1
|
Wang Y, Liu Z, Hu H, Cheng W, Chen Z, Zhong J, Dai J, Zhang J. Porcine urinary bladder matrix encapsulated biological patch enhances dural repair and promotes anti-adhesion via mesothelial cell induction. Colloids Surf B Biointerfaces 2025; 254:114801. [PMID: 40412291 DOI: 10.1016/j.colsurfb.2025.114801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/25/2025] [Accepted: 05/12/2025] [Indexed: 05/27/2025]
Abstract
Decellularized biomaterial-based dural patches are clinically employed as dura mater substitutes, owing to their biocompatibility, biodegradability, mechanical flexibility, and efficacy in promoting tissue regeneration. However, these biological grafts have challenges related to patch durability, cerebrospinal fluid leakage, and brain tissue adhesion. In this study, we developed a composite dural patch with a biomimetic structure by encapsulating multilayered small intestinal submucosa (SIS) membranes using basement membrane-containing urinary bladder matrix (UBM) membranes as outer layers, to enhance dural repair. The newly designed UBM@SIS patch demonstrates superior mechanical properties, excellent tissue regeneration capabilities, and enhanced anti-adhesion effects. Immunofluorescent staining revealed a densely organized cell layer anchored to the surface of the UBM@SIS patch, identified as mesothelial cells (Pan-Cytokeratin+/E-cadherin+) and arachnoid barrier cells (ABCs), which are essential for lubricating brain tissue, preventing adhesion, and reducing cerebrospinal fluid leakage. In contrast, only a sparse presence of Pan-Cytokeratin-labeled mesothelial cells and E-cadherin-labeled ABCs was observed on the SIS patch, exhibiting incomplete pia mater and significant adhesion on interface between patch and brain tissue. Furthermore, neurotoxicity evaluations confirmed that the encapsulation of UBM reduces astrogliosis and neuroinflammatory response in early stage. These results suggest that the novel UBM@SIS patch effectively addresses the limitations of existing biological patches and holds significant potential for clinical application.
Collapse
Affiliation(s)
- Yulu Wang
- Department of Colorectal Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Zhentao Liu
- Department of Neurosurgery, No.988 Hospital of Joint Logistic Support Force, Henan Province 454000, China
| | - Hongkang Hu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wenyue Cheng
- Department of Colorectal Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Zhaoxin Chen
- Department of Colorectal Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jie Zhong
- Department of Colorectal Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jing Dai
- Department of Colorectal Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| | - Jian Zhang
- Department of Colorectal Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
2
|
Rong H, Sun S, Lu M, Zhang Y, Liu L, Guo Z, Zhang Z, Ye Z, Zhang J, Chen B, Li S, Dong A. Super-hydrophilic and super-lubricating Zwitterionic hydrogel coatings coupled with polyurethane to reduce postoperative dura mater adhesions and infections. Acta Biomater 2025; 192:206-217. [PMID: 39675498 DOI: 10.1016/j.actbio.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
The dura trauma or large defects due to neurosurgical procedures can result in potential complications. Dural replacements have proven effective to reduce the risk of seizures, meningitis, cerebrospinal fluid leakage, cerebral herniation, and infection. Although various artificial dural patches have been developed, addressing iatrogenic infections and cerebral adhesions resulting from patches implantation remains a challenge. This study employed a network interpenetration modification strategy to introduce super-hydrophilic and super-lubricity zwitterionic hydrogel coatings on polyurethane Neuro-Patch® (NP®) dura mater patch. The successful modification with the hydrogel coating preserved the intrinsic properties of the NP®, such as their anti-leakage and tensile strength capabilities, while effectively reducing biofouling on the surface of the patches. Additionally, by constructing subdural implantation for each dura mater substitute in rabbits, we observed that artificial dura mater patches modified with the hydrogel coating effectively reduced the incidence of postoperative cerebral adhesions and infections. This suggests a promising application prospect of the hydrogel coating in dural repair. STATEMENT OF SIGNIFICANCE: The development of dural substitutes with anti-leakage, anti-adhesion and anti-infection functions is the key to the treatment of dural defects and cerebrospinal fluid leakage during trauma or neurosurgery. In this study, the amphoteric ionic hydrogel coating was firmly modified on the surface of polyurethane with a mild modification process to give the patch super-hydrophilic and super-lubricating properties. The adhesion of non-specific proteins and bacteria is effectively reduced. The rabbit dural defect repair model showed that the introduction of zwitterionic hydrogel coating effectively reduced the occurrence of postoperative infection, and no tissue adhesion was observed. Taken together, this study offers a promising way to enhance the performance of artificial dural patches, potentially benefiting patients undergoing neurosurgery.
Collapse
Affiliation(s)
- Hui Rong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin 300072, PR China
| | - Shupeng Sun
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Key Laboratory of Cerebral Blood Flow Reconstruction and Head and Neck Tumor New Technology Translation, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, PR China; Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, PR China
| | - Manhua Lu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin 300072, PR China
| | - Yiqun Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Lingyuan Liu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ziwei Guo
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zimeng Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhanpeng Ye
- Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, PR China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin 300072, PR China
| | - Budong Chen
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Key Laboratory of Cerebral Blood Flow Reconstruction and Head and Neck Tumor New Technology Translation, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, PR China; Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, PR China
| | - Shuangyang Li
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin 300072, PR China
| | - Anjie Dong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
3
|
Cheng X, Zhang Z, Ren H, Zou Z, Zhang Y, Qu Y, Chen X, Zhao J, He C. A low-swelling hydrogel as a multirole sealant for efficient dural defect sealing and prevention of postoperative adhesion. Natl Sci Rev 2024; 11:nwae160. [PMID: 38867893 PMCID: PMC11168225 DOI: 10.1093/nsr/nwae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/30/2024] [Accepted: 04/28/2024] [Indexed: 06/14/2024] Open
Abstract
Dural defects and subsequent complications, including cerebrospinal fluid (CSF) leakage, are common in both spine surgery and neurosurgery, and existing clinical treatments are still unsatisfactory. In this study, a tissue-adhesive and low-swelling hydrogel sealant comprising gelatin and o-phthalaldehyde (OPA)-terminated 4-armed poly(ethylene glycol) (4aPEG-OPA) is developed via the OPA/amine condensation reaction. The hydrogel shows an adhesive strength of 79.9 ± 12.0 kPa on porcine casing and a burst pressure of 208.0 ± 38.0 cmH2O. The hydrogel exhibits a low swelling ratio at physiological conditions, avoiding nerve compression in the limited spinal and intracranial spaces. In rat and rabbit models of lumbar and cerebral dural defects, the 4aPEG-OPA/gelatin hydrogel achieves excellent performance in dural defect sealing and preventing CSF leakage. Moreover, local inflammation, epidural fibrosis and postoperative adhesion in the defect areas are markedly reduced. Thus, these findings establish the strong potential of the hydrogel sealant for the effective watertight closure of dural defects.
Collapse
Affiliation(s)
- Xueliang Cheng
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun 130014, China
| | - Zhen Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hui Ren
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zheng Zou
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yu Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yang Qu
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun 130014, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jianwu Zhao
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun 130014, China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Wang S, Ren S, Wang J, Chen M, Wang H, Chen C. Dural Reconstruction Materials for the Repairing of Spinal Neoplastic Cerebrospinal Fluid Leaks. ACS Biomater Sci Eng 2023; 9:6610-6622. [PMID: 37988580 DOI: 10.1021/acsbiomaterials.3c01524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Spinal tumors often lead to more complex complications than other bone tumors. Nerve injuries, dura mater defect, and subsequent cerebrospinal fluid (CSF) leakage generally appear in spinal tumor surgeries and are followed by serious adverse outcomes such as infections and even death. The use of suitable dura mater replacements to achieve multifunctionality in fluid leakage plugging, preventing adhesions, and dural reconstruction is a promising therapeutic approach. Although there have been innovative endeavors to manage dura mater defects, only a handful of materials have realized the targeted multifunctionality. Here, we review recent advances in dura repair materials and techniques and discuss the relative merits in both preclinical and clinical trials as well as future therapeutic options. With these advances, spinal tumor patients with dura mater defects may be able to benefit from novel treatments.
Collapse
Affiliation(s)
- Shidong Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Shangjun Ren
- Department of Neurosurgery, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng, 252000, People's Republic of China
| | - Juan Wang
- Department of Stomatology, Beijing Jishuitan Hospital, Capital Medical University, No. 31, Xinjiekou East Street, Xicheng District, Beijing100035, People's Republic of China
| | - Mengyu Chen
- School of Medicine, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, People's Republic of China
| | - Hongru Wang
- Department of Neurology, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng, 252000, People's Republic of China
| | - Chenglong Chen
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
- Department of Orthopedics, Beijing Jishuitan Hospital, Capital Medical University, No. 31, Xinjiekou East Street, Xicheng District, Beijing 100035, People's Republic of China
| |
Collapse
|
5
|
Nie R, Zhang QY, Tan J, Feng ZY, Huang K, Sheng N, Jiang YL, Song YT, Zou CY, Zhao LM, Li HX, Wang R, Zhou XL, Hu JJ, Wu CY, Li-Ling J, Xie HQ. EGCG modified small intestine submucosa promotes wound healing through immunomodulation. COMPOSITES PART B: ENGINEERING 2023; 267:111005. [DOI: 10.1016/j.compositesb.2023.111005] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
6
|
Dong RP, Zhang Q, Yang LL, Cheng XL, Zhao JW. Clinical management of dural defects: A review. World J Clin Cases 2023; 11:2903-2915. [PMID: 37215425 PMCID: PMC10198091 DOI: 10.12998/wjcc.v11.i13.2903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
Dural defects are common in spinal and cranial neurosurgery. A series of complications, such as cerebrospinal fluid leakage, occur after rupture of the dura. Therefore, treatment strategies are necessary to reduce or avoid complications. This review comprehensively summarizes the common causes, risk factors, clinical complications, and repair methods of dural defects. The latest research progress on dural repair methods and materials is summarized, including direct sutures, grafts, biomaterials, non-biomaterial materials, and composites formed by different materials. The characteristics and efficacy of these dural substitutes are reviewed, and these materials and methods are systematically evaluated. Finally, the best methods for dural repair and the challenges and future prospects of new dural repair materials are discussed.
Collapse
Affiliation(s)
- Rong-Peng Dong
- Department of Spinal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Qi Zhang
- Department of Spinal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Li-Li Yang
- Department of Spinal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Xue-Liang Cheng
- Department of Spinal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jian-Wu Zhao
- Department of Spinal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
7
|
Achinger KG, Williams LN. Trends in CSF Leakage Associated with Duraplasty in Infratentorial Procedures over the Last 20 Years: A Systematic Review. Crit Rev Biomed Eng 2023; 51:33-44. [PMID: 37551907 DOI: 10.1615/critrevbiomedeng.v51.i2.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Cerebrospinal fluid (CSF) leakage is a common postoperative complication of neurosurgical procedures, with iatrogenic causes accounting for 16% of CSF leakages. This complication increases healthcare costs and patient morbidity. The focus of this review is to analyze the rates of CSF leakage of some of the most commonly used xenogeneic and synthetic dural substitutes following surgeries in the infratentorial region of the brain where surgical repair can be most challenging. A systematic literature search was conducted using studies detailing duraplasty procedures performed with nonautologous grafts in the infratentorial region in PubMed. Studies were identified using the following search terms: "posterior fossa" or "infratentorial" were used in combination with "CSF leak," "CSF leakage," "cerebrospinal fluid leakage," "duraplasty" or "dura graft." The outcome of interest was a measure of the prevalence of CSF leakage rates following posterior fossa neurosurgery. Studies that contributed data to this review were published between 2006 and 2021. The dural graft materials utilized included: bovine collagen, acellular dermis, equine collagen, bovine pericardium, collagen matrix, and expanded polytetrafluoroethylene (ePTFE). The number of subjects in studies on each of these grafts ranged from 6 to 225. CSF leak rates ranged from 0% to 25% with the predominance of studies reporting between 3% and 15%. The studies that utilize bovine collagen, equine collagen, and acellular dermis reported higher CSF leakage rates; whereas studies that utilized ePTFE, bovine pericardium, and collagen matrix reported lower CSF leakage rates. Due to the heterogeneity of methodologies used across these studies, it is difficult to draw a direct correlation between the dural patch products used and CSF leaks. Larger prospective controlled studies that evaluate various products in a head-to-head fashion, using the same methods and animal models, are needed to conclude the relative efficacy of these dural patch products.
Collapse
Affiliation(s)
- Katherine G Achinger
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Lakiesha N Williams
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Wang Y, Guo Q, Wang W, Wang Y, Fang K, Wan Q, Li H, Wu T. Potential use of bioactive nanofibrous dural substitutes with controlled release of IGF-1 for neuroprotection after traumatic brain injury. NANOSCALE 2022; 14:18217-18230. [PMID: 36468670 DOI: 10.1039/d2nr06081g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
For patients suffering from traumatic brain injury (TBI), the closure of dural defects after decompressive craniectomy is the prerequisite to restoring normal physiological functions. It is also an urgent challenge to provide a neuroprotection effect against the primary and secondary nerve damage during long-term recovery. To solve these issues, we herein develop a class of bioactive, nanofibrous dural substitutes that can long-term release insulin-like growth factor 1 (IGF-1) for improving the survival and neurite outgrowth of neural cells after TBI. Such dural substitutes were polycaprolactone (PCL) nanofibers encapsulated with hyaluronic acid methacryloyl (HAMA)/IGF-1 by blend or coaxial electrospinning techniques, achieving bioactive PCL/HAMA/IGF nanofibrous dural substitutes with different release profiles of IGF-1. The nanofibrous dural substitutes exhibited good mechanical properties and hydrophobicity, which prevent cerebrospinal fluid leakage, maintain normal intracranial pressure, and avoid external impact on the brain. We also found that the viability and neurite outgrowth of SH-SY5Y cells and primary neurons were significantly enhanced after neurite transection or oxygen and glucose deprivation treatment. Taken together, such PCL/HAMA/IGF nanofibrous dural substitutes hold promising potential to provide neuroprotection effects after primary and secondary nerve damage in TBI, which would bring significant benefits to the field of neurosurgery involving the use of artificial dura mater.
Collapse
Affiliation(s)
- Yue Wang
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao 266071, China.
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Qingxia Guo
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Wei Wang
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China
| | - Yuanfei Wang
- Department of Central Laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
| | - Kuanjun Fang
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Huanting Li
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao 266071, China.
| | - Tong Wu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao 266071, China
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao 266071, China
| |
Collapse
|
9
|
Tan J, Zhang QY, Song YT, Huang K, Jiang YL, Chen J, Wang R, Zou CY, Li QJ, Qin BQ, Sheng N, Nie R, Feng ZY, Yang DZ, Yi WH, Xie HQ. Accelerated bone defect regeneration through sequential activation of the M1 and M2 phenotypes of macrophages by a composite BMP-2@SIS hydrogel: An immunomodulatory perspective. COMPOSITES PART B: ENGINEERING 2022; 243:110149. [DOI: 10.1016/j.compositesb.2022.110149] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
10
|
Song YT, Li YQ, Tian MX, Hu JG, Zhang XR, Liu PC, Zhang XZ, Zhang QY, Zhou L, Zhao LM, Li-Ling J, Xie HQ. Application of antibody-conjugated small intestine submucosa to capture urine-derived stem cells for bladder repair in a rabbit model. Bioact Mater 2022; 14:443-455. [PMID: 35415280 PMCID: PMC8978277 DOI: 10.1016/j.bioactmat.2021.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023] Open
Abstract
The need for bladder reconstruction and side effects of cystoplasty have spawned the demand for the development of alternative material substitutes. Biomaterials such as submucosa of small intestine (SIS) have been widely used as patches for bladder repair, but the outcomes are not fully satisfactory. To capture stem cells in situ has been considered as a promising strategy to speed up the process of re-cellularization and functionalization. In this study, we have developed an anti-CD29 antibody-conjugated SIS scaffold (AC-SIS) which is capable of specifically capturing urine-derived stem cells (USCs) in situ for tissue repair and regeneration. The scaffold has exhibited effective capture capacity and sound biocompatibility. In vivo experiment proved that the AC-SIS scaffold could promote rapid endothelium healing and smooth muscle regeneration. The endogenous stem cell capturing scaffolds has thereby provided a new revenue for developing effective and safer bladder patches. We developed an anti-CD29 antibody-crosslinked submucosa of small intestine scaffold (AC-SIS). AC-SIS is capable of specifically capturing urine-derived stem cells (USCs) as well as possesses a sound biocompatibility. AC-SIS promotes in situ tissue regeneration by facilitating the repair of bladder epithelium, smooth muscle and angiogenesis. Design and application of endogenous stem cell capturing scaffolds provides a new strategy for bladder repair.
Collapse
Affiliation(s)
- Yu-Ting Song
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yan-Qing Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mao-Xuan Tian
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Aesthetic Surgery, The People's Hospital of Pengzhou, Chengdu, Sichuan, 611930, China
| | - Jun-Gen Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiu-Ru Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Peng-Cheng Liu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiu-Zhen Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Li Zhou
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Long-Mei Zhao
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Medical Genetics and Prenatal Diagnosis, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
11
|
A dural substitute based on oxidized quaternized guar gum/porcine peritoneal acellular matrix with improved stability, antibacterial and anti-adhesive properties. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Wang J, Li K, Xu J, Liu M, Li P, Li X, Fan Y. A biomimetic hierarchical small intestinal submucosa-chitosan sponge/chitosan hydrogel scaffold with a micro/nano structure for dural repair. J Mater Chem B 2021; 9:7821-7834. [PMID: 34586141 DOI: 10.1039/d1tb00948f] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dura mater is an essential barrier to protect the brain tissue and the dural defects caused by accidents can lead to serious complications. Various materials have been applied to dural repair, but it remains a challenge to perfectly match the structure and properties of the natural dura mater. Small intestinal submucosa has been developed for dural repair because of its excellent biocompatibility and biological activity, but its application is tremendously limited by the rapid degradation rate. Chitosan has also been broadly investigated in tissue repair, but the traditional chitosan hydrogels exhibit poor mechanical properties. A nanofiber chitosan hydrogel can be constructed based on an alkaline solvent, which is equipped with surprisingly high strength. Therefore, based on the bilayer structure of the natural dura mater, a biomimetic hierarchical small intestinal submucosa-chitosan sponge/chitosan hydrogel scaffold with a micro/nano structure was fabricated, which possessed a microporous structure in the upper sponge and a nanofiber structure in the lower hydrogel. The degradation rate was remarkably reduced compared with that of the small intestinal submucosa in the enzymatic degradation experiment in vitro. Meanwhile, the chitosan nanofibers brought high mechanical strength to the bilayer scaffold. Moreover, the hierarchical micro/nano structure and the active factors in the small intestinal submucosa have a fantastic effect on promoting the proliferation of fibroblasts and vascular endothelial cells. The bilayer scaffold showed good histocompatibility in the experiment of in vitro subcutaneous implantation in rats. Thus, the biomimetic hierarchical small intestinal submucosa-chitosan sponge/chitosan hydrogel scaffold with micro/nano structure simulates the structure of the natural dura mater and possesses properties with excellent performance, which has high practical value for dural repair.
Collapse
Affiliation(s)
- Jingxi Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Kun Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Junwei Xu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Meili Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Ping Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Xiaoming Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
- School of Medical Science and Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
13
|
Zhu T, Wang H, Jing Z, Fan D, Liu Z, Wang X, Tian Y. High efficacy of tetra-PEG hydrogel sealants for sutureless dural closure. Bioact Mater 2021; 8:12-19. [PMID: 34541383 PMCID: PMC8424082 DOI: 10.1016/j.bioactmat.2021.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/07/2021] [Accepted: 06/20/2021] [Indexed: 01/01/2023] Open
Abstract
Advances in meticulous dural closure technique remain a great challenge for watertight dural closure in the aged society, because the cerebrospinal fluid (CSF) leakage after spinal surgery is often accompanied with the disgusting wound infection, meningitis and pseudomeningocele. Here, a tetra-poly (ethylene glycol) (PEG)-based hydrogel sealant is developed with collective advantages of facile operation, high safety, quick set time, easy injectability, favorable mechanical strength and powerful tissue adhesion for effective sutureless dural closure during the surgery procedure. Impressively, this tetra-PEG sealant can instantaneously adhere to the irregular tissue surfaces even in a liquid environment, and effectively prevent or block off the intraoperative CSF leakage for sutureless dural closure and dura regeneration. Together, this sutureless tetra-PEG adhesive can be utilized as a very promising alternative for high-efficient watertight dural closure of the clinical patients who incidentally or deliberately undergo the durotomy during the spinal surgery.
Collapse
Affiliation(s)
- Tengjiao Zhu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Hufei Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zehao Jing
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Daoyang Fan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Zhongjun Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| |
Collapse
|
14
|
Jin S, Pu Y, Guo Z, Zhu W, Li S, Zhou X, Gao W, He B. A double-layer dura mater based on poly(caprolactone- co-lactide) film and polyurethane sponge: preparation, characterization, and biodegradation study. J Mater Chem B 2021; 9:3863-3873. [PMID: 33928320 DOI: 10.1039/d1tb00454a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Synthetic, biodegradable polymers hold great potential in dura mater substitution. In this study, a dura mater-mimetic double-layer film@sponge composite was developed. The composite contains a poly(caprolactone-co-lactide) (PCLA) film and polyurethane (PU) sponge, which simulates the hard and soft layers of dura mater, respectively. PCLA films were prepared by a solution-casting method and showed excellent mechanical properties and tolerance to water. PU sponge was hydrophilic and had a high water-absorption rate (about 500%). The double-layer composite (film@sponge) integrated the good mechanical properties of the films and the good water absorption of the sponge. The excellent biocompatibility and biodegradability of the PCLA film@PU sponge composites were verified by in vitro degradation and cytotoxicity study and the in vivo implantation in the back of rats. Importantly, the film@sponge composite had a suitable degradation rate and good biocompatibility, holding potential in the field of dural repair.
Collapse
Affiliation(s)
- Shu Jin
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Wangwei Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Sai Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Xi Zhou
- Ningbo Baoting Biotechnology Co., Ltd, Ningbo 315001, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
15
|
Liao J, Li X, He W, Guo Q, Fan Y. A biomimetic triple-layered biocomposite with effective multifunction for dura repair. Acta Biomater 2021; 130:248-267. [PMID: 34118449 DOI: 10.1016/j.actbio.2021.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/04/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Dura mater defect and subsequent cerebrospinal fluid (CSF) leakage usually appear in trauma or neurosurgical procedures and are followed by a series of serious complications and even death. The use of a qualified dura mater substitute with multifunction of leakage blockade, adhesion prevention, and dura reconstruction is one of the promising treatment methods. However, even though some products have been used in the clinic, none of the substitutes achieved the required multifunction. In this study, we aimed to design and fabricate a dura repair composite with the ideal multifunction. By biomimicking the structure and component of natural dura, we applied poly(L-lactic acid) (PLLA), chitosan (CS), gelatin, and acellular small intestinal submucosa (SIS) powders to successfully prepare a triple-layered composite. Then, a series of specific devices and techniques were developed to investigate the performance. The results revealed that satisfactory structural stability could be realized under good synergistic interactions among the components. In addition, all the findings suggested that the bionic triple-layered composite showed satisfactory multifunction of leakage blockade, adhesion prevention, antibacterial property, and dura reconstruction potential, and thus, it might be a promising candidate for dura repair. STATEMENT OF SIGNIFICANCE: Developing qualified dura mater substitutes with multifunction of leakage blockade, adhesion prevention, and dura reconstruction is crucial for treating dura mater defect and subsequent cerebrospinal fluid (CSF) leakage that appear in trauma or neurosurgical procedures. In this study, we designed and fabricated a triple-layered dura repair biocomposite with satisfactory structural stability and desired multifunction based on biomimicking of the structure and component of natural dura. Moreover, a series of specific devices and techniques were developed to investigate the relevant performance. Overall, the developed hydrogel electrospinning system exhibited excellent advantages in achieving multifunction and could be applied widely in the future to achieve multifunctional tissue repair materials.
Collapse
Affiliation(s)
- Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Wei He
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Qi Guo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
16
|
Bi X, Liu B, Mao Z, Wang C, Dunne N, Fan Y, Li X. Applications of materials for dural reconstruction in pre-clinical and clinical studies: Advantages and drawbacks, efficacy, and selections. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111326. [PMID: 32919680 DOI: 10.1016/j.msec.2020.111326] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022]
Abstract
The dura mater provides a barrier to protect the tissue underneath and cerebrospinal fluid. However, dural defects normally cause cerebrospinal fluid leakage and other complications, such as wound infections, meningitis, etc. Therefore, the reconstruction of dura mater has important clinical significance. Current dural reconstruction materials include: homologous, acellular, natural, synthetic, and composite materials. This review comprehensively summarizes the characteristics and efficacy of these dural substitutes, especially in clinical applications, including the advantages and drawbacks of those from different sources, the host tissue response in pre-clinical studies and clinical practice, and the comparison of these materials across different surgical procedures. Furthermore, the selections of materials for different surgical procedures are highlighted. Finally, the challenges and future perspectives in the development of ideal dural repair materials are discussed.
Collapse
Affiliation(s)
- Xuewei Bi
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Bo Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Zhinan Mao
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China
| | - Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
17
|
Liao J, Xu B, Zhang R, Fan Y, Xie H, Li X. Applications of decellularized materials in tissue engineering: advantages, drawbacks and current improvements, and future perspectives. J Mater Chem B 2020; 8:10023-10049. [PMID: 33053004 DOI: 10.1039/d0tb01534b] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Decellularized materials (DMs) are attracting more and more attention because of their native structures, comparatively high bioactivity, low immunogenicity and good biodegradability, which are difficult to be imitated by synthetic materials. Recently, DMs have been demonstrated to possess great potential to overcome the disadvantages of autografts and have become a kind of promising material for tissue engineering. In this systematic review, we aimed to not only provide a quick access for understanding DMs, but also bring new ideas to utilize them more appropriately in tissue engineering. Firstly, the preparation of DMs was introduced. Then, the updated applications of DMs derived from different tissues and organs in tissue engineering were comprehensively summarized. In particular, their advantages, drawbacks and current improvements were emphasized. Moreover, we analyzed and proposed future perspectives.
Collapse
Affiliation(s)
- Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | | | | | | | | | | |
Collapse
|
18
|
Chumnanvej S, Luangwattanawilai T, Rawiwet V, Suwanprateeb J, Rattanapinyopituk K, Huaijantug S, Yinharnmingmongkol C, Hemstapat R. In vivo evaluation of bilayer ORC/PCL composites in a rabbit model for using as a dural substitute. Neurol Res 2020; 42:879-889. [PMID: 32657258 DOI: 10.1080/01616412.2020.1789383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/25/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE After a neurosurgical procedure, dural closure is commonly needed to prevent cerebrospinal fluids (CSF) leakage and to reduce the risk of complications, including infections and chronic inflammatory reactions. Although several dural substitutes have been developed, their manufacturing processes are complicated and costly and that many of them have been implicated in causing postoperative complications. This study aimed to assess the effectiveness and safety of new bilayer ORC/PCL composites in a rabbit model. METHODS Two formulations of bilayer oxidized regenerated cellulose (ORC)/poly ε-caprolactone (PCL) knitted fabric-reinforced composites and an autologous graft (pericranium) were employed for dural closure in forty-five male rabbits. Systemic reaction and the local reaction of the samples were assessed and compared at one-, three- and six-months post-implantation by blood chemistry and gross, and microscopic assessment using hematoxylin-eosin and Masson's trichrome stains. RESULTS No signs of CSF leakage or systemic infection were seen for all samples. All samples demonstrated minimal adhesion to adjacent tissues. The degree of host fibrous connective tissue ingrowth into both composites was comparable to that of the autologous group, but bone formation and osteoclast activities were significantly greater. Both composites progressively degraded over times and the residual thickness of the nonporous layer was 50% of the initial thickness at six months post-implantation. DISCUSSION Bilayer ORC/PCL composites were successfully employed for dural closure in the rabbit model. They were biocompatible and could support dural regeneration comparable to that of the autologous group, but induced greater osteogenesis.
Collapse
Affiliation(s)
- Sorayouth Chumnanvej
- Neurosurgery Unit, Surgery Department, Faculty of Medicine, Ramathibodi Hospital , Bangkok, Thailand
| | | | - Visut Rawiwet
- Central Animal Facility, Faculty of Science, Mahidol University (MUSC-CAF) , Bangkok, Thailand
| | - Jintamai Suwanprateeb
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center (MTEC) , Pathum Thani, Thailand
| | - Kasem Rattanapinyopituk
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University , Bangkok, Thailand
| | - Somkiat Huaijantug
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University , Nakhon Pathom, Thailand
| | - Chaowaphan Yinharnmingmongkol
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University , Nakhon Pathom, Thailand
| | - Ruedee Hemstapat
- Department of Pharmacology, Faculty of Science, Mahidol University , Bangkok, Thailand
| |
Collapse
|
19
|
Repair of dural defects with electrospun bacterial cellulose membranes in a rabbit experimental model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111246. [PMID: 32919624 DOI: 10.1016/j.msec.2020.111246] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/18/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023]
Abstract
To evaluate the advantages and mechanisms involved in repairing rabbit dural defect with a novel electrospun bacterial cellulose (EBC) membrane, a series of experiments were carried out in vitro and in vivo. Compared with common bacterial cellulose (BC) membrane, a more dispersed and regular fiber structure and a better porosity and water holding capacity were found in the EBC membrane, which also had superior degradability. However, the biomechanical properties were slightly decreased. The results demonstrated that BC and EBC membranes had little effect on proliferation and apoptosis of mouse fibroblast cells. There were no complications such as infection, cerebrospinal fluid leakage, epilepsy and brain swelling after BC and EBC membrane repairs in rabbit models. Using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot, the early inflammatory reactions in the EBC group were shown to be lower than in the BC group, and were close to the autologous dura mater group. Histological observations and western blot revealed more collagen fibers evenly distributed on the outer side of EBC membranes than in the BC and unpatched groups, and fewer brain tissue adhesions and epidural scars were found in the EBC group. Compared with common BC membrane, the EBC membrane had better biophysical properties and biocompatibility. It is expected to be a suitable alternative material for the repair of damaged dura mater.
Collapse
|
20
|
Zhao P, Li X, Fang Q, Wang F, Ao Q, Wang X, Tian X, Tong H, Bai S, Fan J. Surface modification of small intestine submucosa in tissue engineering. Regen Biomater 2020; 7:339-348. [PMID: 32793379 PMCID: PMC7414999 DOI: 10.1093/rb/rbaa014] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
With the development of tissue engineering, the required biomaterials need to have the ability to promote cell adhesion and proliferation in vitro and in vivo. Especially, surface modification of the scaffold material has a great influence on biocompatibility and functionality of materials. The small intestine submucosa (SIS) is an extracellular matrix isolated from the submucosal layer of porcine jejunum, which has good tissue mechanical properties and regenerative activity, and is suitable for cell adhesion, proliferation and differentiation. In recent years, SIS is widely used in different areas of tissue reconstruction, such as blood vessels, bone, cartilage, bladder and ureter, etc. This paper discusses the main methods for surface modification of SIS to improve and optimize the performance of SIS bioscaffolds, including functional group bonding, protein adsorption, mineral coating, topography and formatting modification and drug combination. In addition, the reasonable combination of these methods also offers great improvement on SIS surface modification. This article makes a shallow review of the surface modification of SIS and its application in tissue engineering.
Collapse
Affiliation(s)
- Pan Zhao
- Department of Tissue Engineering, School of Fundamental Sciences, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| | - Xiang Li
- Department of Cell Biology, School of Life Sciences, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| | - Qin Fang
- Cardiac Surgery, Liaoning First Hospital of China Medical University, No. 155 Nanjing Street, Heping District, Shenyang, Liaoning 110122, China
| | - Fanglin Wang
- Department of Tissue Engineering, School of Fundamental Sciences, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| | - Qiang Ao
- Department of Tissue Engineering, School of Fundamental Sciences, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| | - Xiaohong Wang
- Department of Tissue Engineering, School of Fundamental Sciences, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| | - Xiaohong Tian
- Department of Tissue Engineering, School of Fundamental Sciences, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| | - Hao Tong
- Department of Tissue Engineering, School of Fundamental Sciences, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| | - Shuling Bai
- Department of Tissue Engineering, School of Fundamental Sciences, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| | - Jun Fan
- Department of Tissue Engineering, School of Fundamental Sciences, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| |
Collapse
|
21
|
Cao G, Wang C, Fan Y, Li X. Biomimetic SIS-based biocomposites with improved biodegradability, antibacterial activity and angiogenesis for abdominal wall repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110538. [PMID: 32228945 DOI: 10.1016/j.msec.2019.110538] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 11/19/2022]
Abstract
Small intestinal submucosa (SIS) is a widely concerned acellular material for reconstructing tissue defects, but during the restoration of abdominal wall, it has been restricted due to the fast degradation causing poor long-term mechanical properties, the infection caused by bacteria contamination, and insufficient neovascularization post-operation. In this study, we developed a biomimetic SIS-based biocomposite (CS/ES-SIS) for abdominal wall repair, in which chitosan (CS) and elastin (ES) electrospun nanofibers were used to improve the biodegradability, antibacterial activity, and angiogenesis. The CS/ES-SIS composites were examined through a series of testing experiments, especially in vitro degradation was assessed by a constant deformation loading device and the micromechanical properties during enzymatic degradation under biomechanical environment were measured by nanoindentation. In vitro antibacterial test and cytocompatibility, and in vivo biocompatibility, neovascularisation and tissue regeneration were also investigated. The main research results as follows: (1) After 7 days enzymatic degradation under biomechanical environment, the degradation rate of CS/ES-SIS composites was slower than that of SIS by about 24.5%. Moreover, the CS/ES-SIS composites could better maintain the stability of microstructure and micromechanical properties compared with SIS. (2) The antibacterial rates of CS/ES-SIS composites against E. coli and S. aureus were respectively 98.87% and 98.26% while the SIS demonstrated no obvious antibacterial capacity. (3) The CS/ES-SIS composites supported the viability and proliferation of fibroblast cell L929. In vivo studies showed that the CS/ES-SIS composites could promote tissue regeneration upon implantation without serious inflammatory reaction. Additionally, the vascular number in the CS/ES-SIS composites was as 1.69 times as that in the SIS at 4 weeks. Collectively, all the findings suggested that the newly developed CS/ES-SIS composites might be promising and attractive candidates for applications of abdominal wall repair.
Collapse
Affiliation(s)
- Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China; Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
22
|
Zhang Y, Zhou L, Tang L, Qin T, Ning L. [A rapid histological preparation method for observation of morphology and composition distribution of tendon collagen fascicle and endotendinium]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:1169-1173. [PMID: 31512461 PMCID: PMC8355847 DOI: 10.7507/1002-1892.201903101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/15/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore a rapid histological preparation method to observe morphology and composition distribution of tendon collagen fascicle and endotendinum. METHODS Taking porcine superflexor tendon of foot as an example, tendons were sliced into sections with 6 μm by frozen section technology, after which general observation of the section integrity was carried out. After fixed with 10% neutral buffered formalin and performed with HE staining, the tissue integrity and ice crystal formation were observed under microscope. Sections were then divided into 5 groups by different methods of dyeing. Group A: Priodic acid-Shiff (PAS) staining; group B: Masson staining; group C: reticular fibers staining; group D: immunohistochemical and immunofluorescent staining of type Ⅲ collagen; group E: the sections were baked at 65℃ for 10 minutes and stained with Masson. The composition distribution of tendon collagen fascicle and endotendinum in different groups were observed. RESULTS From general observation, the frozen section of tendon tissue was complete and continuous. Although the tissue integrity in the tendon sections could be seen and no ice crystal was formed, the composition distribution could not be identified by HE staining. The entire tendons in groups A, B, and C were dyed, and the composition distribution of collagen fascicle and endotendinum could not be identified. The endotendinum in group D was stained weakly positive for type Ⅲ collagen alone, and the two components were differentiated dyed but the contrast was not obvious. In group E, the collagen fascicle and endotendinium were differentiated dyed and the two components in tendon tissue were clearly visible. CONCLUSION The morphology and the composition distribution of tendon collagen fascicle and endotendinum can be characterized rapidly and accurately, using a combination of baking at 65℃ for 10 minutes and Masson staining after porcine superflexor tendons were sliced by frozen section technology.
Collapse
Affiliation(s)
- Yi Zhang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Li Zhou
- Research Core Facility of West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Linqiao Tang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Tingwu Qin
- Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Liangju Ning
- Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
23
|
Cao G, Huang Y, Li K, Fan Y, Xie H, Li X. Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair. J Mater Chem B 2019; 7:5038-5055. [PMID: 31432871 DOI: 10.1039/c9tb00530g] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Over the past few decades, small intestinal submucosa (SIS), a naturally occurring decellularized extracellular matrix (ECM), has attracted much attention in tissue repair because it can provide plentiful bioactive factors and a biomimetic three-dimensional microenvironment to induce desired cellular functions. In this article, the state-of-the-art research studies on SIS are reviewed, which are mainly centered on three aspects: (1) main superiority such as remarkable bioactivity, low immunogenicity, satisfactory resorbability and promising recellularization; (2) current efforts to overcome its limitations mainly focusing on reducing the naturally occurring heterogeneity, controlling the degradation rate and improving the mechanical properties; (3) great potential in solving the bottleneck problems encountered in repairing various tissues with particular emphasis on cardiovascular, urogenital, abdominal wall, skin, musculotendinous, gastrointestinal, vaginal, and bone tissues. In addition, future research trends are proposed in the conclusion and perspectives section.
Collapse
Affiliation(s)
- Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Kun Li
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
24
|
Guo J, He S, Tu Y, Zhang Y, Wang Z, Wu S, Huang F, He W, Li X, Xie H. A Stable Large Animal Model for Dural Defect Repair with Biomaterials and Regenerative Medicine. Tissue Eng Part C Methods 2019; 25:315-323. [PMID: 30919756 DOI: 10.1089/ten.tec.2019.0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Using biomaterials and regenerative medicine to repair tissue defects has been a very hot research field, during which the development of stable large animal models with appropriate biotechnology is crucial. Recently, more and more researchers are paying attention to dural defect repair. However, the lack of widely recognized stable large animal models has seriously affected the related further research. In this study, a stable large animal dural defect model is developed exactly for the first time. Therefore, the article would attract considerable attention and be highly cited after publication.
Collapse
Affiliation(s)
- Jinhai Guo
- 1 Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
- 2 Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- 3 Department of Orthopedics, The First People's Hospital of Jintang County (The Jintang Hospital of West China Hospital, Sichuan University), Chengdu, Sichuan, China
| | - Shukun He
- 1 Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
- 2 Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunhu Tu
- 4 Department of Aesthetic Plastic Surgery, BRAVOU Aesthetic Plastic Hospital, Chengdu, Sichuan, China
| | - Yi Zhang
- 1 Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Zhule Wang
- 1 Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
- 2 Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shizhou Wu
- 1 Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
- 2 Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fuguo Huang
- 2 Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei He
- 5 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- 6 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xiaoming Li
- 5 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- 6 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Huiqi Xie
- 1 Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Alekseev DE, Alekseev ED, Svistov DV. [Comparative analysis of the efficiency of dura mater defect repair in cerebral surgery]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2018; 82:48-54. [PMID: 30412156 DOI: 10.17116/neiro20188205148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The need in replacement of a dura mater (DM) defect occurs in more than 40% of cerebral interventions. Various artificial DM substitutes facilitate solving this problem; however, their efficacy compared to that of patient autogenous tissues has been poorly understood. AIM We aimed to study the efficacy of various substitutes in repair of dura mater defects. MATERIAL AND METHODS The study included patients with various intracranial pathologies who were operated on at the Neurosurgery Clinic of the Military Medical Academy in the period between 2010 and 2017, and who underwent repair of the DM during surgery. In surgery for the supratentorial structures, patient autogenous tissues, grafted non-resorbable materials, or applicable collagen matrices were used as substitutes. Depending on the type of substitute material, patients were divided into groups to assess the efficacy of DM closure by comparing the rate of postoperative liquorrhea. In surgery for the posterior cranial fossa (PCF), applicable dural substitutes were not used; in this cohort, the efficacy of autogenous tissues and synthetic materials was compared. RESULTS In 232 patients, the total rate of liquorrhea was 23.7%. In supratentorial surgery (175 cases), the use of autogenous tissues (n=73), synthetic materials (n=42), and collagen matrices (n=60) was associated with CSF exfusion in 13 (17.8%), 13 (31.0%) and 16 (26.7%) cases, respectively; in statistical analysis, these results were comparable (p>0.05). In PCF surgery (57 cases), the use of autogenous tissues (n=34) significantly more effective (p=0.021) prevented liquorrhea compared to synthetic materials (n=23): complications occurred in 4 (11.8%) and 9 (39.1%) cases, respectively. CONCLUSION If a DM defect is located supratentorially, the choice of a dural substitute affects the rate of CSF exfusion and related complications. The use of autogenous tissues in PCF surgery statistically significantly reduces the rate of liquorrhea compared to that of synthetic materials.
Collapse
Affiliation(s)
- D E Alekseev
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - E D Alekseev
- Kirov Military Medical Academy, St. Petersburg, Russia
| | - D V Svistov
- Kirov Military Medical Academy, St. Petersburg, Russia
| |
Collapse
|
26
|
Treatment of calvarial defects by resorbable and non-resorbable sonic activated polymer pins and mouldable titanium mesh in two dogs: a case report. BMC Vet Res 2018; 14:199. [PMID: 29929513 PMCID: PMC6013898 DOI: 10.1186/s12917-018-1506-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 05/29/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND To date, calvarial defects in dogs have traditionally been addressed with different types of implants including bone allograft, polymethylmethacrylate and titanium mesh secured with conventional metallic fixation methods. This report describes the use of an absorbable and non absorbable novel polymer fixation method, Bonewelding® technology, in combination with titanium mesh for the repair of calvarial defects in two dogs. The clinical outcomes and comparative complication using resorbable and non-resorbable thermoplastic pins were compared. CASE PRESENTATION This report of two cases documents the repair of a traumatic calvarial fracture in an adult male Greyhound and a cranioplasty following frontal bone tumor resection in an adult female Cavalier King Charles Spaniel with the use of a commercially available titanium mesh secured with an innovative thermoplastic polymer screw system (Bonewelding®). The treatment combination aimed to restore cranial structure, sinus integrity and cosmetic appearance. A mouldable titanium mesh was cut to fit the bone defect of the frontal bone and secured with either resorbable or non-resorbable polymer pins using Bonewelding® technology. Gentamycin-impregnated collagen sponge was used intraoperatively to assist with sealing of the frontal sinuses. Calvarial fracture and post-operative implant positioning were advised using computed tomography. A satisfactory restoration of skull integrity and cosmetic result was achieved, and long term clinical outcome was deemed clinically adequate with good patient quality of life. Postoperative complications including rostral mesh uplift with minor associated clinical signs were encountered when resorbable pins were used. No postoperative complications were experienced in non-resorbable pins at 7 months follow-up, by contrast mesh uplift was noted 3 weeks post-procedure in the case treated using absorbable pins. CONCLUSIONS The report demonstrates the innovative use of sonic-activated polymer pins (Bonewelding® technology) alongside titanium mesh is a suitable alternative technique for skull defect repair in dogs. The use of Bonewelding® may offer advantages in reduction of surgical time. Further, ultrasonic pin application may be less invasive than alternative metallic fixation and potentially reduces bone trauma. Polymer systems may offer enhanced mesh-bone integration when compared to traditional metallic implants. The use of polymer pins demonstrates initial potential as a fixation method in cranioplasty. Initial findings in a single case comparison indicate a possible advantage in the use of non-absorbable over the absorbable systems to circumvent complications associated with variable polymer degradation, further long term studies with higher patient numbers are required before reliable conclusions can be made.
Collapse
|
27
|
A novel fish collagen scaffold as dural substitute. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:346-351. [DOI: 10.1016/j.msec.2017.05.102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 11/18/2022]
|