1
|
Neto BAD, Sorto JEP, Lapis AAM, Machado F. Functional chromophores synthesized via multicomponent Reactions: A review on their use as cell-imaging probes. Methods 2023; 220:142-157. [PMID: 37939912 DOI: 10.1016/j.ymeth.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
This review aims to provide a comprehensive overview of recent advancements and applications of fluorescence imaging probes synthesized via MCRs (multicomponent reactions). These probes, also known as functional chromophores, belong to a currently investigated class of fluorophores that are presently being successfully applied in bioimaging experiments, especially in various living cell lineages. We describe some of the MCRs that have been employed in the synthesis of these probes and explore their applications in biological imaging, with an emphasis on cellular imaging. The review also discusses the challenges and future perspectives in the field, particularly considering the potential impact of MCR-based fluorescence imaging probes on advancing this field of research in the coming years. Considering that this area of research is relatively new and nearly a decade has passed since the first publication, this review also provides a historical perspective on this class of fluorophores, highlighting the pioneering works published between 2011 and 2016.
Collapse
Affiliation(s)
- Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil.
| | - Jenny E P Sorto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil; Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | | | - Fabricio Machado
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil
| |
Collapse
|
2
|
Kapil K, Xu S, Lee I, Murata H, Kwon SJ, Dordick JS, Matyjaszewski K. Highly Sensitive Detection of Bacteria by Binder-Coupled Multifunctional Polymeric Dyes. Polymers (Basel) 2023; 15:2723. [PMID: 37376368 DOI: 10.3390/polym15122723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Infectious diseases caused by pathogens are a health burden, but traditional pathogen identification methods are complex and time-consuming. In this work, we have developed well-defined, multifunctional copolymers with rhodamine B dye synthesized by atom transfer radical polymerization (ATRP) using fully oxygen-tolerant photoredox/copper dual catalysis. ATRP enabled the efficient synthesis of copolymers with multiple fluorescent dyes from a biotin-functionalized initiator. Biotinylated dye copolymers were conjugated to antibody (Ab) or cell-wall binding domain (CBD), resulting in a highly fluorescent polymeric dye-binder complex. We showed that the unique combination of multifunctional polymeric dyes and strain-specific Ab or CBD exhibited both enhanced fluorescence and target selectivity for bioimaging of Staphylococcus aureus by flow cytometry and confocal microscopy. The ATRP-derived polymeric dyes have the potential as biosensors for the detection of target DNA, protein, or bacteria, as well as bioimaging.
Collapse
Affiliation(s)
- Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Shirley Xu
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Inseon Lee
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Stiernet P, Debuigne A. Imine-Based Multicomponent Polymerization: Concepts, Structural Diversity and Applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Surface modification of MCM-41 by chain transfer free radical polymerization and their utilization for intracellular pH-responsive delivery of curcumin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Bou S, Klymchenko AS, Collot M. Fluorescent labeling of biocompatible block copolymers: synthetic strategies and applications in bioimaging. MATERIALS ADVANCES 2021; 2:3213-3233. [PMID: 34124681 PMCID: PMC8142673 DOI: 10.1039/d1ma00110h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/04/2021] [Indexed: 05/27/2023]
Abstract
Among biocompatible materials, block copolymers (BCPs) possess several advantages due to the control of their chemistry and the possibility of combining various blocks with defined properties. Consequently, BCPs drew considerable attention as biocompatible materials in the fields of drug delivery, medicine and bioimaging. Fluorescent labeling of BCPs quickly appeared to be a method of choice to image and track these materials in order to better understand the nature of their interactions with biological media. However, incorporating fluorescent markers (FM) into BCPs can appear tricky; we thus intend to help chemists in this endeavor by reviewing recent advances made in the last 10 years. With the choice of the FM being of prior importance, we first reviewed their photophysical properties and functionalities for optimal labeling and imaging. In the second part the different chemical approaches that have been used in the literature to fluorescently label BCPs have been reviewed. We also report and discuss relevant applications of fluorescent BCPs in bioimaging.
Collapse
Affiliation(s)
- Sophie Bou
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg 74 route du Rhin 67401 Illkirch-Graffenstaden France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg 74 route du Rhin 67401 Illkirch-Graffenstaden France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg 74 route du Rhin 67401 Illkirch-Graffenstaden France
| |
Collapse
|
6
|
Xu J, Cao L, Wang Y, Zhu D, Ye Q. Functionalized polyimide based on mercaptoacetic acid locking imine reaction: Synthesis and coating application. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jiangting Xu
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, School of Chemistry Xiangtan University Xiangtan China
| | - Liaofeng Cao
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, School of Chemistry Xiangtan University Xiangtan China
| | - Yilin Wang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, School of Chemistry Xiangtan University Xiangtan China
| | - Dandan Zhu
- School of Chemistry and Chemical Engineering Shanghai Jiaotong University Shanghai China
| | - Qiang Ye
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, School of Chemistry Xiangtan University Xiangtan China
| |
Collapse
|
7
|
Zhao J, Hao A, Xing P. Enhancing Optical Activities of Benzimidazole Derivatives through Coassembly for High-Efficiency Synthesis of Chiroptical Nanomaterials and Accurate ee % Detection of Natural Acids. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6830-6843. [PMID: 33502861 DOI: 10.1021/acsami.0c20735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing efficient protocols to enhance the optical activities of chiral self-assemblies is a key to realizing their chiroptical functions such as chiral sensing and displays. Here, we have reported a coassembly protocol to efficiently boost the chiroptical responses, whereby the synthesis of chiroptical nanomaterials and highly accurate detection of enantiomeric excess (ee %) were achieved. A series of benzimidazole derivatives with different topologies underwent spontaneous aggregation and symmetry breaking in solution, generating silent Cotton effects, yet exclusive weak left-handed circularly polarized luminescence (CPL). The coassembly with natural hydroxyl acids via complementary H bonds afforded chiral nanostructures with emerged Cotton effects and enhanced CPL. Dissymmetry g-factors were dramatically boosted (glum from 1 × 10-3 to 5.5 × 10-2, gabs from 0 to 6.7 × 10-3). In addition, proof of concept of recognition and detection of natural chiral molecules was realized with high accuracy.
Collapse
Affiliation(s)
- Jianjian Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
8
|
|
9
|
Cao H, Li B, Jiang X, Zhu X, Kong XZ. Fluorescent linear polyurea based on toluene diisocyanate: Easy preparation, broad emission and potential applications. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2020; 399:125867. [PMID: 32572332 PMCID: PMC7292956 DOI: 10.1016/j.cej.2020.125867] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 06/04/2023]
Abstract
In contrast to conventional fluorescent polymers featured by large conjugation structures, a new class of fluorescent polymers without above conjugations are gaining constant interest owing to their significant academic importance and promising applications in diverse fields. These unconventional fluorescent polymers are in general composed of heteroatoms (e.g. N, O, P, and S) under different forms. Here we report our recent study on polyurea, prepared by a very simple one step precipitation polymerization of toluene diisocyanate in a binary solvent of water-acetone. This polyurea, basically consisting of phenyl ring and urea group, shows fluorescent emission in a broad concentration range, from very low (10-5 mg/mL) to its solubility limit (50 mg/mL), and in a wide range of emission wavelength from UV to visible regions of up to 500 nm under varied excitation wavelength. The emission behaviors were fully studied under different concentrations and excitations. It was concluded that the emission in UV region was intrinsic due to the conjugation between the phenyl and the adjacent urea unit; while the emission in visible region, strongly excitation dependent, was caused by the cluster formation of the molecular chains, in accordance with the cluster-triggered-emission (CTE) mechanism. The formation of the cluster was tested through dynamic light scattering, FTIR and UV absorbance. Tested in presence of different metal ions, Fe3+ demonstrated a quenching effect with high selectivity. Based on this study, different paper-based sensors were designed to detect Fe3+, H2O2 in bioanalysis and for data encryption. This work provides a simple way to prepare a polyurea, a novel type of unconventional fluorescent polymer, with high emission performance distinct from its known analogues.
Collapse
Affiliation(s)
- Hongyan Cao
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Bin Li
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Québec Center for Functional Materials, Department of Chemistry, Université de Sherbrooke, Sherbrooke, QC J1K2R1, Canada
| | - Xubao Jiang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaoli Zhu
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
10
|
Ma C, Han T, Kang M, Liarou E, Wemyss AM, Efstathiou S, Tang BZ, Haddleton D. Aggregation-Induced Emission Active Polyacrylates via Cu-Mediated Reversible Deactivation Radical Polymerization with Bioimaging Applications. ACS Macro Lett 2020; 9:769-775. [PMID: 35648566 DOI: 10.1021/acsmacrolett.0c00281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The introduction of aggregation-induced emission (AIE) moieties into polymers results in smart materials with AIE characteristics, expanding their scope of applications. Herein, well-defined polymers with controlled molecular weight, low dispersity, and high end-group fidelity are produced via copper(0)-mediated reversible-deactivation radical polymerizations (Cu(0)-RDRPs). An AIE-containing initiator tetraphenylethene bromoisobutyrate (TPEBIB) has been synthesized, fully characterized, and utilized for the construction of different polyacrylate homopolymers and block copolymers bearing the TPE group with a range of molecular weights and architectures. All of the polymers exhibited AIE behavior. Notably, the hydrophobic TPE-poly(tert-butyl acrylate) (TPE-PtBA)-containing block copolymers are transformed to TPE-poly(acrylic acid) (TPE-PAA)-based amphiphilic copolymers by facile deprotection, enabling pH-tunable self-assembly in aqueous media to give fluorescent nanoparticles with various sizes. The low cytotoxicity, high specificity, and excellent photostability render them promising candidates as lysosome-specific probes in biological imaging applications.
Collapse
Affiliation(s)
- Congkai Ma
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ting Han
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Miaomiao Kang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Evelina Liarou
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alan M. Wemyss
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Spyridon Efstathiou
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ben Zhong Tang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - David Haddleton
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
11
|
Javanbakht S, Shaabani A. Multicomponent Reactions-Based Modified/Functionalized Materials in the Biomedical Platforms. ACS APPLIED BIO MATERIALS 2019; 3:156-174. [DOI: 10.1021/acsabm.9b00799] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran 1963963113, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran 1963963113, Iran
| |
Collapse
|
12
|
Tavakoli J, Laisak E, Gao M, Tang Y. AIEgen quantitatively monitoring the release of Ca2+ during swelling and degradation process in alginate hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109951. [DOI: 10.1016/j.msec.2019.109951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/04/2019] [Accepted: 07/05/2019] [Indexed: 12/26/2022]
|
13
|
Srinivasan V, Jhonsi MA, Dhenadhayalan N, Lin KC, Ananth DA, Sivasudha T, Narayanaswamy R, Kathiravan A. Pyrene-based prospective biomaterial: In vitro bioimaging, protein binding studies and detection of bilirubin and Fe 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 221:117150. [PMID: 31176291 DOI: 10.1016/j.saa.2019.117150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 05/16/2023]
Abstract
Herein, we have meticulously derived the nanosized fluorescent aggregates from pyrene Schiff base (PS) in DMSO:water (10:90) ratio. The aggregation property of PS molecule was characterized by SEM and TEM measurements, revealed the aggregated particles are in spherical shape with ~3 nm in size. Moreover, aggregates exhibit a high fluorescence quantum yield (48%) which was effectively used for the in vitro bioimaging of two different cancer cells such as A549 and MCF-7 cells in which it exhibiting excellent biocompatibility. Further, it was estimated the capability of twofold acridine orange/ethidium bromide (AO/EB) staining to identify the apoptotic associated changes in cancer cells. Additionally, the aggregates were successfully demonstrated as a luminescent probe for the perceptive biomolecule detection of bilirubin. On the other hand, the PS molecule was successfully utilized for protein binding and metal ion sensing studies. The interaction of bovine serum albumin (BSA) with PS molecule in DMSO was using fluorescence spectroscopic method and nature of interaction was also confirmed through molecular docking analysis. The PS molecule also acts as an excellent sensor for biologically important Fe3+ ion with detection limit of 336 nM. Overall, PS molecule can be a prospective material in biological field both in solution as well as aggregated forms.
Collapse
Affiliation(s)
- Venkatesan Srinivasan
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 048, Tamil Nadu, India
| | - Mariadoss Asha Jhonsi
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 048, Tamil Nadu, India.
| | - Namasivayam Dhenadhayalan
- Department of Chemistry, National Taiwan University and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Devanesan Arul Ananth
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Thilagar Sivasudha
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Radhakrishnan Narayanaswamy
- Department of Biotechnology, Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology, Avadi, Chennai 600 062, Tamil Nadu, India
| | - Arunkumar Kathiravan
- Department of Chemistry, Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology, Avadi, Chennai 600 062, Tamil Nadu, India.
| |
Collapse
|
14
|
Huerta-Aguilar CA, Ramírez-Guzmán B, Thangarasu P, Narayanan J, Singh N. Simultaneous recognition of cysteine and cytosine using thiophene-based organic nanoparticles decorated with Au NPs and bio-imaging of cells. Photochem Photobiol Sci 2019; 18:1761-1772. [PMID: 31111854 DOI: 10.1039/c9pp00060g] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomolecules like cysteine and cytosine play a significant role in many physiological processes, and their unusual level in biological systems can lead to many diseases including cancer. Indeed, the need for selective detection of these moieties by a fluorescence probe is imperative. Thus, thiophene based Schiff N,N'-bis(thiophene-2-ylmethylene)thiophenemethane (BMTM) was synthesized and then characterized using several analytical techniques before converting it into organic nanoparticles (ONPs). Then, fluorescent organic inorganic nanohybrids (FONs) were obtained after decorating ONPs with AuNPs to yield BMTM-Au-ONPs (FONPs). The morphology of the particles, analyzed using a Transmission Electron Microscope (TEM), shows that AuNPs were embedded with low density organic matter (ONPs). FONPs were employed to recognize cysteine and cytosine simultaneously. No interference was observed from other moieties such as guanine, uracyl, NADH, NAD, ATP, and adenine during the detection. It means that the intensity of the fluorescence signal was significantly changed (enhanced for cytosine and quenched for cysteine). So, FONPs were used to detect cysteine and cytosine in real samples, like Saccharomyces cerevisiae cells. As expected, no considerable fluorescence signal for cysteine was observed, while for cytosine, strong fluorescence signals were detected in the cells. DFT was used to explain the interaction of FONPs with cysteine or cytosine.
Collapse
Affiliation(s)
- Carlos Alberto Huerta-Aguilar
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, 04510 México D.F., Mexico. and División de Nanotecnología, Universidad Politécnica del Valle de México, Av. Mexiquense, C.P. 54910 Tultitlán, Estado de México, Mexico
| | - Brayan Ramírez-Guzmán
- División de Nanotecnología, Universidad Politécnica del Valle de México, Av. Mexiquense, C.P. 54910 Tultitlán, Estado de México, Mexico
| | - Pandiyan Thangarasu
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, 04510 México D.F., Mexico.
| | - Jayanthi Narayanan
- División de Nanotecnología, Universidad Politécnica del Valle de México, Av. Mexiquense, C.P. 54910 Tultitlán, Estado de México, Mexico
| | - Narinder Singh
- Department of chemistry, Indian Institute of Technology (IIT), Ropar, India
| |
Collapse
|
15
|
Zhang H, Sun Y, Zhou T, Yu Q, Yang Z, Cai Z, Cang H. Poly(2-oxazoline)-based nanoparticles with aggregation-induced emission (AIE) for targeted cell imaging. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1525550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Huaihong Zhang
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Yu Sun
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Tao Zhou
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Qing Yu
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Zhenqing Yang
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Zhaosheng Cai
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Hui Cang
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| |
Collapse
|
16
|
Huang H, Liu M, Jiang R, Chen J, Huang Q, Wen Y, Tian J, Zhou N, Zhang X, Wei Y. Water-dispersible fluorescent nanodiamonds for biological imaging prepared by thiol-ene click chemistry. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.08.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Mao LC, Zhang XY, Wei Y. Recent Advances and Progress for the Fabrication and Surface Modification of AIE-active Organic-inorganic Luminescent Composites. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2208-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
AIE-active self-assemblies from a catalyst-free thiol-yne click reaction and their utilization for biological imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:61-68. [DOI: 10.1016/j.msec.2018.06.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 05/16/2018] [Accepted: 06/18/2018] [Indexed: 11/18/2022]
|
19
|
Chi W, Yuan W, Du J, Han T, Li H, Li Y, Tang BZ. Construction of Functional Hyperbranched Poly(phenyltriazolylcarboxylate)s by Metal-Free Phenylpropiolate-Azide Polycycloaddition. Macromol Rapid Commun 2018; 39:e1800604. [PMID: 30252976 DOI: 10.1002/marc.201800604] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/07/2018] [Indexed: 01/21/2023]
Abstract
The 1,3-dipolar cycloaddition of activated internal alkynes with azides has been developed into an efficient polymerization reaction for constructing functional linear 1,4,5-trisubstitued polytriazoles. However, it is rarely employed for the synthesis of hyperbranched polymers. In this work, metal-free polycycloadditions of tris(3-phenylpropiolate)s (1) and tetraphenylethene-containing diazides (2) are performed in dimethylformamide at 100 °C for 7 and 12 h, producing hyperbranched poly(phenyltriazolylcarboxylate)s (hb-PPTCs) with high molecular weights and satisfactory regioregularities in good yields. The hb-PPTCs have good solubility in common organic solvents and high thermal stability. They are non-emissive in solutions, but emit intensively upon aggregation, showing an aggregation-induced emission effect. Their aggregates can work as fluorescent sensors for explosive detection with high sensitivity. Furthermore, the polymers can be utilized for the fabrication of 2D fluorescent patterns with high resolution by UV irradiation through copper grid masks.
Collapse
Affiliation(s)
- Weiwen Chi
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wei Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jun Du
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ting Han
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hongkun Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yongfang Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
20
|
Huang H, Cui Y, Liu M, Chen J, Wan Q, Wen Y, Deng F, Zhou N, Zhang X, Wei Y. A one-step ultrasonic irradiation assisted strategy for the preparation of polymer-functionalized carbon quantum dots and their biological imaging. J Colloid Interface Sci 2018; 532:767-773. [PMID: 30130727 DOI: 10.1016/j.jcis.2018.07.099] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
Fluorescent carbon nanoparticles (FCNs) have gradually become the most promising alternative candidates to other traditional fluorescent nanomaterials for biological applications on account of their excellent fluorescence property and remarkable biocompatibility. Although many methods have reported on the preparation of FCNs, to date, no studies have reported the preparation of polymers of functionalized FCNs. A high-efficiency method was developed in this work to synthesize high-quality poly(ethylene oxide) (PEG)-functionalized FCNs from cigarette ash and thiol group-containing PEG via a facile one-pot ultrasonic irradiation treatment. A series of characterization techniques demonstrated the uniform nanoscale size, good fluorescence stability, high water dispersibility and remarkable biocompatibility of the generated FCNs. Furthermore, cell imaging was easily achieved at high resolution using the synthetic FCNs as probes, which validates their potential for bioimaging applications. In summary, an efficient one-pot strategy is reported for the first time on the preparation of PEG-functionalized FCNs with the assistance of ultrasonic irradiation. This method should be of great research interest for the fabrication of other polymer-functionalized FCNs with designable properties and functions.
Collapse
Affiliation(s)
- Hongye Huang
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yi Cui
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Junyu Chen
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Qing Wan
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yuanqing Wen
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Naigen Zhou
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China; Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan. @tsinghua.edu.cn
| |
Collapse
|
21
|
Jiang N, Li GF, Zhang BH, Zhu DX, Su ZM, Bryce MR. Aggregation-Induced Long-Lived Phosphorescence in Nonconjugated Polyurethane Derivatives at 77 K. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00715] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nan Jiang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Renmin Street No. 5268, Changchun 130024, PR China
| | - Guang-Fu Li
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Renmin Street No. 5268, Changchun 130024, PR China
| | - Bao-Hua Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Dong-Xia Zhu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Renmin Street No. 5268, Changchun 130024, PR China
| | - Zhong-Min Su
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Renmin Street No. 5268, Changchun 130024, PR China
| | - Martin R. Bryce
- Department of Chemistry, Durham University, Durham DH1 3LE, U.K
| |
Collapse
|
22
|
Guo L, Li L, Liu M, Wan Q, Tian J, Huang Q, Wen Y, Liang S, Zhang X, Wei Y. Bottom-up preparation of nitrogen doped carbon quantum dots with green emission under microwave-assisted hydrothermal treatment and their biological imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.11.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Jiang R, Huang L, Liu M, Deng F, Huang H, Tian J, Wen Y, Cao QY, Zhang X, Wei Y. Ultrafast microwave-assisted multicomponent tandem polymerization for rapid fabrication of AIE-active fluorescent polymeric nanoparticles and their potential utilization for biological imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 83:115-120. [DOI: 10.1016/j.msec.2017.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/17/2017] [Accepted: 11/17/2017] [Indexed: 01/07/2023]
|
24
|
Huang L, Luo W, Liu M, Tian J, Huang Q, Huang H, Hui J, Wen Y, Zhang X, Wei Y. Facile preparation of Eu3+ and F− co-doped luminescent hydroxyapatite polymer composites via the photo-RAFT polymerization. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Zeng G, Liu M, Jiang R, Huang Q, Huang L, Wan Q, Dai Y, Wen Y, Zhang X, Wei Y. Self-catalyzed photo-initiated RAFT polymerization for fabrication of fluorescent polymeric nanoparticles with aggregation-induced emission feature. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 83:154-159. [DOI: 10.1016/j.msec.2017.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 01/19/2023]
|
26
|
Synthesis of fluorescent dendrimers with aggregation-induced emission features through a one-pot multi-component reaction and their utilization for biological imaging. J Colloid Interface Sci 2018; 509:327-333. [PMID: 28918375 DOI: 10.1016/j.jcis.2017.09.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 01/15/2023]
Abstract
Hyperbranched polymers have attracted wide research attention owing to their unique topological structure, physicochemical properties and great potential for applications such asadditives, drug delivery, catalysts and nanotechnology. Among these, the polyamidoamine(PAMAM) dendrimers are some of the most important dendrimers. However, the synthesis and biomedical applications of fluorescent PAMAM dendrimers have received only limited attention. In this work, we present a rather effective and convenient approach for synthesis of fluorescent PAMAM dendrimers with aggregation-induced emission (AIE) properties through a one-pot catalyst-free Mannich reaction under rather mild experimental conditions (e.g., low reaction temperature, air atmosphere in the presence of water). The obtained AIE-active amphiphiles (PhE-PAD) could self-assemble into fluorescent organic nanoparticles (FONs). The obtained AIE-active FONs (PhE-PAD FONs) were fully characterized, and their successful construction was confirmed by 1H NMR spectroscopy, FT-IR spectroscopy and transmission electron microscopy. Fluorescence and UV-Visible absorption spectroscopy results demonstrated that the final PhE-PAD FONs showed strong yellow fluorescence, desirable photostability and good water dispersity. The cell viability evaluation and confocal laser scanning microscope imaging results suggested that PhE-PAD FONs possessed low cytotoxicity and excellent biocompatibility. Taken together, these results demonstrate that we have developed a facile and efficient strategy for the fabrication of AIE-active FONs, which possess many desirable features for biomedical applications.
Collapse
|
27
|
A facile one-pot Mannich reaction for the construction of fluorescent polymeric nanoparticles with aggregation-induced emission feature and their biological imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:416-421. [DOI: 10.1016/j.msec.2017.08.048] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/06/2017] [Accepted: 08/10/2017] [Indexed: 12/22/2022]
|
28
|
Cao QY, Jiang R, Liu M, Wan Q, Xu D, Tian J, Huang H, Wen Y, Zhang X, Wei Y. Microwave-assisted multicomponent reactions for rapid synthesis of AIE-active fluorescent polymeric nanoparticles by post-polymerization method. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:578-583. [DOI: 10.1016/j.msec.2017.07.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 11/29/2022]
|
29
|
Mitochondrial targeted fluorescent probe with AIE characteristics for bioimaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:129-135. [DOI: 10.1016/j.msec.2017.03.127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 12/17/2022]
|
30
|
Long Z, Mao L, Liu M, Wan Q, Wan Y, Zhang X, Wei Y. Marrying multicomponent reactions and aggregation-induced emission (AIE): new directions for fluorescent nanoprobes. Polym Chem 2017. [DOI: 10.1039/c7py00979h] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent development and progress for fabrication and applications of aggregation-induced emission polymers through multicomponent reactions have been summarized in this review.
Collapse
Affiliation(s)
- Zi Long
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Liucheng Mao
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Meiying Liu
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Qing Wan
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Yiqun Wan
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Xiaoyong Zhang
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Yen Wei
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research
| |
Collapse
|