1
|
El-Sayed MM, Shash A, El-Danaf EA, Abd-Rabou M, ElSherbiny MG. Fabrication of biocompatible Mg-based nano composites by using friction stir alloying. CERAMICS INTERNATIONAL 2023; 49:23476-23490. [DOI: 10.1016/j.ceramint.2023.04.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
2
|
Sharifi S, Ebrahimian-Hosseinabadi M, Dini G, Toghyani S. Magnesium-zinc-graphene oxide nanocomposite scaffolds for bone tissue engineering. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
3
|
Zhang M, Yang N, Dehghan-Manshadi A, Venezuela J, Bermingham MJ, Dargusch MS. Fabrication and Properties of Biodegradable Akermanite-Reinforced Fe35Mn Alloys for Temporary Orthopedic Implant Applications. ACS Biomater Sci Eng 2023; 9:1261-1273. [PMID: 36808972 DOI: 10.1021/acsbiomaterials.2c01228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
As a representative of the biodegradable iron (Fe)-manganese (Mn) alloys, Fe35Mn has been investigated as a promising biodegradable metal biomaterial for orthopedic applications. However, its slow degradation rate, though better than pure Fe, and poor bioactivity are concerns that retard its clinical applications. Akermanite (Ca2MgSi2O7, Ake) is a silicate-based bioceramic, showing desirable degradability and bioactivity for bone repair. In the present work, Fe35Mn/Ake composites were prepared via a powder metallurgy route. The effect of different contents of Ake (0, 10, 30, 50 vol %) on the microstructure, mechanical properties, degradation, and biocompatibility of the composites was investigated. The ceramic phases were found to be evenly distributed in the metal matrix. The Ake reacted with Fe35Mn and generated CaFeSiO4 during sintering. The addition of Ake increased the relative density of pure Fe35Mn from ∼90 to ∼94-97%. The compressive yield strength (CYS) and elastic modulus (Ec) increased with increasing Ake, with Fe35Mn/50Ake exhibiting the highest CYS of ∼403 MPa and Ec of ∼18 GPa. However, the ductility decreased at higher Ake concentrations (30 and 50%). Microhardness also showed an increasing trend with the addition of Ake. Electrochemical measurements indicated that higher concentrations of Ake (30 and 50%) could potentially increase the corrosion rate of Fe35Mn from ∼0.25 to ∼0.39 mm/year. However, all of the compositions tested did not show measurable weight loss after immersion in simulated body fluid (SBF) for 4 weeks, attributed to the use of prealloyed raw material, high sintered density of the fabricated composites, and the formation of a dense Ca-, P-, and O-rich layer on the surface. Human osteoblasts on Fe35Mn/Ake composites showed increasing viability with increasing Ake content, indicating improved in vitro biocompatibility. These preliminary results suggest that Fe35Mn/Ake can be a potential material for biodegradable bone implant applications, particularly Fe35Mn/30Ake, if the slow corrosion of the composite can be addressed.
Collapse
Affiliation(s)
- Meili Zhang
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nan Yang
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ali Dehghan-Manshadi
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jeffrey Venezuela
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael J Bermingham
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Matthew S Dargusch
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Thakur B, Barve S, Pesode P. Investigation on mechanical properties of AZ31B magnesium alloy manufactured by stir casting process. J Mech Behav Biomed Mater 2023; 138:105641. [PMID: 36565692 DOI: 10.1016/j.jmbbm.2022.105641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
- Nanocomposites of AZ31B with varying compositions of nano-hydroxyapatite and nano alumina were cast by the stir casting process. The primary goal of this research is to investigate and assess if it is feasible to fabricate magnesium metal matrix nano-composites (MMNCs) utilizing the stir casting process for biomedical applications. In this study AZ31B used as matrix and nano alumina (Al2O3) and nano hydroxyapatite (nHA) as a reinforcement. Due to its low weight as a structural metal and excellent strength-to-weight ratio, magnesium is commonly employed in engineering designs in addition to the development of composite materials. Mg alloys are widely used in biomedical due to their lower density. The Brinell hardness test was conducted to examine materials made by casting and forging processes that have a structure which is too coarse or rough for another test. It was observed that AZ31B-5nHa among the others has the highest hardness number. Compression tests were conducted to check the behavior of the MMNC under an applied load. AZ31B-0.5(Al2O3)-0.3nHa among the others has the highest compressive strength. It was observed that adding nHA reinforcement in AZ31B affects the microstructure and mechanical characteristics of a nanocomposite made of magnesium metal matrix, including compressive strength, hardness, corrosion resistance and biocompatibility. This study aims to investigate the effects of reinforcement on a magnesium metal matrix nanocomposite's microstructure and mechanical properties.
Collapse
Affiliation(s)
- Bhaskar Thakur
- School of Mechanical Engineering, Dr. Vishwanath Karad MIT-World Peace University, Pune, 411038, MS, India
| | - Shivprakash Barve
- School of Mechanical Engineering, Dr. Vishwanath Karad MIT-World Peace University, Pune, 411038, MS, India
| | - Pralhad Pesode
- School of Mechanical Engineering, Dr. Vishwanath Karad MIT-World Peace University, Pune, 411038, MS, India.
| |
Collapse
|
5
|
Dong J, Lin P, Putra N, Tümer N, Leeflang M, Huan Z, Fratila-Apachitei L, Chang J, Zadpoor A, Zhou J. Extrusion-based additive manufacturing of Mg-Zn/bioceramic composite scaffolds. Acta Biomater 2022; 151:628-646. [DOI: 10.1016/j.actbio.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/09/2022] [Accepted: 08/01/2022] [Indexed: 11/01/2022]
|
6
|
Insights on Spark Plasma Sintering of Magnesium Composites: A Review. NANOMATERIALS 2022; 12:nano12132178. [PMID: 35808014 PMCID: PMC9268439 DOI: 10.3390/nano12132178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023]
Abstract
This review paper gives an insight into the microstructural, mechanical, biological, and corrosion resistance of spark plasma sintered magnesium (Mg) composites. Mg has a mechanical property similar to natural human bones as well as biodegradable and biocompatible properties. Furthermore, Mg is considered a potential material for structural and biomedical applications. However, its high affinity toward oxygen leads to oxidation of the material. Various researchers optimize the material composition, processing techniques, and surface modifications to overcome this issue. In this review, effort has been made to explore the role of process techniques, especially applying a typical powder metallurgy process and the sintering technique called spark plasma sintering (SPS) in the processing of Mg composites. The effect of reinforcement material on Mg composites is illustrated well. The reinforcement’s homogeneity, size, and shape affect the mechanical properties of Mg composites. The evidence shows that Mg composites exhibit better corrosion resistance, as the reinforcement act as a cathode in a Mg matrix. However, in most cases, a localized corrosion phenomenon is observed. The Mg composite’s high corrosion rate has adversely affected cell viability and promotes cytotoxicity. The reinforcement of bioactive material to the Mg matrix is a potential method to enhance the corrosion resistance and biocompatibility of the materials. However, the impact of SPS process parameters on the final quality of the Mg composite needs to be explored.
Collapse
|
7
|
Nasr Azadani M, Zahedi A, Bowoto OK, Oladapo BI. A review of current challenges and prospects of magnesium and its alloy for bone implant applications. Prog Biomater 2022; 11:1-26. [PMID: 35239157 DOI: 10.1007/s40204-022-00182-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/29/2022] [Indexed: 02/08/2023] Open
Abstract
Medical application materials must meet multiple requirements, and the designed implant must mimic the bone structure in shape and support the formation of bone tissue (osteogenesis). Magnesium (Mg) alloys, as a "smart" biodegradable material and as "the green engineering material in the twenty-first century", have become an outstanding bone implant material due to their natural degradability, smart biocompatibility, and desirable mechanical properties. Magnesium is recognised as the next generation of orthopaedic appliances and bioresorbable scaffolds. At the same time, improving the mechanical properties and corrosion resistance of magnesium alloys is an urgent challenge to promote the application of magnesium alloys. Nevertheless, the excessively quick deterioration rate generally results in premature mechanical integrity disintegration and local hydrogen build-up, resulting in restricted clinical bone restoration applicability. The condition of Mg bone implants is thoroughly examined in this study. The relevant approaches to boost the corrosion resistance, including purification, alloying treatment, surface coating, and Mg-based metal matrix composite, are comprehensively revealed. These characteristics are reviewed to assess the progress of contemporary Mg-based biocomposites and alloys for biomedical applications. The fabricating techniques for Mg bone implants also are thoroughly investigated. Notably, laser-based additive manufacturing fabricates customised forms and complicated porous structures based on its distinctive additive manufacturing conception. Because of its high laser energy density and strong controllability, it is capable of fast heating and cooling, allowing it to modify the microstructure and performance. This review paper aims to provide more insight on the present challenges and continued research on Mg bone implants, highlighting some of the most important characteristics, challenges, and strategies for improving Mg bone implants.
Collapse
Affiliation(s)
- Meysam Nasr Azadani
- School of Engineering and Sustainable Development, De Montfort University, Leicester, LE1 9BH, UK.
| | - Abolfazl Zahedi
- School of Engineering and Sustainable Development, De Montfort University, Leicester, LE1 9BH, UK
| | - Oluwole Kingsley Bowoto
- School of Engineering and Sustainable Development, De Montfort University, Leicester, LE1 9BH, UK
| | - Bankole Ibrahim Oladapo
- School of Engineering and Sustainable Development, De Montfort University, Leicester, LE1 9BH, UK
| |
Collapse
|
8
|
He M, Lu W, Yu D, Wang H, Wang S, Yuan C, Chen A. Corrosion Behavior and Biocompatibility of Na2EDTA-Induced Nacre Coatings on AZ91D Alloys Prepared via Hydrothermal Treatment. Front Chem 2022; 9:810886. [PMID: 35118051 PMCID: PMC8804281 DOI: 10.3389/fchem.2021.810886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
An effective method for controlling the corrosion rate of Mg-based implants must be urgently developed to meet the requirements of clinical applications. As a naturally occurring osteoid material, nacre offers a strategy to endow biomedical Mg alloys with excellent biocompatibility, and corrosion resistance. In this study, pearl powder and NaH2PO4 were used as precursors to deposit coatings on AZ91D alloy substrates hydrothermally based on Na2EDTA-assisted induction. Na2EDTA-induced nacre coatings were fabricated at various pH values, and its chemical composition and microstructure were analyzed via energy-dispersive X-ray, scanning electron microscopy, and X-ray diffraction spectroscopy. The corrosion-resistant performance and cytocompatibility of the samples were evaluated via electrochemical measurements and in vitro cell experiments. Results showed that the samples hydrothermally treated under faint acid conditions present excellent corrosion resistance, whereas the samples treated under slight alkaline conditions demonstrate improved biocompatibility due to high Ca and P content and large Ca/P atomic ratio. This study provides substantial evidence of the potential value of nacre coatings in expanding the biological applications of implanted biomaterials.
Collapse
|
9
|
Naciri Y, Hsini A, Ajmal Z, Bouddouch A, Bakiz B, Navío J, Albourine A, Valmalette JC, Ezahri M, Benlhachemi A. Influence of Sr-doping on structural, optical and photocatalytic properties of synthesized Ca3(PO4)2. J Colloid Interface Sci 2020; 572:269-280. [DOI: 10.1016/j.jcis.2020.03.105] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022]
|
10
|
Parande G, Manakari V, Prasadh S, Chauhan D, Rahate S, Wong R, Gupta M. Strength retention, corrosion control and biocompatibility of Mg–Zn–Si/HA nanocomposites. J Mech Behav Biomed Mater 2020; 103:103584. [DOI: 10.1016/j.jmbbm.2019.103584] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 01/16/2023]
|
11
|
Liu C, Wang J, Gao C, Wang Z, Zhou X, Tang M, Yu K, Deng Y. Enhanced osteoinductivity and corrosion resistance of dopamine/gelatin/rhBMP-2-coated β-TCP/Mg-Zn orthopedic implants: An in vitro and in vivo study. PLoS One 2020; 15:e0228247. [PMID: 31999748 PMCID: PMC6991953 DOI: 10.1371/journal.pone.0228247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/11/2020] [Indexed: 01/21/2023] Open
Abstract
Magnesium-based biomaterials are attracting increasingly more attention for orthopedic applications based on their appropriate mechanical properties, biodegradability, and favorable biocompatibility. However, the high corrosion rate of these materials remains to be addressed. In this study, porous β-Ca3(PO4)2/Mg-Zn (β-TCP/Mg-Zn) composites were fabricated via a powder metallurgy method. The β-TCP/Mg-Zn composites with 6% porosity exhibited optimal mechanical properties, and thus, they were selected for surface modification. A novel dopamine/gelatin/recombinant human bone morphogenetic protein-2 (rhBMP-2) coating with demonstrated stability was prepared to further improve the corrosion resistance of the composite and enhance early osteoinductivity. The homogeneously coated β-TCP/Mg-Zn composite showed significantly improved corrosion resistance according to electrochemical and immersion tests. In addition, extracts from the dopamine/gelatin/rhBMP-2-coated β-TCP/Mg-Zn composite not only facilitated cell proliferation but also significantly enhanced the osteogenic differentiation of Sprague-Dawley rat bone marrow-derived mesenchymal stem cells in vitro. Furthermore, in vivo experiments were performed to evaluate the biodegradation, histocompatibility, and osteoinductive potential of the coated composite. No obvious pathological changes in the vital visceral organs were observed after implantation, and radiography and hematoxylin-eosin staining showed strong promotion of new bone formation, matched composite degradation and bone regeneration rates, and complete absorption of the released hydrogen gas. Collectively, these results indicate that the dopamine/gelatin/rhBMP-2-coated β-TCP/Mg-Zn composite offers improved corrosion resistance, favorable biocompatibility, and enhanced osteoinductive potential for use in the fabrication of orthopedic implants.
Collapse
Affiliation(s)
- Congcong Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jingcheng Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, P.R. China
| | - Zhenting Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiaohua Zhou
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Mingying Tang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Kun Yu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, P.R. China
| | - Youwen Deng
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
12
|
Tang M, Yan Y, OuYang J, Yu K, Liu C, Zhou X, Wang Z, Deng Y, Shuai C. Research on corrosion behavior and biocompatibility of a porous Mg-3%Zn/5%β-Ca 3(PO 4) 2 composite scaffold for bone tissue engineering. J Appl Biomater Funct Mater 2019; 17:2280800019857064. [PMID: 31597509 DOI: 10.1177/2280800019857064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Rapid corrosion rates are a major impediment to the use of magnesium alloys in bone tissue engineering despite their good mechanical properties and biodegradability. Zinc is a promising alloy element, and it is an effective grain refiner for magnesium. β-Ca3(PO4)2 (β-TCP) is widely used for bone regeneration because of its good biocompatibility, and it also has a similar chemical and crystal structure to human bone. METHODS In this research, the magnesium alloy was reinforced by adding 3%Zn (wt.%) and 5%β-TCP (wt.%) particles in order to improve the corrosion resistance and biocompatibility. Furthermore, the biomaterial was prepared through powder metallurgy technology using NH4HCO3 as space-holding particles to construct porous Mg-3%Zn/5%β-TCP scaffolds. RESULTS The results revealed that the magnesium-zinc phase and calcium phosphate phase were uniformly distributed in the α-magnesium matrix. Mechanical and corrosion tests indicated that the scaffolds had mechanical strengths similar to that of human bone, and their corrosion resistance decreased with an increase in the porosity. The scaffolds had cytotoxicity grades of 0-1 against MG63 cells, SaoS2 cells, and HK-2 cells, which suggested that they were appropriate for cellular applications. In addition, the scaffolds demonstrated excellent biocompatibility when tested in rabbits. CONCLUSIONS These results indicate that porous Mg-3%Zn/5%β-TCP scaffolds are promising biodegradable implants for bone tissue engineering.
Collapse
Affiliation(s)
- Mingying Tang
- Emergency Department of The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Yan
- School of Materials Science and Engineering, Central South University, Changsha, China
| | - Jianan OuYang
- The Sixth People's Hospital of Shenzhen, Hua Zhong University of Science and Technology, Shenzhen, China
| | - Kun Yu
- School of Materials Science and Engineering, Central South University, Changsha, China
| | - Congcong Liu
- Emergency Department of The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohua Zhou
- Emergency Department of The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenting Wang
- Emergency Department of The Second Xiangya Hospital, Central South University, Changsha, China
| | - Youwen Deng
- Emergency Department of The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cijun Shuai
- Central South University, State Key Laboratory of High Performance Complex Manufacturing, the State Key Laboratory for Powder Metallurgy, Changsha, China
| |
Collapse
|
13
|
Bao G, Fan Q, Ge D, Sun M, Guo H, Xia D, Liu Y, Liu J, Wu S, He B, Zheng Y. In vitro and in vivo studies on magnesium alloys to evaluate the feasibility of their use in obstetrics and gynecology. Acta Biomater 2019; 97:623-636. [PMID: 31386929 DOI: 10.1016/j.actbio.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/15/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
Magnesium and its alloys were widely investigated in many body fluid microenvironments including bone, blood, bile, saliva, and urine; however, no study has been conducted in the intrauterine microenvironment. In this study, the degradation behaviors of HP-Mg, Mg-1Ca, and Mg-2Zn alloys in simulated uterine fluid (SUF) were systematically investigated, and then the biological response of four kinds of uterine cells to these materials was observed. For this purpose, the gluteal muscle of rat was used as the implantation position to study the in vivo biocompatibility as a mimic of the intrauterine device (IUD) fixation part. The 120-day immersion test indicated that the Mg-1Ca alloy had a faster degradation rate than the Mg-2Zn alloy and HP-Mg and dissolved entirely in the SUF. Indirect cytotoxicity assay showed that the extracts of HP-Mg, Mg-1Ca, and Mg-2Zn alloys have positive effects on human uterine smooth muscle cells (HUSMC), human endometrial epithelial cells (HEEC), and human endometrial stromal cells (HESC), especially for the Mg-1Ca alloy group. Furthermore, the in vivo experiment showed that HP-Mg, Mg-1Ca, and Mg-2Zn alloy implants cause a light inflammatory response in the initial 3 days, but they were surrounded mainly by connective tissue, and lymphocytes were rarely observed at 4 weeks. Based on the above facts, we believed that it is feasible for using biomedical Mg alloys in obstetrics and gynecology and proposed three kinds of medical device candidates for future R&D. Statement of Significance Magnesium alloys were widely investigated in various body microenvironments including bone, blood, bile, saliva, and urine; however, no study has been conducted in the intrauterine environment. In this work, the degradation behaviors of Mg alloys in simulated uterine fluid were systematically investigated, and then the biological response of four kinds of uterine cells to these materials was observed. For this purpose, the tibialis anterior of a rat model was used as the implantation position to study the in vivo biocompatibility. The comprehensive in vitro and in vivo testing results indicated that biomedical Mg alloys are feasible for use in obstetrics and gynecology. Further, three kinds of medical device candidates were proposed.
Collapse
|
14
|
A Potential Biodegradable Mg-Y-Ag Implant with Strengthened Antimicrobial Properties in Orthopedic Applications. METALS 2018. [DOI: 10.3390/met8110948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to design a potential biodegradable implant, which combines with fine mechanical and antimicrobial properties, Mg-4Y-1Ag (mass fraction, %) alloys were produced by permanent mold casting and then hot extrusion. The microstructure, mechanical behavior, anti-corrosion behavior, and antimicrobial properties of the experimental alloys were comprehensively investigated. The results showed that α-Mg, Mg24Y5 (ε), and AgMg4 phases existed in the Mg-4Y-1Ag. The grain size of Mg-4Y-1Ag was greatly refined through hot-extrusion. The as-extruded Mg-4Y-1Ag alloy exhibit an ultimate tensile strength of 202.7 MPa with a good elongation of 33.6%. The compressive strength of as-extruded Mg-4Y-1Ag was 385 MPa, and the strength remained 183 MPa after immersing in PBS solution for four weeks. The as-extruded alloy had better corrosion resistance than as-cast alloy and as-extruded pure magnesium in PBS solution, for the reason of refined grain and the formation of Y2O3 film on the surface of Mg-4Y-1Ag alloy. Furthermore, the as-extruded Mg-4Y-1Ag alloys were superior to Ti6Al4V (TC4) and as-extruded pure magnesium in antimicrobial property for released Ag+ ion. Obvious inhibition halo was observed in the LB agar plate adding with as-extruded Mg-4Y-1Ag alloys. Also as-extruded Mg-4Y-1Ag alloys showed no cytotoxicity by co-culturing with L929 using the MTT method.
Collapse
|
15
|
Abstract
Disorders related to the bone health are becoming a significant concern due to subsequent rise in ageing human population. It is estimated that more than two million bone-surgeries are performed worldwide with an annual cost of $2.5 billion. In order to replace damaged bone-tissues and restore their function, biomaterials consisting of stainless steels, cobalt-chromium and titanium alloys are implanted. However, these permanent (non-biodegradable) implants often lead to stress-shielding effects and ions release as they interact with the cells and fluids in the body. It is required to overcome these issues by improving the quality of implant materials and increasing their service life. Recently, research in biodegradable materials, consisting of magnesium alloys in particular, has received global attention owning to their biocompatibility and closer mechanical properties to the natural bone. However, due to their rapid corrosion rate in the body fluids, clinical applications of Mg-alloys as viable bone-implants have been restricted. A number of Mg-alloys have been tested since (both in vivo and in vitro) to optimize their biodegradation rare and corrosion properties. The present review summarizes the most recent developments in Mg-alloys designed with biodegradation tailored to the bone-cells growth and highlights the most successful ways to optimize their surface properties for optimum cell/material interaction.
Collapse
|
16
|
Magnesium-β-Tricalcium Phosphate Composites as a Potential Orthopedic Implant: A Mechanical/Damping/Immersion Perspective. METALS 2018. [DOI: 10.3390/met8050343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Effect of Homogenization on Microstructure Characteristics, Corrosion and Biocompatibility of Mg-Zn-Mn-xCa Alloys. MATERIALS 2018; 11:ma11020227. [PMID: 29389894 PMCID: PMC5848924 DOI: 10.3390/ma11020227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 12/14/2022]
Abstract
The corrosion behaviors of Mg-2Zn-0.2Mn-xCa (denoted as MZM-xCa alloys) in homogenization state have been investigated by immersion test and electrochemical techniques in a simulated physiological condition. The microstructure features were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA), and the corrosion mechanism was illustrated using atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and confocal laser scanning microscopy (CLSM). The electrochemical and immersion test verify the MZM-0.38% Ca owns the best corrosion performance with the corrosion rate of 6.27 mm/year. Furthermore, the film layer of MZM-0.38% Ca is more compact and denser than that of others. This improvement could be associated with the combined effects of the suitable content of Zn/Ca dissolving into the α-Mg matrix and the modification of Ca-containing compounds by heat-treatment. However, the morphologies were transformed from uniform corrosion to localized pitting corrosion with Ca further addition. It could be explained that the excessive Ca addition can strengthen the nucleation driving force for the second phase formation, and the large volumes fraction of micro-galvanic present interface sites accelerate the nucleation driving force for corrosion propagation. In addition, in vitro biocompatibility tests also show the MZM-0.38% Ca was safe to bone mesenchymal stem cells (BMSCs) and was promising to be utilized as implant materials.
Collapse
|
18
|
Deng Y, Yang Y, Gao C, Feng P, Guo W, He C, Chen J, Shuai C. Mechanism for corrosion protection of β-TCP reinforced ZK60 via laser rapid solidification. Int J Bioprint 2017; 4:124. [PMID: 33102908 PMCID: PMC7581996 DOI: 10.18063/ijb.v4i1.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/06/2017] [Indexed: 11/29/2022] Open
Abstract
It remains the primary issue to enhance the corrosion resistance of Mg alloys for their clinical applications. In this study, β-tricalcium phosphate (β-TCP) was composited with Mg-6Zn-1Zr (ZK60) using laser rapid solidification to improve the degradation behavior. Results revealed rapid solidification effectively restrained the aggregation of β-TCP, which thus homogenously distributed along grain boundaries of α-Mg. Significantly, the uniformly distributed β-TCP in the matrix promoted the formation of apatite layer on the surface, which contributed to the formation of a compact corrosion product layer, hence retarding the further degradation. Furthermore, ZK60/8β-TCP (wt. %) composite showed improved mechanical strength, as well as improved cytocompatibility. It was suggested that laser rapidly solidified ZK60/8β-TCP composite might be a potential materials for tissue engineering.
Collapse
Affiliation(s)
- Youwen Deng
- Department of Emergency Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Youwen Yang
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, China
| | - Wang Guo
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, China
| | - Chongxian He
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, China
| | - Jian Chen
- Department of Emergency Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, China.,Jiangxi University of Science and Technology, Ganzhou, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|