1
|
Wahnou H, El Kebbaj R, Liagre B, Sol V, Limami Y, Duval RE. Curcumin-Based Nanoparticles: Advancements and Challenges in Tumor Therapy. Pharmaceutics 2025; 17:114. [PMID: 39861761 PMCID: PMC11768525 DOI: 10.3390/pharmaceutics17010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Curcumin, a bioactive compound derived from the rhizome of Curcuma longa L., has garnered significant attention for its potent anticancer properties. Despite its promising therapeutic potential, its poor bioavailability, rapid metabolism, and low water solubility hinder curcumin's clinical application. Nanotechnology offers a viable solution to these challenges by enabling the development of curcumin-based nanoparticles (CNPs) that enhance its bioavailability and therapeutic efficacy. This review provides a comprehensive overview of the recent advancements in the design and synthesis of CNPs for cancer therapy. We discuss various NP formulations, including polymeric, lipid-based, and inorganic nanoparticles, highlighting their role in improving curcumin's pharmacokinetic and pharmacodynamic profiles. The mechanisms by which CNPs exert anticancer effects, such as inducing apoptosis, inhibiting cell proliferation, and modulating signaling pathways, are explored in details. Furthermore, we examine the preclinical and clinical studies that have demonstrated the efficacy of CNPs in treating different types of tumors, including breast, colorectal, and pancreatic cancers. Finally, the review addresses the current challenges and future perspectives in the clinical translation of CNPs, emphasizing the need for further research to optimize their design for targeted delivery and to enhance their therapeutic outcomes. By synthesizing the latest research, this review underscores the potential of CNPs as a promising avenue for advancing cancer therapy.
Collapse
Affiliation(s)
- Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P2693, Maarif, Casablanca 20100, Morocco;
| | - Riad El Kebbaj
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco;
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (B.L.); (V.S.)
| | - Vincent Sol
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (B.L.); (V.S.)
| | - Youness Limami
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco;
| | | |
Collapse
|
2
|
Kapoor DU, Sharma JB, Sahu D, Gautam RK, Trivedi ND, Shah DP. Marine biopolymers in cancer therapeutics. MARINE BIOPOLYMERS 2025:441-468. [DOI: 10.1016/b978-0-443-15606-9.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Zhou Y, Gong J, Deng X, Shen L, Wu S, Fan H, Liu L. Curcumin and nanodelivery systems: New directions for targeted therapy and diagnosis of breast cancer. Biomed Pharmacother 2024; 180:117404. [PMID: 39307117 DOI: 10.1016/j.biopha.2024.117404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 11/14/2024] Open
Abstract
As the global incidence of breast cancer continues to surge, the pursuit of novel, low-toxicity, and highly efficacious therapeutic strategies has emerged as a pivotal research focus. Curcumin (CUR), an active constituent of traditional Chinese medicine (TCM) renowned for its antimicrobial, anti-inflammatory, antioxidant, and antitumor properties, exhibits immense potential in breast cancer therapy. Nevertheless, CUR's poor water solubility, chemical instability, and unfavorable pharmacokinetics have impeded its clinical utilization. To address these challenges, nano-delivery systems have been extensively exploited for CUR administration, enhancing its in vivo stability and bioavailability, and facilitating precise targeting of breast cancer lesions. Therefore, we elaborate on CUR's chemical foundations, drug metabolism, and safety profile, and elucidate its potential mechanisms in breast cancer therapy, encompassing inducing apoptosis and autophagy, blocking cell cycle, inhibiting breast cancer metastasis, regulating tumor microenvironment and reversing chemotherapy resistance. The review primarily emphasizes recent advancements in CUR-based nano-delivery systems for the treatment and diagnosis of breast cancer. Liposomes, nanoparticles (encompassing polymer nanoparticles, solid lipid nanoparticles, mesoporous silica particles, metal/metal oxide nanoparticles, graphene nanomaterials, albumin nanoparticles, etc.), nanogels, and nanomicelles can serve as delivery carriers for CUR, exhibiting promising anti-breast cancer effects in both in vivo and in vitro experiments. Furthermore, nano-CUR can be integrated with fluorescence imaging, magnetic resonance imaging, computed tomography imaging, ultrasound, and other techniques to achieve precise localization and diagnosis of breast cancer masses. While this article has summarized the clinical studies of nano-curcumin, it is noteworthy that the research literature on nano-CUR applied to breast cancer diagnosis and the translation of nano-CUR clinical studies in BC patients remain limited. Therefore, future research should intensify exploration in this direction.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Jie Gong
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Xianguang Deng
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Lele Shen
- Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Shiting Wu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China
| | - Hongqiao Fan
- Department of Aesthetic Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China.
| | - Lifang Liu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China.
| |
Collapse
|
4
|
Shaw I, Boafo GF, Ali YS, Liu Y, Mlambo R, Tan S, Chen C. Advancements and prospects of lipid-based nanoparticles: dual frontiers in cancer treatment and vaccine development. J Microencapsul 2024; 41:226-254. [PMID: 38560994 DOI: 10.1080/02652048.2024.2326091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Cancer is a complex heterogeneous disease that poses a significant public health challenge. In recent years, lipid-based nanoparticles (LBNPs) have expanded drug delivery and vaccine development options owing to their adaptable, non-toxic, tuneable physicochemical properties, versatile surface functionalisation, and biocompatibility. LBNPs are tiny artificial structures composed of lipid-like materials that can be engineered to encapsulate and deliver therapeutic agents with pinpoint accuracy. They have been widely explored in oncology; however, our understanding of their pharmacological mechanisms, effects of their composition, charge, and size on cellular uptake, tumour penetration, and how they can be utilised to develop cancer vaccines is still limited. Hence, we reviewed LBNPs' unique characteristics, biochemical features, and tumour-targeting mechanisms. Furthermore, we examined their ability to enhance cancer therapies and their potential contribution in developing anticancer vaccines. We critically analysed their advantages and challenges impeding swift advancements in oncology and highlighted promising avenues for future research.
Collapse
Affiliation(s)
- Ibrahim Shaw
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Yimer Seid Ali
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
- Department of Pharmacy, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Yang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Ronald Mlambo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
5
|
Kruczkowska W, Gałęziewska J, Grabowska K, Liese G, Buczek P, Kłosiński KK, Kciuk M, Pasieka Z, Kałuzińska-Kołat Ż, Kołat D. Biomedical Trends in Stimuli-Responsive Hydrogels with Emphasis on Chitosan-Based Formulations. Gels 2024; 10:295. [PMID: 38786212 PMCID: PMC11121652 DOI: 10.3390/gels10050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Biomedicine is constantly evolving to ensure a significant and positive impact on healthcare, which has resulted in innovative and distinct requisites such as hydrogels. Chitosan-based formulations stand out for their versatile utilization in drug encapsulation, transport, and controlled release, which is complemented by their biocompatibility, biodegradability, and non-immunogenic nature. Stimuli-responsive hydrogels, also known as smart hydrogels, have strictly regulated release patterns since they respond and adapt based on various external stimuli. Moreover, they can imitate the intrinsic tissues' mechanical, biological, and physicochemical properties. These characteristics allow stimuli-responsive hydrogels to provide cutting-edge, effective, and safe treatment. Constant progress in the field necessitates an up-to-date summary of current trends and breakthroughs in the biomedical application of stimuli-responsive chitosan-based hydrogels, which was the aim of this review. General data about hydrogels sensitive to ions, pH, redox potential, light, electric field, temperature, and magnetic field are recapitulated. Additionally, formulations responsive to multiple stimuli are mentioned. Focusing on chitosan-based smart hydrogels, their multifaceted utilization was thoroughly described. The vast application spectrum encompasses neurological disorders, tumors, wound healing, and dermal infections. Available data on smart chitosan hydrogels strongly support the idea that current approaches and developing novel solutions are worth improving. The present paper constitutes a valuable resource for researchers and practitioners in the currently evolving field.
Collapse
Affiliation(s)
- Weronika Kruczkowska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Julia Gałęziewska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Katarzyna Grabowska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Gabriela Liese
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Paulina Buczek
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Karol Kamil Kłosiński
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Żaneta Kałuzińska-Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Damian Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
6
|
El-Newehy MH, Aldalbahi A, Thamer BM, Hameed MMA. Establishment and inactivation of mono-species biofilm in a semipilot-scale water distribution system using nanocomposite of silver nanoparticles/montmorillonite loaded cationic chitosan. Int J Biol Macromol 2024; 258:128874. [PMID: 38128797 DOI: 10.1016/j.ijbiomac.2023.128874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/10/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
This study presents a novel approach in the synthesis and characterization of nanocomposites comprising cationic chitosan (CCS) blended with varying concentrations of silver nanoparticles/montmorillonite (AgNPs/MMT). AgNPs/MMT was synthesized using soluble starch as a reducing and stabilizing agent. Subsequently, nanocomposites, namely CCS/AgMMT-0, CCS/AgMMT-0.5, CCS/AgMMT-1.5, and CCS/AgMMT-2.5, were developed by blending 2.5 g of CCS with 0, 0.5, 1.5, and 2.5 g of AgNPs/MMT, respectively, and the corresponding nanocomposites were prepared using ball milling technique. Transmission electron microscopy (TEM) analysis revealed the formation of nanocomposites that exhibiting nearly spherical morphologies. Dynamic light scattering (DLS) measurements displayed average particle sizes of 1183 nm, 131 nm, 140 nm, and 188 nm for CCS/AgMMT-0, CCS/AgMMT-0.5, CCS/AgMMT-1.5, and CCS/AgMMT-2.5, respectively. The narrow polydispersity index (~0.5) indicated uniform particle size distributions across the nanocomposites, affirming monodispersity. Moreover, the zeta potential values exceeding 30 mV across all nanocomposites that confirmed their stability against agglomeration. Notably, CCS/AgMMT-2.5 nanocomposite exhibited potent antibacterial and antibiofilm properties against diverse pipeline materials. Findings showed that after 15 days of incubation, the highest populations of biofilm cells, Pseudomonas aeruginosa biofilm, developed over UPVC, MDPE, DCI, and SS, with corresponding HPCs of 4.79, 6.38, 8.81, and 7.24 CFU/cm2. The highest cell densities of Enterococcus faecalis biofilm in the identical situation were 4.19, 5.89, 8.12, and 6.9 CFU/cm2. The nanocomposite CCS/AgMMT-2.5 exhibited the largest measured zone of inhibition (ZOI) against both P. aeruginosa and E. faecalis, with measured ZOI values of 19 ± 0.65 and 17 ± 0.21 mm, respectively. Remarkably, the research indicates that the youngest biofilm exhibited the most notable rate of inactivation when exposed to a dose of 150 mg/L, in comparison to the mature biofilm. These such informative findings could offer valuable insights into the development of effective antibiofilm agents and materials applicable in diverse sectors such as water treatment facilities, medical devices, and industrial pipelines.
Collapse
Affiliation(s)
- Mohamed H El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Badr M Thamer
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdul Hameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Tran Vo TM, Potiyaraj P, del Val P, Kobayashi T. Ultrasound-Triggered Amoxicillin Release from Chitosan/Ethylene Glycol Diglycidyl Ether/Amoxicillin Hydrogels Having a Covalently Bonded Network. ACS OMEGA 2024; 9:585-597. [PMID: 38222581 PMCID: PMC10785092 DOI: 10.1021/acsomega.3c06213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
An antibiotic release system triggered by ultrasound (US) was investigated using chitosan (CS)/ethylene glycol diglycidyl ether (EGDE) hydrogel carriers with amoxicillin (Amox) drug. Different CS concentrations of 1.5, 2, 2.5, and 3 wt % were gelled with EGDE and Amox was entrapped in the hydrogel carrier; the accelerated release was observed as triggered by 43 kHz US exposure at different US output powers ranging from 0 to 35 W. Among these CS hydrogel systems, the degree of accelerated Amox release depended on the CS concentration for the hydrogelation and the matrix with 2 wt % CS exhibited efficient Amox release at 35 W US power with around 19 μg/mL. The drug released with time was fitted with Higuchi and Korsmeyer-Peppas models, and the enhancement was caused by US aiding drug diffusion within the hydrogel matrix by a non-Fickian diffusion mechanism. The US effect on the viscoelasticity of the hydrogel matrix indicated that the matrix became somewhat softened by the US exposure to the dense hydrogels for 2.5 and 3% CS/EGDE, while the degree of softening was slightly marked in the CS/EGDE hydrogels prepared with 1.5 and 2% CS concentration. Such US softening also aided drug diffusion within the hydrogel matrix, suggesting an enhanced Amox release.
Collapse
Affiliation(s)
- Tu Minh Tran Vo
- Department
of Energy and Environmental Science, Nagaoka
University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
- Department
of Materials Science, Chulalongkorn University,
Faculty of Science, Pathum Wan, Bangkok 10330, Thailand
| | - Pranut Potiyaraj
- Department
of Materials Science, Chulalongkorn University,
Faculty of Science, Pathum Wan, Bangkok 10330, Thailand
| | - Patricia del Val
- Department
of Mechanics, Design and Industrial Management, University of Deusto, Unibertsitate Etorb., 24, Bilbo, Bizkaia 48007, Spain
| | - Takaomi Kobayashi
- Department
of Energy and Environmental Science, Nagaoka
University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
- Department
of Science of Technology Innovation, Nagaoka
University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
8
|
Lyons B, Balkaran JPR, Dunn-Lawless D, Lucian V, Keller SB, O’Reilly CS, Hu L, Rubasingham J, Nair M, Carlisle R, Stride E, Gray M, Coussios C. Sonosensitive Cavitation Nuclei-A Customisable Platform Technology for Enhanced Therapeutic Delivery. Molecules 2023; 28:7733. [PMID: 38067464 PMCID: PMC10708135 DOI: 10.3390/molecules28237733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Ultrasound-mediated cavitation shows great promise for improving targeted drug delivery across a range of clinical applications. Cavitation nuclei-sound-sensitive constructs that enhance cavitation activity at lower pressures-have become a powerful adjuvant to ultrasound-based treatments, and more recently emerged as a drug delivery vehicle in their own right. The unique combination of physical, biological, and chemical effects that occur around these structures, as well as their varied compositions and morphologies, make cavitation nuclei an attractive platform for creating delivery systems tuned to particular therapeutics. In this review, we describe the structure and function of cavitation nuclei, approaches to their functionalization and customization, various clinical applications, progress toward real-world translation, and future directions for the field.
Collapse
Affiliation(s)
- Brian Lyons
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Joel P. R. Balkaran
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Darcy Dunn-Lawless
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Veronica Lucian
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Sara B. Keller
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Colm S. O’Reilly
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford OX1 3PJ, UK;
| | - Luna Hu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Jeffrey Rubasingham
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Malavika Nair
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Robert Carlisle
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Michael Gray
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Constantin Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| |
Collapse
|
9
|
Aliabouzar M, Kripfgans OD, Brian Fowlkes J, Fabiilli ML. Bubble nucleation and dynamics in acoustic droplet vaporization: a review of concepts, applications, and new directions. Z Med Phys 2023; 33:387-406. [PMID: 36775778 PMCID: PMC10517405 DOI: 10.1016/j.zemedi.2023.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 02/12/2023]
Abstract
The development of phase-shift droplets has broadened the scope of ultrasound-based biomedical applications. When subjected to sufficient acoustic pressures, the perfluorocarbon phase in phase-shift droplets undergoes a phase-transition to a gaseous state. This phenomenon, termed acoustic droplet vaporization (ADV), has been the subject of substantial research over the last two decades with great progress made in design of phase-shift droplets, fundamental physics of bubble nucleation and dynamics, and applications. Here, we review experimental approaches, carried out via high-speed microscopy, as well as theoretical models that have been proposed to study the fundamental physics of ADV including vapor nucleation and ADV-induced bubble dynamics. In addition, we highlight new developments of ADV in tissue regeneration, which is a relatively recently exploited application. We conclude this review with future opportunities of ADV for advanced applications such as in situ microrheology and pressure estimation.
Collapse
Affiliation(s)
- Mitra Aliabouzar
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Oliver D Kripfgans
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Ghamkhari A, Tafti HA, Rabbani S, Ghorbani M, Ghiass MA, Akbarzadeh F, Abbasi F. Ultrasound-Triggered Microbubbles: Novel Targeted Core-Shell for the Treatment of Myocardial Infarction Disease. ACS OMEGA 2023; 8:11335-11350. [PMID: 37008126 PMCID: PMC10061684 DOI: 10.1021/acsomega.3c00067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/07/2023] [Indexed: 06/19/2023]
Abstract
Myocardial infarction (MI) is known as a main cardiovascular disease that leads to extensive cell death by destroying vasculature in the affected cardiac muscle. The development of ultrasound-mediated microbubble destruction has inspired extensive interest in myocardial infarction therapeutics, targeted delivery of drugs, and biomedical imaging. In this work, we describe a novel therapeutic ultrasound system for the targeted delivery of biocompatible microstructures containing basic fibroblast growth factor (bFGF) to the MI region. The microspheres were fabricated using poly(lactic-co-glycolic acid)-heparin-polyethylene glycol- cyclic arginine-glycine-aspartate-platelet (PLGA-HP-PEG-cRGD-platelet). The micrometer-sized core-shell particles consisting of a perfluorohexane (PFH)-core and a PLGA-HP-PEG-cRGD-platelet-shell were prepared using microfluidics. These particles responded adequately to ultrasound irradiation by triggering the vaporization and phase transition of PFH from liquid to gas in order to achieve microbubbles. Ultrasound imaging, encapsulation efficiency cytotoxicity, and cellular uptake of bFGF-MSs were evaluated using human umbilical vein endothelial cells (HUVECs) in vitro. In vivo imaging demonstrated effective accumulation of platelet- microspheres injected into the ischemic myocardium region. The results revealed the potential use of bFGF-loaded microbubbles as a noninvasive and effective carrier for MI therapy.
Collapse
Affiliation(s)
- Aliyeh Ghamkhari
- Institute
of Polymeric Materials and Faculty of Polymer Engineering, Sahand University of Technology, Tabriz 5331817634, Iran
| | - Hossein Ahmadi Tafti
- Research
Center for Advanced Technologies in Cardiovascular Medicine, Tehran
Heart Center, Tehran University of Medical
Sciences, Tehran 1416753955, Iran
| | - Shahram Rabbani
- Research
Center for Advanced Technologies in Cardiovascular Medicine, Tehran
Heart Center, Tehran University of Medical
Sciences, Tehran 1416753955, Iran
| | - Marjan Ghorbani
- Nutrition
Research Center, Tabriz University of Medical Sciences, Tabriz IR 51656-65811, Iran
| | - Mohammad Adel Ghiass
- Tissue
Engineering Department, Tarbiat Modares
University, Tehran 1411713116, Iran
| | - Fariborz Akbarzadeh
- Cardiovascular
Research Center, Tabriz University of Medical
Sciences, Tabriz 5166/15731, Iran
| | - Farhang Abbasi
- Institute
of Polymeric Materials and Faculty of Polymer Engineering, Sahand University of Technology, Tabriz 5331817634, Iran
| |
Collapse
|
11
|
Sabaghi M, Tavasoli S, Taheri A, Jamali SN, Faridi Esfanjani A. Controlling release patterns of the bioactive compound by structural and environmental conditions: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Xie X, Shan Y, Zhang X, Wu Y, Liao J. Hyaluronic acid microneedles loaded with curcumin nanodrugs and new indocyanine green inhibits human tongue squamous carcinoma cells in vitro. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:585-593. [PMID: 36581577 PMCID: PMC10264990 DOI: 10.3724/zdxbyxb-2022-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To prepare the hyaluronic acid microneedle (abbreviated as microneedle) delivery system carrying curcumin nanodrugs (Cur-NDs) and photothermal trigger agent new indocyanine green (IR820), and to investigate its effect on proliferation of human tongue squamous carcinoma cells (Cal-27) in vitro. METHODS The microneedle delivery system carrying Cur-NDs and IR820 was prepared. The morphological characteristics of the microneedles were observed, and the mechanical strength test, skin insertion ability test and the photothermal test in vitro were performed. Cal-27 cells were treated with microneedles, Cur-NDs microneedles, IR820 microneedles, or Cur-NDs+IR820 microneedles in vitro, respectively. The IR820 microneedle group and Cur-NDs+IR820 microneedle group were irradiated with 808 nm near infrared light at 1 W/cm 2 for 5 min. The cell viability was tested with cell counting kit-8 method. RESULTS The prepared microneedles had homogeneous needle-like morphology, good mechanical strength and skin piercing ability, among which the microneedles equipped with IR820 showed better photothermal performance. The survival rates of Cal-27 cells were 100.00% in blank control group, 99.92% in control microneedles group, 94.08% in Cur-NDs microneedles group, 0.41% in IR820 microneedles group, and 0.04% in Cur-NDs+IR820 microneedles group, respectively (all P<0.05). CONCLUSION Compared with single drug treatment, Cur-NDs+IR820 microneedle shows better inhibitory effect on Cal-27 cell proliferation in vitro.
Collapse
Affiliation(s)
- Xi Xie
- 1. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yue Shan
- 1. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- 2. Department of Orthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine & Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xu Zhang
- 1. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongzhi Wu
- 1. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinfeng Liao
- 1. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Wang L, Zhu S, Zou C, Kou H, Xu M, Li J. Preparation and evaluation of the anti-cancer properties of RGD-modified curcumin-loaded chitosan/perfluorohexane nanocapsules in vitro. Heliyon 2022; 8:e09931. [PMID: 35865990 PMCID: PMC9294197 DOI: 10.1016/j.heliyon.2022.e09931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/31/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Curcumin (Cur) encapsulation in nanocapsules (NCs) could improve its availability and therapeutic antitumor efficacy. Cur-loaded chitosan/perfluorohexane (CS/PFH) nanocapsules (CS/PFH-Cur-NCs) were thus synthesized via a nanoemulsion process. To further enhance the selective tumor targeting ability of Cur-loaded NCs, a novel CS/PFH-Cur-NCs with conjugation of Arg-Gly-Asp (RGD) peptide (RGD-CS/PFH-Cur-NCs) were prepared in this study. The properties of these NCs were then explored through in vitro release experiments and confocal laser scanning microscopy-based analyses of the ability of these NCs to target MDA-MB-231 breast cancer cells. In addition, an MTT assay-based approach was used to compare the relative cytotoxic impact of CS/PFH-Cur-NCs and RGD-CS/PFH-Cur-NCs on these breast cancer cells. It was found that both CS/PFH-Cur-NCs and RGD-CS/PFH-Cur-NCs were smooth, relatively uniform, spheroid particles, with the latter being 531.20 ± 68.97 nm in size. These RGD-CS/PFH-Cur-NCs can be ideal for contrast imaging studies, and were better able to target breast cancer cells in comparison to CS/PFH-Cur-NCs. In addition, RGD-CS/PFH-Cur-NCs were observed to induce cytotoxic MDA-MB-231 cell death more swiftly in comparison to CS/PFH-Cur-NCs. These findings suggest that NC encapsulation and RGD surface modification can remarkably improve the anti-tumor efficacy of Cur. These novel NCs may thus manifest a significant potential value in the realm of image-guided cancer therapy, underscoring an important direction for future research.
Collapse
Affiliation(s)
- Liang Wang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan 250012, China.,Department of Ultrasound, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shixia Zhu
- Department of Ultrasound, Wenzhou Seventh People's Hospital, Wenzhou 325005, China
| | - Chunpeng Zou
- Department of Ultrasound, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Hongju Kou
- Department of Ultrasound, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Maosheng Xu
- Department of Ultrasound, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
14
|
Li X, Wang Y, Feng C, Chen H, Gao Y. Chemical Modification of Chitosan for Developing Cancer Nanotheranostics. Biomacromolecules 2022; 23:2197-2218. [PMID: 35522524 DOI: 10.1021/acs.biomac.2c00184] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is a worldwide public health issue that has not been conquered. Theranostics, the combination of a therapeutic drug and imaging agent in one formulation using nanomaterials, has been developed to better cure cancer in recent years. Although diverse biomaterials have been applied in cancer theranostics, chitosan (CS), a natural polysaccharide bearing easy modification sites with excellent biocompatibility and biodegradability, shows great potential for developing cancer nanotheranostics. In this review, we seek to describe the chemical functionalities of CS used in cancer theranostics and their synthesis methods. We also present recent discoveries and research progresses on how the CS functionalization could improve the delivery efficiency of CS-based nanotheranostics. Finally, we report several case studies about the application of CS-based nanotheranostics. This paper focuses on the strategies to construct CS-based theranostics systems via chemical routes and highlights their applications in cancer treatment, which can provide useful references for further studies.
Collapse
Affiliation(s)
- Xudong Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Yuran Wang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Chenyun Feng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
15
|
Noori S, Kiasat AR, Kolahi M, Mirzajani R, Nejad SMS. Determination of secondary metabolites including curcumin in Rheum ribes L. and surveying of its antioxidant and anticancer activity. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Alphandéry E. Ultrasound and nanomaterial: an efficient pair to fight cancer. J Nanobiotechnology 2022; 20:139. [PMID: 35300712 PMCID: PMC8930287 DOI: 10.1186/s12951-022-01243-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/02/2022] [Indexed: 01/12/2023] Open
Abstract
Ultrasounds are often used in cancer treatment protocols, e.g. to collect tumor tissues in the right location using ultrasound-guided biopsy, to image the region of the tumor using more affordable and easier to use apparatus than MRI and CT, or to ablate tumor tissues using HIFU. The efficacy of these methods can be further improved by combining them with various nano-systems, thus enabling: (i) a better resolution of ultrasound imaging, allowing for example the visualization of angiogenic blood vessels, (ii) the specific tumor targeting of anti-tumor chemotherapeutic drugs or gases attached to or encapsulated in nano-systems and released in a controlled manner in the tumor under ultrasound application, (iii) tumor treatment at tumor site using more moderate heating temperatures than with HIFU. Furthermore, some nano-systems display adjustable sizes, i.e. nanobubbles can grow into micro-bubbles. Such dual size is advantageous since it enables gathering within the same unit the targeting properties of nano bubbles via EPR effect and the enhanced ultrasound contrasting properties of micro bubbles. Interestingly, the way in which nano-systems act against a tumor could in principle also be adjusted by accurately selecting the nano-system among a large choice and by tuning the values of the ultrasound parameters, which can lead, due to their mechanical nature, to specific effects such as cavitation that are usually not observed with purely electromagnetic waves and can potentially help destroying the tumor. This review highlights the clinical potential of these combined treatments that can improve the benefit/risk ratio of current cancer treatments.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS, 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de. Cosmochimie, IMPMC, 75005, Paris, France. .,Nanobacterie SARL, 36 boulevard Flandrin, 75116, Paris, France. .,Institute of Anatomy, UZH University of Zurich, Instiute of Anatomy, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
17
|
Ultrasound Viscoelastic Properties of Biomass Polysaccharide Hydrogels as Evaluated by Rheometer Equipped with Sono-Device. Gels 2022; 8:gels8030172. [PMID: 35323285 PMCID: PMC8950677 DOI: 10.3390/gels8030172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
A viscoelastic rheometer was equipped with a sono-device and a water bath to enable measurement of storage moduli G′ and loss moduli G″ of biomass polysaccharide hydrogels such as Kanten agarose, κ-carrageenan, and konjac glucomannan under ultrasound (US) exposure. The action of low power of 43 kHz US on their hydrogels significantly decreased G′ of Kanten agarose and carrageenan after a few seconds of US exposure 0.1% strain. When US with 20 W output power was exposed under mechanical strain at 0.1%, lower values were obtained cyclically for 3 min US intervals. The values then reverted to the original moduli values when US was stopped in cases of Kanten agarose and carrageenan hydrogels. As G″ values were increased during US operation, the anhydro-L-galactose segments in their hydrogels were unable to relax the external US forces within the gel sufficiently, thereby leading to gel structure collapse at a higher strain percentage. These results suggest that US exposure induced deformational change in the hydrogel structure formed by hydrogen-bonded cross-links. However, US deformation was less in the case of deacetylated cross-linkage in konjac glucomannan hydrogel.
Collapse
|
18
|
Zhang W, Shi Y, Abd Shukor S, Vijayakumaran A, Vlatakis S, Wright M, Thanou M. Phase-shift nanodroplets as an emerging sonoresponsive nanomaterial for imaging and drug delivery applications. NANOSCALE 2022; 14:2943-2965. [PMID: 35166273 DOI: 10.1039/d1nr07882h] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanodroplets - emerging phase-changing sonoresponsive materials - have attracted substantial attention in biomedical applications for both tumour imaging and therapeutic purposes due to their unique response to ultrasound. As ultrasound is applied at different frequencies and powers, nanodroplets have been shown to cavitate by the process of acoustic droplet vapourisation (ADV), causing the development of mechanical forces which promote sonoporation through cellular membranes. This allows drugs to be delivered efficiently into deeper tissues where tumours are located. Recent reviews on nanodroplets are mostly focused on the mechanism of cavitation and their applications in biomedical fields. However, the chemistry of the nanodroplet components has not been discussed or reviewed yet. In this review, the commonly used materials and preparation methods of nanodroplets are summarised. More importantly, this review provides examples of variable chemistry components in nanodroplets which link them to their efficiency as ultrasound-multimodal imaging agents to image and monitor drug delivery. Finally, the drawbacks of current research, future development, and future direction of nanodroplets are discussed.
Collapse
Affiliation(s)
- Weiqi Zhang
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | - Yuhong Shi
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | | | | | - Stavros Vlatakis
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | - Michael Wright
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | - Maya Thanou
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| |
Collapse
|
19
|
Guo L, Shi D, Shang M, Sun X, Meng D, Liu X, Zhou X, Li J. Utilizing RNA nanotechnology to construct negatively charged and ultrasound-responsive nanodroplets for targeted delivery of siRNA. Drug Deliv 2022; 29:316-327. [PMID: 35037525 PMCID: PMC8765274 DOI: 10.1080/10717544.2022.2026532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ultrasound nanodroplets (NDs) have been reported as a promising nanocarrier for siRNA delivery depending on its unique strengths of sonoporation. Presently, common means for NDs-mediated siRNA delivery is through electrostatic interaction, but challenges like cationic toxicity still exist. In this study, we demonstrated a novel strategy to construct negatively charged and ultrasound (US)-responsive O-carboxymethyl chitosan (O-CMS) NDs as a siRNA targeted delivery system through three-way junction of bacteriophage phi29 DNA packaging motor (3WJ-pRNA) nanotechnology. 39nt A10-3.2 aptamer targeting prostate specific membrane antigen (PSMA) and 21nt siRNA against cationic amino acid transporter 1 (siCAT-1) were annealed to 3WJ-pRNA scaffold via complementation with an extended sequence. The cholesterol molecule attached to one branch facilitates the 3WJ-pRNA nanoparticles anchoring onto NDs. The desired O-CMS NDs with siRNA-loading and RNA-aptamer modification (A10-3.2/siCAT-1/3WJ-NDs) were successfully prepared, which were with spherical shapes, core–shell structures and uniform in sizes (198 nm with PDI 0.3). As a main proportion of shell, O-CMC showed a certain anti-tumor effects. In vitro studies demonstrated that A10-3.2/siCAT-1/3WJ-NDs exhibited good contrast-enhanced US imaging, buffering capacity and high bio-safety, were able to deliver siCAT-1 to PSMA-overexpressed prostate cancer cells under US irradiation, thus silence the CAT-1 expression, and consequently suppressing 22RV1 cell proliferation and migration. Taken overall, our findings provide a promising strategy to develop negatively charged and US-responsive NDs for tumor-targeted siRNA delivery.
Collapse
Affiliation(s)
- Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Xiao Sun
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Dong Meng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Xinxin Liu
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Xiaoying Zhou
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
20
|
Zhao Y, Shi D, Shang M, Sun X, Guo L, Meng D, Liu X, Zhou X, Li J. GRP78-targeted and doxorubicin-loaded nanodroplets combined with ultrasound: a potential novel theranostics for castration-resistant prostate cancer. Drug Deliv 2022; 29:203-213. [PMID: 34985396 PMCID: PMC8741251 DOI: 10.1080/10717544.2021.2023698] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The construction of multifunctional oncotherapy nanoplatforms that combine diagnosis and treatment remains challenging. Nanodroplets (NDs), which simultaneously enhance ultrasound imaging and therapeutic effects, are a potential strategy for non-invasive drug delivery. To achieve the goals of precise medicine, novel SP94 peptide-modified and doxorubicin-loaded ultrasonic NDs (SP94-DOX-NDs) for castration-resistant prostate cancer (CRPC) targeting and treatment were constructed in this study. The characteristics, contrast-enhanced ultrasound imaging (CEUI), targeting ability to glucose-regulated protein 78 (GRP78)-overexpressing CRPC and anticancer effect of the SP94-DOX-NDs were assessed. The desired SP94-NDs were successfully prepared using the nanoemulsification method using a certain proportion of SP94-PEG-chitosan, perfluoropentane (PFP), Tween 20, and lecithin. SP94-NDs with a size of ∼300 nm showed great biocompatibility and CEUI ability. Compared with blank NDs, SP94-NDs exhibited higher tumor-specific targeting ability due to conjugation between the SP94 peptide and GRP78-overexpressing 22RV1 cells. Most importantly, in vitro and in vivo investigations showed that SP94-DOX-NDs combined with ultrasound could specifically deliver DOX into 22RV1 cells and thereby demonstrated a stronger anticancer effect than DOX-NDs and DOX. Thus, SP94-DOX-NDs may provide an efficient approach for the real-time imaging of tumors and triggered, accurate drug delivery to tumors.
Collapse
Affiliation(s)
- Yading Zhao
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, China
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Sun
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, China
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, China
| | - Dong Meng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, China
| | - Xinxin Liu
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoying Zhou
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
21
|
Dubey SK, Bhatt T, Agrawal M, Saha RN, Saraf S, Saraf S, Alexander A. Application of chitosan modified nanocarriers in breast cancer. Int J Biol Macromol 2022; 194:521-538. [PMID: 34822820 DOI: 10.1016/j.ijbiomac.2021.11.095] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
As per the WHO, every year around 2.1 million women are detected with breast cancer. It is one of the most invasive cancer in women and second most among all, contributing around 15% of death worldwide. The available anticancer therapies including chemo, radio, and hormone therapy are associated with a high load of reversible and irreversible adverse effects, limited therapeutic efficacy, and low chances of quality survival. To minimize the side effects, improving therapeutic potency and patient compliance promising targeted therapies are highly desirable. In this sequence, various nanocarriers and target modified systems have been explored by researchers throughout the world. Among these chitosan-based nanocarriers offers one of the most interesting, flexible, and biocompatible systems. The unique characteristics of chitosan like surface flexibility, biocompatibility, hydrophilicity, non-toxic and cost-effective behavior assist to overcome the inadequacy of existing therapy. The present review throws light on the successes, failures, and current status of chitosan modified novel techniques for tumor targeting of bioactives. It also emphasizes the molecular classification of breast cancer and current clinical development of novel therapies. The review compiles most relevant works of the past 10 years focusing on the application of chitosan-based nanocarrier against breast cancer.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Medical Research, R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, 700056 Kolkata, India; Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India.
| | - Tanya Bhatt
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Mukta Agrawal
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad, India, 509301
| | - Ranendra Narayan Saha
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, 781101 Guwahati, Assam, India.
| |
Collapse
|
22
|
Madamsetty VS, Tavakol S, Moghassemi S, Dadashzadeh A, Schneible JD, Fatemi I, Shirvani A, Zarrabi A, Azedi F, Dehshahri A, Aghaei Afshar A, Aghaabbasi K, Pardakhty A, Mohammadinejad R, Kesharwani P. Chitosan: A versatile bio-platform for breast cancer theranostics. J Control Release 2021; 341:733-752. [PMID: 34906606 DOI: 10.1016/j.jconrel.2021.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer is considered one of the utmost neoplastic diseases globally, with a high death rate of patients. Over the last decades, many approaches have been studied to early diagnose and treat it, such as chemotherapy, hormone therapy, immunotherapy, and MRI and biomarker tests; do not show the optimal efficacy. These existing approaches are accompanied by severe side effects, thus recognizing these challenges, a great effort has been done to find out the new remedies for breast cancer. Main finding: Nanotechnology opened a new horizon to the treatment of breast cancer. Many nanoparticulate platforms for the diagnosis of involved biomarkers and delivering antineoplastic drugs are under either clinical trials or just approved by the Food and Drug Administration (FDA). It is well known that natural phytochemicals are successfully useful to treat breast cancer because these natural compounds are safer, available, cheaper, and have less toxic effects. Chitosan is a biocompatible and biodegradable polymer. Further, it has outstanding features, like chemical functional groups that can easily modify our interest with an exceptional choice of promising applications. Abundant studies were directed to assess the chitosan derivative-based nanoformulation's abilities in delivering varieties of drugs. However, the role of chitosan in diagnostics and theranostics not be obligated. The present servey will discuss the application of chitosan as an anticancer drug carrier such as tamoxifen, doxorubicin, paclitaxel, docetaxel, etc. and also, its role as a theranostics (i.e. photo-responsive and thermo-responsive) moieties. The therapeutic and theranostic potential of chitosan in cancer is promising and it seems that to have a good potential to get to the clinic.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - John D Schneible
- NC State University, Department of Chemical and Biomolecular Engineering, 911 Partners Way, Raleigh 27695, USA
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolsamad Shirvani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34485 Istanbul, Turkey
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Ali Dehshahri
- Pharmaceutical Sciences Research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Kian Aghaabbasi
- Department of Biotechnology, University of Guilan, University Campus 2, Khalij Fars Highway 5th km of Ghazvin Road, Rasht, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
23
|
Shariatinia Z. Big family of nano- and microscale drug delivery systems ranging from inorganic materials to polymeric and stimuli-responsive carriers as well as drug-conjugates. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Bifunctional alginate/chitosan stabilized perfluorohexane nanodroplets as smart vehicles for ultrasound and pH responsive delivery of anticancer agents. Int J Biol Macromol 2021; 191:1068-1078. [PMID: 34600955 DOI: 10.1016/j.ijbiomac.2021.09.166] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022]
Abstract
The combination of ultrasound and chemotherapy has been proposed as a promising strategy to achieve a better anticancer therapeutic efficacy. Here we present a facile strategy to construct novel bifunctional nanodroplets as smart vehicles for ultrasound and pH responsive delivery of anticancer agents. PFH is used as core and chitosan/alginate complexes are used as the stable shells of the nanodroplets. The effects of alginate/chitosan ratio, and the amount of surfactant as well as PFH on the size, size distribution, and encapsulation efficiency of nanodroplets are systematically investigated with the optimized formulation identified. The release of the encapsulated doxorubicin hydrochloride can be triggered by changing the pH value of the surrounding environment and the exposure to ultrasound. The nanodroplets also show strong ultrasound contrast via droplet-to-bubble transition as demonstrated by B-mode ultrasound imaging. The hemolytic activity and cytotoxicity are further studied, revealing the biocompatibility of the nanodroplets. The in vivo antitumor results demonstrate that the prepared droplets show excellent antitumor therapeutic efficacy and outstanding tumor-targeting ability. The proposed alginate/chitosan stabilized PFH nanodroplets represent an important advance in fabricating multifunctional therapeutic materials with great promises in the applications of combined antitumor therapies.
Collapse
|
25
|
Shishir MRI, Gowd V, Suo H, Wang M, Wang Q, Chen F, Cheng KW. Advances in smart delivery of food bioactive compounds using stimuli-responsive carriers: Responsive mechanism, contemporary challenges, and prospects. Compr Rev Food Sci Food Saf 2021; 20:5449-5488. [PMID: 34668321 DOI: 10.1111/1541-4337.12851] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/12/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022]
Abstract
Many important food bioactive compounds are plant secondary metabolites that have traditional applications for health promotion and disease prevention. However, the chemical instability and poor bioavailability of these compounds represent major challenges to researchers. In the last decade, therefore, major impetus has been given for the research and development of advanced carrier systems for the delivery of natural bioactive molecules. Among them, stimuli-responsive carriers hold great promise for simultaneously improving stability, bioavailability, and more importantly delivery and on-demand release of intact bioactive phytochemicals to target sites in response to certain stimuli or combination of them (e.g., pH, temperature, oxidant, enzyme, and irradiation) that would eventually enhance therapeutic outcomes and reduce side effects. Hybrid formulations (e.g., inorganic-organic complexes) and multi-stimuli-responsive formulations have demonstrated great potential for future studies. Therefore, this review systematically compiles and assesses the recent advances on the smart delivery of food bioactive compounds, particularly quercetin, curcumin, and resveratrol through stimuli-responsive carriers, and critically reviews their functionality, underlying triggered-release mechanism, and therapeutic potential. Finally, major limitations, contemporary challenges, and possible solutions/future research directions are highlighted. Much more research is needed to optimize the processing parameters of existing formulations and to develop novel ones for lead food bioactive compounds to facilitate their food and nutraceutical applications.
Collapse
Affiliation(s)
- Mohammad Rezaul Islam Shishir
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Vemana Gowd
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Hao Suo
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,School of Biological Sciences, The University of Hong Kong, Hong Kong, P. R. China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| |
Collapse
|
26
|
Oh JW, Shin J, Chun S, Muthu M, Gopal J. Evaluating the Anticarcinogenic Activity of Surface Modified/Functionalized Nanochitosan: The Emerging Trends and Endeavors. Polymers (Basel) 2021; 13:3138. [PMID: 34578039 PMCID: PMC8471611 DOI: 10.3390/polym13183138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan begins its humble journey from marine food shell wastes and ends up as a versatile nutraceutical. This review focuses on briefly discussing the antioxidant activity of chitosan and retrospecting the accomplishments of chitosan nanoparticles as an anticarcinogen. The various modified/functionalized/encapsulated chitosan nanoparticles and nanoforms have been listed and their biomedical deliverables presented. The anticancer accomplishments of chitosan and its modified composites have been reviewed and presented. The future of surface modified chitosan and the lacunae in the current research focus have been discussed as future perspective. This review puts forth the urge to expand the scientific curiosity towards attempting a variety of functionalization and surface modifications to chitosan. There are few well known modifications and functionalization that benefit biomedical applications that have been proven for other systems. Being a biodegradable, biocompatible polymer, chitosan-based nanomaterials are an attractive option for medical applications. Therefore, maximizing expansion of its bioactive properties are explored. The need for applying the ideal functionalization that will significantly promote the anticancer contributions of chitosan nanomaterials has also been stressed.
Collapse
Affiliation(s)
- Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.-W.O.); (J.S.)
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.-W.O.); (J.S.)
| | - Sechul Chun
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (M.M.)
| | - Manikandan Muthu
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (M.M.)
| | - Judy Gopal
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (M.M.)
| |
Collapse
|
27
|
Araya-Sibaja AM, Salazar-López NJ, Wilhelm Romero K, Vega-Baudrit JR, Domínguez-Avila JA, Velázquez Contreras CA, Robles-Zepeda RE, Navarro-Hoyos M, González-Aguilar GA. Use of nanosystems to improve the anticancer effects of curcumin. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1047-1062. [PMID: 34621615 PMCID: PMC8450944 DOI: 10.3762/bjnano.12.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/23/2021] [Indexed: 05/08/2023]
Abstract
Curcumin (CUR) is a phenolic compound that is safe for human consumption. It exhibits chemopreventive, antiproliferative, antiangiogenic, and antimetastatic effects. However, these benefits can be hampered due to the lipophilic nature, rapid metabolism, low bioavailability, and fast elimination of the molecule. Considering this, the present work reviews the use of CUR-based nanosystems as anticancer agents, including conventional nanosystems (i.e., liposomes, nanoemulsions, nanocrystals, nanosuspensions, polymeric nanoparticles) and nanosystems that respond to external stimuli (i.e., magnetic nanoparticles and photodynamic therapy). Previous studies showed that the effects of CUR were improved when loaded into nanosystems as compared to the free compound, as well as synergist effects when it is co-administrated alongside with other molecules. In order to maximize the beneficial health effects of CUR, critical factors need to be strictly controlled, such as particle size, morphology, and interaction between the encapsulating material and CUR. In addition, there is an area of study to be explored in the development of CUR-based smart materials for nanomedical applications. Imaging-guided drug delivery of CUR-based nanosystems may also directly target specific cells, thereby increasing the therapeutic and chemopreventive efficacy of this versatile compound.
Collapse
Affiliation(s)
- Andrea M Araya-Sibaja
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
- Universidad Técnica Nacional, 1902-4050, Alajuela, Costa Rica
| | - Norma J Salazar-López
- Laboratorio de Antioxidantes y Alimentos Funcionales, Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Hermosillo, Sonora 83304, México
- Universidad Autónoma de Baja California, Facultad de Medicina de Mexicali, Lic. en Nutrición, Dr. Humberto Torres Sanginés S/N, Centro Cívico, Mexicali, Baja California 21000, México
| | - Krissia Wilhelm Romero
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
- Laboratorio BioDESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca 2060, San José, Costa Rica
| | - José R Vega-Baudrit
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
- Laboratorio de Investigación y Tecnología de Polímeros POLIUNA, Escuela de Química, Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica
| | - J Abraham Domínguez-Avila
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Sonora 83304, México
| | - Carlos A Velázquez Contreras
- Unidad Regional Centro, Departamento de Ciencias Químico-Biológicas y de la Salud, Universidad de Sonora, Hermosillo, Sonora 83000, México
| | - Ramón E Robles-Zepeda
- Unidad Regional Centro, Departamento de Ciencias Químico-Biológicas y de la Salud, Universidad de Sonora, Hermosillo, Sonora 83000, México
| | - Mirtha Navarro-Hoyos
- Laboratorio BioDESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca 2060, San José, Costa Rica
| | - Gustavo A González-Aguilar
- Laboratorio de Antioxidantes y Alimentos Funcionales, Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Hermosillo, Sonora 83304, México
| |
Collapse
|
28
|
Mikušová V, Mikuš P. Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int J Mol Sci 2021; 22:9652. [PMID: 34502560 PMCID: PMC8431817 DOI: 10.3390/ijms22179652] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
Nanoparticles (NPs) have an outstanding position in pharmaceutical, biological, and medical disciplines. Polymeric NPs based on chitosan (CS) can act as excellent drug carriers because of some intrinsic beneficial properties including biocompatibility, biodegradability, non-toxicity, bioactivity, easy preparation, and targeting specificity. Drug transport and release from CS-based particulate systems depend on the extent of cross-linking, morphology, size, and density of the particulate system, as well as physicochemical properties of the drug. All these aspects have to be considered when developing new CS-based NPs as potential drug delivery systems. This comprehensive review is summarizing and discussing recent advances in CS-based NPs being developed and examined for drug delivery. From this point of view, an enhancement of CS properties by its modification is presented. An enhancement in drug delivery by CS NPs is discussed in detail focusing on (i) a brief summarization of basic characteristics of CS NPs, (ii) a categorization of preparation procedures used for CS NPs involving also recent improvements in production schemes of conventional as well as novel CS NPs, (iii) a categorization and evaluation of CS-based-nanocomposites involving their production schemes with organic polymers and inorganic material, and (iv) very recent implementations of CS NPs and nanocomposites in drug delivery.
Collapse
Affiliation(s)
- Veronika Mikušová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia;
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| |
Collapse
|
29
|
Tehrani Fateh S, Moradi L, Kohan E, Hamblin MR, Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:808-862. [PMID: 34476167 PMCID: PMC8372309 DOI: 10.3762/bjnano.12.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/15/2021] [Indexed: 05/03/2023]
Abstract
The field of theranostics has been rapidly growing in recent years and nanotechnology has played a major role in this growth. Nanomaterials can be constructed to respond to a variety of different stimuli which can be internal (enzyme activity, redox potential, pH changes, temperature changes) or external (light, heat, magnetic fields, ultrasound). Theranostic nanomaterials can respond by producing an imaging signal and/or a therapeutic effect, which frequently involves cell death. Since ultrasound (US) is already well established as a clinical imaging modality, it is attractive to combine it with rationally designed nanoparticles for theranostics. The mechanisms of US interactions include cavitation microbubbles (MBs), acoustic droplet vaporization, acoustic radiation force, localized thermal effects, reactive oxygen species generation, sonoluminescence, and sonoporation. These effects can result in the release of encapsulated drugs or genes at the site of interest as well as cell death and considerable image enhancement. The present review discusses US-responsive theranostic nanomaterials under the following categories: MBs, micelles, liposomes (conventional and echogenic), niosomes, nanoemulsions, polymeric nanoparticles, chitosan nanocapsules, dendrimers, hydrogels, nanogels, gold nanoparticles, titania nanostructures, carbon nanostructures, mesoporous silica nanoparticles, fuel-free nano/micromotors.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lida Moradi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Kohan
- Department of Science, University of Kurdistan, Kurdistan, Sanandaj, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | |
Collapse
|
30
|
Yao J, Li T, Shi X, Wang Y, Fang S, Wang H. A general prodrug nanohydrogel platform for reduction-triggered drug activation and treatment of taxane-resistant malignancies. Acta Biomater 2021; 130:409-422. [PMID: 34087447 DOI: 10.1016/j.actbio.2021.05.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Chemotherapy has been widely used for treating the vast majority of cancer patients. Unfortunately, only a fraction of patients can respond to chemotherapies, but these patients still experience severe side effects. In this context, a wide range of nanotherapeutic platforms have been developed with the aim of improving treatment outcomes while reducing drug toxicities. Nanohydrogels are highly appealing "smart" biocompatible and biodegradable vehicles for either local or systemic delivery of bioactive compounds. Here, we developed prodrug hydrogelators that can undergo one-step distillation-precipitation polymerization to form systemically injectable nanohydrogels. The optimized nanohydrogels were capable of rapidly releasing active agents (e.g., the cytotoxic agent cabazitaxel or the PI3K molecular inhibitor PI103) in response to the reducing tumor microenvironment, while drug release was very slow in the absence of the reductive reagent glutathione. Cabazitaxel-loaded nanogels showed preferential tumor accumulation, and administration of nanogels produced durable tumor regression in a docetaxel-resistant cervical tumor xenograft-bearing mouse model. More significantly, nanogel-based therapy was proven to demonstrate a higher safety profile than solution-based free cabazitaxel. Collectively, this study provides an alternative formulation that meets the essential requirements of high stability in the blood, spontaneous drug release at diseased sites, favorable safety in vivo, and translational capacity for further investigations. STATEMENT OF SIGNIFICANCE: Chemotherapy remains a considerable challenge and only a fraction of patients can respond to chemotherapies. Here we report an intratumoral reducing agent-activatable, tumor-targeting prodrug nanogel platform for therapeutic delivery. To this end, two anticancer agents (e.g., cytotoxic cabazitaxel or PI3K molecular inhibitor PI103) are tested. Prodrug nanogels are stable in the blood but performed reduction-triggered release of chemically unmodified drug molecules in cancerous tissues. Cabazitaxel-loaded nanogels exhibit satisfactory anticancer performance in a preclinical docetaxel-resistant tumor model. This is a practical and expedient approach that combines the prodrug strategy and nanogel scaffold to re-engineer a hydrophobic and toxic anticancer drug. The approach also is broadly applicable for the formulation of other agents to improve the therapeutic index.
Collapse
|
31
|
Sharifi-Rad J, Quispe C, Butnariu M, Rotariu LS, Sytar O, Sestito S, Rapposelli S, Akram M, Iqbal M, Krishna A, Kumar NVA, Braga SS, Cardoso SM, Jafernik K, Ekiert H, Cruz-Martins N, Szopa A, Villagran M, Mardones L, Martorell M, Docea AO, Calina D. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer Cell Int 2021; 21:318. [PMID: 34167552 PMCID: PMC8223345 DOI: 10.1186/s12935-021-02025-4] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The study describes the current state of knowledge on nanotechnology and its utilization in medicine. The focus in this manuscript was on the properties, usage safety, and potentially valuable applications of chitosan-based nanomaterials. Chitosan nanoparticles have high importance in nanomedicine, biomedical engineering, discovery and development of new drugs. The manuscript reviewed the new studies regarding the use of chitosan-based nanoparticles for creating new release systems with improved bioavailability, increased specificity and sensitivity, and reduced pharmacological toxicity of drugs. Nowadays, effective cancer treatment is a global problem, and recent advances in nanomedicine are of great importance. Special attention was put on the application of chitosan nanoparticles in developing new system for anticancer drug delivery. Pre-clinical and clinical studies support the use of chitosan-based nanoparticles in nanomedicine. This manuscript overviews the last progresses regarding the utilization, stability, and bioavailability of drug nanoencapsulation with chitosan and their safety.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939 Iquique, Chile
| | - Monica Butnariu
- Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” From Timisoara, Calea Aradului 119, 300645 Timis, Romania
| | - Lia Sanda Rotariu
- Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” From Timisoara, Calea Aradului 119, 300645 Timis, Romania
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv, 01033 Ukraine
| | - Simona Sestito
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, 94976 Slovak Republic
- Department of Pharmacy, University of Pisa, Via bonanno 6, 56126 Pisa, Italy
| | - Simona Rapposelli
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, 94976 Slovak Republic
- Department of Pharmacy, University of Pisa, Via bonanno 6, 56126 Pisa, Italy
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, GC University Faisalabad, Faisalabad, Pakistan
| | - Mehwish Iqbal
- Institute of Health Management, Dow University of Health Sciences, Karachi, Pakistan
| | - Akash Krishna
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 India
| | | | - Susana S. Braga
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Karolina Jafernik
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Halina Ekiert
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), 4585-116 Gandra, Portugal
| | - Agnieszka Szopa
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Marcelo Villagran
- Biomedical Science Research Laboratory and Scientific-Technological Center for the Sustainable Development of the Coastline, Universidad Catolica de La Santisima Concepcion, Concepcion, Chile
| | - Lorena Mardones
- Biomedical Science Research Laboratory and Scientific-Technological Center for the Sustainable Development of the Coastline, Universidad Catolica de La Santisima Concepcion, Concepcion, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
32
|
Folic acid-functionalized gadolinium-loaded phase transition nanodroplets for dual-modal ultrasound/magnetic resonance imaging of hepatocellular carcinoma. Talanta 2021; 228:122245. [PMID: 33773745 DOI: 10.1016/j.talanta.2021.122245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 01/23/2023]
Abstract
Dual-modal molecular imaging by combining two imaging techniques can provide complementary information for early cancer diagnosis and therapeutic monitoring. In the present manuscript, folic acid (FA)-functionalized gadolinium-loaded nanodroplets (NDs) are introduced as dual-modal ultrasound (US)/magnetic resonance (MR) imaging contrast agents. These phase-change contrast agents (PCCAs) with alginate (Alg) stabilizing shell and a liquid perfluorohexane (PFH) core were successfully synthesized via the nano-emulsion method and characterized. In this regard, mouse hepatocellular carcinoma (Hepa1-6) as target cancer cells and mouse fibroblast (L929) as control cells were used. The in vitro and in vivo cytotoxicity assessments indicated that Gd/PFH@Alg and Gd/PFH@Alg-FA nanodroplets are highly biocompatible. Gd-loaded NDs do not induce organ toxicity, and no significant hemolytic activity in human red blood cells is observed. Additionally, nanodroplets exhibited strong ultrasound signal intensities as well as T1-weighted MRI signal enhancement with a high relaxivity value of 6.40 mM-1 s-1, which is significantly higher than that of the clinical Gadovist contrast agent (r1 = 4.01 mM-1 s-1). Cellular uptake of Gd-NDs-FA by Hepa1-6 cancer cells was approximately 2.5-fold higher than that of Gd-NDs after 12 h incubation. Furthermore, in vivo results confirmed that the Gd-NDs-FA bound selectively to cancer cells and were accumulated in the tumor region. In conclusion, Gd/PFH@Alg-FA nanodroplets have great potential as US/MR dual-modal imaging nanoprobes for the early diagnosis of cancer.
Collapse
|
33
|
Gao X, Guo D, Mao X, Shan X, He X, Yu C. Perfluoropentane-filled chitosan poly-acrylic acid nanobubbles with high stability for long-term ultrasound imaging in vivo. NANOSCALE 2021; 13:5333-5343. [PMID: 33659972 DOI: 10.1039/d0nr06878k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reducing the size of ultrasound contrast agents (UCAs) will decrease the intensity of the ultrasound echogenic signals and reduce the stability of the bubbles. Therefore, it is a challenge to design nanobubbles that are less than 200 nm in size and that have both good imaging abilities and high stability for long-term imaging in vivo. In this work, we successfully prepared perfluoropentane-filled chitosan poly-acrylic acid (PFP-CS-PAA) nanobubbles with a size of about 100 nm via a direct simple core-template-free strategy. In vitro tests demonstrated that the nanobubbles showed satisfactory imaging capabilities in non-linear harmonic imaging mode and had significantly better stability than commercial Sonovue® lipid microbubbles. It was valuable to discover that the prepared PFP-CS-PAA nanobubbles could exhibit good imaging quality in rat livers for 10 min after intravenous injection. Also, the PFP-CS-PAA nanobubbles could maintain imaging capabilities in nude mouse tumors for 7 days after intratumoral injection, which indicated that these nanobubbles could keep their stability for a long time in vivo. To the best of our knowledge, the ultrasound imaging persistence time in vivo was the longest of currently reported polymer nanobubbles that are smaller than 200 nm. This new nanosized UCA with high stability has great potential for long-term ultrasound imaging in vivo. Tumor cellular uptake and histological analysis revealed that PFP-CS-PAA nanobubbles could be taken up into tumor cells, but no intracellular uptake was observed in the case of Sonovue®. Animal fluorescence imaging in vivo demonstrated that PFP-CS-PAA nanobubbles could be effectively cleared after intravenous injection within 168 h. MTT assays indicated that PFP-CS-PAA nanobubbles had appropriate biocompatibility. Abnormal levels of blood urea nitrogen were detected after the intravenous administration of PFP-CS-PAA nanobubbles to rats, and body-weight gain was inhibited for up to 6 d, but, after that, body weights recovered their tendency to increase.
Collapse
Affiliation(s)
- Xuemei Gao
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Dajing Guo
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiang Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering & Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xuefeng Shan
- Department of Pharmacy, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xuemei He
- Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chaoqun Yu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
34
|
Hu Q, Luo Y. Chitosan-based nanocarriers for encapsulation and delivery of curcumin: A review. Int J Biol Macromol 2021; 179:125-135. [PMID: 33667554 DOI: 10.1016/j.ijbiomac.2021.02.216] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
To overcome the poor aqueous solubility and bioavailability of curcumin, emphasize its functional features, and broaden its applications in the food and pharmaceutical industries, many nanoscale systems have been widely applied for its encapsulation and delivery. Over many decades, chitosan as a natural biopolymer has been extensively studied due to its polycationic nature, biodegradability, biocompatibility, non-toxicity, and non-allergenic. Various chitosan-based nanocarriers with unique properties for curcumin delivery, including but not limited to, self-assembled nanoparticles, nanocomposites, nanoemulsions, nanotubes, and nanofibers, have been designed. This review focuses on the most-recently reported fabrication techniques of different types of chitosan-based nanocarriers. The functionalities of chitosan in each formulation which determine the physicochemical properties such as surface charge, morphology, encapsulation driving force, and release profile, were discussed in detail. Moreover, the current pharmaceutical applications of curcumin-loaded chitosan nanoparticles were elaborated. The role of chitosan in facilitating the delivery of curcumin and improving the therapeutic effects on many chronic diseases, including cancer, bacterial infection, wound healing, Alzheimer's diseases, inflammatory bowel disease, and hepatitis C virus, were illustrated. Particularly, the recently discovered mechanisms of action of curcumin-loaded chitosan nanoparticles against the abovementioned diseases were highlighted.
Collapse
Affiliation(s)
- Qiaobin Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu Province 210003, China
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
35
|
Liu X, Shi D, Guo L, Zhou X, Shang M, Sun X, Meng D, Zhao Y, Li J. Echogenic, Ultrasound-Sensitive Chitosan Nanodroplets for Spatiotemporally Controlled DKK-2 Gene Delivery to Prostate Cancer Cells. Int J Nanomedicine 2021; 16:421-432. [PMID: 33488078 PMCID: PMC7815087 DOI: 10.2147/ijn.s286474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/22/2020] [Indexed: 01/10/2023] Open
Abstract
Purpose To synthesize echogenic chitosan/perfluorohexane nanodroplets (CNDs) for DKK-2 gene delivering in a spatiotemporally controlled manner in vitro. Methods The characteristics, contrast-enhanced ultrasound imaging, DNA binding and DNase protection capacity, DKK-2 gene transfection and effects on LNCaP cells of these CNDs were investigated. Results The obtained CNDs showed positive surface charges and could attract the genetic cargo with negative surface charges to form nanocomplexes. Agarose gel electrophoresis confirmed binding of the CNDs and pDNA. DKK-2 pDNA-loaded CNDs, in combination with ultrasound, ruptured and released DKK-2 pDNA, entering LNCaP cells through nano-scale pores in the cell membrane, which further reduced the proliferation of LNCaP cells. Conclusion These stable and safe CNDs may be a promising choice to achieve efficient ultrasound-mediated gene delivery to specific tissues in a spatiotemporally controlled manner.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xiaoying Zhou
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xiao Sun
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Dong Meng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yading Zhao
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
36
|
Prabhu P. Tumoral delivery of nanotherapeutics. HANDBOOK ON NANOBIOMATERIALS FOR THERAPEUTICS AND DIAGNOSTIC APPLICATIONS 2021:53-101. [DOI: 10.1016/b978-0-12-821013-0.00024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
37
|
Sun T, Dasgupta A, Zhao Z, Nurunnabi M, Mitragotri S. Physical triggering strategies for drug delivery. Adv Drug Deliv Rev 2020; 158:36-62. [PMID: 32589905 DOI: 10.1016/j.addr.2020.06.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Physically triggered systems hold promise for improving drug delivery by enhancing the controllability of drug accumulation and release, lowering non-specific toxicity, and facilitating clinical translation. Several external physical stimuli including ultrasound, light, electric fields and magnetic fields have been used to control drug delivery and they share some common features such as spatial targeting, spatiotemporal control, and minimal invasiveness. At the same time, they possess several distinctive features in terms of interactions with biological entities and/or the extent of stimulus response. Here, we review the key advances of such systems with a focus on discussing their physical mechanisms, the design rationales, and translational challenges.
Collapse
Affiliation(s)
- Tao Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anshuman Dasgupta
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Askari E, Seyfoori A, Amereh M, Gharaie SS, Ghazali HS, Ghazali ZS, Khunjush B, Akbari M. Stimuli-Responsive Hydrogels for Local Post-Surgical Drug Delivery. Gels 2020; 6:E14. [PMID: 32397180 PMCID: PMC7345431 DOI: 10.3390/gels6020014] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Currently, surgical operations, followed by systemic drug delivery, are the prevailing treatment modality for most diseases, including cancers and trauma-based injuries. Although effective to some extent, the side effects of surgery include inflammation, pain, a lower rate of tissue regeneration, disease recurrence, and the non-specific toxicity of chemotherapies, which remain significant clinical challenges. The localized delivery of therapeutics has recently emerged as an alternative to systemic therapy, which not only allows the delivery of higher doses of therapeutic agents to the surgical site, but also enables overcoming post-surgical complications, such as infections, inflammations, and pain. Due to the limitations of the current drug delivery systems, and an increasing clinical need for disease-specific drug release systems, hydrogels have attracted considerable interest, due to their unique properties, including a high capacity for drug loading, as well as a sustained release profile. Hydrogels can be used as local drug performance carriers as a means for diminishing the side effects of current systemic drug delivery methods and are suitable for the majority of surgery-based injuries. This work summarizes recent advances in hydrogel-based drug delivery systems (DDSs), including formulations such as implantable, injectable, and sprayable hydrogels, with a particular emphasis on stimuli-responsive materials. Moreover, clinical applications and future opportunities for this type of post-surgery treatment are also highlighted.
Collapse
Affiliation(s)
- Esfandyar Askari
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran P.O. Box 1517964311, Iran;
| | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (M.A.); (S.S.G.); (B.K.)
| | - Meitham Amereh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (M.A.); (S.S.G.); (B.K.)
| | - Sadaf Samimi Gharaie
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (M.A.); (S.S.G.); (B.K.)
| | - Hanieh Sadat Ghazali
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran P.O. Box 16846-13114, Iran;
| | - Zahra Sadat Ghazali
- Biomedical Engineering Department, Amirkabir University of Technology (AUT), Tehran P.O. Box 158754413, Iran;
| | - Bardia Khunjush
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (M.A.); (S.S.G.); (B.K.)
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (M.A.); (S.S.G.); (B.K.)
- Center for Biomedical Research, University of Victoria, Victoria, BC V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
39
|
Yaqiong LP, Ruiqing LMD, Shaobo DMD, Lianzhong ZMD. Advances in Targeted Tumor Diagnosis and Therapy Based on Ultrasound-Responsive Nanodroplets. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2020. [DOI: 10.37015/audt.2020.200043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
40
|
Yuan Z, Demith A, Stoffel R, Zhang Z, Park YC. Light-activated doxorubicin-encapsulated perfluorocarbon nanodroplets for on-demand drug delivery in an in vitro angiogenesis model: Comparison between perfluoropentane and perfluorohexane. Colloids Surf B Biointerfaces 2019; 184:110484. [PMID: 31522023 DOI: 10.1016/j.colsurfb.2019.110484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 10/26/2022]
Abstract
Phase-transition perfluorocarbon (PFC) nanodroplets have been developed for on-demand drug delivery carriers with external triggers such as ultrasound or laser irradiation techniques. Although various perfluorocarbons, including perfluoropentane (C5F12) and perfluorohexane (C6F14), have been investigated for their theranostic use, comparison of the phase-transition efficiency, the drug delivery efficacy by light activation, and physical properties of the PFC nanodroplets have not been reported. We have synthesized gold nanorod-coated doxorubicin-encapsulated perfluorocarbon nanodroplets using perfluoropentane and perfluorohexane as light-activated on-demand drug delivery carriers, called PF5 and PF6, respectively. When gold nanorods on the perfluorocarbon nanodroplets resonate with a laser wavelength, plasmonic heat generated on the gold nanorods vaporizes the nanodroplets to gas bubbles (phase-transition), and releases the encapsulated drug from the nanodroplet core. Overall, the nanodroplet size, drug encapsulation efficiency, number density, and cytotoxicity were similar between PF5 and PF6. However, the long-term stability against passive phase-transition or coalescence in physiological conditions and the phase-transition efficiency were different from each other. PF6 was better in long-term stability but showed lower phase-transition than PF5. The lower phase-transition of PF6 might have led to lower drug delivery efficiency compared to PF5. This is probably because PF6 has higher temperature thresholds required for phase-transition due to its higher boiling point. The study demonstrated feasibility of the light-activated nanodroplets for on-demand targeted nanotherapy, which suppresses the development of angiogenesis.
Collapse
Affiliation(s)
- Zheng Yuan
- Department of Chemical & Environmental Engineering, College of Engineering & Applied Sciences, USA
| | - Alec Demith
- Medical Sciences Program, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Ryan Stoffel
- Department of Chemical & Environmental Engineering, College of Engineering & Applied Sciences, USA
| | - Zhe Zhang
- Department of Chemical & Environmental Engineering, College of Engineering & Applied Sciences, USA
| | - Yoonjee C Park
- Department of Chemical & Environmental Engineering, College of Engineering & Applied Sciences, USA.
| |
Collapse
|
41
|
Tharkar P, Varanasi R, Wong WSF, Jin CT, Chrzanowski W. Nano-Enhanced Drug Delivery and Therapeutic Ultrasound for Cancer Treatment and Beyond. Front Bioeng Biotechnol 2019; 7:324. [PMID: 31824930 PMCID: PMC6883936 DOI: 10.3389/fbioe.2019.00324] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
While ultrasound is most widely known for its use in diagnostic imaging, the energy carried by ultrasound waves can be utilized to influence cell function and drug delivery. Consequently, our ability to use ultrasound energy at a given intensity unlocks the opportunity to use the ultrasound for therapeutic applications. Indeed, in the last decade ultrasound-based therapies have emerged with promising treatment modalities for several medical conditions. More recently, ultrasound in combination with nanomedicines, i.e., nanoparticles, has been shown to have substantial potential to enhance the efficacy of many treatments including cancer, Alzheimer disease or osteoarthritis. The concept of ultrasound combined with drug delivery is still in its infancy and more research is needed to unfold the mechanisms and interactions of ultrasound with different nanoparticles types and with various cell types. Here we present the state-of-art in ultrasound and ultrasound-assisted drug delivery with a particular focus on cancer treatments. Notably, this review discusses the application of high intensity focus ultrasound for non-invasive tumor ablation and immunomodulatory effects of ultrasound, as well as the efficacy of nanoparticle-enhanced ultrasound therapies for different medical conditions. Furthermore, this review presents safety considerations related to ultrasound technology and gives recommendations in the context of system design and operation.
Collapse
Affiliation(s)
- Priyanka Tharkar
- Faculty of Medicine and Health, Sydney School of Pharmacy, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Ramya Varanasi
- Faculty of Medicine and Health, Sydney School of Pharmacy, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Wu Shun Felix Wong
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Craig T Jin
- Faculty of Engineering, School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Wojciech Chrzanowski
- Faculty of Medicine and Health, Sydney School of Pharmacy, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
42
|
Meng D, Guo L, Shi D, Sun X, Shang M, Zhou X, Li J. Charge-conversion and ultrasound-responsive O-carboxymethyl chitosan nanodroplets for controlled drug delivery. Nanomedicine (Lond) 2019; 14:2549-2565. [PMID: 31271101 DOI: 10.2217/nnm-2019-0217] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: O-carboxymethyl chitosan/perfluorohexane nanodroplets (O-CS NDs) and doxorubicin-loading O-carboxymethyl chitosan nanodroplets were synthesized and functionally tested as drug delivery system in vitro. Materials & methods: The characteristics, charge conversion, stability, cytotoxicity, ultrasound imaging ability, interaction with tumor cells of the nanodroplets and eradication on tumor cells of the doxorubicin-loaded nanodroplets were investigated. Results: O-CS NDs (below 200 nm) achieved higher tumor cellular associations at acidic pH, with great serum stability, pH-dependent charge conversion and good ultrasound imaging ability. Doxorubicin-loading O-carboxymethyl chitosan nanodroplets exhibited strong cytotoxicity on PC-3 cells with ultrasound exposure. Conclusion: These stable, safe and smart O-CS NDs may be a promising approach to improve cell interaction efficiency as an ultrasound imaging and cancer-targeting drug delivery system.
Collapse
Affiliation(s)
- Dong Meng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiao Sun
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiaoying Zhou
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| |
Collapse
|
43
|
Saheb M, Fereydouni N, Nemati S, Barreto GE, Johnston TP, Sahebkar A. Chitosan-based delivery systems for curcumin: A review of pharmacodynamic and pharmacokinetic aspects. J Cell Physiol 2019; 234:12325-12340. [PMID: 30697728 DOI: 10.1002/jcp.28024] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Indexed: 12/24/2022]
Abstract
Effective drug delivery is one of the most important issues associated with the administration of therapeutic agents that have low oral bioavailability. Curcumin is an active ingredient in the turmeric plant, which has low oral bioavailability due to its poor aqueous solubility. One strategy that has been considered for enhancing the aqueous solubility, and, thus, its oral bioavailability, is the use of chitosan as a carrier for curcumin. Chitosan is a biodegradable and biocompatible polymer that is relatively water-soluble. Therefore, various studies have sought to improve the aqueous solubility of chitosan. The use of different pharmaceutical excipients and formulation strategies has the potential to improve aqueous solubility, formulation processing, and the overall delivery of hydrophobic drugs. This review focuses on various methods utilized for chitosan-based delivery of curcumin.
Collapse
Affiliation(s)
- Mahsa Saheb
- Department of Basic Science, Islamic Azad University of Damghan, Damghan, Iran
| | - Narges Fereydouni
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Nemati
- Department of Basic Science, Islamic Azad University of Damghan, Damghan, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, Missouri
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
|
45
|
Khan S, Imran M, Butt TT, Ali Shah SW, Sohail M, Malik A, Das S, Thu HE, Adam A, Hussain Z. Curcumin based nanomedicines as efficient nanoplatform for treatment of cancer: New developments in reversing cancer drug resistance, rapid internalization, and improved anticancer efficacy. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Khan MI, Rath S, Adhami VM, Mukhtar H. Targeting epigenome with dietary nutrients in cancer: Current advances and future challenges. Pharmacol Res 2018; 129:375-387. [DOI: 10.1016/j.phrs.2017.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/22/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023]
|
47
|
Novel cationic chitosan derivative bearing 1,2,3-triazolium and pyridinium: Synthesis, characterization, and antifungal property. Carbohydr Polym 2018; 182:180-187. [DOI: 10.1016/j.carbpol.2017.11.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 10/24/2017] [Accepted: 11/05/2017] [Indexed: 12/18/2022]
|
48
|
Amreddy N, Babu A, Muralidharan R, Panneerselvam J, Srivastava A, Ahmed R, Mehta M, Munshi A, Ramesh R. Recent Advances in Nanoparticle-Based Cancer Drug and Gene Delivery. Adv Cancer Res 2017; 137:115-170. [PMID: 29405974 PMCID: PMC6550462 DOI: 10.1016/bs.acr.2017.11.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Effective and safe delivery of anticancer agents is among the major challenges in cancer therapy. The majority of anticancer agents are toxic to normal cells, have poor bioavailability, and lack in vivo stability. Recent advancements in nanotechnology provide safe and efficient drug delivery systems for successful delivery of anticancer agents via nanoparticles. The physicochemical and functional properties of the nanoparticle vary for each of these anticancer agents, including chemotherapeutics, nucleic acid-based therapeutics, small molecule inhibitors, and photodynamic agents. The characteristics of the anticancer agents influence the design and development of nanoparticle carriers. This review focuses on strategies of nanoparticle-based drug delivery for various anticancer agents. Recent advancements in the field are also highlighted, with suitable examples from our own research efforts and from the literature.
Collapse
Affiliation(s)
- Narsireddy Amreddy
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anish Babu
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ranganayaki Muralidharan
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Janani Panneerselvam
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Akhil Srivastava
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rebaz Ahmed
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Meghna Mehta
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anupama Munshi
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rajagopal Ramesh
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| |
Collapse
|
49
|
Stimuli-responsive nanocarriers for intracellular delivery. Biophys Rev 2017; 9:931-940. [PMID: 29178081 DOI: 10.1007/s12551-017-0341-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
The emergence of different nanoparticles (NPs) has made a significant revolution in the field of medicine. Different NPs in the form of metallic NPs, dendrimers, polymeric NPs, carbon quantum dots and liposomes have been functionalized and used as platforms for intracellular delivery of biomolecules, drugs, imaging agents and nucleic acids. These NPs are designed to improve the pharmacokinetic properties of the drug, improve their bioavailability and successfully surpass physiological or pathological obstacles in the biological system so that therapeutic efficacy is achieved. In this review I present some of the current approaches used in intracellular delivery systems, with a focus on various stimuli-responsive nanocarriers, including cell-penetrating peptides, to highlight their various biomedical applications.
Collapse
|
50
|
Li F, Xing Q, Han Y, Li Y, Wang W, Perera TSH, Dai H. Ultrasonically assisted preparation of poly(acrylic acid)/calcium phosphate hybrid nanogels as pH-responsive drug carriers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:688-697. [DOI: 10.1016/j.msec.2017.07.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 06/30/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022]
|