, GO hydrogel could entrap and stack the bacteria; thus, it prevents their initial attachment and biofilm formation. The sharp edges of GO could destroy the extracellular polymeric substance surrounding the biofilm and ruin the biofilm biomass structure. As well as, Chitosan and different natural and synthetic polymers such as collagen and polyvinyl alcohol (PVA) also have attracted a great deal of attention for use with GO as wound dressing material. To this end, multi-functional polymers based on Graphene and blends of synthetic and natural polymers can be considered valid non-antibiotic compounds useful against wound infection and improvement of wound healing. Finally, the global wound care market size was valued at USD 20.8 billion in 2022 and is expected to expand at a compound annual growth rate (CAGR) of 5.4% from 2022 to 2027 (USD 27.2 billion). This will encourage academic as well as pharmaceutical and medical device industries to investigate any new materials such as graphene and its derivatives for the treatment of wound healing.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and medicine research center, Khomein University of Medical Sciences, Khomein, Iran
| | - Seyed Mostafa Hosseini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amelia Seifalian
- Department of Urogynaecology and Surgery, Imperial College London, London, United Kingdom
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
10
|
Chen S, Tian H, Mao J, Ma F, Zhang M, Chen F, Yang P. Preparation and application of chitosan-based medical electrospun nanofibers. Int J Biol Macromol 2023; 226:410-422. [PMID: 36502949 DOI: 10.1016/j.ijbiomac.2022.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Chitosan is a kind of polysaccharide cationic polymer, which has excellent biocompatibility, biodegradability and biological activity. In recent years, chitosan has been widely used as medical materials because of its non-toxicity, non-immunogenicity and rich sources. This paper reviews chitosan chemistry, the basic principles and influence of electrospinning technology, the blending of chitosan with polyethylene oxide, polyvinyl alcohol, polycaprolactone, polylactic acid, protein, polysaccharide and other polymer materials, the blending of chitosan with oxides, metals, carbon-based and other inorganic substances for electrospinning, the application of chitosan electrospinning nanofibers in medical field and its mechanism in clinical application. In order to provide reference for the in-depth study of electrospinning technology in the field of medical and health.
Collapse
Affiliation(s)
- Shujie Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Haoran Tian
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jinlong Mao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Feng Ma
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Mengtian Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Feixiang Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pengfei Yang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
11
|
Chauhan A, Alam MA, Kaur A, Malviya R. Advancements and Utilizations of Scaffolds in Tissue Engineering and Drug Delivery. Curr Drug Targets 2023; 24:13-40. [PMID: 36221880 DOI: 10.2174/1389450123666221011100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
The drug development process requires a thorough understanding of the scaffold and its three-dimensional structure. Scaffolding is a technique for tissue engineering and the formation of contemporary functioning tissues. Tissue engineering is sometimes referred to as regenerative medicine. They also ensure that drugs are delivered with precision. Information regarding scaffolding techniques, scaffolding kinds, and other relevant facts, such as 3D nanostructuring, are discussed in depth in this literature. They are specific and demonstrate localized action for a specific reason. Scaffold's acquisition nature and flexibility make it a new drug delivery technology with good availability and structural parameter management.
Collapse
Affiliation(s)
- Akash Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
12
|
Sadeghi-Aghbash M, Rahimnejad M, Adeli H, Feizi F. Fabrication and development of PVA/Alginate nanofibrous mats containing Arnebia Euchroma extract as a burn wound dressing. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Homem NC, Miranda C, Teixeira MA, Teixeira MO, Domingues JM, Seibert D, Antunes JC, Amorim MTP, Felgueiras HP. Graphene oxide-based platforms for wound dressings and drug delivery systems: A 10 year overview. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Yadav S, Singh Raman AP, Meena H, Goswami AG, Bhawna, Kumar V, Jain P, Kumar G, Sagar M, Rana DK, Bahadur I, Singh P. An Update on Graphene Oxide: Applications and Toxicity. ACS OMEGA 2022; 7:35387-35445. [PMID: 36249372 PMCID: PMC9558614 DOI: 10.1021/acsomega.2c03171] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/30/2022] [Indexed: 08/24/2023]
Abstract
Graphene oxide (GO) has attracted much attention in the past few years because of its interesting and promising electrical, thermal, mechanical, and structural properties. These properties can be altered, as GO can be readily functionalized. Brodie synthesized the GO in 1859 by reacting graphite with KClO3 in the presence of fuming HNO3; the reaction took 3-4 days to complete at 333 K. Since then, various schemes have been developed to reduce the reaction time, increase the yield, and minimize the release of toxic byproducts (NO2 and N2O4). The modified Hummers method has been widely accepted to produce GO in bulk. Due to its versatile characteristics, GO has a wide range of applications in different fields like tissue engineering, photocatalysis, catalysis, and biomedical applications. Its porous structure is considered appropriate for tissue and organ regeneration. Various branches of tissue engineering are being extensively explored, such as bone, neural, dentistry, cartilage, and skin tissue engineering. The band gap of GO can be easily tuned, and therefore it has a wide range of photocatalytic applications as well: the degradation of organic contaminants, hydrogen generation, and CO2 reduction, etc. GO could be a potential nanocarrier in drug delivery systems, gene delivery, biological sensing, and antibacterial nanocomposites due to its large surface area and high density, as it is highly functionalized with oxygen-containing functional groups. GO or its composites are found to be toxic to various biological species and as also discussed in this review. It has been observed that superoxide dismutase (SOD) and reactive oxygen species (ROS) levels gradually increase over a period after GO is introduced in the biological systems. Hence, GO at specific concentrations is toxic for various species like earthworms, Chironomus riparius, Zebrafish, etc.
Collapse
Affiliation(s)
- Sandeep Yadav
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | | | - Harshvardhan Meena
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department
of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, India
- Department
of Chemistry, University of Delhi, Delhi, India
| | - Abhay Giri Goswami
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Bhawna
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, Delhi, India
| | - Vinod Kumar
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, Delhi, India
| | - Pallavi Jain
- Department
of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, NCR Campus, Uttar Pradesh, India
| | - Gyanendra Kumar
- Department
of Chemistry, University of Delhi, Delhi, India
- Swami Shraddhanand
College, University of Delhi, Delhi, India
| | - Mansi Sagar
- Department
of Chemistry, University of Delhi, Delhi, India
| | - Devendra Kumar Rana
- Department
of Physics, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Indra Bahadur
- Department
of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Prashant Singh
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| |
Collapse
|
15
|
Kim SK, Murugan SS, Dalavi PA, Gupta S, Anil S, Seong GH, Venkatesan J. Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1051-1067. [PMID: 36247529 PMCID: PMC9531556 DOI: 10.3762/bjnano.13.92] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Biomimetic materials for better bone graft substitutes are a thrust area of research among researchers and clinicians. Autografts, allografts, and synthetic grafts are often utilized to repair and regenerate bone defects. Autografts are still considered the gold-standard method/material to treat bone-related issues with satisfactory outcomes. It is important that the material used for bone tissue repair is simultaneously osteoconductive, osteoinductive, and osteogenic. To overcome this problem, researchers have tried several ways to develop different materials using chitosan-based nanocomposites of silver, copper, gold, zinc oxide, titanium oxide, carbon nanotubes, graphene oxide, and biosilica. The combination of materials helps in the expression of ideal bone formation genes of alkaline phosphatase, bone morphogenic protein, runt-related transcription factor-2, bone sialoprotein, and osteocalcin. In vitro and in vivo studies highlight the scientific findings of antibacterial activity, tissue integration, stiffness, mechanical strength, and degradation behaviour of composite materials for tissue engineering applications.
Collapse
Affiliation(s)
- Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Gyeonggi-do 11558, Korea
| | - Sesha Subramanian Murugan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Pandurang Appana Dalavi
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Sebanti Gupta
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Sukumaran Anil
- Department of Dentistry, Oral Health Institute, Hamad Medical Corporation, College of Dental Medicine, Qatar University, Doha, Qatar
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Jayachandran Venkatesan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| |
Collapse
|
16
|
Tan G, Wang L, Pan W, Chen K. Polysaccharide Electrospun Nanofibers for Wound Healing Applications. Int J Nanomedicine 2022; 17:3913-3931. [PMID: 36097445 PMCID: PMC9464040 DOI: 10.2147/ijn.s371900] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/23/2022] [Indexed: 12/26/2022] Open
Abstract
As a type of biological macromolecule, natural polysaccharides have been widely used in wound healing due to their low toxicity, good biocompatibility, degradability and reproducibility. Electrospinning is a versatile and simple technique for producing continuous nanoscale fibers from a variety of natural and synthetic polymers. The application of electrospun nanofibers as wound dressings has made great progress and they are considered one of the most effective wound dressings. This paper reviews the preparation of polysaccharide nanofibers by electrospinning and their application prospects in the field of wound healing. A variety of polysaccharide nanofibers, including chitosan, starch, alginate, and hyaluronic acid are introduced. The preparation strategy of polysaccharide electrospun nanofibers and their functions in promoting wound healing are summarized. In addition, the future prospects and challenges for the preparation of polysaccharide nanofibers by electrospinning are also discussed.
Collapse
Affiliation(s)
- Guoxin Tan
- School of Pharmacy, Hainan University, Haikou, 570228, People's Republic of China
| | - Lijie Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Kai Chen
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| |
Collapse
|
17
|
Optimization of Oligomer Chitosan/Polyvinylpyrrolidone Coating for Enhancing Antibacterial, Hemostatic Effects and Biocompatibility of Nanofibrous Wound Dressing. Polymers (Basel) 2022; 14:polym14173541. [PMID: 36080616 PMCID: PMC9460443 DOI: 10.3390/polym14173541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
A synergistic multilayer membrane design is necessary to satisfy a multitude of requirements of an ideal wound dressing. In this study, trilayer dressings with asymmetric wettability, composed of electrospun polycaprolactone (PCL) base membranes coated with oligomer chitosan (COS) in various concentrations of polyvinylpyrrolidone (PVP), are fabricated for wound dressing application. The membranes are expected to synergize the hygroscopic, antibacterial, hemostatic, and biocompatible properties of PCL and COS. The wound dressing was coated by spraying the solution of 3% COS and 6% PVP on the PCL base membrane (PVP6–3) three times, which shows good interaction with biological subjects, including bacterial strains and blood components. PVP6–3 samples confirm the diameter of inhibition zones of 20.0 ± 2.5 and 17.9 ± 2.5 mm against Pseudomonas aeruginosa and Staphylococcus aureus, respectively. The membrane induces hemostasis with a blood clotting index of 74% after 5 min of contact. In the mice model, wounds treated with PVP6–3 closed 95% of the area after 10 days. Histological study determines the progression of skin regeneration with the construction of granulation tissue, new vascular systems, and hair follicles. Furthermore, the newly-growth skin shares structural resemblances to that of native tissue. This study suggests a simple approach to a multi-purpose wound dressing for clinical treatment.
Collapse
|
18
|
Sharma R, Kumar S, Bhawna, Gupta A, Dheer N, Jain P, Singh P, Kumar V. An Insight of Nanomaterials in Tissue Engineering from Fabrication to Applications. Tissue Eng Regen Med 2022; 19:927-960. [PMID: 35661124 DOI: 10.1007/s13770-022-00459-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering is a research domain that deals with the growth of various kinds of tissues with the help of synthetic composites. With the culmination of nanotechnology and bioengineering, tissue engineering has emerged as an exciting domain. Recent literature describes its various applications in biomedical and biological sciences, such as facilitating the growth of tissue and organs, gene delivery, biosensor-based detection, etc. It deals with the development of biomimetics to repair, restore, maintain and amplify or strengthen several biological functions at the level of tissue and organs. Herein, the synthesis of nanocomposites based on polymers, along with their classification as conductive hydrogels and bioscaffolds, is comprehensively discussed. Furthermore, their implementation in numerous tissue engineering and regenerative medicine applications is also described. The limitations of tissue engineering are also discussed here. The present review highlights and summarizes the latest progress in the tissue engineering domain directed at functionalized nanomaterials.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Biochemistry, University of Delhi, Delhi, India
| | - Sanjeev Kumar
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Bhawna
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, India.
| | - Neelu Dheer
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Pallavi Jain
- Department of Chemistry, SRM Institute of Science and Technology, Delhi NCR Campus, Ghaziabad, Uttar Pradesh, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India.
| | - Vinod Kumar
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India. .,Special Centre for Nano Science, Jawaharlal Nehru University, Delhi, India.
| |
Collapse
|
19
|
Meneses J, van de Kemp T, Costa-Almeida R, Pereira R, Magalhães FD, Castilho M, Pinto AM. Fabrication of Polymer/Graphene Biocomposites for Tissue Engineering. Polymers (Basel) 2022; 14:1038. [PMID: 35267861 PMCID: PMC8914623 DOI: 10.3390/polym14051038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 12/10/2022] Open
Abstract
Graphene-based materials (GBM) are considered one of the 21st century's most promising materials, as they are incredibly light, strong, thin and have remarkable electrical and thermal properties. As a result, over the past decade, their combination with a diverse range of synthetic polymers has been explored in tissue engineering (TE) and regenerative medicine (RM). In addition, a wide range of methods for fabricating polymer/GBM scaffolds have been reported. This review provides an overview of the most recent advances in polymer/GBM composite development and fabrication, focusing on methods such as electrospinning and additive manufacturing (AM). As a future outlook, this work stresses the need for more in vivo studies to validate polymer/GBM composite scaffolds for TE applications, and gives insight on their fabrication by state-of-the-art processing technologies.
Collapse
Affiliation(s)
- João Meneses
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (J.M.); (T.v.d.K.); (F.D.M.)
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Tom van de Kemp
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (J.M.); (T.v.d.K.); (F.D.M.)
- i3S—Instituto de Investigação e Inovacão em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (R.C.-A.); (R.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Raquel Costa-Almeida
- i3S—Instituto de Investigação e Inovacão em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (R.C.-A.); (R.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rúben Pereira
- i3S—Instituto de Investigação e Inovacão em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (R.C.-A.); (R.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Fernão D. Magalhães
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (J.M.); (T.v.d.K.); (F.D.M.)
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Artur M. Pinto
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (J.M.); (T.v.d.K.); (F.D.M.)
- i3S—Instituto de Investigação e Inovacão em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (R.C.-A.); (R.P.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
20
|
Abstract
Chitosan (CS) and graphene oxide (GO) nanocomposites have received wide attention in biomedical fields due to the synergistic effect between CS which has excellent biological characteristics and GO which owns great physicochemical, mechanical, and optical properties. Nanocomposites based on CS and GO can be fabricated into a variety of forms, such as nanoparticles, hydrogels, scaffolds, films, and nanofibers. Thanks to the ease of functionalization, the performance of these nanocomposites in different forms can be further improved by introducing other functional polymers, nanoparticles, or growth factors. With this background, the current review summarizes the latest developments of CS-GO nanocomposites in different forms and compositions in biomedical applications including drug and biomacromolecules delivery, wound healing, bone tissue engineering, and biosensors. Future improving directions and challenges for clinical practice are proposed as well.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
21
|
Karimi SNH, Mehdinavaz Aghdam R, Ebrahimi SAS, Chehrehsaz Y. Tri‐layered alginate/
PCL
electrospun scaffold for cardiac tissue engineering. POLYM INT 2022. [DOI: 10.1002/pi.6371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seyed Nasir Hosseini Karimi
- School of Metallurgy and Materials Engineering, College of Engineering University of Tehran P.O. Box: 11155‐4563 Tehran Iran
| | - Rouhollah Mehdinavaz Aghdam
- School of Metallurgy and Materials Engineering, College of Engineering University of Tehran P.O. Box: 11155‐4563 Tehran Iran
| | - Seyed Ali Seyyed Ebrahimi
- School of Metallurgy and Materials Engineering, College of Engineering University of Tehran P.O. Box: 11155‐4563 Tehran Iran
- Advanced Magnetic Materials Research Center, College of Engineering University of Tehran Tehran Iran
| | - Yalda Chehrehsaz
- Department of Biomedical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| |
Collapse
|
22
|
Bazzi M, Shabani I, Mohandesi JA. Enhanced mechanical properties and electrical conductivity of Chitosan/Polyvinyl Alcohol electrospun nanofibers by incorporation of graphene nanoplatelets. J Mech Behav Biomed Mater 2021; 125:104975. [PMID: 34823087 DOI: 10.1016/j.jmbbm.2021.104975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/25/2023]
Abstract
The subject of this paper is to develop a highly conductive Graphene nanoplatelets (GNPs)-Chitosan (CS)/Polyvinyl Alcohol (PVA) (GNPs-CP) nanofibers with excellent mechanical properties. An experimental study was designed to produce nanofibers based on CP nanofibers as matrix and GNPs as reinforcement materials. The microstructure and the surface morphology of the electrospun nanofibers along with their electrical and mechanical properties were examined to study the effect of GNPs content. The SEM results showed that the gradual increase in GNPs content led to a porous web like morphology with no bead. There is a decrease in the diameter of nanofibers by increasing the concentration of GNPs to 1 wt% GNPs from 370 ± 40 nm for CP blend to 144 ± 18 nm for 1 wt% GNPs. Transmission electron microscopy results depicted that GNPs were dispersed uniformly confirmed by the absence of characteristic peak of graphite at 2θ = 26.5°. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy results indicate the occurrence of a few interactions between GNPs and CP matrix. Nitrogen adsorption/desorption measurement demonstrated that increasing GNPs content increased the specific surface area of nanofibers from 238.377 to 386.708 m2/g for 0 and 1 wt% GNPs content. The test results also show that the presence of GNPs considerably enhances tensile strength, elastic modulus and electrical conductivity. Furthermore, the toughness of GNPs-CP nanofibers including 1 wt% GNPs significantly improved (12-fold) compared to the one for CP nanofibers. So, the proposed composite provides a decent functionality for nanofibers as scaffolds in tissue engineering applications.
Collapse
Affiliation(s)
- Mohammadreza Bazzi
- Materials and Metallurgical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, P.O. Box 15875-4413, Tehran, Iran
| | - Iman Shabani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), P.O. Box 15875-4413, Tehran, Iran.
| | - Jamshid Aghazadeh Mohandesi
- Materials and Metallurgical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, P.O. Box 15875-4413, Tehran, Iran
| |
Collapse
|
23
|
Kharat Z, Amiri Goushki M, Sarvian N, Asad S, Dehghan MM, Kabiri M. Chitosan/PEO nanofibers containing Calendula officinalis extract: Preparation, characterization, in vitro and in vivo evaluation for wound healing applications. Int J Pharm 2021; 609:121132. [PMID: 34563618 DOI: 10.1016/j.ijpharm.2021.121132] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Wound healing is a complex pathophysiological process, highlighting the importance of effective and thorough wound care along with the prevention of wound infection, a major barrier that can slow down or even disrupt the healing process. To date, there are plenty of herbal plants well known and historically supernatural, showing profound wound healing effects. Application of such herbal extracts/ingredients in electrospun nanofiber platforms has shown promising outcomes in improving wound healing process. Based on these facts, we loaded Calendula officinalis extract (CO) in chitosan/polyethylene oxide scaffolds (CS/PEO) by electrospinning. Using SEM, morphology of electrospun scaffolds showed a narrow range of fiber diameter, around 143--252 nm, with uniform and bead-free appearance. FT-IR spectroscopy confirmed the presence of CO extract in nanofibrous scaffolds. Of importance, incorporation of CO extract improved mechanical properties of CS/PEO nanofibers. A 1602 cP reduction in viscosity and a 0.892 ms/cm increase in the conductivity of the solution was observed after addition of the CO extract. CO extract showed strong antibacterial properties with 96% and 94% reduction in Gram positive and Gram negative bacteria, respectively. In vitro studies with fibroblast cells confirmed enhanced proliferation, growth and attachment of the cells. The in vivo and histological analysis of rat wounds, revealed excellent wound healing ability of CS/PEO/CO dressings (87.5 % wound closure after 14 days) via improving collagen synthesis, re-epithelization and remodeling of the tissue. In sum, our findings show that CS/PEO/CO scaffolds can be used as a promising dressing for the treatment of skin wounds.
Collapse
Affiliation(s)
- Zahra Kharat
- Department of Biotechnology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Mehdi Amiri Goushki
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 14395-1561, Iran
| | - Nazanin Sarvian
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran
| | - Sedigheh Asad
- Department of Biotechnology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran 14155-6455, Iran.
| |
Collapse
|
24
|
Yu D, Wang J, Qian KJ, Yu J, Zhu HY. Effects of nanofibers on mesenchymal stem cells: environmental factors affecting cell adhesion and osteogenic differentiation and their mechanisms. J Zhejiang Univ Sci B 2021; 21:871-884. [PMID: 33150771 DOI: 10.1631/jzus.b2000355] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nanofibers can mimic natural tissue structure by creating a more suitable environment for cells to grow, prompting a wide application of nanofiber materials. In this review, we include relevant studies and characterize the effect of nanofibers on mesenchymal stem cells, as well as factors that affect cell adhesion and osteogenic differentiation. We hypothesize that the process of bone regeneration in vitro is similar to bone formation and healing in vivo, and the closer nanofibers or nanofibrous scaffolds are to natural bone tissue, the better the bone regeneration process will be. In general, cells cultured on nanofibers have a similar gene expression pattern and osteogenic behavior as cells induced by osteogenic supplements in vitro. Genes involved in cell adhesion (focal adhesion kinase (FAK)), cytoskeletal organization, and osteogenic pathways (transforming growth factor-β (TGF-β)/bone morphogenic protein (BMP), mitogen-activated protein kinase (MAPK), and Wnt) are upregulated successively. Cell adhesion and osteogenesis may be influenced by several factors. Nanofibers possess certain physical properties including favorable hydrophilicity, porosity, and swelling properties that promote cell adhesion and growth. Moreover, nanofiber stiffness plays a vital role in cell fate, as cell recruitment for osteogenesis tends to be better on stiffer scaffolds, with associated signaling pathways of integrin and Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ). Also, hierarchically aligned nanofibers, as well as their combination with functional additives (growth factors, HA particles, etc.), contribute to osteogenesis and bone regeneration. In summary, previous studies have indicated that upon sensing the stiffness of the nanofibrous environment as well as its other characteristics, stem cells change their shape and tension accordingly, regulating downstream pathways followed by adhesion to nanofibers to contribute to osteogenesis. However, additional experiments are needed to identify major signaling pathways in the bone regeneration process, and also to fully investigate its supportive role in fabricating or designing the optimum tissue-mimicking nanofibrous scaffolds.
Collapse
Affiliation(s)
- Dan Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jin Wang
- Department of Stomatology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ke-Jia Qian
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hui-Yong Zhu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
25
|
Jin S, Pu Y, Guo Z, Zhu W, Li S, Zhou X, Gao W, He B. A double-layer dura mater based on poly(caprolactone- co-lactide) film and polyurethane sponge: preparation, characterization, and biodegradation study. J Mater Chem B 2021; 9:3863-3873. [PMID: 33928320 DOI: 10.1039/d1tb00454a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Synthetic, biodegradable polymers hold great potential in dura mater substitution. In this study, a dura mater-mimetic double-layer film@sponge composite was developed. The composite contains a poly(caprolactone-co-lactide) (PCLA) film and polyurethane (PU) sponge, which simulates the hard and soft layers of dura mater, respectively. PCLA films were prepared by a solution-casting method and showed excellent mechanical properties and tolerance to water. PU sponge was hydrophilic and had a high water-absorption rate (about 500%). The double-layer composite (film@sponge) integrated the good mechanical properties of the films and the good water absorption of the sponge. The excellent biocompatibility and biodegradability of the PCLA film@PU sponge composites were verified by in vitro degradation and cytotoxicity study and the in vivo implantation in the back of rats. Importantly, the film@sponge composite had a suitable degradation rate and good biocompatibility, holding potential in the field of dural repair.
Collapse
Affiliation(s)
- Shu Jin
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Wangwei Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Sai Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Xi Zhou
- Ningbo Baoting Biotechnology Co., Ltd, Ningbo 315001, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
26
|
Nanosheets-incorporated bio-composites containing natural and synthetic polymers/ceramics for bone tissue engineering. Int J Biol Macromol 2020; 164:1960-1972. [DOI: 10.1016/j.ijbiomac.2020.08.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
|
27
|
Nowroozi N, Faraji S, Nouralishahi A, Shahrousvand M. Biological and structural properties of graphene oxide/curcumin nanocomposite incorporated chitosan as a scaffold for wound healing application. Life Sci 2020; 264:118640. [PMID: 33172598 DOI: 10.1016/j.lfs.2020.118640] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
AIMS The purpose of this research is to fabricate chitosan (CS)/graphene oxide (GO)/curcumin (Cur) 3D scaffolds through the freeze-drying method for wound dressing applications. MAIN METHODS GO is produced by Hammer's method; then, it is characterized by X-ray diffraction and TEM analysis. Fabricated scaffolds are characterized by FTIR, FESEM, AFM, water vapor transmission rate, PBS absorption, contact angle, tensile strength, porosity measurement, biodegradability, and drug release methods. The cell viability and morphology of NIH/3 T3 cells are investigated by WST assay kit and FESEM analysis, and the antibacterial activity of scaffolds is determined by the optical density (OD) method. The photothermal antibacterial activity is characterized by NIR irradiation, too. KEY FINDINGS The mean pore diameter of scaffolds adjusted by the incorporation of about 0-1.5%wt. of GO/Cur nanocomposite into CS matrix, decreasing from 87 to 40 μm that can be attributed to the intermolecular bonds between CS and GO/Cur nanocomposite. Besides, the PBS absorption of scaffolds enhances by the addition of GO/Cur, especially 1% of it. Furthermore, the overall average of cell viability of nanocomposite scaffolds is about 95%, and the FESEM images show that NIH/3T3 fibroblasts well spread on the nanocomposite scaffolds. GO/Cur has a significant influence on the antibacterial activity of CS scaffolds as CS/GO/Cur 0.5 scaffold diminishes the bacterial growth to about 52% of the control sample's growth. SIGNIFICANCE The results evidence the antibacterial CS/GO/Cur scaffolds are excellent supports for cell growth and proliferation, and they could be promising candidates for wound dressing applications.
Collapse
Affiliation(s)
- Nona Nowroozi
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Iran; Energy, Environment, and Nanostructure material laboratory, Caspian Faculty of Engineering, College of Engineering, University of Tehran, Iran.
| | - Soraya Faraji
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Iran; Energy, Environment, and Nanostructure material laboratory, Caspian Faculty of Engineering, College of Engineering, University of Tehran, Iran.
| | - Amideddin Nouralishahi
- Energy, Environment, and Nanostructure material laboratory, Caspian Faculty of Engineering, College of Engineering, University of Tehran, Iran.
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rezvanshahr, P.O. Box: 43841-119, Guilan, Iran.
| |
Collapse
|
28
|
El-Lakany SA, Kamoun EA, Abd-Elhamid AI, Aly RG, Samy WM, Elgindy NA. Graphene oxide crosslinked-zein nanofibrous scaffolds for prominent Cu-adsorption as tissue regeneration promoters in diabetic rats: Nanofibers optimization and in vivo assessment. Int J Pharm 2020; 590:119919. [PMID: 32991960 DOI: 10.1016/j.ijpharm.2020.119919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022]
Abstract
Diabetic ulcers are prone to bacterial contamination and can severely affect patient's quality of life. This study is first report to explore copper-grafted graphene oxide-crosslinked zein scaffolds (Cu-GZS) for promoting cutaneous excision wounds healing as a promising therapeutic modality in diabetic male-rats. Cu-GZS scaffolds were fabricated using electrospinning technique, where GO was employed as an echo-friendly crosslinker to meliorate mechanical stability and swellability of scaffolds. To circumvent risk of infection, copper ions were grafted into GZS as bactericidal agents and angiogenesis promoters, through soaking GZS nanofibers into Cu-solution or direct loading during electrospinning process. SEM images showed GO encapsulation by wrapping around/or trapping within nanofibrous. Interestingly, formation of chemical amide bond between zein and GO was proven by FTIR spectra. Crosslinking of zein nanofibers with GO increased tensile strength of nanofibrous by 3-folds compared to uncrosslinked zein nanofibers. Optimized Cu-GZS exhibited constant release rate of copper over a period of 8 days (~53.42%). Cu-GZS immensely accelerated wound closure demonstrated by diminished infiltration of leukocytes, absence of α-SMA positive cells, presence of fully intact epithelium with normal keratinization and accelerated wound size reduction, compared to control. Cu-GZS scaffolds could serve as promising biomaterials for effective topical wound healing in diabetic rats.
Collapse
Affiliation(s)
- Sarah A El-Lakany
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Elbadawy A Kamoun
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt; Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt.
| | - Ahmed I Abd-Elhamid
- Nanotechnology and Composite Material Research Dep., Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Rania G Aly
- Department of Surgical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Wael M Samy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Nazik A Elgindy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Arab Academy for Science, Technology & Maritime Transport, AASTMT, Alexandria, Egypt
| |
Collapse
|
29
|
Menazea A, Ahmed M. Nanosecond laser ablation assisted the enhancement of antibacterial activity of copper oxide nano particles embedded though Polyethylene Oxide/Polyvinyl pyrrolidone blend matrix. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108911] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Wu K, Zhang D, Liu M, Lin Q, Shiu BC. A Study on the Improvement of Using Raw Lacquer and Electrospinning on Properties of PVP Nanofilms. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1723. [PMID: 32878093 PMCID: PMC7558613 DOI: 10.3390/nano10091723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 11/25/2022]
Abstract
Raw lacquer (RL), ethanol being used as the solvent, was added to polyvinyl pyrrolidone (PVP) and then electrospun into RL/PVP nanofilms. Manufacturing parameters such as RL/PVP ratio, voltage, flow velocity, needle type, and the distance between syringe and the collection board were systematically investigated. A scanning electronic microscope (SEM) was used to observe the surface morphology of nanofilms; the block drop method was used to measure the water contact angle; the mechanical properties of RL/PVP nanofilms of different proportions were tested by universal material testing machine; and Fourier-transform infrared spectroscopy (FT-IR) was used to characterize the structure. Based on the water resistance and acid resistance measurements, the proposed nanofilms demonstrated to be water and acid resistant were successfully produced. The results show that PVP that melts in water becomes incompatible with water after adding raw lacquer, and the acid resistance is greatly improved. Furthermore, the smaller the fiber diameter, the better the mechanical properties of the nanofilms are under low ratio of RL/PVP. With a high proportion of RL/PVP, the inner structure of the nanofilm is denser, and the water resistance and acid resistance are better. The dense structure can protect the inner material of the nanofilms.
Collapse
Affiliation(s)
- Kunlin Wu
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Ocean College, Minjiang University, Fuzhou 350108, China; (K.W.); (D.Z.)
- College of Environment and Resources, Fuzhou University, Fuzhou 350108, China;
| | - Ding Zhang
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Ocean College, Minjiang University, Fuzhou 350108, China; (K.W.); (D.Z.)
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Minghua Liu
- College of Environment and Resources, Fuzhou University, Fuzhou 350108, China;
| | - Qi Lin
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Ocean College, Minjiang University, Fuzhou 350108, China; (K.W.); (D.Z.)
| | - Bing-Chiuan Shiu
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Ocean College, Minjiang University, Fuzhou 350108, China; (K.W.); (D.Z.)
| |
Collapse
|
31
|
Ma J, Zhong L, Peng X, Xu Y, Sun R. Functional Chitosan-based Materials for Biological Applications. Curr Med Chem 2020; 27:4660-4672. [DOI: 10.2174/0929867327666200420091312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/24/2018] [Accepted: 11/15/2018] [Indexed: 11/22/2022]
Abstract
Background:
Bio-based materials, as the plentiful and renewable resources for
natural constituents which are essential for biomedical and pharmaceutical applications, have
not been exploited adequately yet. Chitosan is a naturally occurring polysaccharide obtained
from chitin, which has recently attracted widespread attention owing to its excellent activity.
This review shows the methods of extraction and modification of chitosan and provides recent
progress of synthesis and use of chitosan-based materials in biological applications.
Methods:
By consulting the research literature of the last decade, the recent progresses of
functional chitosan-based materials for biological applications were summarized and divided
into the methods of extraction chitosan, the chemical modification of chitosan, chitosan-based
materials for biological applications were described and discussed.
Results:
Chemical modification of chitosan broadens its applications, leading to developing
numerous forms of chitosan-based materials with excellent properties. The excellent bioactivity
of chitosan-based material enables it serves potential applications in biomedical fields.
Conclusion:
Chitosan-based materials not only exhibit the excellent activities of chitosan but
also show other appealing performance of combined materials, even give the good synergistic
properties of chitosan and its composite materials. Further studies are needed to define the
ideal physicochemical properties of chitosan for each type of biomedical applications. The
development of various functional chitosan-based materials for biological applications will be
an important field of research, and this kind of material has important commercial value.
Collapse
Affiliation(s)
- Jiliang Ma
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Linxin Zhong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yongkang Xu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Runcang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
32
|
Kurakula M, Koteswara Rao G. Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109919] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Narayanan V, Sumathi S, Narayanasamy ANR. Tricomponent composite containing copper–hydroxyapatite/chitosan/polyvinyl pyrrolidone for bone tissue engineering. J Biomed Mater Res A 2020; 108:1867-1880. [DOI: 10.1002/jbm.a.36950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
|
34
|
Khalil WA, Sherif HHA, Hemdan BA, Khalil SKH, Hotaby WE. Biocompatibility enhancement of graphene oxide-silver nanocomposite by functionalisation with polyvinylpyrrolidone. IET Nanobiotechnol 2020; 13:816-823. [PMID: 31625521 DOI: 10.1049/iet-nbt.2018.5321] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Several materials such as silver are used to enhance graphene oxide (GO) sheets antimicrobial activity. However, these toxic materials decrease its biocompatibility and hinder its usage in many biological applications. Therefore, there is an urgent need to develop nanocomposites that can preserve both the antimicrobial activity and biocompatibility simultaneously. This work highlights the importance of functionalisation of GO sheets using Polyvinylpyrrolidone (PVP) and decorating them with silver nanoparticles (AgNPs) in order to enhance their antimicrobial activity and biocompatibility at the same time. The structural and morphological characterisations were performed by UV-Visible, Fourier transform infrared (FTIR), and Raman spectroscopic techniques, X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM). The antimicrobial activities of the prepared samples against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans were studied. The cytotoxicity of prepared materials was tested against BJ1 normal skin fibroblasts. The results indicated that the decoration with AgNPs showed a significant increase in the antimicrobial activity of GO and FGO sheets, and functionalisation of GO sheets and GO-Ag nanocomposite with PVP improved the cell viability about 40 and 35%, respectively.
Collapse
Affiliation(s)
- Wafaa A Khalil
- Biophysics Department, Faculty of Science, University of Cairo, Cairo, Egypt
| | - Hadeer H A Sherif
- Spectroscopy Department, Physics Division, National Research Centre, Cairo, Egypt.
| | - Bahaa A Hemdan
- Environmental Microbiology Lab, Water Pollution Research Department, National Research Centre, Cairo, Egypt
| | - Safaa K H Khalil
- Spectroscopy Department, Physics Division, National Research Centre, Cairo, Egypt
| | - Walid El Hotaby
- Spectroscopy Department, Physics Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
35
|
Peng Z, Zhao T, Zhou Y, Li S, Li J, Leblanc RM. Bone Tissue Engineering via Carbon-Based Nanomaterials. Adv Healthc Mater 2020; 9:e1901495. [PMID: 31976623 DOI: 10.1002/adhm.201901495] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/21/2019] [Indexed: 01/14/2023]
Abstract
Bone tissue engineering (BTE) has received significant attention due to its enormous potential in treating critical-sized bone defects and related diseases. Traditional materials such as metals, ceramics, and polymers have been widely applied as BTE scaffolds; however, their clinical applications have been rather limited due to various considerations. Recently, carbon-based nanomaterials attract significant interests for their applications as BTE scaffolds due to their superior properties, including excellent mechanical strength, large surface area, tunable surface functionalities, high biocompatibility as well as abundant and inexpensive nature. In this article, recent studies and advancements on the use of carbon-based nanomaterials with different dimensions such as graphene and its derivatives, carbon nanotubes, and carbon dots, for BTE are reviewed. Current challenges of carbon-based nanomaterials for BTE and future trends in BTE scaffolds development are also highlighted and discussed.
Collapse
Affiliation(s)
- Zhili Peng
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Tianshu Zhao
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Shanghao Li
- MP Biomedicals, 9 Goddard, Irvine, CA, 92618, USA
| | - Jiaojiao Li
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| |
Collapse
|
36
|
Preparation of chitosan-based composites with urethane cross linkage and evaluation of their properties for using as wound healing dressing. Carbohydr Polym 2020; 230:115606. [DOI: 10.1016/j.carbpol.2019.115606] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/24/2019] [Accepted: 11/09/2019] [Indexed: 11/19/2022]
|
37
|
Ahmed J, Mulla M, Maniruzzaman M. Rheological and Dielectric Behavior of 3D-Printable Chitosan/Graphene Oxide Hydrogels. ACS Biomater Sci Eng 2020; 6:88-99. [PMID: 33463220 DOI: 10.1021/acsbiomaterials.9b00201] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of concentration, temperature, and the addition of graphene oxide (GO) nanosheets on the rheological and dielectric behavior of chitosan (CS) solutions, which influences the formation of the blend materials for various applications including 3D printing and packaging, was studied. Among tested acid solutions, the rheological behavior of 1% CS in acetic and lactic acid solutions was found to be similar, whereas the hydrochloric acid solution showed an abnormal drop in the dynamic moduli. Oscillatory rheology confirmed a distinct gel point for the CS solutions at below 10 °C. Both the G' and G″ of the solutions increased with the loading concentrations of GO between 0.5 and 1%, and it marginally dropped at the loading concentration of 2%, which is consistent with AFM observation. The steady-shear flow data fitted the Carreau model. Dielectric property measurement further confirmed that both the dielectric constant, ε' and the loss factor, ε″ for the CS in hydrochloric acid solutions behaved differently from others. Addition of GO significantly improved both ε' and ε″, indicating an improvement in the dielectric properties of CS/GO solutions. The dispersion of GO into the CS matrix was assessed by measuring XRD, FTIR, and microscopy of the film prepared from the solutions. Furthermore, the inclusion of GO into CS solution containing pluronic F127 (F127) base for potential 3D printing application showed positive results in terms of the printing accuracy and shape fidelity of the printed objects (films and scaffolds). The optimized composition with homogeneous particle distribution indicated that up to ∼50 mg/mL GO concentration (w/v of F127 base) was suitable to print both films and scaffolds for potential biomedical applications.
Collapse
Affiliation(s)
- Jasim Ahmed
- Food and Nutrition Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Mehrajfatema Mulla
- Food and Nutrition Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Mohammed Maniruzzaman
- Department of Pharmacy (Chemistry), School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom
| |
Collapse
|
38
|
Azarniya A, Tamjid E, Eslahi N, Simchi A. Modification of bacterial cellulose/keratin nanofibrous mats by a tragacanth gum-conjugated hydrogel for wound healing. Int J Biol Macromol 2019; 134:280-289. [DOI: 10.1016/j.ijbiomac.2019.05.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/21/2019] [Accepted: 05/04/2019] [Indexed: 12/22/2022]
|
39
|
Multi-Functional Electrospun Nanofibers from Polymer Blends for Scaffold Tissue Engineering. FIBERS 2019. [DOI: 10.3390/fib7070066] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electrospinning and polymer blending have been the focus of research and the industry for their versatility, scalability, and potential applications across many different fields. In tissue engineering, nanofiber scaffolds composed of natural fibers, synthetic fibers, or a mixture of both have been reported. This review reports recent advances in polymer blended scaffolds for tissue engineering and the fabrication of functional scaffolds by electrospinning. A brief theory of electrospinning and the general setup as well as modifications used are presented. Polymer blends, including blends with natural polymers, synthetic polymers, mixture of natural and synthetic polymers, and nanofiller systems, are discussed in detail and reviewed.
Collapse
|
40
|
Eivazzadeh-Keihan R, Maleki A, de la Guardia M, Bani MS, Chenab KK, Pashazadeh-Panahi P, Baradaran B, Mokhtarzadeh A, Hamblin MR. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J Adv Res 2019; 18:185-201. [PMID: 31032119 PMCID: PMC6479020 DOI: 10.1016/j.jare.2019.03.011] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/23/2019] [Accepted: 03/23/2019] [Indexed: 01/29/2023] Open
Abstract
Tissue engineering is a rapidly-growing approach to replace and repair damaged and defective tissues in the human body. Every year, a large number of people require bone replacements for skeletal defects caused by accident or disease that cannot heal on their own. In the last decades, tissue engineering of bone has attracted much attention from biomedical scientists in academic and commercial laboratories. A vast range of biocompatible advanced materials has been used to form scaffolds upon which new bone can form. Carbon nanomaterial-based scaffolds are a key example, with the advantages of being biologically compatible, mechanically stable, and commercially available. They show remarkable ability to affect bone tissue regeneration, efficient cell proliferation and osteogenic differentiation. Basically, scaffolds are templates for growth, proliferation, regeneration, adhesion, and differentiation processes of bone stem cells that play a truly critical role in bone tissue engineering. The appropriate scaffold should supply a microenvironment for bone cells that is most similar to natural bone in the human body. A variety of carbon nanomaterials, such as graphene oxide (GO), carbon nanotubes (CNTs), fullerenes, carbon dots (CDs), nanodiamonds and their derivatives that are able to act as scaffolds for bone tissue engineering, are covered in this review. Broadly, the ability of the family of carbon nanomaterial-based scaffolds and their critical role in bone tissue engineering research are discussed. The significant stimulating effects on cell growth, low cytotoxicity, efficient nutrient delivery in the scaffold microenvironment, suitable functionalized chemical structures to facilitate cell-cell communication, and improvement in cell spreading are the main advantages of carbon nanomaterial-based scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Milad Salimi Bani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Karim Khanmohammadi Chenab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Paria Pashazadeh-Panahi
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan Province, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
41
|
Gusev A, Zakharova O, Vasyukova I, Muratov DS, Rybkin I, Bratashov D, Lapanje A, Il'inikh I, Kolesnikov E, Kuznetsov D. Effect of GO on bacterial cells: Role of the medium type and electrostatic interactions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:275-281. [DOI: 10.1016/j.msec.2019.01.093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 12/29/2018] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
|
42
|
Asadi H, Ghaee A, Nourmohammadi J, Mashak A. Electrospun zein/graphene oxide nanosheet composite nanofibers with controlled drug release as antibacterial wound dressing. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1552861] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hamid Asadi
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Jhamak Nourmohammadi
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Arezou Mashak
- Department of novel drug delivery systems, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
43
|
Kalantari K, Afifi AM, Jahangirian H, Webster TJ. Biomedical applications of chitosan electrospun nanofibers as a green polymer - Review. Carbohydr Polym 2018; 207:588-600. [PMID: 30600043 DOI: 10.1016/j.carbpol.2018.12.011] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023]
Abstract
This review outlines new developments in the biomedical applications of environmentally friendly ('green') chitosan and chitosan-blend electrospun nanofibers. In recent years, research in functionalized nanofibers has contributed to the development of new drug delivery systems and improved scaffolds for regenerative medicine, which is currently one of the most rapidly growing fields in all of the life sciences. Chitosan is a biopolymer with non-toxic, antibacterial, biodegradable and biocompatible properties. Due to these properties, they are widely applied for biomedical applications such as drug delivery, tissue engineering scaffolds, wound dressings, and antibacterial coatings. Electrospinning is a novel technique for chitosan nanofiber fabrication. These nanofibers can be used in unique applications in biomedical fields due to their high surface area and porosity. The present work reviews recent reports on the biomedical applications of chitosan-based nanofibers in detail.
Collapse
Affiliation(s)
- Katayoon Kalantari
- Centre of Advanced Materials (CAM), Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Amalina M Afifi
- Centre of Advanced Materials (CAM), Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hossein Jahangirian
- Department of Chemical Engineering, 313 Snell Engineering Center, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Thomas J Webster
- Department of Chemical Engineering, 313 Snell Engineering Center, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
44
|
Aydogdu MO, Ekren N, Suleymanoglu M, Erdem-Kuruca S, Lin CC, Bulbul E, Erdol MN, Oktar FN, Terzi UK, Kilic O, Gunduz O. Novel electrospun polycaprolactone/graphene oxide/Fe3O4 nanocomposites for biomedical applications. Colloids Surf B Biointerfaces 2018; 172:718-727. [DOI: 10.1016/j.colsurfb.2018.09.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
|
45
|
Zhang H, Xi S, Han Y, Liu L, Dong B, Zhang Z, Chen Q, Min W, Huang Q, Li Y, Liu J. Determining electrospun morphology from the properties of protein-polymer solutions. SOFT MATTER 2018; 14:3455-3462. [PMID: 29682643 DOI: 10.1039/c7sm02203d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Integrating natural macromolecules, e.g. proteins, is a progressive trend in the fabrication of biocompatible sub-micrometer fibers with tunable diameters using the electrospinning technique. The correlation between solution properties and electrospun morphology is critical; it is quite clear for synthetic linear polymer solutions but remains uncertain for solutions with protein. Here, we report the determination of electrospun morphology in protein-polymer solutions of poly(ethylene oxide) (PEO) and zein, a storage protein from corn. The viscosity of the zein/PEO mixed solutions can be well described using the Lederer-Roegiers equation and decreases with the increase of the fraction of zein. The surface tension sharply decreases above a critical concentration at the saturation of the interfacial monolayer. Correspondingly, the different electrospun morphologies-from bead, coexisting bead and fiber, to fiber and ribbon-were mapped onto a ternary phase diagram and a viscosity contour plot. Such coupling provides a clear way to determine the electrospun morphology from solution properties. The occurrence of electrospun fibers partially follows two empirical rules, while the critical point revealed from surface tension has the best approximation. The diameters of electrospun fibers were found to have a scaling relationship against concentration, zero-shear viscosity and surface tension of solutions. These scaling exponents were compared with those from typical polymer solutions. The analysis suggests that aqueous ethanol gives different solvent qualities to zein and PEO solutions, resulting in the irregular shape in the phase diagram that correlates solution properties and electrospun morphologies.
Collapse
Affiliation(s)
- Hao Zhang
- College of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, 130118, P. R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cheng Z, Landish B, Chi Z, Nannan C, Jingyu D, Sen L, Xiangjin L. 3D printing hydrogel with graphene oxide is functional in cartilage protection by influencing the signal pathway of Rank/Rankl/OPG. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 82:244-252. [DOI: 10.1016/j.msec.2017.08.069] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/10/2017] [Accepted: 08/16/2017] [Indexed: 11/17/2022]
|
47
|
de Sousa M, Martins CHZ, Franqui LS, Fonseca LC, Delite FS, Lanzoni EM, Martinez DST, Alves OL. Covalent functionalization of graphene oxide with d-mannose: evaluating the hemolytic effect and protein corona formation. J Mater Chem B 2018; 6:2803-2812. [DOI: 10.1039/c7tb02997g] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Graphene oxide mannosylation impacts on RBCs toxicity and plasma protein interactions.
Collapse
Affiliation(s)
- Marcelo de Sousa
- Laboratory of Solid State Chemistry
- Institute of Chemistry
- University of Campinas
- Brazil
| | - Carlos H. Z. Martins
- Laboratory of Solid State Chemistry
- Institute of Chemistry
- University of Campinas
- Brazil
| | - Lidiane S. Franqui
- Brazilian Nanotechnology National Laboratory (LNNano)
- Brazilian Center for Research in Energy and Materials (CNPEM)
- Campinas
- Brazil
- School of Technology
| | - Leandro C. Fonseca
- Laboratory of Solid State Chemistry
- Institute of Chemistry
- University of Campinas
- Brazil
| | | | - Evandro M. Lanzoni
- Brazilian Nanotechnology National Laboratory (LNNano)
- Brazilian Center for Research in Energy and Materials (CNPEM)
- Campinas
- Brazil
| | - Diego Stéfani T. Martinez
- Laboratory of Solid State Chemistry
- Institute of Chemistry
- University of Campinas
- Brazil
- Brazilian Nanotechnology National Laboratory (LNNano)
| | - Oswaldo L. Alves
- Laboratory of Solid State Chemistry
- Institute of Chemistry
- University of Campinas
- Brazil
| |
Collapse
|
48
|
You MH, Yan X, Zhang J, Wang XX, He XX, Yu M, Ning X, Long YZ. Colorimetric Humidity Sensors Based on Electrospun Polyamide/CoCl 2 Nanofibrous Membranes. NANOSCALE RESEARCH LETTERS 2017; 12:360. [PMID: 28532125 PMCID: PMC5438331 DOI: 10.1186/s11671-017-2139-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/11/2017] [Indexed: 05/29/2023]
Abstract
Humidity indicators based on composite polyamide 66/cobalt chloride (PA66/CoCl2) nanofibrous membranes (NFMs) were successfully fabricated by electrospinning. A series of NFMs with various weight percentage of CoCl2 to PA66 were prepared, and their humidity sensitivity based on color changing and quartz crystal microbalance (QCM) were studied. Due to the color change property of cobalt chloride, the as-spun composite NFMs show obviously macroscopic color change from blue to pink as relative humidity (RH) increasing from 12.4 to 97.2%. Moreover, the QCM detection showed a linear dependence on the RH changing and exhibited short response/recovery time (less than 65.4 s/11 s), small hysteresis (less than 11%), good reproducibility, and stability. Owing to the above double sensitive mechanism on RH, the PA66/CoCl2 composite NFM may show great potential applications from meticulous to coarse.
Collapse
Affiliation(s)
- Ming-Hao You
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071 China
| | - Xu Yan
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071 China
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao, 266071 China
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071 China
| | - Xiao-Xiong Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071 China
| | - Xiao-Xiao He
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071 China
| | - Miao Yu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071 China
- Department of Mechanical Engineering, Columbia University, New York, NY 10027 USA
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao, 266071 China
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071 China
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
49
|
Zhang Q, Wu Z, Li N, Pu Y, Wang B, Zhang T, Tao J. Advanced review of graphene-based nanomaterials in drug delivery systems: Synthesis, modification, toxicity and application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1363-1375. [DOI: 10.1016/j.msec.2017.03.196] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 11/30/2022]
|
50
|
Muazim K, Hussain Z. Graphene oxide — A platform towards theranostics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1274-1288. [DOI: 10.1016/j.msec.2017.02.121] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/02/2017] [Accepted: 02/24/2017] [Indexed: 11/24/2022]
|