1
|
Ragumoorthy C, Nataraj N, Chen TW, Chen SM, Kiruthiga G, Lou BS, Al-Mohaimeed AM, Ali MA, Elshikh MS. Advanced detection of the protozoacide dimetridazole in complex fluids using cassiterite nanoparticles incorporated carbon black composite. Food Chem 2025; 470:142660. [PMID: 39742594 DOI: 10.1016/j.foodchem.2024.142660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/03/2025]
Abstract
Dimetridazole (DMT), a nitroimidazole used in veterinary medicine for treating protozoan infections, poses significant carcinogenic and mutagenic risks, necessitating precise monitoring to ensure food safety. We report the development of an advanced electrochemical sensor based on a glassy carbon electrode (GCE) modified with a nanostructured cassiterite (SnO2)/carbon black (CB) composite, synthesized via hydrothermal and sonochemical techniques. The sensor benefits from SnO2's high electrical conductivity, chemical stability, and large bandgap, while CB enhances its performance with superior conductivity. Characterization through various techniques confirmed the composite's nanostructured morphology with an average particle size of 18 nm. Electrochemical analyses revealed a limit of detection (LOD) of 0.004 μM, a limit of quantification (LOQ) of 0.011 μM, and a wide linear range from 0.29 to 204.6 μM. The sensor demonstrated excellent repeatability and reproducibility, with a relative standard deviation (RSD) of 1.6 % and 2.3 %. It also exhibited notable storage stability, retaining 95.8 % of its initial response after 12 days. Real sample analyses showed impressive recovery rates of 97.5 % to 106.4 % for DMT in complex fluids such as food products, biological fluids, synthetic fluids, and environmental samples.
Collapse
Affiliation(s)
- Chandini Ragumoorthy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - G Kiruthiga
- Department of Physics, Avinashilingam Institute for Home Science and Higher Education for Women, Tamil Nadu, Coimbatore 641 043, India
| | - Bih-Show Lou
- Chemistry Division, Center for General Education, Chang Gung University, Taoyuan 333, Taiwan; Department of Orthopaedic Surgery, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 236, Taiwan.
| | - Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Qu N, Song K, Ji Y, Liu M, Chen L, Lee RJ, Teng L. Albumin Nanoparticle-Based Drug Delivery Systems. Int J Nanomedicine 2024; 19:6945-6980. [PMID: 39005962 PMCID: PMC11246635 DOI: 10.2147/ijn.s467876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
Nanoparticle-based systems are extensively investigated for drug delivery. Among others, with superior biocompatibility and enhanced targeting capacity, albumin appears to be a promising carrier for drug delivery. Albumin nanoparticles are highly favored in many disease therapies, as they have the proper chemical groups for modification, cell-binding sites for cell adhesion, and affinity to protein drugs for nanocomplex generation. Herein, this review summarizes the recent fabrication techniques, modification strategies, and application of albumin nanoparticles. We first discuss various albumin nanoparticle fabrication methods, from both pros and cons. Then, we provide a comprehensive introduction to the modification section, including organic albumin nanoparticles, metal albumin nanoparticles, inorganic albumin nanoparticles, and albumin nanoparticle-based hybrids. We finally bring further perspectives on albumin nanoparticles used for various critical diseases.
Collapse
Affiliation(s)
- Na Qu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Ke Song
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Yating Ji
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Mingxia Liu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Lijiang Chen
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Yantai, 264000, People's Republic of China
| |
Collapse
|
3
|
Duan S, Chen H, Xu A, He Y, Li M, Zhang R, Zhang R, Bai H. A simple polyarginine membrane electrochemical sensor for the determination of MDMA and MDA. Anal Biochem 2024; 688:115478. [PMID: 38309680 DOI: 10.1016/j.ab.2024.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/06/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
In this study, a simple electrochemical sensor based on l-arginine membrane (P-L-arg/GCE) was developed for rapid and sensitive detection of MDMA and MDA. A polyarginine membrane was obtained through one-step direct electropolymerization, which provides more reaction sites for the analyte and improves the sensitivity of the sensor. Following the optimized selection parameters, the MDMA detection range was established at 1.0 × 10-7∼3.5 × 10-5 mol L-1, with a detection limit of 3.3 × 10-8 mol L-1. Similarly, the detection range for MDA was established at 1.0 × 10-7∼5.3 × 10-5 mol L-1 with a detection limit of 3.3 × 10-8 mol L-1. Additionally, the potential oxidation mechanism of MDMA and MDA during the REDOX process was analyzed by cyclic voltammetry. Furthermore, the proposed sensor exhibited superior selectivity, excellent reproducibility, and satisfactory stability. The proposed sensors can be used for reliable monitoring of MDMA or MDA in human urine and hair samples, respectively, and it has acceptable analytical reliability and enormous potential for practical applications.
Collapse
Affiliation(s)
- Shimeng Duan
- School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Haiou Chen
- School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Anyun Xu
- School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Ying He
- School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Meng Li
- School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Ru Zhang
- School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Ruilin Zhang
- Institut of Forensic Medical, Kunming Medical University, Kunming, 650050, China
| | - Huiping Bai
- School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
4
|
Behera K, Mutharani B, Chang YH, Kumari M, Chiu FC. Protein-Aided Synthesis of Copper-Integrated Polyaniline Nanocomposite Encapsulated with Reduced Graphene Oxide for Highly Sensitive Electrochemical Detection of Dimetridazole in Real Samples. Polymers (Basel) 2024; 16:162. [PMID: 38201827 PMCID: PMC10781186 DOI: 10.3390/polym16010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Dimetridazole (DMZ) is a derivative of nitroimidazole and is a veterinary drug used as an antibiotic to treat bacterial or protozoal infections in poultry. The residues of DMZ cause harmful side effects in human beings. Thus, we have constructed a superior electrocatalyst for DMZ detection. A copper (Cu)-integrated poly(aniline) (PANI) electrocatalyst (PANI-Cu@BSA) was prepared by using a one-step method of biomimetic mineralization and polymerization using bovine serum albumin (BSA) as a stabilizer. Then, the synthesized PANI-Cu@BSA was encapsulated with reduced graphene oxide (rGO) using an ultrasonication method. The PANI-Cu@BSA/rGO nanocomposite had superior water dispersibility, high electrical conductivity, and nanoscale particles. Moreover, a PANI-Cu@BSA/rGO nanocomposite-modified, screen-printed carbon electrode was used for the sensitive electrochemical detection of DMZ. In phosphate buffer solution, the PANI-Cu@BSA/rGO/SPCE displayed a current intensity greater than PANI-Cu@BSA/SPCE, rGO/SPCE, and bare SPCE. This is because PANI-Cu@BSA combined with rGO increases fast electron transfer between the electrode and analyte, and this synergy results in analyte-electrode junctions with extraordinary conductivity and active surface areas. PANI-Cu@BSA/rGO/SPCE had a low detection limit, a high sensitivity, and a linear range of 1.78 nM, 5.96 μA μM-1 cm-2, and 0.79 to 2057 μM, respectively. The selective examination of DMZ was achieved with interfering molecules, and the PANI-Cu@BSA/rGO/SPCE showed excellent selectivity, stability, repeatability, and practicability.
Collapse
Affiliation(s)
- Kartik Behera
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan; (K.B.); (B.M.)
| | - Bhuvanenthiran Mutharani
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan; (K.B.); (B.M.)
| | - Yen-Hsiang Chang
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Monika Kumari
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan;
| | - Fang-Chyou Chiu
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan; (K.B.); (B.M.)
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| |
Collapse
|
5
|
Lai T, Shu H, Yao B, Lai S, Chen T, Xiao X, Wang Y. A Highly Selective Electrochemical Sensor Based on Molecularly Imprinted Copolymer Functionalized with Arginine for the Detection of Chloramphenicol in Honey. BIOSENSORS 2023; 13:bios13050505. [PMID: 37232866 DOI: 10.3390/bios13050505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Developing an efficient method for chloramphenicol (CAP) detection is of great significance for food safety. Arginine (Arg) was selected as a functional monomer. Benefiting from its excellent electrochemical performance, which is different from traditional functional monomers, it can be combined with CAP to form a highly selective molecularly imprinted polymer (MIP) material. It overcomes the shortcoming of poor MIP sensitivity faced by traditional functional monomers, and achieves high sensitivity detection without compounding other nanomaterials, greatly reducing the preparation difficulty and cost investment of the sensor. The possible binding sites between CAP and Arg molecules were calculated by molecular electrostatic potential (MEP). A low-cost, non-modified MIP electrochemical sensor was developed for the high-performance detection of CAP. The prepared sensor has a wide linear range from 1 × 10-12 mol L-1 to 5 × 10-4 mol L-1, achieves a very low concentration CAP detection, and the detection limit is 1.36 × 10-13 mol L-1. It also exhibits excellent selectivity, anti-interference, repeatability, and reproducibility. The detection of CAP in actual honey samples was achieved, which has important practical value in food safety.
Collapse
Affiliation(s)
- Tingrun Lai
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
| | - Hui Shu
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
| | - Bo Yao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
| | - Siying Lai
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
| | - Ting Chen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuechun Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
| | - Yude Wang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, Yunnan University, Kunming 650504, China
| |
Collapse
|
6
|
Ben Attig J, Latrous L, Galvan I, Zougagh M, Ríos Á. Rapid determination of malondialdehyde in serum samples using a porphyrin-functionalized magnetic graphene oxide electrochemical sensor. Anal Bioanal Chem 2023; 415:2071-2080. [PMID: 36808275 PMCID: PMC10079708 DOI: 10.1007/s00216-023-04594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
An electrochemical sensor based on a screen-printed carbon electrode (SPCE) modified with porphyrin-functionalized magnetic graphene oxide (TCPP-MGO) was developed for the sensitive and selective determination of malondialdehyde (MDA), an important biomarker of oxidative damage, in serum samples. The coupling of TCPP with MGO allows the exploitation of the magnetic properties of the material for separation, preconcentration, and manipulation of analyte, which is selectively captured onto the TCPP-MGO surface. The electron-transfer capability in the SPCE was improved through derivatization of MDA with diaminonaphthalene (DAN) (MDA-DAN). TCPP-MGO-SPCEs have been employed to monitor the differential pulse voltammetry (DVP) levels of the whole material, which is related to the amount of the captured analyte. Under optimum conditions, the nanocomposite-based sensing system has proved to be suitable for the monitoring of MDA, presenting a wide linear range (0.01-100 µM) with a correlation coefficient of 0.9996. The practical limit of quantification (P-LOQ) of the analyte was 0.010 µM, and the relative standard deviation (RSD) was 6.87% for 30 µM MDA concentration. Finally, the developed electrochemical sensor has demonstrated to be adequate for bioanalytical applications, presenting an excellent analytical performance for the routine monitoring of MDA in serum samples.
Collapse
Affiliation(s)
- Jihène Ben Attig
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario, 13071, Ciudad Real, Spain.,Regional Institute for Applied Scientific Research, IRICA, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain.,Laboratoire de Chimie Analytique Et Electrochimie, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, University Campus of El Manar II, 2092, Tunis, Tunisia
| | - Latifa Latrous
- Laboratoire de Chimie Minérale Appliquée, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, University Campus of El Manar II, 2092, Tunis, Tunisia
| | - Ismael Galvan
- Department of Evolutionary Ecology, National Museum of Natural Sciences, CSIC, 28006, Madrid, Spain
| | - Mohammed Zougagh
- Regional Institute for Applied Scientific Research, IRICA, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain.,Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, 02071, Albacete, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario, 13071, Ciudad Real, Spain. .,Regional Institute for Applied Scientific Research, IRICA, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain.
| |
Collapse
|
7
|
Ahmadi S, Hasanzadeh M, Ghasempour Z. Sub-micro electrochemical recognition of carmoisine, sunset yellow, and tartrazine in fruit juices using P(β-CD/Arg)/CysA-AuNPs/AuE. Food Chem 2023; 402:134501. [DOI: 10.1016/j.foodchem.2022.134501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/04/2022]
|
8
|
Rahman M, Niu J, Cui X, Zhou C, Tang N, Jin H, Cui D. Electrochemical Biosensor Based on l-Arginine and rGO-AuNSs Deposited on the Electrode Combined with DNA Probes for Ultrasensitive Detection of the Gastric Cancer-Related PIK3CA Gene of ctDNA. ACS APPLIED BIO MATERIALS 2022; 5:5094-5103. [PMID: 36315410 DOI: 10.1021/acsabm.2c00393] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene biomarkers of circulating tumor DNA (ctDNA) in liquid biopsies have been explored for use in the precise diagnosis of tumors. There is a great clinical need to realize the ultrasensitive detection of gene biomarkers in ctDNA. Here we reported that an ultrasensitive label-free biosensor was developed for the detection of the gastric cancer-related PIK3CA gene of ctDNA in peripheral blood. The polymeric l-arginine and graphene oxide-wrapped gold nanostars (rGO-AuNSs) were prepared and deposited on the glass electrode. The capturing DNA probes for the PIK3CA gene were prepared and successfully immobilized on the rGO-AuNS-modified electrode surface via π-π interaction among the rGO-AuNS composites and DNA probes. The resultant electrochemical sensor was effectively applied to detect the PIK3CA gene of ctDNA via the hybridization between the capturing DNA probe and ctDNA, the result of which showed that the biosensor exhibited desirable sensitivity, stability, and a wider dynamic response in a ctDNA concentration range from 1.0 × 10-20 to 1.0 × 10-10 M (R2 = 0.997). Moreover, the low limit of detection of 1.0 × 10-20 M (S/N = 3) indicates the biosensor owns satisfactory detection sensitivity. Fourteen PIK3CA genes and two PIK3CA gene mutations were detected in 60 clinical ctDNA samples of gastric cancer patients by using the developed biosensor. In conclusion, this ultrasensitive label-free electrochemical biosensor possesses a significant application prospect in the detection of the PIK3CA gene in ctDNA and in early screening for gastric cancer in the near future.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China.,Department of General Educational Development, Faculty of Science and Information Technology (FSIT), Daffodil International University, Daffodil Smart City, Ashulia, Savar, Dhaka1341, Bangladesh
| | - Jiaqi Niu
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China
| | - Xinyuan Cui
- Medical Imaging Department of Tong Ji Hospital Affiliated to Tongji University, Shanghai200065, PR China
| | - Cheng Zhou
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China.,National Engineering Center for Nanotechnology, Shanghai200241, PR China
| | - Ning Tang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China
| | - Han Jin
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China.,National Engineering Center for Nanotechnology, Shanghai200241, PR China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China.,National Engineering Center for Nanotechnology, Shanghai200241, PR China
| |
Collapse
|
9
|
Ebrahimi P, Gholivand MB. Introduction of a new dichlorophen electrochemical sensor relying on the modified glassy carbon electrode (GCE) with carboxyl-functionalized graphene oxide/poly (L-arginine). J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Nadar PM, Merrill MA, Austin K, Strakowski SM, Halpern JM. The emergence of psychoanalytical electrochemistry: the translation of MDD biomarker discovery to diagnosis with electrochemical sensing. Transl Psychiatry 2022; 12:372. [PMID: 36075922 PMCID: PMC9452859 DOI: 10.1038/s41398-022-02138-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 01/30/2023] Open
Abstract
The disease burden and healthcare costs of psychiatric diseases along with the pursuit to understand their underlying biochemical mechanisms have led to psychiatric biomarker investigations. Current advances in evaluating candidate biomarkers for psychiatric diseases, such as major depressive disorder (MDD), focus on determining a specific biomarker signature or profile. The origins of candidate biomarkers are heterogenous, ranging from genomics, proteomics, and metabolomics, while incorporating associations with clinical characterization. Prior to clinical use, candidate biomarkers must be validated by large multi-site clinical studies, which can be used to determine the ideal MDD biomarker signature. Therefore, identifying valid biomarkers has been challenging, suggesting the need for alternative approaches. Following validation studies, new technology must be employed to transition from biomarker discovery to diagnostic biomolecular profiling. Current technologies used in discovery and validation, such as mass spectroscopy, are currently limited to clinical research due to the cost or complexity of equipment, sample preparation, or measurement analysis. Thus, other technologies such as electrochemical detection must be considered for point-of-care (POC) testing with the needed characteristics for physicians' offices. This review evaluates the advantages of using electrochemical sensing as a primary diagnostic platform due to its rapidity, accuracy, low cost, biomolecular detection diversity, multiplexed capacity, and instrument flexibility. We evaluate the capabilities of electrochemical methods in evaluating current candidate MDD biomarkers, individually and through multiplexed sensing, for promising applications in detecting MDD biosignatures in the POC setting.
Collapse
Affiliation(s)
- Priyanka M Nadar
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, 03824, USA
- College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Mckenna A Merrill
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Katherine Austin
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Stephen M Strakowski
- Department of Psychiatry, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Jeffrey M Halpern
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, 03824, USA.
| |
Collapse
|
11
|
Montoro-Leal P, Zougagh M, Sánchez-Ruiz A, Ríos Á, Vereda Alonso E. Magnetic graphene molecularly imprinted polypyrrole polymer (MGO@MIPy) for electrochemical sensing of malondialdehyde in serum samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Graphene-Based Biosensors for Molecular Chronic Inflammatory Disease Biomarker Detection. BIOSENSORS 2022; 12:bios12040244. [PMID: 35448304 PMCID: PMC9030187 DOI: 10.3390/bios12040244] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Chronic inflammatory diseases, such as cancer, diabetes mellitus, stroke, ischemic heart diseases, neurodegenerative conditions, and COVID-19 have had a high number of deaths worldwide in recent years. The accurate detection of the biomarkers for chronic inflammatory diseases can significantly improve diagnosis, as well as therapy and clinical care in patients. Graphene derivative materials (GDMs), such as pristine graphene (G), graphene oxide (GO), and reduced graphene oxide (rGO), have shown tremendous benefits for biosensing and in the development of novel biosensor devices. GDMs exhibit excellent chemical, electrical and mechanical properties, good biocompatibility, and the facility of surface modification for biomolecular recognition, opening new opportunities for simple, accurate, and sensitive detection of biomarkers. This review shows the recent advances, properties, and potentialities of GDMs for developing robust biosensors. We show the main electrochemical and optical-sensing methods based on GDMs, as well as their design and manufacture in order to integrate them into robust, wearable, remote, and smart biosensors devices. We also describe the current application of such methods and technologies for the biosensing of chronic disease biomarkers. We also describe the current application of such methods and technologies for the biosensing of chronic disease biomarkers with improved sensitivity, reaching limits of detection from the nano to atto range concentration.
Collapse
|
13
|
Design and Synthesis of Multipotent Antioxidants for Functionalization of Iron Oxide Nanoparticles. COATINGS 2022. [DOI: 10.3390/coatings12040517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Multipotent antioxidants (MPAO) were synthesized and characterized by FTIR, NMR. The functionalized nanoparticles (IONP@AO) were characterized by FTIR, XRD, Raman, HRTEM, FESEM, VSM, and EDX. IONP@AO1 and IONP@AO2 have average particles size of 10 nm and 11 nm, respectively. The functionalized IONP@AO has a superparamagnetic nature, with saturation magnetization of 45 emu·g−1. Structure-based virtual screening of the designed MPAO was performed by PASS analysis and ADMET studies to discover and predict the molecule’s potential bioactivities and safety profile before the synthesis procedure. The half-maximal inhibitory concentration (IC50) of DPPH analysis results showed a four-fold decrease in radical scavenging by IONP@AO compared to IONP. In addition to antioxidant activity, IONP@AO showed suitable antimicrobial activities when tested on various bacterial and fungal strains. The advantage of the developed nanoantioxidants is that they have a strong affinity towards biomolecules such as enzymes, proteins, amino acids, and DNA. Thus, synthesized nanoantioxidants can be used to develop biomedicines that can act as antioxidant, antimicrobial, and anticancer agents.
Collapse
|
14
|
Xie Y, Liu L. Role of Chemerin/ChemR23 axis as an emerging therapeutic perspective on obesity-related vascular dysfunction. J Transl Med 2022; 20:141. [PMID: 35317838 PMCID: PMC8939091 DOI: 10.1186/s12967-021-03220-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023] Open
Abstract
Sufficient epidemiological investigations demonstrate that there is a close correlation between obesity and vascular dysfunction. Nevertheless, specific mechanisms underlying this link remain currently unclear. Given the crucial and decisive role of vascular dysfunction in multitudinous diseases, various hypotheses had been proposed and numerous experiments were being carried out. One recognized view is that increased adipokine secretion following the expanded mass of white adipose tissue due to obesity contributes to the regulation of vascular function. Chemerin, as a neo-adipokine, whose systemic level is elevated in obesity, is believed as a regulator of adipogenesis, inflammation, and vascular dysfunction via binding its cell surface receptor, chemR23. Hence, this review aims to focus on the up-to-date proof on chemerin/chemR23 axis-relevant signaling pathways, emphasize the multifarious impacts of chemerin/chemR23 axis on vascular function regulation, raise certain unsettled questions to inspire further investigations, and explore the therapeutic possibilities targeting chemerin/chemR23.
Collapse
Affiliation(s)
- Yingying Xie
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China.,Cardiovascular Disease Research Center of Hunan Province, Changsha, China
| | - Ling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China. .,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China. .,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China. .,Cardiovascular Disease Research Center of Hunan Province, Changsha, China.
| |
Collapse
|
15
|
Varghese R, Salvi S, Sood P, Karsiya J, Kumar D. Carbon nanotubes in COVID-19: A critical review and prospects. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2022; 46:100544. [PMID: 34778007 PMCID: PMC8577996 DOI: 10.1016/j.colcom.2021.100544] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/31/2021] [Indexed: 05/11/2023]
Abstract
The rapid spread of Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) around the world has ravaged both global health and economy. This unprecedented situation has thus garnered attention globally. This further necessitated the deployment of an effective strategy for rapid and patient-compliant identification and isolation of patients tested positive for SARS-CoV-2. Following this, several companies and institutions across the globe are striving hard to develop real-time methods, like biosensors for the detection of various viral components including antibodies, antigens, ribonucleic acid (RNA), or the whole virus. This article attempts to review the various, mechanisms, advantages and limitations of the common biosensors currently being employed for detection. Additionally, it also summarizes recent advancements in various walks of fighting COVID-19, including its prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Ryan Varghese
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
| | - Sahil Salvi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
| | - Purab Sood
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
| | - Jainam Karsiya
- River Route Creative Group LLP, Mumbai, Maharashtra 400013, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University) Erandwane, Pune - 411038, Maharashtra, India
| |
Collapse
|
16
|
Selvi SV, Rajaji U, Chen SM, Jebaranjitham JN. Floret-like manganese doped tin oxide anchored reduced graphene oxide for electrochemical detection of dimetridazole in milk and egg samples. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Ravi PV, Subramaniyam V, Pattabiraman A, Pichumani M. Do amino acid functionalization stratagems on carbonaceous quantum dots imply multiple applications? A comprehensive review. RSC Adv 2021; 11:35028-35045. [PMID: 35494767 PMCID: PMC9043014 DOI: 10.1039/d1ra05571b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022] Open
Abstract
Amino acids are the noteworthy entity among biological molecules with diverse properties such as zwitterionic and amphoteric. Functionalizing carbon-based quantum dots using amino acids might be used for the extreme enhancement of electronic and optical properties of quantum dots and improve the performance of the resultant amino acid-functionalized quantum dots. The amino acid-functionalized quantum dots are highly soluble, sustainable, and biocompatible with virtuous optical and electrical performance, which makes them potential and suitable candidates for fabricating optoelectronic devices. The tenacity of using amino acids as functional groups to functionalize quantum dots and their novel properties are conferred to attain their multiple applications. The goal of this review is to provide the choices of amino acids based on the desired applications and a variety of functionalization techniques to make them a noteworthy material for future applications. The method of one-step and two-step functionalization strategies along with the properties of the resultant functionalized quantum dots and their plausible applications and future scope of the material are highlighted. Amidation is the basic principle behind the functionalization of quantum dots with amino acids. This review would be an exciting prospect to explore the pathways of the possible applications in different domains, in which the amino acid-functionalized quantum dots have not yet been explored. Further, this review article helps in pitching a variety of prominent applications right from sensors to energy storage systems either using the optical property or electronic property of amino acid-functionalized quantum dots.
Collapse
Affiliation(s)
- Pavithra V Ravi
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College Coimbatore 641 022 Tamilnadu India
| | - Vinodhini Subramaniyam
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College Coimbatore 641 022 Tamilnadu India
| | - Ajay Pattabiraman
- Government Primary Health Center Anaikatti Coimbatore 641 108 Tamilnadu India
| | - Moorthi Pichumani
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College Coimbatore 641 022 Tamilnadu India
| |
Collapse
|
18
|
Breath as the mirror of our body is the answer really blowing in the wind? Recent technologies in exhaled breath analysis systems as non-invasive sensing platforms. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Graphene Quantum Dots-Based Nanocomposites Applied in Electrochemical Sensors: A Recent Survey. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2030032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Graphene quantum dots (GQDs) have been widely investigated in recent years due to their outstanding physicochemical properties. Their remarkable characteristics allied to their capability of being easily synthesized and combined with other materials have allowed their use as electrochemical sensing platforms. In this work, we survey recent applications of GQDs-based nanocomposites in electrochemical sensors and biosensors. Firstly, the main characteristics and synthesis methods of GQDs are addressed. Next, the strategies generally used to obtain the GQDs nanocomposites are discussed. Emphasis is given on the applications of GQDs combined with distinct 0D, 1D, 2D nanomaterials, metal-organic frameworks (MOFs), molecularly imprinted polymers (MIPs), ionic liquids, as well as other types of materials, in varied electrochemical sensors and biosensors for detecting analytes of environmental, medical, and agricultural interest. We also discuss the current trends and challenges towards real applications of GQDs in electrochemical sensors.
Collapse
|
20
|
An antifouling electrochemical aptasensor based on poly (glutamic acid) and peptide for the sensitive detection of adenosine triphosphate. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Sardaremelli S, Hasanzadeh M, Seidi F. Enzymatic recognition of hydrogen peroxide (H 2 O 2 ) in human plasma samples using HRP immobilized on the surface of poly(arginine-toluidine blue)- Fe 3 O 4 nanoparticles modified polydopamine; A novel biosensor. J Mol Recognit 2021; 34:e2928. [PMID: 34378255 DOI: 10.1002/jmr.2928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/16/2022]
Abstract
In this study, an innovative strategy was proposed for the electrocatalytical reduction and enzymatic biosensing of hydrogen peroxide (H2 O2 ) using chronoamperometry technique. For the first time, immobilization of horseradish peroxidase (HRP) in polydopamine-modified magnetic nanoparticles (PDA-MNPs) was successfully performed. Also, poly(l-arginine/toluidine blue) film-modified glassy carbon electrode was constructed through co-electropolymerization of l-arginine and toluidine blue on the surface of GCE using cyclic voltammetry technique. The engineered hybrid thin film provides strong functionalities for efficient grafting of PDA-MNPs which, in turn, enable the covalent immobilization of HRP. The proposed biosensor was used for the detection of H2 O2 in the range of 0.5-30 μM with a low limit of quantification 0.23 μM. It also was successfully applied for the investigation of hydrogen peroxide in human plasma samples.
Collapse
Affiliation(s)
- Sanam Sardaremelli
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
22
|
CHAI P, SONG Z, LIU W, XUE J, WANG S, LIU J, LI J. [Application of carbon dots in analysis and detection of antibiotics]. Se Pu 2021; 39:816-826. [PMID: 34212582 PMCID: PMC9404157 DOI: 10.3724/sp.j.1123.2021.04022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 11/25/2022] Open
Abstract
Antibiotics have been overused in recent years because of their remarkable curative effect, but this has led to considerable environmental pollution. Therefore, the development of approaches aimed at the effective detection and control of the antibiotics is vital for protecting the environment and human health. Many conventional strategies (such as high-performance liquid chromatography (HPLC), gas chromatography (GC), high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS)) are currently in use for the detection of antibiotics. These strategies have aroused a great deal of interest because of their outstanding features of high efficiency and speed, good reproducibility, automation, etc. However, various problems such as tedious sample pretreatment, low detection sensitivity, and high cost must be overcome for the effective detection of antibiotics in environmental samples. Consequently, it is of great significance to improve the detection sensitivity of antibiotics. The development of new materials combined with the existing detection technology has great potential to improve the detection results for antibiotics. Carbon dots (CDs) are a new class of nanomaterials with particle sizes in the range of 0-10 nm. In addition, CDs have desirable properties such as small particle effect, excellent electrical properties, unique optical properties, and good biocompatibility. Hence, they have been widely utilized for the detection of antibiotics in environmental samples. In this review, the application of CDs combined with sensors and chromatographic technology for the detection of antibiotics in the last five years are summarized. The development prospects of CD-based materials and their application to the analysis and detection of antibiotics are presented. In this review, many new sensors (CDs combined with molecularly imprinted polymer sensors, aptamer sensors, electrochemiluminescence sensors, fluorescence sensors, and electrochemical sensors) combined with CD-based materials and their use in the detection of antibiotics are summarized. Furthermore, advanced analysis methods such as ratiometric sensor and array sensor methods are reviewed. The novel analysis methods provide a new direction toward the detection of antibiotics by CDs combined with a sensor. Moreover, CD-based chromatographic stationary phases for the separation of antibiotics are also summarized in this manuscript. It is reported that the detection sensitivity for antibiotics can be greatly improved by the combination of CDs and a sensor. Nevertheless, a literature survey reveals that the detection of antibiotics in complex environmental samples is confronted with numerous challenges, including the fabrication of highly sensitive sensors in combination with CDs. Furthermore, the development of novel high-performance materials is of imperative. In addition, it is important to develop new methods for effective data processing. The separation of antibiotics with CDs as the chromatographic stationary phases is in the preliminary stage, and the separation mechanism remains to be clarified. In conclusion, there are still many problems to be overcome when using CDs as novel materials for the detection of antibiotics in environmental samples. Nowadays, CD-based materials are being intensively studied, and various analytical detection technologies are being rapidly developed. In the future, CD-based materials are expected to play an important role in the detection of antibiotics and other environmental pollutants.
Collapse
|
23
|
Kordasht HK, Hasanzadeh M, Seidi F, Alizadeh PM. Poly (amino acids) towards sensing: Recent progress and challenges. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Khoubnasabjafari M, Mogaddam MRA, Rahimpour E, Soleymani J, Saei AA, Jouyban A. Breathomics: Review of Sample Collection and Analysis, Data Modeling and Clinical Applications. Crit Rev Anal Chem 2021; 52:1461-1487. [PMID: 33691552 DOI: 10.1080/10408347.2021.1889961] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metabolomics research is rapidly gaining momentum in disease diagnosis, on top of other Omics technologies. Breathomics, as a branch of metabolomics is developing in various frontiers, for early and noninvasive monitoring of disease. This review starts with a brief introduction to metabolomics and breathomics. A number of important technical issues in exhaled breath collection and factors affecting the sampling procedures are presented. We review the recent progress in metabolomics approaches and a summary of their applications on the respiratory and non-respiratory diseases investigated by breath analysis. Recent reports on breathomics studies retrieved from Scopus and Pubmed were reviewed in this work. We conclude that analyzing breath metabolites (both volatile and nonvolatile) is valuable in disease diagnoses, and therefore believe that breathomics will turn into a promising noninvasive discipline in biomarker discovery and early disease detection in personalized medicine. The problem of wide variations in the reported metabolite concentrations from breathomics studies should be tackled by developing more accurate analytical methods and sophisticated numerical analytical alogorithms.
Collapse
Affiliation(s)
- Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center and Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Liver and Gastrointestinal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Karolinska Institutet, Stockholm, Sweden
| | - Abolghasem Jouyban
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Zoubir J, Elkhotfi Y, Radaa C, Bougdour N, Idlahcen A, Bakas I, Assabbane A. Electrocatalytic detection of dimetridazole using an electrochemical sensor Ag@CPE. Analytical application. Milk, tomato juice and human urine. SENSORS INTERNATIONAL 2021. [DOI: 10.1016/j.sintl.2021.100105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
26
|
Hassanvand Z, Jalali F, Nazari M, Parnianchi F, Santoro C. Carbon Nanodots in Electrochemical Sensors and Biosensors: A Review. ChemElectroChem 2020. [DOI: 10.1002/celc.202001229] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Maryam Nazari
- Faculty of Chemistry Razi University Kermanshah Iran
| | | | - Carlo Santoro
- Department of Chemical Engineering and Analytical Science The University of Manchester The Mill Sackville Street Manchester M13PAL UK
| |
Collapse
|
27
|
Lin Y, Liu J, Bai R, Shi J, Zhu X, Liu J, Guo J, Zhang W, Liu H, Liu Z. Mitochondria-Inspired Nanoparticles with Microenvironment-Adapting Capacities for On-Demand Drug Delivery after Ischemic Injury. ACS NANO 2020; 14:11846-11859. [PMID: 32880428 DOI: 10.1021/acsnano.0c04727] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stimuli-responsive nanoparticles (NPs), so-called "smart" NPs, possess great potentials in drug delivery. Presently, the intelligence of smart NPs is mainly based on their chemical or physical changes to stimuli, which are usually "mechanical" and fundamentally different from biological intelligence. Inspired by mitochondria (MT), a biosmart nanoparticle with microenvironment targeting and self-adaptive capacity (MTSNP) was fabricated for ischemic tissue repair. The nanoparticles were designed as shell@circular DNA@shell@core. The double shells were like the two-layered membranes of MT, the melatonin-loaded cores corresponded to the MT matrix, and the circular DNA corresponded to MTDNA. In function, melatonin-loaded cores simulated the cell-protective mechanism of MT, which naturally synthesized melatonin to resist ischemia, while circular DNA was constructed to mimic the biological oxygen-sensing mechanism, synthesizing VEGF for vascularization according to oxygen level, like the ATP supply by MT according to microenvironment demand. At the acute stage of ischemia, melatonin was rapidly released from MTSNP to scavenge reactive oxygen species and activated melatonin receptor I on MT to prevent cytochrome c release, which would activate apoptosis. During the chronic stage, circular DNA could sense hypoxia and actively secrete VEGF for revascularization as a response. Importantly, circular DNA could also receive feedback of revascularization and shut down VEGF secretion as an adverse response. Then, the therapeutic potentials of the MTSNP were verified in myocardial ischemia by the multimodality of the methods. Such nanoparticles may represent a promising intelligent nanodrug system.
Collapse
Affiliation(s)
- Yanxia Lin
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
- Department of Cardiology, The Third Medical Center of PLA General Hospital, Beijing 100039, China
| | - Jianfeng Liu
- Department of Cardiology, The Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Rui Bai
- Department of Cardiology, The Third Medical Center of PLA General Hospital, Beijing 100039, China
| | - Jinmiao Shi
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Xiaoming Zhu
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jian Liu
- Department of Nuclear Medicine, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Jing Guo
- Department of Cardiology, The Third Medical Center of PLA General Hospital, Beijing 100039, China
| | - Wei Zhang
- Department of Orthopaedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Huiliang Liu
- Department of Cardiology, The Third Medical Center of PLA General Hospital, Beijing 100039, China
| | - Zhiqiang Liu
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
28
|
Mosa IF, Abd HH, Abuzreda A, Assaf N, Yousif AB. Bio-evaluation of the role of chitosan and curcumin nanoparticles in ameliorating genotoxicity and inflammatory responses in rats' gastric tissue followed hydroxyapatite nanoparticles' oral uptake. Toxicol Res (Camb) 2020; 9:493-508. [PMID: 32905138 DOI: 10.1093/toxres/tfaa054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/26/2020] [Accepted: 06/30/2020] [Indexed: 11/14/2022] Open
Abstract
Hydroxyapatite has been extensively used in tissue engineering due to its osteogenic potency, but its present toxicological facts are relatively insufficient. Here, the possible gastric toxicity of hydroxyapatite nanoparticles was evaluated biochemically to determine oxidant and antioxidant parameters in rats' stomach tissues. At results, hydroxyapatite nanoparticles have declined stomach antioxidant enzymes and reduced glutathione level, while an induction in lipid peroxidation and nitric oxide has been observed. Furthermore, DNA oxidation was analyzed by the suppression of toll-like receptors 2, nuclear factor-kappa B and Forkhead box P3 gene expression and also 8-Oxo-2'-deoxyguanosine level as a genotoxicity indicator. Various pro-inflammatory gene products have been identified that intercede a vital role in proliferation and apoptosis suppression, among these products: tumor suppressor p53, tumor necrosis factor-α and interliukin-6. Moreover, the hydroxyapatite-treated group revealed wide histological alterations and significant elevation in the number of proliferating cell nuclear antigen-positive cells, which has been observed in the mucosal layer of the small intestine, and these alterations are an indication of small intestine injury, while the appearance of chitosan and curcumin nanoparticles in the combination group showed improvement in all the above parameters with inhibition of toxic-oxidant parameters and activation of antioxidant parameters.
Collapse
Affiliation(s)
- Israa F Mosa
- Department of Biological Science and Animal Physiology, Institute of Graduate Studies and Research, Alexandria University, Egypt
| | - Haitham H Abd
- Department of Biological Science and Animal Physiology, Institute of Graduate Studies and Research, Alexandria University, Egypt
| | - Abdelsalam Abuzreda
- Department of Health, Safety and Environment (HSE), Arabian Gulf Oil Company (AGOCO), Benghazi, Libya
| | - Nadhom Assaf
- Department of Biological Science and Animal Physiology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Amenh B Yousif
- Department of Family and Community Medicine, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| |
Collapse
|
29
|
Ali M, Bacchu M, Daizy M, Tarafder C, Hossain M, Rahman M, Khan M. A highly sensitive poly-arginine based MIP as an electrochemical sensor for selective detection of dimetridazole. Anal Chim Acta 2020; 1121:11-16. [DOI: 10.1016/j.aca.2020.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 11/25/2022]
|
30
|
Daizy M, Tarafder C, Al-Mamun MR, Liu X, Aly Saad Aly M, Khan MZH. Electrochemical Detection of Melamine by Using Reduced Graphene Oxide-Copper Nanoflowers Modified Glassy Carbon Electrode. ACS OMEGA 2019; 4:20324-20329. [PMID: 31815235 PMCID: PMC6893966 DOI: 10.1021/acsomega.9b02827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
In this work, a robust and reliable electrochemical sensor was developed for sensitive detection of non-electroactive melamine (MEL) using a modified glassy carbon electrode with ascorbic acid (AA) as the active recognition element. To increase the current signal of AA, the working electrode was successively modified with l-arginine (l-Arg) and reduced graphene oxide-copper nanoflower composite. The voltammetry measurements denoted that the hydrogen bonding was formed between AA and MEL. Using the optimum conditions, the proposed enhanced sensor can detect MEL concentrations ranging from 10 × 10-9 to 9.0 × 10-8 M with a detection limit of 5.0 × 10-9 M that is proportional to the decrease of AA in the anodic peak current. Finally, the proposed sensor was successfully applied for the determination of MEL in commercial infant milk samples and good recovery values were obtained.
Collapse
Affiliation(s)
- Mahbuba Daizy
- Department
of Chemical Engineering, Jashore University
of Science and Technology, Jashore 7408, Bangladesh
| | - Chaitaly Tarafder
- Department
of Chemical Engineering, Jashore University
of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Rashid Al-Mamun
- Department
of Chemical Engineering, Jashore University
of Science and Technology, Jashore 7408, Bangladesh
| | - Xiuhua Liu
- College
of Chemistry and Chemical Engineering, Henan
University, Kaifeng 475004, China
| | - Mohamed Aly Saad Aly
- Department
of Electronics and Information Science, Miami College of Henan University, Kaifeng 475000, China
| | - Md Zaved H. Khan
- Department
of Chemical Engineering, Jashore University
of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
31
|
Avashthi G, Maktedar SS, Singh M. Sonochemically N-functionalized graphene oxide towards optically active photoluminescent bioscaffold. ULTRASONICS SONOCHEMISTRY 2019; 58:104651. [PMID: 31450345 DOI: 10.1016/j.ultsonch.2019.104651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/02/2019] [Accepted: 06/18/2019] [Indexed: 05/25/2023]
Abstract
Herein, Nitrogen functionalized graphene oxide (N-f-GrO) has been synthesized using the sonochemical method. 2-Aminopyrimidine (APD) was used as a precursor for covalent functionalization with graphene oxide [f-(APD)GrO] as N-f-GrO which was ascertained with XPS. The involvement of arylamine group and formation of covalent bond over GrO surface was confirmed with high resolution C1s spectrum of f-(APD)GrO. Also, the signature of N1s peak in the survey spectrum of f-(APD)GrO has endorsed the surface modification of GrO through covalent functionalization. A bathochromic shift was observed for f-(APD)GrO in UV and enhanced weight loss of 91.39% at 191.80 °C, confirms a facile functionalization of GrO via formation of amide bond, where the terminal -OH portal of carboxylic group is substituted by 2-Aminopyrimidine. Moreover, the formation of f-(APD)GrO was investigated with various analytical techniques like Raman, XRD and FTIR. The surface morphology and topography have been understood by using HRTEM/SAED, AFM, and SEM analysis. The synthesized f-(APD)GrO shows potential optically active photoluminescence properties and higher potency towards biological insight. The identified photoluminescence (PL) peaks at 3.78, 3.21 2.01 and 1.64 eV indicate photon emission including an orange optical transition at 2.01 eV. The multiple peaks in a PL spectrum are due to radiative and non-radiative recombinations which are also associated with excess hole (h+)-electron (e-) trapping on the surface to restrict the recombinations of e- and h+. The biological activity of N-f-GrO has been explored with Sulforhodamine B (SRB) assay on HaCaT and Vero cell lines. The concentration-dependent cell viabilities have been observed a maximum at 20 µg/ml for HaCaT and at 10 µg/ml for Vero cell lines at testing concentration range of 10-80 μg mL-1. The significant morphological impact on cell lines confirms the cytocompatibility behaviour. Therefore, the synergistic impact of various properties of f-(APD)GrO can be further explored to study its significance as nanocarrier for photosensitive biomedical response.
Collapse
Affiliation(s)
- Gopal Avashthi
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Shrikant S Maktedar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Man Singh
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| |
Collapse
|
32
|
Avashthi G, Maktedar SS, Singh M. Surface-Induced in Situ Sonothermodynamically Controlled Functionalized Graphene Oxide for in Vitro Cytotoxicity and Antioxidant Evaluations. ACS OMEGA 2019; 4:16385-16401. [PMID: 31616817 PMCID: PMC6787894 DOI: 10.1021/acsomega.9b01939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Graphene oxide-based advanced functional materials offer an ultimate solution for wider biomedical applications. In situ thermodynamically ultrasound-assisted direct covalent functionalization of graphene oxide (GO) with sulfanilamide (SA) has synthesized f-(SA)GO. Raman spectroscopy, X-ray diffraction, high-resolution transmission electron microscopy, selected area electron diffraction pattern, scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) have analyzed the f-(SA)GO structure for functional activities, expressed through synergistic impact of heteroatomic domains (SIHAD). The TGA of GO and f-(SA)GO demonstrates their total weight losses of 82.0 and 61.1%, respectively. Enhanced thermal stability of f-(SA)GO infers an exothermic behavior obtained with DSC. The surface-induced in situ thermodynamically controlled nonspontaneous reaction for f-(SA)GO has facilitated calculations for activation energy (E a) = - 2.65 × 103 kJ mol-1 and Gibbs free energy (ΔG) = 8.3741 kJ mol-1, energetics for biological activities with sulforhodamine B assay on MCF-7 and Vero cell lines and antioxidant potential by free radical scavenging activity with DPPH (2,2-diphenyl-1-picrylhydrazyl). Cell viabilities are >89.8% for Vero and >90.1% for MCF-7 with f-(SA)GO over 10 to 80 μg mL-1. Its cytocompatibility infers establishment of a new material. The morphological effect on MCF-7 and Vero cell lines confirm its structurally stable biocompatibility. The SIHAD of f-(SA)GO scavenges radical activity, and its heteroatomic structure causes valuable physiochemical activities. f-(SA)GO could emerge as an advanced functional biomaterial for structurally and thermally stable biocompatible nanocoatings.
Collapse
Affiliation(s)
- Gopal Avashthi
- School of Chemical
Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Shrikant S. Maktedar
- Department of Chemistry, National Institute of Technology, Srinagar 190006, Jammu
and Kashmir, India
| | - Man Singh
- School of Chemical
Sciences, Central University of Gujarat, Gandhinagar 382030, India
| |
Collapse
|
33
|
Preparation of graphene oxide-graphene quantum dots hybrid and its application in cancer theranostics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109774. [PMID: 31349528 DOI: 10.1016/j.msec.2019.109774] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 01/24/2019] [Accepted: 05/17/2019] [Indexed: 01/26/2023]
Abstract
Currently, an enormous amount of cancer research based on two-dimensional nano-graphene oxide (GO), as well as zero-dimensional graphene quantum dots (GQDs), is being carried out in the fields of therapeutics and diagnostics. However, the exploration of their hybrid "functional" nanomaterials in the theranostic system is still rare. In the current study, a stable complex of GO and GQDs was formed by an electrostatic layer-by-layer assembly via a polyethylene imine bridge (GO-PEI-GQDs). Furthermore, we compared separate mono-equivalents of the GO-PEI-GQDs complex - GO and GQDs, in terms of cell imaging (diagnostics), photothermal, and oxidative stress response in breast cancer cells (MDA-MB-231). GO-PEI-GQDs showed an excellent photothermal response (44-49 °C) upon 808 nm laser (0.5 W cm-2) exposure for 5 min at a concentration up to 50 μg/mL. We report new synergistic properties of GO-PEI-GQDs such as stable fluorescence imaging and enhanced photothermal and cytotoxic activities on cancer cells. Composite materials made up of GO and GQDs combining diverse properties help to study 2D-0D heterosystems and improve specific therapeutic systems in theranostics.
Collapse
|
34
|
Saadati A, Hassanpour S, Hasanzadeh M, Shadjou N, Hassanzadeh A. Immunosensing of breast cancer tumor protein CA 15-3 (carbohydrate antigen 15.3) using a novel nano-bioink: A new platform for screening of proteins in human biofluids by pen-on-paper technology. Int J Biol Macromol 2019; 132:748-758. [DOI: 10.1016/j.ijbiomac.2019.03.170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
|
35
|
Sensitive detection of Trifluralin in untreated human plasma samples using reduced graphene oxide modified by polyethylene imine and silver nanoparticles: A new platform on the analysis of pesticides and chemical injuries. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.092] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Saadati A, Hassanpour S, Guardia MDL, Mosafer J, Hashemzaei M, Mokhtarzadeh A, Baradaran B. Recent advances on application of peptide nucleic acids as a bioreceptor in biosensors development. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Maleki N, Kashanian S, Nazari M, Shahabadi N. A novel sensitive laccase biosensor using gold nanoparticles and poly L‐arginine to detect catechol in natural water. Biotechnol Appl Biochem 2019; 66:502-509. [DOI: 10.1002/bab.1746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/24/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Nasim Maleki
- Faculty of ChemistryRazi University Kermanshah Iran
| | - Soheila Kashanian
- Faculty of ChemistryRazi University Kermanshah Iran
- Nano Drug Delivery Research CenterKermanshah University of Medical Sciences Kermanshah Iran
| | - Maryam Nazari
- Faculty of ChemistryRazi University Kermanshah Iran
- Nano Drug Delivery Research CenterKermanshah University of Medical Sciences Kermanshah Iran
| | - Nahid Shahabadi
- Faculty of ChemistryRazi University Kermanshah Iran
- Medical Biology Research CenterKermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
38
|
Ultrasensitive immunoassay of breast cancer type 1 susceptibility protein (BRCA1) using poly (dopamine-beta cyclodextrine-Cetyl trimethylammonium bromide) doped with silver nanoparticles: A new platform in early stage diagnosis of breast cancer and efficient management. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Abstract
Background:
Graphene and its derivatives, as most promising carbonic nanomaterials have
been widely used in design and making electrochemical sensors and biosensors. Graphene quantum dots
are one of the members of this family which have been mostly known as fluorescent nanomaterials and
found extensive applications due to their remarkable optical properties. Quantum confinement and edge
effects in their structures also cause extraordinary electrochemical properties.
Objective:
Recently, graphene quantum dots besides graphene oxides and reduced graphene oxides have
been applied for modification of the electrodes too and exposed notable effects in electrochemical responses.
Here, we are going to consider these significant effects through reviewing some of the recent
published works.
Collapse
Affiliation(s)
- Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Afsaneh L. Sanati
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
40
|
Jafari M, Solhi E, Tagi S, Hasanzadeh M, Jouyban-Gharamaleki V, Jouyban A, Shadjou N. Non-invasive quantification of malondialdehyde biomarker in human exhaled breath condensate using self-assembled organic-inorganic nanohybrid: A new platform for early diagnosis of lung disease. J Pharm Biomed Anal 2019; 164:249-257. [DOI: 10.1016/j.jpba.2018.10.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/20/2018] [Accepted: 10/27/2018] [Indexed: 11/30/2022]
|
41
|
Hasanzadeh M, Babaie P, Jouyban-Gharamaleki V, Jouyban A. The use of chitosan as a bioactive polysaccharide in non-invasive detection of malondialdehyde biomarker in human exhaled breath condensate: A new platform towards diagnosis of some lung disease. Int J Biol Macromol 2018; 120:2482-2492. [DOI: 10.1016/j.ijbiomac.2018.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 12/23/2022]
|
42
|
Hasanzadeh M, Mohammadzadeh A, Jafari M, Habibi B. Ultrasensitive immunoassay of glycoprotein 125 (CA 125) in untreated human plasma samples using poly (CTAB‑chitosan) doped with silver nanoparticles. Int J Biol Macromol 2018; 120:2048-2064. [DOI: 10.1016/j.ijbiomac.2018.09.208] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/17/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
|
43
|
Hassanpour S, Baradaran B, de la Guardia M, Baghbanzadeh A, Mosafer J, Hejazi M, Mokhtarzadeh A, Hasanzadeh M. Diagnosis of hepatitis via nanomaterial-based electrochemical, optical or piezoelectrical biosensors: a review on recent advancements. Mikrochim Acta 2018; 185:568. [DOI: 10.1007/s00604-018-3088-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022]
|
44
|
Application of chitosan as biocompatible polysaccharide in quantification of some benzodiazepines affecting sleep disorders: A new platform for preparation of bioactive scaffolds. Int J Biol Macromol 2018; 120:2466-2481. [DOI: 10.1016/j.ijbiomac.2018.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 11/21/2022]
|
45
|
Probing the antigen-antibody interaction towards ultrasensitive recognition of cancer biomarker in adenocarcinoma cell lysates using layer-by-layer assembled silver nano-cubics with porous structure on cysteamine caped GQDs. Microchem J 2018. [DOI: 10.1016/j.microc.2018.08.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Eftekhari A, Hasanzadeh M, Sharifi S, Dizaj SM, Khalilov R, Ahmadian E. Bioassay of saliva proteins: The best alternative for conventional methods in non-invasive diagnosis of cancer. Int J Biol Macromol 2018; 124:1246-1255. [PMID: 30513307 DOI: 10.1016/j.ijbiomac.2018.11.277] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/29/2022]
Abstract
Non-invasive diagnosis of cancer is often the key to effective treatment and patient survival. Saliva as a multi-constituent oral fluid comprises various disease signaling biomarkers, holds great potential for early-stage cancer diagnostics with cost-effective and easy collection, storage, transport and processing. Therefore, detection of biomarkers and proteins in the saliva samples is highly demand. The current review was performed using reliable internet database (mainly PubMed) to provide an overview of the most recent developments on non-invasive diagnosis of cancers in saliva and highlights main challenges and future prospects in sensing of the salivary biomarkers. The conventional detection methods of cancer biomarkers in saliva is discussed in the paper, however, the main focus is on non-invasive diagnosis of cancers in saliva using immunosensing (electrochemical, optical, piezoelectric), DNA based sensors, aptasensors and peptide based bio-assays The reviewed literature revealed that non-invasive cancer detection methods using the mentioned biosensors and without any processing of saliva sample offers a quick, sensitive, specific and cost effective analytical tool. Besides, salivary based detection methods can be used for simultaneous detection of panels of disease specific biomarkers in a real time manner or as home testing kits in near future.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran.
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rovshan Khalilov
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan, Institute of Radiation Problems of NAS Azerbaijan, Baku, Azerbaijan
| | - Elham Ahmadian
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
47
|
Cross-linked chitosan/thiolated graphene quantum dots as a biocompatible polysaccharide towards aptamer immobilization. Int J Biol Macromol 2018; 123:1091-1105. [PMID: 30458193 DOI: 10.1016/j.ijbiomac.2018.11.139] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 01/11/2023]
Abstract
Chitosan has a number of commercial and possible biomedical uses. Chitosan as a polysaccharide is a bioactive polymer with a variety of applications due to its functional properties such as antibacterial activity, non-toxicity, ease of modification, and biodegradability. In this work, cross-linked chitosan/thiolated graphene quantum dot as a biocompatible polysaccharide was modified by gold nanoparticle and used for immobilization of ractopamine (RAC) aptamer. A highly specific DNA-aptamer (5'-SH-AAAAAGTGCGGGC-3'), selected to RAC was immobilized onto thiolated graphene quantum dots (GQDs)-chitosan (CS) nanocomposite modified by gold nanostructures (Au NSs) and used for quantification of RAC. Different shapes of gold nanostructures with various sizes from zero-dimensional nanoparticles to spherical structures were prepared by one-step template-assistant green electrodeposition method. Fully electrochemical methodology was used to prepare a new transducer on a glassy carbon surface which provided a high surface area to immobilize a high amount of the aptamer. Therefore, a label free electrochemical (EC) apta-assay for ultrasensitive detection of RAC was developed. A special immobilization media consisting of Au NSs/GQDs-CS/Cysteamine (CysA) was utilized to improve conductivity and performance of the biosensor. The RAC aptamer was attached on the Au NSs of the composite membrane via AuS bond. The fabrication process of the EC aptamer based assay was characterized by some electrochemical techniques. The peak currents obtained by differential pulse voltammetry decreased linearly with the increasing of RAC concentrations and the apta-assay responds approximately over a wide dynamic range of RAC concentration from 0.0044 fM to 19.55 μM. The low limit of quantification was 0.0044 fM.
Collapse
|
48
|
Karimzadeh A, Hasanzadeh M, Shadjou N, Guardia MDL. Optical bio(sensing) using nitrogen doped graphene quantum dots: Recent advances and future challenges. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Ultra-sensitive electrochemical detection of oxidative stress biomarker 8-hydroxy-2′-deoxyguanosine with poly (L-arginine)/graphene wrapped Au nanoparticles modified electrode. Biosens Bioelectron 2018; 117:508-514. [DOI: 10.1016/j.bios.2018.06.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/24/2018] [Indexed: 01/12/2023]
|
50
|
A glassy carbon electrode modified with a composite consisting of gold nanoparticle, reduced graphene oxide and poly(L-arginine) for simultaneous voltammetric determination of dopamine, serotonin and L-tryptophan. Mikrochim Acta 2018; 185:439. [DOI: 10.1007/s00604-018-2979-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
|