1
|
Akobundu UU, Ifijen IH, Duru P, Igboanugo JC, Ekanem I, Fagbolade M, Ajayi AS, George M, Atoe B, Matthews JT. Exploring the role of strontium-based nanoparticles in modulating bone regeneration and antimicrobial resistance: a public health perspective. RSC Adv 2025; 15:10902-10957. [PMID: 40196828 PMCID: PMC11974500 DOI: 10.1039/d5ra00308c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
Strontium-based nanoparticles (SrNPs) have emerged as a versatile and promising class of nanomaterials with a wide range of potential applications in healthcare, particularly in the fields of bone regeneration and combating antimicrobial resistance (AMR). Recent research has highlighted the unique properties of SrNPs, including their ability to promote osteogenesis, enhance bone healing, and exhibit strong antimicrobial activity against multidrug-resistant pathogens. These attributes position SrNPs as innovative therapeutic agents with the potential to address challenges such as osteoporosis, bone infections, and the growing global AMR crisis. This comprehensive review critically examines the dual functional potential of SrNPs by analyzing their synthesis methods, physicochemical properties, biological interactions, and translational applications in orthopedic and antimicrobial therapies. Specifically, the review emphasizes SrNPs' ability to enhance bone density, accelerate fracture healing, and reduce the economic burden associated with prolonged treatment and rehabilitation for bone-related diseases. Furthermore, their novel application as antimicrobial agents is explored, highlighting their ability to target bacterial metabolic pathways and combat the rise of antibiotic resistance. The review focuses on the synthesis methods used for SrNPs, particularly co-precipitation, hydrothermal synthesis, and sol-gel techniques. Each method is explored for its ability to produce SrNPs with controlled size, shape, and functionality, while addressing their scalability, cost-effectiveness, and environmental impact. Additionally, the toxicological risks associated with SrNPs are also explored, emphasizing the need for comprehensive preclinical and clinical evaluations to ensure safety for humans and ecosystems. The regulatory and ethical landscape of SrNPs highlights the need for global safety protocols, equitable access, and international cooperation to ensure ethical nanotechnology use. Environmental fate studies address bioaccumulation risks and ecological concerns. This review identifies opportunities and challenges in advancing bone regenerative medicine and combating AMR while emphasizing sustainable and ethical SrNP development for researchers, policymakers, and stakeholders.
Collapse
Affiliation(s)
| | - Ikhazuagbe H Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo Benin City Nigeria
| | - Prince Duru
- Emergency Medicine Department, University of Tennessee Medical Center 1924 Alcoa Hwy Knoxville TN 37920 USA
| | - Juliet C Igboanugo
- Department of Health, Human Performance and Recreation, University of Arkansas 155 Stadium Drive Fayetteville AR 72701 USA
| | - Innocent Ekanem
- College of Engineering Technology and SHEQ Specialist-Rocjhester Gas and Electric (RG&E), Rochester Institute of Technology (RIT) Rochester NY USA
| | - Moshood Fagbolade
- Department of Biological Sciences, Mississippi State University 295 Lee Boulevard Mississippi State MS 39762 USA
| | | | - Mayowa George
- Biological and Agricultural Engineering, Kansas State University 1016 Seaton Hall Manhattan KS 66506 USA
| | - Best Atoe
- Atoe Specialist Medical Centre Limited 54, Atoe Street, Off Adolor College Road, Ugbowo Benin City Edo State Nigeria
| | - John Tsado Matthews
- Department of Chemistry, Ibrahim Badamasi Babangida University Lapai Niger State Nigeria
| |
Collapse
|
2
|
Ozgen A, Kilic B, Ghaffarlou M, Karaaslan C, Aydin HM. Injectable carboxymethyl chitosan/oxidized dextran hydrogels containing zoledronic acid modified strontium hydroxyapatite nanoparticles. RSC Adv 2025; 15:4014-4028. [PMID: 39926244 PMCID: PMC11799889 DOI: 10.1039/d4ra08123d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/10/2025] [Indexed: 02/11/2025] Open
Abstract
Nanocomposite hydrogels have potential in bone regeneration due to the inorganic and polymeric material content. In this study, new types of nanocomposite hydrogels composed of zoledronic acid/strontium hydroxyapatite nanoparticles and carboxymethyl chitosan/oxidized dextran (CMC/OD) hydrogels were reported. Pure hydroxyapatite, 5%, 10% and 15% (w/w) strontium-substituted strontium hydroxyapatite nanoparticles were produced and then modified with zoledronic acid at ratios of 5% to 7.5% (w/w). These modified structures were then incorporated into CMC/OD hydrogels. Zoledronic acid modified strontium hydroxyapatite nanoparticles were characterized using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD). CMC/OD structures were investigated using Fourier Transform Infrared Analysis (FTIR), Scanning Electron Microscopy (SEM). The physical properties of the hydrogels were determined via degradation behavior and rheological measurements. Cell-material interactions were investigated in vitro. The results showed that the incorporation of hydroxyapatite nanoparticles into CMC would significantly improve the rheological properties. The addition of strontium to hydroxyapatite nanoparticles significantly enhanced cell proliferation. In addition, a significant increase in alkaline phosphatase (ALP) and calcium deposition was observed with the addition of zoledronic acid. In conclusion, the nanocomposite hydrogels of CMC/OD containing zoledronic acid modified strontium hydroxyapatite demonstrate potential for orthopedic and craniofacial applications due to their superior properties, including the ability to be easily injected into targeted areas, potent antibacterial activity that helps prevent infections and remarkable self-healing capabilities that promote tissue regeneration and repair.
Collapse
Affiliation(s)
- Alkin Ozgen
- Bioengineering Division, Institute of Science, Hacettepe University Beytepe Ankara 06800 Turkey
| | - Busra Kilic
- Molecular Biology Section, Department of Biology, Faculty of Science, Hacettepe University Beytepe Ankara 06800 Turkey
| | - Mohammadreza Ghaffarlou
- Bioengineering Division, Institute of Science, Hacettepe University Beytepe Ankara 06800 Turkey
| | - Cagatay Karaaslan
- Molecular Biology Section, Department of Biology, Faculty of Science, Hacettepe University Beytepe Ankara 06800 Turkey
| | - Halil Murat Aydin
- Bioengineering Division, Institute of Science, Hacettepe University Beytepe Ankara 06800 Turkey
- Centre for Bioengineering, Hacettepe University Beytepe Ankara 06800 Turkey
| |
Collapse
|
3
|
Diputra AH, Hariscandra Dinatha IK, Yusuf Y. A comparative X-ray diffraction analysis of Sr 2+substituted hydroxyapatite from sand lobster shell waste using various methods. Heliyon 2025; 11:e41781. [PMID: 39877603 PMCID: PMC11773041 DOI: 10.1016/j.heliyon.2025.e41781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
This study aims to investigate the crystallographic properties of hydroxyapatite (HAp) and strontium-substituted hydroxyapatite (SrHAp) obtained from sand lobster shells (SLS) using various analytical methods. HAp and SrHAp were synthesized by the hydrothermal method using sand lobster (Panulirus homarus) shell waste as a calcium precursor. SLS were calcined at 0 °C, 600 °C, 800 °C, and 1000 °C and characterized by X-ray diffraction (XRD). HAp and SrHAp were analyzed by XRD and transmission electron microscopy (TEM). XRD results revealed that SLS calcined at 1000 °C displayed a Ca(OH)2 phase, while those calcined at other temperatures showed a CaCO3 phase. The characterization also verified the diffraction patterns of HAp and SrHAp according to the reference model. Various methods, including the Scherrer method, linear straight-line Scherrer method, Monshi-Scherrer method, Williamson-Hall plot, size-strain plot, and Halder-Wagner method, were employed to investigate the microstructure parameters (crystallite size and microstrain). All methods resulted in varied yet comparable results of crystallite size, except for the linear straight-line Scherrer method. The TEM results showed that the particle sizes of HAp and SrHAp were approximately 130 nm. In this study, the W-H plot was regarded as the best method for providing additional information on anisotropy elasticity and consistent crystallite size results.
Collapse
Affiliation(s)
- Arian Hermawan Diputra
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - I Kadek Hariscandra Dinatha
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Yusril Yusuf
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
4
|
Siswomihardjo W, Ana ID, Ardhani R. Fabrication of strontium ions substituted hydroxyapatite from the shells of the golden apple snail (Pomacea canaliculate L) with enhanced osteoconductive and improved biological properties. Dent Mater J 2024; 43:643-655. [PMID: 39198176 DOI: 10.4012/dmj.2023-246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
The use of biogenic calcium ions for the source of hydroxyapatite (HAp or HA) are very common and have been being explored extensively. However, it usually results high crystalline HA, due to high reaction and decomposition temperatures. In this study, strontium (Sr2+) doped HA from the golden apple snail shells (Pomacea canaliculate L) was successfully synthesized. It was indicated that Sr ions completely replaced calcium (Ca) ions, increased the lattice constant, and consecutively reduced HA crystallinity. Smaller crystal size and β-type carbonate (CO32-) ions substitution with Ca/P close to 1.67 molar ratio that mimic bone crystals were observed in Sr-doped HA, with significant increased rate of MC3T3-E1 cells viability and higher IC50 values. It was proven that Sr ions substitution resolved challenges on the use of biogenic sources for HA fabrication. Further in vivo study is needed to continue to valorise the results into real biomedical and clinical applications.
Collapse
Affiliation(s)
- Widowati Siswomihardjo
- Postgraduate Program of Dental Sciences, Faculty of Dentistry, Universitas Gadjah Mada
- Department of Dental Biomaterials, Faculty of Dentistry, Universitas Gadjah Mada
| | - Ika Dewi Ana
- Department of Dental Biomedical Science, Faculty of Dentistry, Universitas Gadjah Mada
- Research Collaboration Center for Biomedical Scaffolds, National Research and Innovation Agency (BRIN) and Universitas Gadjah Mada (UGM)
| | - Retno Ardhani
- Department of Dental Biomedical Science, Faculty of Dentistry, Universitas Gadjah Mada
| |
Collapse
|
5
|
Pálos V, Nagy KS, Pázmány R, Juriga-Tóth K, Budavári B, Domokos J, Szabó D, Zsembery Á, Jedlovszky-Hajdu A. Electrospun polysuccinimide scaffolds containing different salts as potential wound dressing material. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:781-796. [PMID: 38979523 PMCID: PMC11228618 DOI: 10.3762/bjnano.15.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
In this research, we applied electrospinning to create a two-component biodegradable polymeric scaffold containing polysuccinimide (PSI) and antibacterial salts. Antibacterial agents for therapeutical purposes mostly contain silver ions which are associated with high environmental impact and, in some cases, may cause undesired immune reactions. In our work, we prepared nanofibrous systems containing antibacterial and tissue-regenerating salts of zinc acetate or strontium nitrate in different concentrations, whose structures may be suitable for developing biomedical wound dressing systems in the future. Several experiments have been conducted to optimize the physicochemical, mechanical, and biological properties of the scaffolds developed for application as wound dressings. The scaffold systems obtained by PSI synthesis, salt addition, and fiber formation were first investigated by scanning electron microscopy. In almost all cases, different salts caused a decrease in the fiber diameter of PSI polymer-based systems (<500 nm). Fourier-transform infrared spectroscopy was applied to verify the presence of salts in the scaffolds and to determine the interaction between the salt and the polymer. Another analysis, energy-dispersive X-ray spectroscopy, was carried out to determine strontium and zinc atoms in the scaffolds. Our result showed that the salts influence the mechanical properties of the polymer scaffold, both in terms of specific load capacity and relative elongation values. According to the dissolution experiments, the whole amount of strontium nitrate was dissolved from the scaffold in 8 h; however, only 50% of the zinc acetate was dissolved. In addition, antibacterial activity tests were performed with four different bacterial strains relevant to skin surface injuries, leading to the appearance of inhibition zones around the scaffold discs in most cases. We also investigated the potential cytotoxicity of the scaffolds on human tumorous and healthy cells. Except for the ones containing zinc acetate salt, the scaffolds are not cytotoxic to either tumor or healthy cells.
Collapse
Affiliation(s)
- Veronika Pálos
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Krisztina S Nagy
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Rita Pázmány
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Krisztina Juriga-Tóth
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Bálint Budavári
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Judit Domokos
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Dóra Szabó
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Angela Jedlovszky-Hajdu
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| |
Collapse
|
6
|
Aminmansour S, Gomes de Carvalho AB, Medeiros Cardoso L, Anselmi C, Rahimnejad M, Dal-Fabbro R, Benavides E, Campos TMB, Borges ALS, Bottino MC. Strontium-Doped Bioglass-Laden Gelatin Methacryloyl Hydrogels for Vital Pulp Therapy. J Funct Biomater 2024; 15:105. [PMID: 38667562 PMCID: PMC11051416 DOI: 10.3390/jfb15040105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to develop gelatin methacryloyl (GelMA)-injectable hydrogels incorporated with 58S bioactive glass/BG-doped with strontium for vital pulp therapy applications. GelMA hydrogels containing 0% (control), 5%, 10%, and 20% BG (w/v) were prepared. Their morphological and chemical properties were evaluated by scanning electron microscopy/SEM, energy dispersive spectroscopy/EDS, and Fourier transform infrared spectroscopy/FTIR (n = 3). Their swelling capacity and degradation ratio were also measured (n = 4). Cell viability (n = 8), mineralized matrix formation, cell adhesion, and spreading (n = 6) on DPSCs were evaluated. Data were analyzed using ANOVA/post hoc tests (α = 5%). SEM and EDS characterization confirmed the incorporation of BG particles into the hydrogel matrix, showing GelMA's (C, O) and BG's (Si, Cl, Na, Sr) chemical elements. FTIR revealed the main chemical groups of GelMA and BG, as ~1000 cm-1 corresponds to Si-O and ~1440 cm-1 to C-H. All the formulations were degraded by day 12, with a lower degradation ratio observed for GelMA+BG20%. Increasing the concentration of BG resulted in a lower mass swelling ratio. Biologically, all the groups were compatible with cells (p > 0.6196), and cell adhesion increased over time, irrespective of BG concentration, indicating great biocompatibility. GelMA+BG5% demonstrated a higher deposition of mineral nodules over 21 days (p < 0.0001), evidencing the osteogenic potential of hydrogels. GelMA hydrogels incorporated with BG present great cytocompatibility, support cell adhesion, and have a clinically relevant degradation profile and suitable mineralization potential, supporting their therapeutic potential as promising biomaterials for pulp capping.
Collapse
Affiliation(s)
- Sepideh Aminmansour
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.); (A.B.G.d.C.); (L.M.C.); (C.A.); (M.R.); (R.D.-F.)
| | - Ana Beatriz Gomes de Carvalho
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.); (A.B.G.d.C.); (L.M.C.); (C.A.); (M.R.); (R.D.-F.)
- Department of Dental Materials and Prosthodontics, Sao Paulo State University, Sao Jose dos Campos 12245-000, SP, Brazil;
| | - Lais Medeiros Cardoso
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.); (A.B.G.d.C.); (L.M.C.); (C.A.); (M.R.); (R.D.-F.)
- Department of Dental Materials and Prosthodontics, Sao Paulo State University, Araraquara 14801-903, SP, Brazil
| | - Caroline Anselmi
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.); (A.B.G.d.C.); (L.M.C.); (C.A.); (M.R.); (R.D.-F.)
- Department of Morphology and Pediatric Dentistry, Sao Paulo State University, Araraquara 14801-903, SP, Brazil
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.); (A.B.G.d.C.); (L.M.C.); (C.A.); (M.R.); (R.D.-F.)
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.); (A.B.G.d.C.); (L.M.C.); (C.A.); (M.R.); (R.D.-F.)
| | - Erika Benavides
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | | | - Alexandre Luiz Souto Borges
- Department of Dental Materials and Prosthodontics, Sao Paulo State University, Sao Jose dos Campos 12245-000, SP, Brazil;
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (S.A.); (A.B.G.d.C.); (L.M.C.); (C.A.); (M.R.); (R.D.-F.)
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Cai R, Shan Y, Du F, Miao Z, Zhu L, Hang L, Xiao L, Wang Z. Injectable hydrogels as promising in situ therapeutic platform for cartilage tissue engineering. Int J Biol Macromol 2024; 261:129537. [PMID: 38278383 DOI: 10.1016/j.ijbiomac.2024.129537] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/01/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Injectable hydrogels are gaining prominence as a biocompatible, minimally invasive, and adaptable platform for cartilage tissue engineering. Commencing with their synthesis, this review accentuates the tailored matrix formulations and cross-linking techniques essential for fostering three-dimensional cell culture and melding with complex tissue structures. Subsequently, it spotlights the hydrogels' enhanced properties, highlighting their augmented functionalities and broadened scope in cartilage tissue repair applications. Furthermore, future perspectives are advocated, urging continuous innovation and exploration to surmount existing challenges and harness the full clinical potential of hydrogels in regenerative medicine. Such advancements are crucial for validating the long-term efficacy and safety of hydrogels, positioning them as a promising direction in regenerative medicine to address cartilage-related ailments.
Collapse
Affiliation(s)
- Rong Cai
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China
| | - Yisi Shan
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China
| | - Fengyi Du
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212013, China
| | - Zhiwei Miao
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China
| | - Like Zhu
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China
| | - Li Hang
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China
| | - Long Xiao
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China.
| | - Zhirong Wang
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China.
| |
Collapse
|
8
|
Galotta A, Demir Ö, Marsan O, Sglavo VM, Loca D, Combes C, Locs J. Apatite/Chitosan Composites Formed by Cold Sintering for Drug Delivery and Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:441. [PMID: 38470772 DOI: 10.3390/nano14050441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
In the biomedical field, nanocrystalline hydroxyapatite is still one of the most attractive candidates as a bone substitute material due to its analogies with native bone mineral features regarding chemical composition, bioactivity and osteoconductivity. Ion substitution and low crystallinity are also fundamental characteristics of bone apatite, making it metastable, bioresorbable and reactive. In the present work, biomimetic apatite and apatite/chitosan composites were produced by dissolution-precipitation synthesis, using mussel shells as a calcium biogenic source. With an eye on possible bone reconstruction and drug delivery applications, apatite/chitosan composites were loaded with strontium ranelate, an antiosteoporotic drug. Due to the metastability and temperature sensitivity of the produced composites, sintering could be carried out by conventional methods, and therefore, cold sintering was selected for the densification of the materials. The composites were consolidated up to ~90% relative density by applying a uniaxial pressure up to 1.5 GPa at room temperature for 10 min. Both the synthesised powders and cold-sintered samples were characterised from a physical and chemical point of view to demonstrate the effective production of biomimetic apatite/chitosan composites from mussel shells and exclude possible structural changes after sintering. Preliminary in vitro tests were also performed, which revealed a sustained release of strontium ranelate for about 19 days and no cytotoxicity towards human osteoblastic-like cells (MG63) exposed up to 72 h to the drug-containing composite extract.
Collapse
Affiliation(s)
- Anna Galotta
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Öznur Demir
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Riga Technical University, Pulka St. 3, LV-1007 Riga, Latvia
| | - Olivier Marsan
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 Allée Emile Monso, BP 44362, CEDEX 4, 31030 Toulouse, France
| | - Vincenzo M Sglavo
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Dagnija Loca
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Riga Technical University, Pulka St. 3, LV-1007 Riga, Latvia
| | - Christèle Combes
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 Allée Emile Monso, BP 44362, CEDEX 4, 31030 Toulouse, France
| | - Janis Locs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Riga Technical University, Pulka St. 3, LV-1007 Riga, Latvia
| |
Collapse
|
9
|
Kaczmarek-Szczepańska B, Zasada L, Wekwejt M, Brzezinska MS, Michno A, Ronowska A, Ciesielska M, Kovtun G, Cuberes MT. PVA-Based Films with Strontium Titanate Nanoparticles Dedicated to Wound Dressing Application. Polymers (Basel) 2024; 16:484. [PMID: 38399862 PMCID: PMC10893095 DOI: 10.3390/polym16040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Bioactive materials may be applied in tissue regeneration, and an example of such materials are wound dressings, which are used to accelerate skin healing, especially after trauma. Here, we proposed a novel dressing enriched by a bioactive component. The aim of our study was to prepare and characterize poly(vinyl alcohol) films modified with strontium titanate nanoparticles. The physicochemical properties of films were studied, such as surface free energy and surface roughness, as well as the mechanical properties of materials. Moreover, different biological studies were carried out, like in vitro hemo- and cyto-compatibility, biocidal activity, and anti-biofilm formation. Also, the degradation of the materials' utilization possibilities and enzymatic activity in compost were checked. The decrease of surface free energy, increase of roughness, and improvement of mechanical strength were found after the addition of nanoparticles. All developed films were cyto-compatible, and did not induce a hemolytic effect on the human erythrocytes. The PVA films containing the highest concentration of STO (20%) reduced the proliferation of Eschericha coli, Pseudomonas aeruginosa, and Staphylococcus aureus significantly. Also, all films were characterized by surface anti-biofilm activity, as they significantly lowered the bacterial biofilm abundance and its dehydrogenase activity. The films were degraded by the compost microorganism. However, PVA with the addition of 20%STO was more difficult to degrade. Based on our results, for wound dressing application, we suggest using bioactive films based on PVA + 20%STO, as they were characterized by high antibacterial properties, favorable physicochemical characteristics, and good biocompatibility with human cells.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (L.Z.); (M.C.)
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (L.Z.); (M.C.)
| | - Marcin Wekwejt
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland;
| | - Anna Michno
- Department of Molecular Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (A.M.); (A.R.)
| | - Anna Ronowska
- Department of Molecular Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (A.M.); (A.R.)
| | - Magdalena Ciesielska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (L.Z.); (M.C.)
| | - Ganna Kovtun
- Institute of Magnetism NAS of Ukraine and MES of Ukraine, Blvd. Acad. Vernadsky 36-b, 03142 Kyiv, Ukraine;
- Department of Applied Mechanics and Project Engineering, Mining and Industrial Engineering School of Almaden, University of Castilla-La Mancha, Plaza Manuel Meca 1, 13400 Almadén, Spain;
| | - M. Teresa Cuberes
- Department of Applied Mechanics and Project Engineering, Mining and Industrial Engineering School of Almaden, University of Castilla-La Mancha, Plaza Manuel Meca 1, 13400 Almadén, Spain;
| |
Collapse
|
10
|
Bauer L, Antunović M, Ivanković H, Ivanković M. Biomimetic Scaffolds Based on Mn 2+-, Mg 2+-, and Sr 2+-Substituted Calcium Phosphates Derived from Natural Sources and Polycaprolactone. Biomimetics (Basel) 2024; 9:30. [PMID: 38248604 PMCID: PMC10813741 DOI: 10.3390/biomimetics9010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/18/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
The occurrence of bone disorders is steadily increasing worldwide. Bone tissue engineering (BTE) has emerged as a promising alternative to conventional treatments of bone defects, developing bone scaffolds capable of promoting bone regeneration. In this research, biomimetic scaffolds based on ion-substituted calcium phosphates, derived from cuttlefish bone, were prepared using a hydrothermal method. To synthesize Mn2+-substituted scaffolds, three different manganese concentrations (corresponding to 1, 2.5, and 5 mol% Mn substitutions for Ca into hydroxyapatite) were used. Also, syntheses with the simultaneous addition of an equimolar amount (1 mol%) of two (Mg2+ and Sr2+) or three ions (Mn2+, Mg2+, and Sr2+) were performed. A chemical, structural, and morphological characterization was carried out using X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The effects of the ion substitutions on the lattice parameters, crystallite sizes, and fractions of the detected phases were discussed. Multi-substituted (Mn2+, Mg2+, and Sr2+) scaffolds were coated with polycaprolactone (PCL) using simple vacuum impregnation. The differentiation of human mesenchymal stem cells (hMSCs), cultured on the PCL-coated scaffold, was evaluated using histology, immunohistochemistry, and reverse transcription-quantitative polymerase chain reaction analyses. The expression of collagen I, alkaline phosphatase, and dentin matrix protein 1 was detected. The influence of PCL coating on hMSCs behavior is discussed.
Collapse
Affiliation(s)
| | | | | | - Marica Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10001 Zagreb, Croatia; (L.B.); (M.A.); (H.I.)
| |
Collapse
|
11
|
Stipniece L, Ramata-Stunda A, Vecstaudza J, Kreicberga I, Livkisa D, Rubina A, Sceglovs A, Salma-Ancane K. A Comparative Study on Physicochemical Properties and In Vitro Biocompatibility of Sr-Substituted and Sr Ranelate-Loaded Hydroxyapatite Nanoparticles. ACS APPLIED BIO MATERIALS 2023; 6:5264-5281. [PMID: 38039078 PMCID: PMC10731655 DOI: 10.1021/acsabm.3c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023]
Abstract
Synthetic hydroxyapatite nanoparticles (nHAp) possess compositional and structural similarities to those of bone minerals and play a key role in bone regenerative medicine. Functionalization of calcium phosphate biomaterials with Sr, i.e., bone extracellular matrix trace element, has been proven to be an effective biomaterial-based strategy for promoting osteogenesis in vitro and in vivo. Functionalizing nHAp with Sr2+ ions or strontium ranelate (SrRAN) can provide favorable bone tissue regeneration by locally delivering bioactive molecules to the bone defect microenvironment. Moreover, administering an antiosteoporotic drug, SrRAN, directly into site-specific bone defects could significantly reduce the necessary drug dosage and the risk of possible side effects. Our study evaluated the impact of the Sr source (Sr2+ ions and SrRAN) used to functionalize nHAp by wet precipitation on its in vitro cellular activities. The systematic comparison of physicochemical properties, in vitro Sr2+ and Ca2+ ion release, and their effect on in vitro cellular activities of the developed Sr-functionalized nHAp was performed. The ion release tests in TRIS-HCl demonstrated a 21-day slow and continuous release of the Sr2+ and Ca2+ ions from both Sr-substituted nHAp and SrRAN-loaded HAp. Also, SrRAN and Sr2+ ion release kinetics were evaluated in DMEM to understand their correlation with in vitro cellular effects in the same time frame. Relatively low concentration (up to 2 wt %) of Sr in the nHAp led to an increase in the alkaline phosphatase activity in preosteoblasts and expression of collagen I and osteocalcin in osteoblasts, demonstrating their ability to boost bone formation.
Collapse
Affiliation(s)
- Liga Stipniece
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Anna Ramata-Stunda
- Department
of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Jelgavas St. 1, Riga LV-1004, Latvia
| | - Jana Vecstaudza
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Inta Kreicberga
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Dora Livkisa
- Department
of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Jelgavas St. 1, Riga LV-1004, Latvia
| | - Anna Rubina
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Artemijs Sceglovs
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| | - Kristine Salma-Ancane
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1007, Latvia
| |
Collapse
|
12
|
Akshata CR, Murugan E, Harichandran G. Alginate templated synthesis, characterization and in vitro osteogenic evaluation of strontium-substituted hydroxyapatite. Int J Biol Macromol 2023; 252:126478. [PMID: 37625758 DOI: 10.1016/j.ijbiomac.2023.126478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The objective of this study is to explore the potential role of alginate (Alg) in the crystallization of metal-substituted hydroxyapatite, with application in orthopaedic reconstruction. The alginate at different concentrations (0.5 and 1.0 wt%) facilitated in situ mineralization of hydroxyapatite (HA) and strontium-substituted HA (SHA, 10 and 30 mol%). The incorporation of the biopolymer and dopant induced notable changes in HA, including reduced crystal size from 31.0 to 16.4 nm and increased lattice volume from 577.3 to 598.0 Å3. The superior affinity of alginate for Sr2+ than for Ca2+ resulted in higher residual alginate in Alg/SHA (13.0 to 19.0 %) compared to Alg/HA (7.1 to 8.2 %). This residual alginate influenced composite properties: surface charge decreased from -26.5 to -45.7 mV, microhardness increased from 0.33 to 0.54 GPa, and dissolution increased from 0.17 to 0.39 %. The in vitro studies revealed that strontium substitution as well as the organization and crystallographic aspects of apatite regulated osteoblastic cell survival, proliferation, differentiation, and biomineralization. The findings suggest that an alginate concentration of 0.5 wt% is optimal for the crystallization of SHA with 10 mol% substitution, and its resulting composite possesses the ideal biomechanical properties to imitate native bone.
Collapse
Affiliation(s)
- C R Akshata
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India.
| | - E Murugan
- Department of Physical Chemistry, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - G Harichandran
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India.
| |
Collapse
|
13
|
Wang X, Huang S, Peng Q. Metal Ion-Doped Hydroxyapatite-Based Materials for Bone Defect Restoration. Bioengineering (Basel) 2023; 10:1367. [PMID: 38135958 PMCID: PMC10741145 DOI: 10.3390/bioengineering10121367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Hydroxyapatite (HA)-based materials are widely used in the bone defect restoration field due to their stable physical properties, good biocompatibility, and bone induction potential. To further improve their performance with extra functions such as antibacterial activity, various kinds of metal ion-doped HA-based materials have been proposed and synthesized. This paper offered a comprehensive review of metal ion-doped HA-based materials for bone defect restoration based on the introduction of the physicochemical characteristics of HA followed by the synthesis methods, properties, and applications of different kinds of metal ion (Ag+, Zn2+, Mg2+, Sr2+, Sm3+, and Ce3+)-doped HA-based materials. In addition, the underlying challenges for bone defect restoration using these materials and potential solutions were discussed.
Collapse
Affiliation(s)
- Xuan Wang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China;
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Shan Huang
- Changsha Health Vocational College, Changsha 410100, China;
| | - Qian Peng
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China;
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| |
Collapse
|
14
|
Shaikh S, Baniasadi H, Mehrotra S, Ghosh R, Singh P, Seppälä JV, Kumar A. Strontium-Substituted Nanohydroxyapatite-Incorporated Poly(lactic acid) Composites for Orthopedic Applications: Bioactive, Machinable, and High-Strength Properties. Biomacromolecules 2023; 24:4901-4914. [PMID: 37874127 DOI: 10.1021/acs.biomac.3c00610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Traditional metal-alloy bone fixation devices provide structural support for bone repair but have limitations in actively promoting bone healing and often require additional surgeries for implant removal. In this study, we focused on addressing these challenges by fabricating biodegradable composites using poly(lactic acid) (PLA) and strontium-substituted nanohydroxyapatite (SrHAP) via melt compounding and injection molding. Various percentages of SrHAP (5, 10, 20, and 30% w/w) were incorporated into the PLA matrix. We systematically investigated the structural, morphological, thermal, mechanical, rheological, and dynamic mechanical properties of the prepared composites. Notably, the tensile modulus, a critical parameter for orthopedic implants, significantly improved from 2.77 GPa in pristine PLA to 3.73 GPa in the composite containing 10% w/w SrHAP. The incorporation of SrHAP (10% w/w) into the PLA matrix led to an increased storage modulus, indicating a uniform dispersion of SrHAP within the PLA and good compatibility between the polymer and nanoparticles. Moreover, we successfully fabricated screws using PLA composites with 10% (w/w) SrHAP, demonstrating their formability at room temperature and radiopacity when observed under X-ray microtomography (micro-CT). Furthermore, the water contact angle decreased from 93 ± 2° for pristine PLA to 75 ± 3° for the composite containing SrHAP, indicating better surface wettability. To assess the biological behavior of the composites, we conducted in vitro cell-material tests, which confirmed their osteoconductive and osteoinductive properties. These findings highlight the potential of our developed PLA/SrHAP10 (10% w/w) composites as machinable implant materials for orthopedic applications. In conclusion, our study presents the fabrication and comprehensive characterization of biodegradable composites comprising PLA and strontium-substituted nanohydroxyapatite (SrHAP). These composites exhibit improved mechanical properties, formability, and radiopacity while also demonstrating desirable biological behavior. Our results suggest that these PLA/SrHAP10 composites hold promise as machinable implant materials for orthopedic applications.
Collapse
Affiliation(s)
- Shazia Shaikh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, P.O. Box 16100, Espoo, FI-00076 Aalto, Finland
| | - Shreya Mehrotra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Rupita Ghosh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Prerna Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Jukka V Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, P.O. Box 16100, Espoo, FI-00076 Aalto, Finland
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Center for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Center of Excellence for Orthopaedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| |
Collapse
|
15
|
Anwar A, Kanwal Q, Sadiqa A, Razaq T, Khan IH, Javaid A, Khan S, Tag-Eldin E, Ouladsmane M. Synthesis and Antimicrobial Analysis of High Surface Area Strontium-Substituted Calcium Phosphate Nanostructures for Bone Regeneration. Int J Mol Sci 2023; 24:14527. [PMID: 37833975 PMCID: PMC10572144 DOI: 10.3390/ijms241914527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 10/15/2023] Open
Abstract
Continuous microwave-assisted flow synthesis has been used as a simple, more efficient, and low-cost route to fabricate a range of nanosized (<100 nm) strontium-substituted calcium phosphates. In this study, fine nanopowder was synthesized via a continuous flow synthesis with microwave assistance from the solutions of calcium nitrate tetrahydrate (with strontium nitrate as Sr2+ ion source) and diammonium hydrogen phosphate at pH 10 with a time duration of 5 min. The morphological characterization of the obtained powder has been carried out by employing techniques such as transmission electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller surface area analysis. The chemical structural analysis to evaluate the surface properties was made by using X-ray photoelectron spectroscopy. Zeta potential analysis was performed to evaluate the colloidal stability of the particles. Antimicrobial studies were performed for all the compositions using four bacterial strains and an opportunistic human fungal pathogen Macrophomina phaseolina. It was found that the nanoproduct with high strontium content (15 wt% of strontium) showed pronounced antibacterial potential against M. luteus while it completely arrested the fungal growth after 48 h by all of its concentrations. Thus the synthesis strategy described herein facilitated the rapid production of nanosized Sr-substituted CaPs with excellent biological performance suitable for a bone replacement application.
Collapse
Affiliation(s)
- Aneela Anwar
- Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan
- Biomedical Engineering Department, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Qudsia Kanwal
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan; (Q.K.); (A.S.)
| | - Ayesha Sadiqa
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan; (Q.K.); (A.S.)
| | - Tabassam Razaq
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan;
| | - Iqra Haider Khan
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan; (I.H.K.); (A.J.)
| | - Arshad Javaid
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan; (I.H.K.); (A.J.)
| | - Safia Khan
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11835, Egypt;
| | - ElSayed Tag-Eldin
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250101, China
| | - Mohamed Ouladsmane
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Murugan E, Akshata CR. Dextrose, maltose and starch guide crystallization of strontium-substituted hydroxyapatite: A comparative study for bone tissue engineering application. Int J Biol Macromol 2023; 248:125927. [PMID: 37481177 DOI: 10.1016/j.ijbiomac.2023.125927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
The influence of carbohydrates on the crystallization of metal-substituted hydroxyapatite predicts its relevance to natural bone growth. This study demonstrates the role of carbohydrates in the crystallization of strontium-substituted hydroxyapatite (SHAP). The increasing order of hydroxyl groups, dextrose (monosaccharide) < maltose (disaccharide) < starch (polysaccharide), coordinated with Ca2+/Sr2+ and thus guided SHAP crystallization, with crystal size reduced from 35 to 19 nm, lattice volume increased from 518 to 537 Å3, and residual carbohydrates increased from 1.8 to 20.2 %. The variation in residual carbohydrates is due to their interaction with apatite and/or aqueous insolubility. Compared to pure SHAP, the starch-SHAP with higher residual starch showed increased water uptake from 1.23 ± 0.18 to 4.26 ± 0.21 % and degradation from 0.22 ± 0.06 to 1.53 ± 0.14 %, but decreased microhardness from 0.73 ± 0.12 to 0.38 ± 0.01 GPa and protein affinity from 4.82 ± 0.01 to 0.81 ± 0.01 μg/mg. However, its microhardness value was bone-like, and the reduced protein adsorption was masked by the rich osteogenic behaviour. In vitro cellular response demonstrated that the residual carbohydrate and strontium augmented osteocompatibility, proliferation, differentiation and biomineralization. The result concludes that carbohydrates drive SHAP crystallization, and starch-SHAP replicates natural bone.
Collapse
Affiliation(s)
- E Murugan
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India.
| | - C R Akshata
- Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| |
Collapse
|
17
|
Fischetti T, Borciani G, Avnet S, Rubini K, Baldini N, Graziani G, Boanini E. Incorporation/Enrichment of 3D Bioprinted Constructs by Biomimetic Nanoparticles: Tuning Printability and Cell Behavior in Bone Models. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2040. [PMID: 37513050 PMCID: PMC10386079 DOI: 10.3390/nano13142040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Reproducing in vitro a model of the bone microenvironment is a current need. Preclinical in vitro screening, drug discovery, as well as pathophysiology studies may benefit from in vitro three-dimensional (3D) bone models, which permit high-throughput screening, low costs, and high reproducibility, overcoming the limitations of the conventional two-dimensional cell cultures. In order to obtain these models, 3D bioprinting offers new perspectives by allowing a combination of advanced techniques and inks. In this context, we propose the use of hydroxyapatite nanoparticles, assimilated to the mineral component of bone, as a route to tune the printability and the characteristics of the scaffold and to guide cell behavior. To this aim, both stoichiometric and Sr-substituted hydroxyapatite nanocrystals are used, so as to obtain different particle shapes and solubility. Our findings show that the nanoparticles have the desired shape and composition and that they can be embedded in the inks without loss of cell viability. Both Sr-containing and stoichiometric hydroxyapatite crystals permit enhancing the printing fidelity of the scaffolds in a particle-dependent fashion and control the swelling behavior and ion release of the scaffolds. Once Saos-2 cells are encapsulated in the scaffolds, high cell viability is detected until late time points, with a good cellular distribution throughout the material. We also show that even minor modifications in the hydroxyapatite particle characteristics result in a significantly different behavior of the scaffolds. This indicates that the use of calcium phosphate nanocrystals and structural ion-substitution is a promising approach to tune the behavior of 3D bioprinted constructs.
Collapse
Affiliation(s)
| | - Giorgia Borciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
| | - Katia Rubini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Nicola Baldini
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
| | | | - Elisa Boanini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
18
|
Dias AM, do Nascimento Canhas I, Bruziquesi CGO, Speziali MG, Sinisterra RD, Cortés ME. Magnesium (Mg2 +), Strontium (Sr2 +), and Zinc (Zn2 +) Co-substituted Bone Cements Based on Nano-hydroxyapatite/Monetite for Bone Regeneration. Biol Trace Elem Res 2023; 201:2963-2981. [PMID: 35994139 DOI: 10.1007/s12011-022-03382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/06/2022] [Indexed: 11/30/2022]
Abstract
New bone cement type that combines Sr2 + /Mg2 + or Sr2 + /Zn2 + co-substituted nano-hydroxyapatite (n-HAs) with calcium phosphate dibasic and chitosan/gelatin polymers was developed to increase adhesion and cellular response. The cements were physicochemically described and tested in vitro using cell cultures. All cements exhibited quite hydrophilic and had high washout resistance. Cement releases Ca2 + , Mg2 + , Sr2 + , and Zn2 + in concentrations that are suitable for osteoblast proliferation and development. All of the cements stimulated cell proliferation in fibroblasts, endothelial cells, and osteoblasts, were non-cytotoxic, and produced apatite. Cements containing co-substituted n-HAs had excellent cytocompatibility, which improved osteoblast adhesion and cell proliferation. These cements had osteoinductive potential, stimulating extracellular matrix (ECM) mineralization and differentiation of MC3T3-E1 cells by increasing ALP and NO production. The ions Ca2 + , Mg2 + , Zn2 + , and Sr2 + appear to cooperate in promoting osteoblast function. The C3 cement (HA-SrMg5%), which was made up of n-HA co-substituted with 5 mol% Sr and 5 mol% Mg, showed exceptional osteoinductive capacity in terms of bone regeneration, indicating that this new bone cement could be a promising material for bone replacement.
Collapse
Affiliation(s)
- Alexa Magalhães Dias
- Dentistry Department, Faculty of Dentistry, Universidade Federal de Juiz de Fora, Rua São Paulo, 745 Governador Valadares/MG Brazil, Governador Valadares, MG, CEP, 31270901, Brazil
- Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
| | - Isabela do Nascimento Canhas
- Biopharmaceutical and Technology Innovation Graduate Program, ICB, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
| | - Carlos Giovani Oliveira Bruziquesi
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
| | - Marcelo Gomes Speziali
- Biopharmaceutical and Technology Innovation Graduate Program, ICB, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
- Chemistry Department, Instituto de Ciências Exatas E Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro s/n, Ouro Preto, MG, CEP, 35400000, Brazil
| | - Rubén Dario Sinisterra
- Biopharmaceutical and Technology Innovation Graduate Program, ICB, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
| | - Maria Esperanza Cortés
- Biopharmaceutical and Technology Innovation Graduate Program, ICB, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil.
- Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil.
| |
Collapse
|
19
|
Upadhyay K, Tamrakar RK, Thomas S, Kumar M. Surface functionalized nanoparticles: A boon to biomedical science. Chem Biol Interact 2023; 380:110537. [PMID: 37182689 DOI: 10.1016/j.cbi.2023.110537] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
The rapid development of nanomedicine has increased the likelihood that manufactured nanoparticles will one day come into contact with people and the environment. A variety of academic fields, including engineering and the health sciences, have taken a keen interest in the development of nanotechnology. Any significant development in nanomaterial-based applications would depend on the production of functionalized nanoparticles, which are believed to have the potential to be used in fields like pharmaceutical and biomedical sciences. The functionalization of nanoparticles with particular recognition chemical moieties does result in multifunctional nanoparticles with greater efficacy while at the same time minimising adverse effects, according to early clinical studies. This is because of traits like aggressive cellular uptake and focused localization in tumours. To advance this field of inquiry, chemical procedures must be developed that reliably attach chemical moieties to nanoparticles. The structure-function relationship of these functionalized nanoparticles has been extensively studied as a result of the discovery of several chemical processes for the synthesis of functionalized nanoparticles specifically for drug delivery, cancer therapy, diagnostics, tissue engineering, and molecular biology. Because of the growing understanding of how to functionalize nanoparticles and the continued work of innovative scientists to expand this technology, it is anticipated that functionalized nanoparticles will play an important role in the aforementioned domains. As a result, the goal of this study is to familiarise readers with nanoparticles, to explain functionalization techniques that have already been developed, and to examine potential applications for nanoparticles in the biomedical sciences. This review's information is essential for the safe and broad use of functionalized nanoparticles, particularly in the biomedical sector.
Collapse
Affiliation(s)
- Kanchan Upadhyay
- Department of Applied Physics, Bhilai Institute of Technology (Seth Balkrishan Memorial), Near Bhilai House, Durg, C.G, 491001, India.
| | - Raunak Kumar Tamrakar
- Department of Applied Physics, Bhilai Institute of Technology (Seth Balkrishan Memorial), Near Bhilai House, Durg, C.G, 491001, India
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottyam, Kerla, 686560, India
| | - Manish Kumar
- Department of Mechanical Engineering, Bhilai Institute of Technology (Seth Balkrishan Memorial), Near Bhilai Power House, Durg, 49100, Chhattisgarh, India
| |
Collapse
|
20
|
Olivier F, Drouet C, Marsan O, Sarou-Kanian V, Rekima S, Gautier N, Fayon F, Bonnamy S, Rochet N. Long-Term Fate and Efficacy of a Biomimetic (Sr)-Apatite-Coated Carbon Patch Used for Bone Reconstruction. J Funct Biomater 2023; 14:246. [PMID: 37233356 PMCID: PMC10218964 DOI: 10.3390/jfb14050246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Critical bone defect repair remains a major medical challenge. Developing biocompatible materials with bone-healing ability is a key field of research, and calcium-deficient apatites (CDA) are appealing bioactive candidates. We previously described a method to cover activated carbon cloths (ACC) with CDA or strontium-doped CDA coatings to generate bone patches. Our previous study in rats revealed that apposition of ACC or ACC/CDA patches on cortical bone defects accelerated bone repair in the short term. This study aimed to analyze in the medium term the reconstruction of cortical bone in the presence of ACC/CDA or ACC/10Sr-CDA patches corresponding to 6 at.% of strontium substitution. It also aimed to examine the behavior of these cloths in the medium and long term, in situ and at distance. Our results at day 26 confirm the particular efficacy of strontium-doped patches on bone reconstruction, leading to new thick bone with high bone quality as quantified by Raman microspectroscopy. At 6 months the biocompatibility and complete osteointegration of these carbon cloths and the absence of micrometric carbon debris, either out of the implantation site or within peripheral organs, was confirmed. These results demonstrate that these composite carbon patches are promising biomaterials to accelerate bone reconstruction.
Collapse
Affiliation(s)
- Florian Olivier
- CNRS, Université d’Orléans, ICMN UMR 7374, 45071 Orléans, France;
| | - Christophe Drouet
- CIRIMAT, Université de Toulouse, CNRS/UT3/INP, 31062 Toulouse, France; (C.D.); (O.M.)
| | - Olivier Marsan
- CIRIMAT, Université de Toulouse, CNRS/UT3/INP, 31062 Toulouse, France; (C.D.); (O.M.)
| | - Vincent Sarou-Kanian
- CNRS, Université d’Orléans, CEMHTI UPR 3079, 45071 Orléans, France; (V.S.-K.); (F.F.)
| | - Samah Rekima
- Université Côte d’Azur, INSERM, CNRS, iBV, 06107 Nice, France; (S.R.); (N.G.); (N.R.)
| | - Nadine Gautier
- Université Côte d’Azur, INSERM, CNRS, iBV, 06107 Nice, France; (S.R.); (N.G.); (N.R.)
| | - Franck Fayon
- CNRS, Université d’Orléans, CEMHTI UPR 3079, 45071 Orléans, France; (V.S.-K.); (F.F.)
| | - Sylvie Bonnamy
- CNRS, Université d’Orléans, ICMN UMR 7374, 45071 Orléans, France;
| | - Nathalie Rochet
- Université Côte d’Azur, INSERM, CNRS, iBV, 06107 Nice, France; (S.R.); (N.G.); (N.R.)
| |
Collapse
|
21
|
Akshata CR, Harichandran G, Murugan E. Effect of pectin on the crystallization of strontium substituted HA for bone reconstruction application. Colloids Surf B Biointerfaces 2023; 226:113312. [PMID: 37068445 DOI: 10.1016/j.colsurfb.2023.113312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023]
Abstract
The biomacropolymers of bone extracellular matrix (ECM) guide the growth of hydroxyapatite (HA) with various ionic substitutions. Pectin, a plant polysaccharide with chemical similarities to ECM, was investigated for its potential to promote the crystallization of strontium-substituted HA (SH). The influence of pectin (0.5 and 1.0 wt%) on the in situ mineralization of SH (10 and 30 mol% calcium substitution with strontium) was studied. The preferential affinity of pectin to strontium over calcium favoured the incorporation of strontium in apatite, decreased crystal size (18.85-26.22 nm) and retained more pectin residues (8-16%). The residual pectin strongly interacted with small SH particles, resulting in high microhardness (0.43-0.85 GPa) and high surface charge (-32.1 to -30.3 mV), while weak interaction with large HA particles resulted in low microhardness (0.15-0.25 GPa) and low surface charge (-35.4 to -34.6 mV). The in vitro cellular study using human osteoblast-like MG-63 cells demonstrated that inorganic size and material crystallinity play a vital role in regulating osteogenesis. The study suggests that the synchronization of low pectin concentration (0.5 wt%) and high strontium substitution in HA (30 mol%) offers the desired microhardness and in vitro osteogenic properties to emulate natural bone.
Collapse
Affiliation(s)
- C R Akshata
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - G Harichandran
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India.
| | - E Murugan
- Department of Physical Chemistry, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| |
Collapse
|
22
|
Bioinorganic Preparation of Hydroxyapatite and Rare Earth Substituted Hydroxyapatite for Biomaterials Applications. Bioinorg Chem Appl 2023; 2023:7856300. [PMID: 36741962 PMCID: PMC9891820 DOI: 10.1155/2023/7856300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Rare Earth elements in the lanthanide series are regarded as one of the finest options for the cationic substitution of calcium ions in hydroxyapatite (HA) because of their favorable impact on the biological characteristics of substituted HA. Neodymium and cerium were used to substitute 5% of calcium ions in HA, prepared via the wet precipitation method. Characterization tests for pure and substituted HA were conducted using XRD, FTIR, EDS, and FESEM. The results showed that changing part from calcium ions in hydroxyapatite to Nd and Ce ions altered its structure, composition, and morphology. Regarding the biological tests, the cytotoxicity test revealed a change in IC50 for both normal and cancer cell lines, where substitution part of the Ca ions with rare Earth elements led to increasing antitumor activity in comparison with HA without substitution; in addition, antibacterial and fungicide activity was evident for both HA and Nd-Ce/HA, with a modest increase in antibacterial activity of Nd-Ce/HA against S. epidermidis and E. coli in comparison with HA. These findings may shed light on the process by which Nd and Ce ions improve the biological characteristics of pure HA and the increased potential of these bioceramics.
Collapse
|
23
|
Kanithan S, Vignesh NA, Baskar S, Nagaraja S, Abbas M, Aabid A, Baig M. Structural Morphology and Optical Properties of Strontium-Doped Cobalt Aluminate Nanoparticles Synthesized by the Combustion Method. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8180. [PMID: 36431665 PMCID: PMC9698535 DOI: 10.3390/ma15228180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The study of structural morphology and the optical properties of nanoparticles produced by combustion methods are gaining significance due to their multifold applications. In this regard, in the present work, the strontium-doped cobalt aluminate nanoparticles were synthesized by utilizing Co1-xSrxAl2O4 (0 ≤ x ≤ 0.5) L-Alanine as a fuel in an ignition cycle. Subsequently, several characterization studies viz., X-ray diffraction (XRD), energy-dispersive X-ray (EDX) analysis, high-resolution scanning electron microscopy (HRSEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet (UV) spectroscopy and vibrating sample magnetometry (VSM) were accomplished to study the properties of the materials. The XRD analysis confirmed the cubic spinel structure, and the average crystallite size was found to be in the range of 14 to 20 nm using the Debye-Scherrer equation. High-resolution scanning electron microscopy was utilized to inspect the morphology of the Co1-xSrxAl2O4 (0 ≤ x ≤ 0.5) nanoparticles. Further, EDS studies were accomplished to determine the chemical composition. Kubelka-Munk's approach was used to determine the band gap, and the values were found to be in the range of 3.18-3.32 eV. The energy spectra for the nanoparticles were in the range of 560-1100 cm-1, which is due to the spinel structure of Sr-doped CoAl2O4 nanoparticles. The behavior plots of magnetic induction (M) against the magnetic (H) loops depict the ferromagnetic behavior of the nanomaterials synthesized.
Collapse
Affiliation(s)
- Sivaraman Kanithan
- Department of Electronics and Communication Engineering, MVJ College of Engineering, Whitefield, Bengaluru 560067, India
| | - Natarajan Arun Vignesh
- Department of ECE, Gokaraju Rangaraju Institute of Engineering and Technology (GRIET), Hyderabad 500090, India
| | - Siva Baskar
- Department of Humanities and Sciences, KG Reddy College of Engineering and Technology, Chilkur Village, Hyderabad 500075, India
| | - Santhosh Nagaraja
- Department of Mechanical Engineering, MVJ College of Engineering, Whitefield, Bengaluru 560067, India
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Abdul Aabid
- Department of Engineering Management, College of Engineering, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| | - Muneer Baig
- Department of Engineering Management, College of Engineering, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| |
Collapse
|
24
|
Mechanochemical synthesis and cold sintering of mussel shell-derived hydroxyapatite nano-powders for bone tissue regeneration. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Oztekin F, Gurgenc T, Dundar S, Ozercan IH, Yildirim TT, Eskibaglar M, Ozcan EC, Macit CK. In Vivo Evaluation of the Effects of B-Doped Strontium Apatite Nanoparticles Produced by Hydrothermal Method on Bone Repair. J Funct Biomater 2022; 13:jfb13030110. [PMID: 35997448 PMCID: PMC9397061 DOI: 10.3390/jfb13030110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
In the present study, the structural, morphological, and in vivo biocompatibility of un-doped and boron (B)-doped strontium apatite (SrAp) nanoparticles were investigated. Biomaterials were fabricated using the hydrothermal process. The structural and morphological characterizations of the fabricated nanoparticles were performed by XRD, FT-IR, FE-SEM, and EDX. Their biocompatibility was investigated by placing them in defects in rat tibiae in vivo. The un-doped and B-doped SrAp nanoparticles were successfully fabricated. The produced nanoparticles were in the shape of nano-rods, and the dimensions of the nano-rods decreased as the B ratio increased. It was observed that the structural and morphological properties of strontium apatite nanoparticles were affected by the contribution of B. A stoichiometric Sr/P ratio of 1.67 was reached in the 5% B-doped sample (1.68). The average crystallite sizes were 34.94 nm, 39.70 nm, 44.93 nm, and 48.23 nm in un-doped, 1% B-doped, 5% B-doped, and 10% B-doped samples, respectively. The results of the in vivo experiment revealed that the new bone formation and osteoblast density were higher in the groups with SrAp nanoparticles doped with different concentrations of B than in the control group, in which the open defects were untreated. It was observed that this biocompatibility and the new bone formation were especially elevated in the B groups, which added high levels of strontium were added. The osteoblast density was higher in the group in which the strontium element was placed in the opened bone defect compared with the control group. However, although new bone formation was slightly higher in the strontium group than in the control group, the difference was not statistically significant. Furthermore, the strontium group had the highest amount of fibrotic tissue formation. The produced nanoparticles can be used in dental and orthopedic applications as biomaterials.
Collapse
Affiliation(s)
- Faruk Oztekin
- Department of Endodontics, Faculty of Dentistry, Firat University, Elazig 23100, Turkey;
- Correspondence:
| | - Turan Gurgenc
- Faculty of Technology, Firat University, Elazig 23100, Turkey;
| | - Serkan Dundar
- Department of Periodontology, Faculty of Dentistry, Firat University, Elazig 23100, Turkey; (S.D.); (T.T.Y.)
| | | | - Tuba Talo Yildirim
- Department of Periodontology, Faculty of Dentistry, Firat University, Elazig 23100, Turkey; (S.D.); (T.T.Y.)
| | - Mehmet Eskibaglar
- Department of Endodontics, Faculty of Dentistry, Firat University, Elazig 23100, Turkey;
| | - Erhan Cahit Ozcan
- Department of Esthetic, Plastic and Reconstructive Surgery, Faculty of Medicine, Firat University, Elazig 23100, Turkey;
| | | |
Collapse
|
26
|
Bovine serum albumin-functionalized graphene-decorated strontium as a potent complex nanoparticle for bone tissue engineering. Sci Rep 2022; 12:12336. [PMID: 35853926 PMCID: PMC9296456 DOI: 10.1038/s41598-022-16568-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Graphene and its family have a great potential in tissue engineering because of their super mechanical properties, electrical conductivity and antibacterial properties. Considering other properties of graphene such as high surface area and ready-to-use functionalization according to the high oxygen-containing groups in graphene oxide family, some needs could be addressed in bone tissue engineering. Herein, we synthesized and decorated strontium nanoparticles (SrNPs) during the reduction process of graphene oxide using green and novel method. Without using hydrazine or chemical linkers, strontium NPs were synthesized and decorated on the surface of rGO simultaneously using BSA. The results of the UV–Vis, FTIR and Raman spectroscopy demonstrated that BSA could successfully reduce graphene oxide and decorated SrNPs on the surface of rGO. FESEM and TEM exhibited that in situ synthesized SrNPs had 25–30 nm diameter. Interestingly, cell viability for MC3T3-E1 cells treated with SrNPs-rGO, were significantly higher than BSA-rGO and GO in constant concentration. Furthermore, we investigated the alkaline phosphatase activity (ALP) of these nanosheets that the results demonstrated Sr-BSA-rGO enhanced ALP activity more than GO and BSA-rGO. Remarkably, the relative expression of RUNX 2 and Col1 genes of MC3T3-E1 cells was boosted when treated with Sr-BSA-rGO nanosheets. This study revealed that using proteins and other biomolecules as green and facile agent for decoration of smart nanoparticles on the surface of nanosheets, would be promising and assist researcher to replace the harsh and toxic hydrazine like materials with bio-friendly method. These results demonstrated that Sr-BSA-rGO had the excellent capability for regenerating bone tissue and could be used as an osteogenesis booster in implants.
Collapse
|
27
|
Thermal and structural properties of sodium, potassium and carbonate doped strontium hydroxyfluorapatite. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Strontium- and peptide-modified silicate nanostructures for dual osteogenic and antimicrobial activity. BIOMATERIALS ADVANCES 2022; 135:212735. [PMID: 35929201 DOI: 10.1016/j.bioadv.2022.212735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 12/29/2022]
Abstract
Developing multifunctional nanostructures that promote bone repair while fighting infection is highly desirable in bone regenerative therapies. Previous efforts have focused on achieving one property or another by altering the chemical makeup of nanostructures or using growth factors or antibiotics. We present nanostructures with several simultaneous functional attributes including positive effects of strontium on bone formation and prevention of osteoclast differentiation along with incorporation of antimicrobial peptides (AMP) to prevent infection. To form these multifunctional nanostructures, mesoporous calcium silicate (CaMSN) was modified with high levels of strontium. For this, CaMSNs were either partially substituted (20 wt% Ca) or completely replaced with strontium (Sr) to form Sr-CaMSN or SrMSN. The mesoporous nature of these bioactive silicate nanostructures rendered a configuration for substantial AMP loading as well as their effective delivery. The physico-chemical and structural characterization of synthesized MSNs confirmed the mesoporous nature of the synthesized MSNs and their total surface area, pore size, pore volume and SBF-mediated bioactivity remained unaltered with the incorporation of Sr. However, biological evaluation confirmed that synthesized SrMSN upregulated osteogenic differentiation of mesenchymal stromal cells and significantly downregulated osteoclast differentiation. Also, the AMP-loaded MSNs prevented formation and growth of methicillin resistant Staphylococcus aureus (MRSA) biofilms. Thus, high Sr-containing AMP-loaded SrMSNs may combat MRSA-associated infection while promoting bone regeneration. The controlled availability of therapeutic Sr and AMP release as SrMSN degrade enables its potential application in bone tissue regeneration.
Collapse
|
29
|
Yan MD, Ou YJ, Lin YJ, Liu RM, Fang Y, Wu WL, Zhou L, Yao X, Chen J. Does the incorporation of strontium into calcium phosphate improve bone repair? A meta-analysis. BMC Oral Health 2022; 22:62. [PMID: 35260122 PMCID: PMC8905839 DOI: 10.1186/s12903-022-02092-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/21/2022] [Indexed: 12/09/2022] Open
Abstract
Background The application of calcium phosphate (CaP)-based bone substitutes plays an important role in periodontal regeneration, implant dentistry and alveolar bone reconstruction. The incorporation of strontium (Sr) into CaP-based bone substitutes appears to improve their biological properties, but the reported in vivo bone repair performance is inconsistent among studies. Herein, we conducted a systematic review and meta-analysis to investigate the in vivo performance of Sr-doped materials. Methods We searched PubMed, EMBASE (via OVIDSP), and reference lists to identify relevant animal studies. The search, study selection, and data extraction were performed independently by two investigators. Meta-analyses and sub-group analyses were conducted using Revman version 5.4.1. The heterogeneity between studies were assessed by I2. Publication bias was investigated through a funnel plot. Results Thirty-five studies were finally enrolled, of which 16 articles that reported on new bone formation (NBF) were included in the meta-analysis, covering 31 comparisons and 445 defects. The overall effect for NBF was 2.25 (95% CI 1.61–2.90, p < 0.00001, I2 = 80%). Eight comparisons from 6 studies reported the outcomes of bone volume/tissue volume (BV/TV), with an overall effect of 1.42 (95% CI 0.65–2.18, p = 0.0003, I2 = 75%). Fourteen comparisons reported on the material remaining (RM), with the overall effect being -2.26 (95% CI − 4.02 to − 0.50, p = 0.0009, I2 = 86%). Conclusions Our study revealed that Sr-doped calcium phosphate bone substitutes improved in vivo performance of bone repair. However, more studies are also recommended to further verify this conclusion. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02092-7.
Collapse
Affiliation(s)
- Ming-Dong Yan
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yan-Jing Ou
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Department of Oral Implantology, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou, 350002, China
| | - Yan-Jun Lin
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Rui-Min Liu
- ORAL Center, Fujian Provincial Governmental Hospital (Affiliated Hospital of Fujian Health College), Fuzhou, 350003, China
| | - Yan Fang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Wei-Liang Wu
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Lin Zhou
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Xiu Yao
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology and Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.
| |
Collapse
|
30
|
Das A, Dobbidi P, Bhardwaj A, Saxena V, Pandey LM. Microstructural, electrical and biological activity in [Formula: see text] ceramic composites designed for tissue engineering applications. Sci Rep 2021; 11:22304. [PMID: 34785708 PMCID: PMC8595382 DOI: 10.1038/s41598-021-01748-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
The article investigates electrically active ceramic composite of [Formula: see text] (HAP) and [Formula: see text] (BST) for biomedical applications. The study is a systematic blend of the materials science aspect of composites with a special focus on the dielectric and biological properties and their relationships. The article emphasized primarily extracting the dielectric constant ([Formula: see text] of the specimens (that lay in the range of 3-65) and related them to microstructural properties like the grain size and at.% of BST. A broad outlook on the importance of [Formula: see text] in determining the suitability of bioceramics for clinical applications is presented. Bioactivity analysis of the specimens led to probing the surface charges (that were negative), and it was found crucial to the growth of dense apatite layers. Furthermore, the cytocompatibility of the specimens displayed cell viability above 100% for Day 1, which increased substantially for Day 3. To reveal other biological properties of the composites, protein adsorption studies using bovine serum albumin (BSA) and fetal bovine serum (FBS) was carried out. Electrostatic interactions govern the adsorption, and the mathematical dependence on surface charges is linear. The protein adsorption is also linearly correlated with the [Formula: see text], intrinsic to the biomaterials. We delve deeper into protein-biomaterials interactions by considering the evolution of the secondary structure of BSA adsorbed into the specimens. Based on the investigations, 20 at.% HAP-80 at.% BST (20H-80B) was established as a suitable composite comprising the desired features of HAP and BST. Such explorations of electrical and biological properties are interesting for modulating the behavior of bioceramic composites. The results project the suitability of 20H-80B for designing electrically active smart scaffolds for the proposed biomedical applications and are expected to incite further clinical trials.
Collapse
Affiliation(s)
- Apurba Das
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, 781039 India
- Department of Physics, D K College, Mirza, Assam 781125 India
| | - Pamu Dobbidi
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| | - Aman Bhardwaj
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| | - Varun Saxena
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| | - Lalit M. Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| |
Collapse
|
31
|
Kovrlija I, Locs J, Loca D. Octacalcium phosphate: Innovative vehicle for the local biologically active substance delivery in bone regeneration. Acta Biomater 2021; 135:27-47. [PMID: 34450339 DOI: 10.1016/j.actbio.2021.08.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022]
Abstract
Disadvantages of conventional drug delivery systems (DDS), such as systemic circulation, interaction with physiochemical factors, reduced bioavailability, and insufficient drug concentration at bone defect site, have underlined the importance of developing efficacious local drug delivery systems. Octacalcium phosphate (OCP) is presumed to be the precursor of biologically formed apatite, owing to its similarity to hydroxyapatite (HAp) and readiness to convert to it. Specific crystal structure of OCP is constructed of compiled apatite layers and water layers, which make possible the incorporation of various ions in its structure, making it feasible to alter the overall effect OCP has in the system. Next to that intrinsic property, characteristics as high solubility, biodegradability and osteoconductivity have made it indispensable to tailor OCP as a carrier material. In this review, we present the main characteristics and progress done on utilizing OCP as an innovative vehicle and provide suggestions for possible research pathways and advantages for local drug delivery in bone tissue engineering. STATEMENT OF SIGNIFICANCE: Octacalcium phosphate (OCP), being a precursor to biologically formed apatite, has many assets when compared to other calcium phosphates. Owing to its highly pertinent structure, it is being used as a vehicle for biologically active substances or ions for bone regeneration. However, orchestrating drug delivery systems with OCP, in order to achieve the best possible outcome, is still a pioneering concept, and the all-encompassing data is still scarce. Although several articles have been published on this matter, to this date there is no systematic overview pointing out the benefits that OCP can bring in the field of drug delivery. Here we offer a comprehensive overview, starting from the OCP synthesis to its structure, morphology, and the biological significance OCP has.
Collapse
|
32
|
Zhang Q, Xiao L, Xiao Y. Porous Nanomaterials Targeting Autophagy in Bone Regeneration. Pharmaceutics 2021; 13:1572. [PMID: 34683866 PMCID: PMC8540591 DOI: 10.3390/pharmaceutics13101572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023] Open
Abstract
Porous nanomaterials (PNMs) are nanosized materials with specially designed porous structures that have been widely used in the bone tissue engineering field due to the fact of their excellent physical and chemical properties such as high porosity, high specific surface area, and ideal biodegradability. Currently, PNMs are mainly used in the following four aspects: (1) as an excellent cargo to deliver bone regenerative growth factors/drugs; (2) as a fluorescent material to trace cell differentiation and bone formation; (3) as a raw material to synthesize or modify tissue engineering scaffolds; (4) as a bio-active substance to regulate cell behavior. Recent advances in the interaction between nanomaterials and cells have revealed that autophagy, a cellular survival mechanism that regulates intracellular activity by degrading/recycling intracellular metabolites, providing energy/nutrients, clearing protein aggregates, destroying organelles, and destroying intracellular pathogens, is associated with the phagocytosis and clearance of nanomaterials as well as material-induced cell differentiation and stress. Autophagy regulates bone remodeling balance via directly participating in the differentiation of osteoclasts and osteoblasts. Moreover, autophagy can regulate bone regeneration by modulating immune cell response, thereby modulating the osteogenic microenvironment. Therefore, autophagy may serve as an effective target for nanomaterials to facilitate the bone regeneration process. Increasingly, studies have shown that PNMs can modulate autophagy to regulate bone regeneration in recent years. This paper summarizes the current advances on the main application of PNMs in bone regeneration, the critical role of autophagy in bone regeneration, and the mechanism of PNMs regulating bone regeneration by targeting autophagy.
Collapse
Affiliation(s)
- Qing Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China; (Q.Z.); (L.X.)
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, The Netherlands
| | - Lan Xiao
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China; (Q.Z.); (L.X.)
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Yin Xiao
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China; (Q.Z.); (L.X.)
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
33
|
Ma P, Chen T, Wu X, Hu Y, Huang K, Wang Y, Dai H. Effects of bioactive strontium-substituted hydroxyapatite on osseointegration of polyethylene terephthalate artificial ligaments. J Mater Chem B 2021; 9:6600-6613. [PMID: 34369537 DOI: 10.1039/d1tb00768h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The insufficient bioactivity of polyethylene terephthalate (PET) artificial ligaments severely weakens the ligament-bone healing in anterior cruciate ligament (ACL) reconstruction, while osteogenic modification is a prevailing method to enhance osseointegration of PET artificial ligaments. In the present study, strontium-substituted hydroxyapatite (SrHA) nanoparticles with different strontium (Sr) contents were synthesized via microwave-hydrothermal method and subsequently were coated on the surface of PET artificial ligaments. The results of XRD, FT-IR, TEM and ICP-OES revealed that the doping of Sr ions had no great influences on the phase composition, morphology and particle size of HA, but affected its chemical compositions and crystallinity. The SEM images showed that nanoparticles were successfully deposited on the surface of PET grafts, the surface hydrophilicity of which was significantly improved by the prepared coatings. The in vitro study revealed that the osteogenic activity of rat bone marrow mesenchymal stem cells (rBMSCs) was affected by varying concentrations of Sr ions in coatings and the optimal osteogenic differentiation was observed in the 2SrHA-PET group, which significantly up-regulated the expression of BMP-2, OCN, Col-I and VEGF. The enhanced osteogenic ability of the 2SrHA-PET group was further demonstrated through an in vivo study, which obviously promoted ligament-bone integration compared with that of PET and HA-PET groups, thus improving the biomechanical strength of the graft-bone complex. This study confirms that SrHA coatings can facilitate osseointegration in the repair of ligament injury in rabbits and thus offers a prospective method for ACL reconstruction by using Sr-containing biomaterial-modified PET artificial ligaments.
Collapse
Affiliation(s)
- Pan Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Cellulose acetate (CA)/strontium phosphate (SrP) hybrid coating has been proposed as an effective strategy to build up novel bone-like structures for bone healing since CA is soluble in most organic solvents. Strontium (Sr2+) has been reported as a potential agent to treat degenerative bone diseases due to its osteopromotive and antibacterial effects. Herein, bioactive hybrid composite SrP-based coatings (CASrP) were successfully produced for the first time. CASrP was synthesized via a modified biomimetic method (for 7—CA7dSrP, and 14 days—CA14dSrP), in which the metal ion Sr2+ was used in place of Ca2+ in the simulated body fluid. Energy-dispersive X-ray (EDX) and Fourier transform infrared spectroscopy (FTIR) analysis confirmed the SrP incorporation chemically in the CASrP samples. Atomic absorption spectroscopy (AAS) supported EDX data, showing Sr2+ adsorption into CA, and its significant increase with the augmentation of time of treatment (ca. 92%—CA7dSrP and 96%—CA14dSrP). An increment in coating porosity and the formation of SrP crystals were evidenced by scanning electron microscopy (SEM) images. X-ray diffraction (XRD) evidenced a greater crystallinity than CA membranes and a destabilization of CA14dSrP structure compared to CA7dSrP. The composites were extremely biocompatible for fibroblast and osteoblast cells. Cell viability (%) was higher either for CA7dSrP (48 h: ca. 92% and 115%) and CA14dSrP (48 h: ca. 88% and 107%) compared to CA (48 h: ca. 70% and 51%) due to SrP formation and Sr2+ presence in its optimal dose in the culture media (4.6–9 mg·L−1). In conclusion, the findings elucidated here evidence the remarkable potential of CA7dSrP and CA14dSrP as bioactive coatings on the development of implant devices for inducing bone regeneration.
Collapse
|
35
|
Ruffini A, Sandri M, Dapporto M, Campodoni E, Tampieri A, Sprio S. Nature-Inspired Unconventional Approaches to Develop 3D Bioceramic Scaffolds with Enhanced Regenerative Ability. Biomedicines 2021; 9:916. [PMID: 34440120 PMCID: PMC8389705 DOI: 10.3390/biomedicines9080916] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Material science is a relevant discipline in support of regenerative medicine. Indeed, tissue regeneration requires the use of scaffolds able to guide and sustain the natural cell metabolism towards tissue regrowth. This need is particularly important in musculoskeletal regeneration, such as in the case of diseased bone or osteocartilaginous regions for which calcium phosphate-based scaffolds are considered as the golden solution. However, various technological barriers related to conventional ceramic processing have thus far hampered the achievement of biomimetic and bioactive scaffolds as effective solutions for still unmet clinical needs in orthopaedics. Driven by such highly impacting socioeconomic needs, new nature-inspired approaches promise to make a technological leap forward in the development of advanced biomaterials. The present review illustrates ion-doped apatites as biomimetic materials whose bioactivity resides in their unstable chemical composition and nanocrystallinity, both of which are, however, destroyed by the classical sintering treatment. In the following, recent nature-inspired methods preventing the use of high-temperature treatments, based on (i) chemically hardening bioceramics, (ii) biomineralisation process, and (iii) biomorphic transformations, are illustrated. These methods can generate products with advanced biofunctional properties, particularly biomorphic transformations represent an emerging approach that could pave the way to a technological leap forward in medicine and also in various other application fields.
Collapse
Affiliation(s)
| | | | | | | | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, 48018 Faenza, Italy; (A.R.); (M.S.); (M.D.); (E.C.)
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council, 48018 Faenza, Italy; (A.R.); (M.S.); (M.D.); (E.C.)
| |
Collapse
|
36
|
Lee NH, Kang MS, Kim TH, Yoon DS, Mandakhbayar N, Jo SB, Kim HS, Knowles JC, Lee JH, Kim HW. Dual actions of osteoclastic-inhibition and osteogenic-stimulation through strontium-releasing bioactive nanoscale cement imply biomaterial-enabled osteoporosis therapy. Biomaterials 2021; 276:121025. [PMID: 34298444 DOI: 10.1016/j.biomaterials.2021.121025] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 02/06/2023]
Abstract
Repair of defective hard-tissues in osteoporotic patients faces significantly challenges with limited therapeutic options. Although biomedical cements are considered promising materials for healthy bone repair, their uses for healing osteoporotic fracture are clinically limited. Herein, strontium-releasing-nanoscale cement was introduced to provide dual therapeutic-actions (pro-osteogenesis and anti-osteoclastogenesis), eventually for the regeneration of osteoporotic bone defect. The Sr-nanocement hardened from the Sr-doped nanoscale-glass particles was shown to release multiple ions including silicate, calcium and strontium at doses therapeutically relevant over time. When the Sr-nanocement was treated to pre-osteoblastic cells, the osteogenic mRNA level (Runx2, Opn, Bsp, Ocn), alkaline phosphatase activity, calcium deposition, and target luciferase reporter were stimulated with respect to the case with Sr-free-nanocement. When treated to pre-osteoclastic cells, the Sr-nanocement substantially reduced the osteoclastogenesis, such as osteoclastic mRNA level (Casr, Nfatc1, c-fos, Acp, Ctsk, Mmp-9), tartrate-resistant acid trap activity, and bone resorption capacity. In particular, the osteoclastic inhibition resulted in part from the interactive effect of osteoblasts which were activated by the Sr-nanocement, i.e., blockage of RANKL (receptor activator of nuclear factor-κB ligand) binding by enhanced osteoprotegerin and the deactivated Nfatc1. The Sr-nanocement, administered to an ovariectomized tibia defect (osteoporotic model) in rats, exhibited profound bone regenerative potential in cortical and surrounding trabecular area, including increased bone volume and density, enhanced production of osteopromotive proteins, and more populated osteoblasts, together with reduced signs of osteoclastic bone resorption. These results demonstrate that Sr-nanocement, with its dual effects of osteoclastic inhibition and osteogenic-stimulation, can be considered an effective nanotherapeutic implantable biomaterial platform for the treatment of osteoporotic bone defects.
Collapse
Affiliation(s)
- Na-Hyun Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Min Sil Kang
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Tae-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dong Suk Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seung Bin Jo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan, 31116, Republic of Korea
| | - Jonathan C Knowles
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Grays Inn Road, London, WC1X 8LD, UK; The Discoveries Centre for Regenerative and Precision Medicine, UCL Campus, London, UK; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
37
|
Nanoscale Strontium-Substituted Hydroxyapatite Pastes and Gels for Bone Tissue Regeneration. NANOMATERIALS 2021; 11:nano11061611. [PMID: 34205427 PMCID: PMC8235522 DOI: 10.3390/nano11061611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022]
Abstract
Injectable nanoscale hydroxyapatite (nHA) systems are highly promising biomaterials to address clinical needs in bone tissue regeneration, due to their excellent biocompatibility, bioinspired nature, and ability to be delivered in a minimally invasive manner. Bulk strontium-substituted hydroxyapatite (SrHA) is reported to encourage bone tissue growth by stimulating bone deposition and reducing bone resorption, but there are no detailed reports describing the preparation of a systematic substitution up to 100% at the nanoscale. The aim of this work was therefore to fabricate systematic series (0–100 atomic% Sr) of SrHA pastes and gels using two different rapid-mixing methodological approaches, wet precipitation and sol-gel. The full range of nanoscale SrHA materials were successfully prepared using both methods, with a measured substitution very close to the calculated amounts. As anticipated, the SrHA samples showed increased radiopacity, a beneficial property to aid in vivo or clinical monitoring of the material in situ over time. For indirect methods, the greatest cell viabilities were observed for the 100% substituted SrHA paste and gel, while direct viability results were most likely influenced by material disaggregation in the tissue culture media. It was concluded that nanoscale SrHAs were superior biomaterials for applications in bone surgery, due to increased radiopacity and improved biocompatibility.
Collapse
|
38
|
Zaman SU, Saif-Ur-Rehman, Zaman MKU, Arshad A, Rafiq S, Muhammad N, Saqib S, Jamal M, Wajeeh S, Imtiaz S, Sadiq MT. Biocompatibility performance evaluation of high flux hydrophilic CO3Ap/HAP/PSF composite membranes for hemodialysis application. Artif Organs 2021; 45:E265-E279. [PMID: 33559192 DOI: 10.1111/aor.13937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/08/2021] [Accepted: 02/01/2021] [Indexed: 11/26/2022]
Abstract
Carbonate apatite/hydroxyapatite (CO3Ap/HAP) additive was obtained by calcination of wasted chicken bones at 900°C. Intermolecular attraction exists between CO3Ap/HAP additive and blended polysulfone (PSF) polymer. Electron dispersive X-ray (EDX) and FTIR analysis were carried out to check the elemental composition and bonding chemistry of prepared additive. The instantaneous demixing process generated consistent finger-like networks in CO3Ap/HAP/PSF-based composite membranes while sponge-like structure was shown by PSF as revealed by SEM images. The increase in weight % of additive loading is also confirmed by EDX analysis. Furthermore, the interaction mechanism of CO3Ap/HAP additive with polysulfone medium was analyzed by FTIR exploration. The water absorption experiment defined a 93% expansion in hydrophilic performance. Change in porosity occurs with additive loading and pure water permeation flux improved up to 11 times. Approximately, antifouling results revealed that 87% of water flux was recovered after treating with a protein solution, whereas a 30% improvement in antifouling capability in case of bovine serum albumin solution occurred. In vitro cytotoxicity, and clotting times study was carried out to evaluate virulent behavior and anticoagulation activity of formulated membranes.
Collapse
Affiliation(s)
- Shafiq Uz Zaman
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore campus, Pakistan
| | - Saif-Ur-Rehman
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore campus, Pakistan
| | | | - Amber Arshad
- Department of Community Medicine, King Edward Medical University, Lahore, Pakistan
| | - Sikander Rafiq
- Department of Chemical Polymer and Composite Materials Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Sidra Saqib
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore campus, Pakistan
| | - Muddasar Jamal
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore campus, Pakistan
| | - Salman Wajeeh
- Department of Chemistry, University of Gujrat, Punjab, Pakistan
| | - Sania Imtiaz
- Department of Chemistry, Bahauddin Zakariya University, Multan, Pakistan
| | | |
Collapse
|
39
|
Dai J, Fu Y, Chen D, Sun Z. A novel and injectable strontium-containing hydroxyapatite bone cement for bone substitution: A systematic evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112052. [PMID: 33947546 DOI: 10.1016/j.msec.2021.112052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Reconstruction of bone defects is still a challenge. In this study, we developed and systematically evaluated a novel injectable strontium-containing hydroxyapatite (Sr-HA) bone cement in which Sr-HA powder included 5% Sr and was mixed with a setting liquid that included 5% potassium citrate. This Sr-HA cement was mainly composed of HA and α-tricalcium phosphate (TCP) and exhibited favorable injectability (100%), setting times (the initial setting time was 240 s and the final setting time was 420 s), compressive strength (73.4 MPa), maximal load and maximum bending stress, and excellent radiopacity. In addition, the Sr-HA cement also had excellent biocompatibility that exhibited low cytotoxicity for cell proliferation and no obvious disturbing effect on the osteogenic differentiation of periodontal ligament stem cells (DLSCs) and dental pulp stem cells (DPSCs). However, the Sr-HA cement could slightly promote the osteogenic differentiation of MC3T3 cells, which also implied that it would promote osseointegration between the cement and surrounding bone but would not obviously disturb the biological behavior of DLSCs and DPSCs. An in vivo study further confirmed that Sr-HA cement exhibited favorable osseointegration with the maxilla and tibia. All these findings implied that the novel Sr-HA cement was a suitable bone substitution for bone defects.
Collapse
Affiliation(s)
- Jiewen Dai
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Yuanfei Fu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Demin Chen
- Biomaterials Research and Test Center, Shanghai Ninth People's Hospital, Shanghai JiaoTong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Zhaoyao Sun
- Biomaterials Research and Test Center, Shanghai Ninth People's Hospital, Shanghai JiaoTong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
40
|
Yedekçi B, Tezcaner A, Alshemary AZ, Yılmaz B, Demir T, Evis Z. Synthesis and sintering of B, Sr, Mg multi-doped hydroxyapatites: Structural, mechanical and biological characterization. J Mech Behav Biomed Mater 2021; 115:104230. [DOI: 10.1016/j.jmbbm.2020.104230] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022]
|
41
|
Prakash VCA, Venda I, Thamizharasi V, Sathya E. Influence of DMSO-Sr on the Synthesis of Hydroxyapatite by Hydrothermal Coupled Microemulsion Method. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01723-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Hydroxyapatite Based Materials for Bone Tissue Engineering: A Brief and Comprehensive Introduction. CRYSTALS 2021. [DOI: 10.3390/cryst11020149] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydroxyapatite (HA) is widely used in bone tissue engineering for its bioactivity and biocompatibility, and a growing number of researchers are exploring ways to improve the physical properties and biological functions of hydroxyapatite. Up to now, HA has been used as inorganic building blocks for tissue engineering or as nanofillers to blend with polymers, furthermore, various methods such as ion doping or surface modification have been also reported to prepare functionalized HA. In this review, we try to give a brief and comprehensive introduction about HA-based materials, including ion-doped HA, HA/polymer composites and surface modified HA and their applications in bone tissue engineering. In addition, the prospective of HA is also discussed. This review may be helpful for researchers to get a general understanding about the development of hydroxyapatite based materials.
Collapse
|
43
|
Wang N, Fuh JYH, Dheen ST, Senthil Kumar A. Synthesis methods of functionalized nanoparticles: a review. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00106-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Gurgenc T. Structural characterization and dielectrical properties of Ag-doped nano-strontium apatite particles produced by hydrothermal method. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.128990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
45
|
Amirthalingam S, Lee SS, Pandian M, Ramu J, Iyer S, Hwang NS, Jayakumar R. Combinatorial effect of nano whitlockite/nano bioglass with FGF-18 in an injectable hydrogel for craniofacial bone regeneration. Biomater Sci 2021; 9:2439-2453. [DOI: 10.1039/d0bm01496f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comparing the bone regeneration potential of nano whitlockite or nano bioglass in combination with FGF-18, loaded in an injectable, shear-thinning chitin/PLGA hydrogel for craniofacial bone regeneration.
Collapse
Affiliation(s)
| | - Seunghun S. Lee
- School of Chemical and Biological Engineering
- the Institute of Chemical Processes
- Seoul National University
- Seoul
- Republic of Korea
| | - Mahalakshmi Pandian
- Centre for Nanosciences and Molecular Medicine
- Amrita Vishwa Vidyapeetham
- Kochi-682041
- India
| | - Janarthanan Ramu
- Department of Plastic and Reconstructive Surgery
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- Kochi 682041
- India
| | - Subramania Iyer
- Department of Plastic and Reconstructive Surgery
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham
- Kochi 682041
- India
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering
- the Institute of Chemical Processes
- Seoul National University
- Seoul
- Republic of Korea
| | - Rangasamy Jayakumar
- Centre for Nanosciences and Molecular Medicine
- Amrita Vishwa Vidyapeetham
- Kochi-682041
- India
| |
Collapse
|
46
|
Grazioli G, Silva AF, Souza JF, David C, Diehl L, Sousa-Neto MD, Cava SS, Fajardo AR, Moraes RR. Synthesis and characterization of poly(vinyl alcohol)/chondroitin sulfate composite hydrogels containing strontium-doped hydroxyapatite as promising biomaterials. J Biomed Mater Res A 2020; 109:1160-1172. [PMID: 32985092 DOI: 10.1002/jbm.a.37108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 01/20/2023]
Abstract
Novel poly(vinyl alcohol)/chondroitin sulfate (PVA/CS) composite hydrogels containing hydroxyapatite (HA) or Sr-doped HA (HASr) particles were synthesized by a freeze/thaw method and characterized aiming towards biomedical applications. HA and HASr were synthesized by a wet-precipitation method and added to the composite hydrogels in fractions up to 15 wt%. Physical-chemical characterizations of particles and hydrogels included scanning electron microscopy, energy-dispersive spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetry, porosity, compressive strength/elastic modulus, swelling degree, and cell viability. Particles were irregular in shape and appeared to have narrow size variation. The thermal behavior of composite hydrogels was altered compared to the control (bare) hydrogel. All hydrogels exhibited high porosity. HA/HASr particles reduced total porosity without reducing pore size. The mechanical strength was improved as the fraction of HA or HASr was increased. HASr particles led to a faster water uptake but did not interfere with the total hydrogel swelling capacity. In cell viability essay, increased cell growth (above 120%) was observed in all groups including the control hydrogel, suggesting a bioactive effect. In conclusion, PVA/CS hydrogels containing HA or HASr particles were successfully synthesized and showed promising morphological, mechanical, and swelling properties, which are particularly required for scaffolding.
Collapse
Affiliation(s)
- Guillermo Grazioli
- Department of Dental Materials, University of the Republic, Montevideo, Uruguay.,Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Adriana F Silva
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Jaqueline F Souza
- Laboratory of Technology and Development of Composites and Polymeric Materials - LaCoPol, Federal University of Pelotas, Pelotas, Brazil
| | - Carla David
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Lisiane Diehl
- Advanced Crystal Growth and Photonics - CCAF, Federal University of Pelotas, Pelotas, Brazil
| | - Manoel D Sousa-Neto
- Department of Restorative Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | - Sergio S Cava
- Advanced Crystal Growth and Photonics - CCAF, Federal University of Pelotas, Pelotas, Brazil
| | - André R Fajardo
- Laboratory of Technology and Development of Composites and Polymeric Materials - LaCoPol, Federal University of Pelotas, Pelotas, Brazil
| | - Rafael R Moraes
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
47
|
Heid S, Boccaccini AR. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Acta Biomater 2020; 113:1-22. [PMID: 32622053 DOI: 10.1016/j.actbio.2020.06.040] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
The growing demand for personalized implants and tissue scaffolds requires advanced biomaterials and processing strategies for the fabrication of three-dimensional (3D) structures mimicking the complexity of the extracellular matrix. During the last years, biofabrication approaches like 3D printing of cell-laden (soft) hydrogels have been gaining increasing attention to design such 3D functional environments which resemble natural tissues (and organs). However, often these polymeric hydrogels show poor stability and low printing fidelity and hence various approaches in terms of multi-material mixtures are being developed to enhance pre- and post-printing features as well as cytocompatibility and post-printing cellular development. Additionally, bioactive properties improve the binding to the surrounding (host) tissue at the implantation site. In this review we focus on the state-of-the-art of a particular type of heterogeneous bioinks, which are composed of polymeric hydrogels incorporating inorganic bioactive fillers. Such systems include isotropic and anisotropic silicates like bioactive glasses and nanoclays or calcium-phosphates like hydroxyapatite (HAp), which provide in-situ crosslinking effects and add extra functionality to the matrix, for example mineralization capability. The present review paper discusses in detail such bioactive composite bioink systems based on the available literature, revealing that a great variety has been developed with substantially improved bioprinting characteristics, in comparison to the pure hydrogel counterparts, and enabling high viability of printed cells. The analysis of the results of the published studies demonstrates that bioactive fillers are a promising addition to hydrogels to print stable 3D constructs for regeneration of tissues. Progress and challenges of the development and applications of such composite bioink approaches are discussed and avenues for future research in the field are presented. STATEMENT OF SIGNIFICANCE: Biofabrication, involving the processing of biocompatible hydrogels including cells (bioinks), is being increasingly applied for developing complex tissue and organ mimicking structures. A variety of multi-material bioinks is being investigated to bioprint 3D constructs showing shape stability and long-term biological performance. Composite hydrogel bioinks incorporating inorganic bioreactive fillers for 3D bioprinting are the subject of this review paper. Results reported in the literature highlight the effect of bioactive fillers on bioink properties, printability and on cell behavior during and after printing and provide important information for optimizing the design of future bioinks for biofabrication, exploiting the extra functionalities provided by inorganic fillers. Further functionalization with drugs/growth factors can target enhanced printability and local drug release for more specialized biomedical therapies.
Collapse
|
48
|
Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured Biomaterials for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:922. [PMID: 32974298 PMCID: PMC7471872 DOI: 10.3389/fbioe.2020.00922] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
This review article addresses the various aspects of nano-biomaterials used in or being pursued for the purpose of promoting bone regeneration. In the last decade, significant growth in the fields of polymer sciences, nanotechnology, and biotechnology has resulted in the development of new nano-biomaterials. These are extensively explored as drug delivery carriers and as implantable devices. At the interface of nanomaterials and biological systems, the organic and synthetic worlds have merged over the past two decades, forming a new scientific field incorporating nano-material design for biological applications. For this field to evolve, there is a need to understand the dynamic forces and molecular components that shape these interactions and influence function, while also considering safety. While there is still much to learn about the bio-physicochemical interactions at the interface, we are at a point where pockets of accumulated knowledge can provide a conceptual framework to guide further exploration and inform future product development. This review is intended as a resource for academics, scientists, and physicians working in the field of orthopedics and bone repair.
Collapse
Affiliation(s)
- Joseph G. Lyons
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Mark A. Plantz
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Wellington K. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Erin L. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Silvia Minardi
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| |
Collapse
|
49
|
Olivier F, Rochet N, Delpeux-Ouldriane S, Chancolon J, Sarou-Kanian V, Fayon F, Bonnamy S. Strontium incorporation into biomimetic carbonated calcium-deficient hydroxyapatite coated carbon cloth: Biocompatibility with human primary osteoblasts. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111192. [PMID: 32806314 DOI: 10.1016/j.msec.2020.111192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/07/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
It has already been shown that sono-electrodeposition can be used to coat activated carbon fiber cloth (ACC) with calcium phosphates (CaP) and we recently demonstrated that cathodic polarization at -1 V/Hg/Hg2SO4 was the best parameter to obtain a carbonated calcium deficient hydroxyapatite (CDA) coating with optimal uniformity and homogeneity. In the present study, we investigated whether this technique was suitable to dope this carbonated CDA coating by partial substitution with another bivalent cation such as strontium. We show here that a strontium-substituted carbonated CDA coating can be produced and quantitatively controlled up to at least 10 at.%. In this range we demonstrate that the presence of strontium does not modify either the textural or the structural properties of the carbonated CDA. Owing to the well-known effect of both carbonated CDA and strontium in bone formation, the biocompatibility of ACC coated or not with carbonated CDA or with strontium substituted carbonated CDA was tested using primary human osteoblasts. Our data revealed a positive and dose-dependent effect of strontium addition on osteoblast activity and proliferation. In conclusion, we show here that electrodeposition at -1 V is a suitable and easy process to incorporate cations of biological interest into CaP coating.
Collapse
Affiliation(s)
- F Olivier
- CNRS, ICMN UMR 7374, Univ. Orléans, Orléans, France.
| | - N Rochet
- Univ. Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | - J Chancolon
- CNRS, ICMN UMR 7374, Univ. Orléans, Orléans, France
| | | | - F Fayon
- CNRS, CEMHTI UPR 3079, Univ. Orléans, Orléans, France
| | - S Bonnamy
- CNRS, ICMN UMR 7374, Univ. Orléans, Orléans, France
| |
Collapse
|
50
|
Montagna G, Cristofaro F, Fassina L, Bruni G, Cucca L, Kochen A, Divieti Pajevic P, Bragdon B, Visai L, Gerstenfeld L. An in vivo Comparison Study Between Strontium Nanoparticles and rhBMP2. Front Bioeng Biotechnol 2020; 8:499. [PMID: 32612980 PMCID: PMC7308719 DOI: 10.3389/fbioe.2020.00499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/29/2020] [Indexed: 01/24/2023] Open
Abstract
The osteoinductive property of strontium was repeatedly proven in the last decades. Compelling in vitro data demonstrated that strontium hydroxyapatite nanoparticles exert a dual action, by promoting osteoblasts-driven matrix secretion and inhibiting osteoclasts-driven matrix resorption. Recombinant human bone morphogenetic protein 2 (rhBMP2) is a powerful osteoinductive biologic, used for the treatment of vertebral fractures and critically-sized bone defects. Although effective, the use of rhBMP2 has limitations due its recombinant morphogen nature. In this study, we examined the comparison between two osteoinductive agents: rhBMP2 and the innovative strontium-substituted hydroxyapatite nanoparticles. To test their effectiveness, we independently loaded Gelfoam sponges with the two osteoinductive agents and used the sponges as agent-carriers. Gelfoam are FDA-approved biodegradable medical devices used as delivery system for musculoskeletal defects. Their porous structure and spongy morphology make them attractive in orthopedic field. The abiotic characterization of the loaded sponges, involving ion release pattern and structure investigation, was followed by in vivo implantation onto the periosteum of healthy mice and comparison of the effects induced by each implant was performed. Abiotic analysis demonstrated that strontium was continuously released from the sponges over 28 days with a pattern similar to rhBMP2. Histological observations and gene expression analysis showed stronger endochondral ossification elicited by strontium compared to rhBMP2. Osteoclast activity was more inhibited by strontium than by rhBMP2. These results demonstrated the use of sponges loaded with strontium nanoparticles as potential bone grafts might provide better outcomes for complex fractures. Strontium nanoparticles are a novel and effective non-biologic treatment for bone injuries and can be used as novel powerful therapeutics for bone regeneration.
Collapse
Affiliation(s)
- Giulia Montagna
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.,Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Francesco Cristofaro
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Giovanna Bruni
- C.S.G.I. Department of Chemistry, Physical-Chemistry Section, University of Pavia, Pavia, Italy
| | - Lucia Cucca
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Alejandro Kochen
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA, United States
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA, United States
| | - Beth Bragdon
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, United States
| | - Livia Visai
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Louis Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|