1
|
Sk MS, Mwangomo R, Daniel L, Gilmore J. Solution Blow Spinning: An Emerging Nanomaterials-Based Wound-Care Technology. J Biomed Mater Res B Appl Biomater 2025; 113:e35513. [PMID: 39854136 DOI: 10.1002/jbm.b.35513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/09/2024] [Accepted: 11/10/2024] [Indexed: 01/26/2025]
Abstract
Application of one-dimensional nanofibers have witnessed exponential growth over the past few decades and are still emerging with their excellent physicochemical and electrical properties. The driving force behind this intriguing transition lies in their unique high surface-to-volume ratio, ubiquitous nanodomains, improved tensile strength, and flexibility to incorporate deliberate functionalities required for specific and advanced applications. Besides numerous benefits, nanomaterials may adversely interact with biological tissues and potentially be cytotoxic and carcinogenic. However, precisely engineered design can outperform the risk with myriad benefits. Wound care technologies are evolving, and products involved in wound care management have a yearly market value of $15-22 billion. Solution blow spinning (SBS) is a facile technique to synthesize biocompatible nanofibers with scalable processing variables for multidirectional biomedical applications. SBS is feasible for a wide range of thermoplastic polymers and nanomaterials to fabricate nanocomposites. This review will focus on the relevance of SBS technology for wound care, including dressings, drug delivery, tissue engineering scaffolds, and sensors.
Collapse
Affiliation(s)
- Md Salauddin Sk
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Ruth Mwangomo
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Luke Daniel
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Jordon Gilmore
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
2
|
Łopianiak I, Butruk-Raszeja B, Wojasiński M. Shore hardness of bulk polyurethane affects the properties of nanofibrous materials differently. J Mech Behav Biomed Mater 2025; 161:106793. [PMID: 39520867 DOI: 10.1016/j.jmbbm.2024.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The present study shows the effect of the hardness of bulk polyurethane on the properties of nanofibrous materials produced in the solution blow spinning process. This study focuses on nanofibrous materials made from medical-grade polyurethanes with different hardness values on the Shore scale, from 75A to 75D. We aimed to determine the effect of the intrinsic properties of polyurethane used to produce nanofibers on the tensile properties of the resulting nanofibrous materials and in vitro platelet adhesiveness. This study used a solution blow spinning process to produce nanofibrous materials from polyurethane solutions. It evaluates their properties using scanning electron microscopy, followed by porosity determination, tensile testing, and platelet adhesion assays. Generally, the bulk polymer's Shore hardness affects nanofibrous products' porosity and tensile properties. In the tested Shore hardness range, the most visible differences in material properties were observed for the fibers produced from the hardest (75D) and softest (75A) polyurethanes. The nanofibrous material produced using 75D polyurethane exhibited the highest porosity, up to approximately 0.87, owing to the low packing density of the stiff nanofibers. It also remained the stiffest, with the highest Young's modulus. On the other hand, the softest 75A polyurethane produced a less porous nanofibrous mat with the highest tensile strength among the tested polyurethanes. All tested nanofibrous materials retained their platelet adhesion resistance upon processing into nanofibers, with a mean platelet coverage below 1 % of the nanofibrous mat surface. The study results provide insights into the relationship between the hardness of bulk polyurethane and the properties of nanofibrous materials, which can be useful in various biomedical applications, particularly in producing tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Iwona Łopianiak
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland; Doctoral School of Warsaw University of Technology, Warsaw, Poland
| | - Beata Butruk-Raszeja
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Michał Wojasiński
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
3
|
Prahaladan V, Poluri N, Napoli M, Castro C, Yildiz K, Berry-White BA, Lu P, Salas-de la Cruz D, Hu X. Protein and Polysaccharide Fibers via Air Jet Spinning: Emerging Techniques for Biomedical and Sustainable Applications. Int J Mol Sci 2024; 25:13282. [PMID: 39769047 PMCID: PMC11675784 DOI: 10.3390/ijms252413282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
Polymers play a critical role in the biomedical and sustainable materials fields, serving as key resources for both research and product development. While synthetic and natural polymers are both widely used, synthetic polymers have traditionally dominated due to their ability to meet the specific material requirements of most fiber fabrication methods. However, synthetic polymers are derived from non-renewable resources, and their production raises environmental and health concerns. Natural polymers, on the other hand, are derived from renewable biological sources and include a subset known as biopolymers, such as proteins and polysaccharides, which are produced by living organisms. These biopolymers are naturally abundant and offer benefits such as biodegradability and non-toxicity, making them especially suitable for biomedical and green applications. Recently, air jet spinning has emerged as a promising method for fabricating biopolymer fibers, valued for its simplicity, cost-effectiveness, and safety-advantages that stand out compared to the more conventional electrospinning process. This review examines the methods and mechanisms of air jet spinning, drawing on empirical studies and practical insights to highlight its advantages over traditional fiber production techniques. By assembling natural biopolymers into micro- and nanofibers, this novel fabrication method demonstrates strong potential for targeted applications, including tissue engineering, drug delivery, air filtration, food packaging, and biosensing, utilizing various protein and polysaccharide sources.
Collapse
Affiliation(s)
- Varsha Prahaladan
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (V.P.); (N.P.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Nagireddy Poluri
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (V.P.); (N.P.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | - Makara Napoli
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Connor Castro
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Kerem Yildiz
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (V.P.); (N.P.)
| | - Brea-Anna Berry-White
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Ping Lu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | | | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (V.P.); (N.P.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
4
|
Iwoń Z, Krogulec E, Kierlańczyk A, Wojasiński M, Jastrzębska E. Hypoxia and re-oxygenation effects on human cardiomyocytes cultured on polycaprolactone and polyurethane nanofibrous mats. J Biol Eng 2024; 18:37. [PMID: 38844979 PMCID: PMC11157810 DOI: 10.1186/s13036-024-00432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Heart diseases are caused mainly by chronic oxygen insufficiency (hypoxia), leading to damage and apoptosis of cardiomyocytes. Research into the regeneration of a damaged human heart is limited due to the lack of cellular models that mimic damaged cardiac tissue. Based on the literature, nanofibrous mats affect the cardiomyocyte morphology and stimulate the growth and differentiation of cells cultured on them; therefore, nanofibrous materials can support the production of in vitro models that faithfully mimic the 3D structure of human cardiac tissue. Nanofibrous mats were used as scaffolds for adult primary human cardiomyocytes (HCM) and immature human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). This work focuses on understanding the effects of hypoxia and re-oxygenation on human cardiac cells cultured on polymer nanofibrous mats made of poly(ε-caprolactone) (PCL) and polyurethane (PU). The expression of selected genes and proteins in cardiomyocytes during hypoxia and re-oxygenation were evaluated. In addition, the type of cell death was analyzed. To the best of our knowledge, there are no studies on the effects of hypoxia on cardiomyocyte cells cultured on nanofibrous mats. The present study aimed to use nanofiber mats as scaffolds that structurally could mimic cardiac extracellular matrix. Understanding the impact of 3D structural properties in vitro cardiac models on different human cardiomyocytes is crucial for advancing cardiac tissue engineering and regenerative medicine. Observing how 3D scaffolds affect cardiomyocyte function under hypoxic conditions is necessary to understand the functioning of the entire human heart.
Collapse
Affiliation(s)
- Zuzanna Iwoń
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Ewelina Krogulec
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Aleksandra Kierlańczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Michał Wojasiński
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland.
- Centre for Advanced Materials and Technologies, CEZAMAT Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
5
|
Iwoń Z, Krogulec E, Tarnowska I, Łopianiak I, Wojasiński M, Dobrzyń A, Jastrzębska E. Maturation of human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) on polycaprolactone and polyurethane nanofibrous mats. Sci Rep 2024; 14:12975. [PMID: 38839879 PMCID: PMC11153585 DOI: 10.1038/s41598-024-63905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024] Open
Abstract
Investigating the potential of human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) in in vitro heart models is essential to develop cardiac regenerative medicine. iPSC-CMs are immature with a fetal-like phenotype relative to cardiomyocytes in vivo. Literature indicates methods for enhancing the structural maturity of iPSC-CMs. Among these strategies, nanofibrous scaffolds offer more accurate mimicry of the functioning of cardiac tissue structures in the human body. However, further research is needed on the use of nanofibrous mats to understand their effects on iPSC-CMs. Our research aimed to evaluate the suitability of poly(ε-caprolactone) (PCL) and polyurethane (PU) nanofibrous mats with different elasticities as materials for the maturation of iPSC-CMs. Analysis of cell morphology and orientation and the expression levels of selected genes and proteins were performed to determine the effect of the type of nanofibrous mats on the maturation of iPSC-CMs after long-term (10-day) culture. Understanding the impact of 3D structural properties in in vitro cardiac models on induced pluripotent stem cell-derived cardiomyocyte maturation is crucial for advancing cardiac tissue engineering and regenerative medicine because it can help optimize conditions for obtaining more mature and functional human cardiomyocytes.
Collapse
Affiliation(s)
- Zuzanna Iwoń
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Ewelina Krogulec
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Inez Tarnowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Iwona Łopianiak
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Michał Wojasiński
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Agnieszka Dobrzyń
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
- Centre for Advanced Materials and Technologies, CEZAMAT Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
6
|
Meira RM, Ribeiro S, Irastorza I, Silván U, Lanceros-Mendez S, Ribeiro C. Electroactive poly(vinylidene fluoride-trifluoroethylene)/graphene composites for cardiac tissue engineering applications. J Colloid Interface Sci 2024; 663:73-81. [PMID: 38394819 DOI: 10.1016/j.jcis.2024.02.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Electroactive materials are increasingly being used in strategies to regenerate cardiac tissue. These materials, particularly those with electrical conductivity, are used to actively recreate the electromechanical nature of the cardiac tissue. In the present work, we describe a novel combination of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)), a highly electroactive polymer, with graphene (G), exhibiting high electrical conductivity. G/P(VDF-TrFE) films have been characterized in terms of topographical, physico-chemical, mechanical, electrical, and thermal properties, and studied the response of cardiomyocytes adhering to them. The results indicate that the crystallinity and the wettability of the composites remain almost unaffected after G incorporation. In turn, surface roughness, Young modulus, and electric properties are higher in G/P(VDF-TrFE). Finally, the composites are highly biocompatible and able to support cardiomyocyte adhesion and proliferation, particularly surface treated ones, demonstrating the suitability of these materials for cardiac tissue engineering applications.
Collapse
Affiliation(s)
- R M Meira
- CF-UM-UP - Physics Centre of Minho and Porto Universities, University of Minho, 4710-057 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - S Ribeiro
- CF-UM-UP - Physics Centre of Minho and Porto Universities, University of Minho, 4710-057 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - I Irastorza
- CF-UM-UP - Physics Centre of Minho and Porto Universities, University of Minho, 4710-057 Braga, Portugal; Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - U Silván
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - S Lanceros-Mendez
- CF-UM-UP - Physics Centre of Minho and Porto Universities, University of Minho, 4710-057 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - C Ribeiro
- CF-UM-UP - Physics Centre of Minho and Porto Universities, University of Minho, 4710-057 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
7
|
Liu Y, Xia B, Zhao R, Qin M, Weng X, Zeng Z, Deng K, Jiang H. Automatic in situ short-distance deposition of PLGA/PLLA composite nanofibrous membranes for personalized wound dressings. NANOSCALE 2024; 16:8546-8562. [PMID: 38596837 DOI: 10.1039/d3nr06376c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Improving the mechanical properties of wound dressings and achieving personalized automatic real-time in situ deposition are important for accelerating wound management and repair. In this study, we report a self-designed automatic in situ deposition device based on solution blow spinning (SBS) to prepare poly(lactic-co-glycolic acid) (PLGA) and poly-L-lactic acid (PLLA) composite (PLGA/PLLA) nanofibrous membranes for wound dressing at a short distance. Polymer solution and in situ deposition conditions, including air pressure, spinning distance, solvent extrusion rate, and spinning rate, were optimized using orthogonal experiments and characterized via dynamic mechanical analysis. The microscopic morphology and physical properties of the prepared PLGA/PLLA composite nanofibrous membranes show that their strength, adhesion, water vapor transmission rate (WVTR), water retention, water absorption, degradation, and other properties were sufficient for wound-dressing applications. To investigate the possibility of a biomedical wound-dressing material, tannic acid (TA) was incorporated into the PLGA/PLLA composite nanofibrous membranes. The resultant PLGA/PLLA/TA composite nanofibrous membranes exhibited good biocompatibility and exceptional antibacterial properties against both Escherichia coli and Staphylococcus aureus. A pilot animal study illustrated the potential of this in situ deposition of PLGA/PLLA/TA composite nanofibrous membranes across multiple applications in wound healing/repair by reducing wound scar tissue formation and fibroblast overactivation.
Collapse
Affiliation(s)
- Yuzhi Liu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bihan Xia
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Rui Zhao
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Endoscopy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610042, China
| | - Mei Qin
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Xuan Weng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Zhi Zeng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Kai Deng
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hai Jiang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
8
|
Żuchowska A, Baranowska P, Flont M, Brzózka Z, Jastrzębska E. Review: 3D cell models for organ-on-a-chip applications. Anal Chim Acta 2024; 1301:342413. [PMID: 38553129 DOI: 10.1016/j.aca.2024.342413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
Two-dimensional (2D) cultures do not fully reflect the human organs' physiology and the real effectiveness of the used therapy. Therefore, three-dimensional (3D) models are increasingly used in bioanalytical science. Organ-on-a-chip systems are used to obtain cellular in vitro models, better reflecting the human body's in vivo characteristics and allowing us to obtain more reliable results than standard preclinical models. Such 3D models can be used to understand the behavior of tissues/organs in response to selected biophysical and biochemical factors, pathological conditions (the mechanisms of their formation), drug screening, or inter-organ interactions. This review characterizes 3D models obtained in microfluidic systems. These include spheroids/aggregates, hydrogel cultures, multilayers, organoids, or cultures on biomaterials. Next, the methods of formation of different 3D cultures in Organ-on-a-chip systems are presented, and examples of such Organ-on-a-chip systems are discussed. Finally, current applications of 3D cell-on-a-chip systems and future perspectives are covered.
Collapse
Affiliation(s)
- Agnieszka Żuchowska
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Patrycja Baranowska
- Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Magdalena Flont
- Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Zbigniew Brzózka
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| |
Collapse
|
9
|
Iwoń Z, Krogulec E, Kierlańczyk A, Baranowska P, Łopianiak I, Wojasiński M, Jastrzębska E. Improving rodents and humans cardiac cell maturity in vitrothrough polycaprolactone and polyurethane nanofibers. Biomed Mater 2024; 19:025031. [PMID: 38290152 DOI: 10.1088/1748-605x/ad240a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Currently, numerous studies are conducted using nanofibers as a scaffold for culture cardiac cells; however, there still needs to be more research evaluating the impact of the physicochemical properties of polymer nanofibers on the structure and function of cardiac cells. We have studied how poly(ϵ-caprolactone) and polyurethane nanofibrous mats with different physicochemical properties influence the viability, morphology, orientation, and maturation of cardiac cells. For this purpose, the cells taken from different species were used. They were rat ventricular cardiomyoblasts (H9c2), mouse atrial cardiomyocytes (CMs) (HL-1), and human ventricular CMs. Based on the results, it can be concluded that cardiac cells cultured on nanofibers exhibit greater maturity in terms of orientation, morphology, and gene expression levels compared to cells cultured on polystyrene plates. Additionally, the physicochemical properties of nanofibers affecting the functionality of cardiac cells from different species and different parts of the heart were evaluated. These studies can support research on understanding and explaining mechanisms leading to cellular maturity present in the heart and the selection of nanofibers that will effectively help the maturation of CMs.
Collapse
Affiliation(s)
- Zuzanna Iwoń
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | | | - Aleksandra Kierlańczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Patrycja Baranowska
- Centre for Advanced Materials and Technologies, CEZAMAT Warsaw University of Technology, Warsaw, Poland
| | - Iwona Łopianiak
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Michal Wojasiński
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
- Centre for Advanced Materials and Technologies, CEZAMAT Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
10
|
Penconek A, Jackiewicz-Zagórska A, Przekop R, Moskal A. Fibrous Structures Produced Using the Solution Blow-Spinning Technique for Advanced Air Filtration Process. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7118. [PMID: 38005048 PMCID: PMC10671976 DOI: 10.3390/ma16227118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
This study proposes utilising the solution blow-spinning process (SBS) for manufacturing a biodegradable filtration structure that ensures high efficiency of particle filtration with an acceptable pressure drop. The concept of multi-layer filters was applied during the design of filters. Polylactic acid (PLA) was used to produce various layers, which may be mixed in different sequences, building structures with varying filtration properties. Changing the process parameters, one can create layers with diverse average fibre diameters and thicknesses. It enables the design and creation of optimal filtration materials prepared for aerosol particle filtration. The structures were numerically modelled using the lattice Boltzmann approach to obtain detailed production guidelines using the blow-spinning technique. The advantage of this method is the ability to blow fibres with diameters in the nanoscale, applying relatively simple and cost-effective equipment. For tested PLA solutions, i.e., 6% and 10%, the mean fibre diameter decreases as the concentration decreases. Therefore, the overall filtering efficiency decreases as the concentration of the used solution increases. The produced multi-layer filters have 96% overall filtration efficiency for particles ranging from 0.26 to 16.60 micrometres with a pressure drop of less than 160 Pa. Obtained results are auspicious and are a step in producing efficient, biodegradable air filters.
Collapse
Affiliation(s)
- Agata Penconek
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland; (A.J.-Z.); (R.P.)
| | | | | | - Arkadiusz Moskal
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland; (A.J.-Z.); (R.P.)
| |
Collapse
|
11
|
Ping P, Guan S, Ning C, Yang T, Zhao Y, Zhang P, Gao Z, Fu S. Fabrication of blended nanofibrous cardiac patch transplanted with TGF-β3 and human umbilical cord MSCs-derived exosomes for potential cardiac regeneration after acute myocardial infarction. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102708. [PMID: 37788793 DOI: 10.1016/j.nano.2023.102708] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/22/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023]
Abstract
Acute myocardial infarction (AMI) is a common cardiovascular condition that progressively results in heart failure. In the present study, we have designed to load transforming growth factor beta 3 (TGF-β3) and cardio potential exosomes into the blended polycaprolactone/type I collagen (PCL/COL-1) nanofibrous patch (Exo@TGF-β3@NFs) and examined its feasibility for cardiac repair. The bioactivity of the developed NFs towards the migration and proliferation of human umbilical vein endothelial cells was determined using in vitro cell compatibility assays. Additionally, Exo@TGF-β3/NFs showed up-regulation of genes involved in angiogenesis and mesenchymal differentiations in vitro. The in vivo experiments performed 4 weeks after transplantation showed that the Exo@TGF-β3@NFs had a higher LV ejection fraction and fraction shortening functions. Subsequently, it has been determined that Exo@TGF-β3@NFs significantly reduced AMI size and fibrosis and increased scar thickness. The developed NFs approach will become a useful therapeutic approach for the treatment of AMI.
Collapse
Affiliation(s)
- Ping Ping
- General Station for Drug and Instrument Supervision and Control, Joint Logistic Support Force of Chinese People's Liberation Army, Beijing, PR China
| | - Shasha Guan
- Department of Oncology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, PR China
| | - Chaoxue Ning
- Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, PR China
| | - Ting Yang
- Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, PR China
| | - Yali Zhao
- Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, PR China
| | - Pei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, PR China.
| | - Zhitao Gao
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, PR China.
| | - Shihui Fu
- Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, PR China; Department of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing, PR China.
| |
Collapse
|
12
|
Aitova A, Berezhnoy A, Tsvelaya V, Gusev O, Lyundup A, Efimov AE, Agapov I, Agladze K. Biomimetic Cardiac Tissue Models for In Vitro Arrhythmia Studies. Biomimetics (Basel) 2023; 8:487. [PMID: 37887618 PMCID: PMC10604593 DOI: 10.3390/biomimetics8060487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiac arrhythmias are a major cause of cardiovascular mortality worldwide. Many arrhythmias are caused by reentry, a phenomenon where excitation waves circulate in the heart. Optical mapping techniques have revealed the role of reentry in arrhythmia initiation and fibrillation transition, but the underlying biophysical mechanisms are still difficult to investigate in intact hearts. Tissue engineering models of cardiac tissue can mimic the structure and function of native cardiac tissue and enable interactive observation of reentry formation and wave propagation. This review will present various approaches to constructing cardiac tissue models for reentry studies, using the authors' work as examples. The review will highlight the evolution of tissue engineering designs based on different substrates, cell types, and structural parameters. A new approach using polymer materials and cellular reprogramming to create biomimetic cardiac tissues will be introduced. The review will also show how computational modeling of cardiac tissue can complement experimental data and how such models can be applied in the biomimetics of cardiac tissue.
Collapse
Affiliation(s)
- Aleria Aitova
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
- Almetyevsk State Oil Institute, 423450 Almetyevsk, Russia
| | - Andrey Berezhnoy
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
- Almetyevsk State Oil Institute, 423450 Almetyevsk, Russia
| | - Valeriya Tsvelaya
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
- Almetyevsk State Oil Institute, 423450 Almetyevsk, Russia
| | - Oleg Gusev
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420018 Kazan, Russia
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | | | - Anton E. Efimov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Igor Agapov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Konstantin Agladze
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
| |
Collapse
|
13
|
Carriles J, Nguewa P, González-Gaitano G. Advances in Biomedical Applications of Solution Blow Spinning. Int J Mol Sci 2023; 24:14757. [PMID: 37834204 PMCID: PMC10572924 DOI: 10.3390/ijms241914757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
In recent years, Solution Blow Spinning (SBS) has emerged as a new technology for the production of polymeric, nanocomposite, and ceramic materials in the form of nano and microfibers, with similar features to those achieved by other procedures. The advantages of SBS over other spinning methods are the fast generation of fibers and the simplicity of the experimental setup that opens up the possibility of their on-site production. While producing a large number of nanofibers in a short time is a crucial factor in large-scale manufacturing, in situ generation, for example, in the form of sprayable, multifunctional dressings, capable of releasing embedded active agents on wounded tissue, or their use in operating rooms to prevent hemostasis during surgical interventions, open a wide range of possibilities. The interest in this spinning technology is evident from the growing number of patents issued and articles published over the last few years. Our focus in this review is on the biomedicine-oriented applications of SBS for the production of nanofibers based on the collection of the most relevant scientific papers published to date. Drug delivery, 3D culturing, regenerative medicine, and fabrication of biosensors are some of the areas in which SBS has been explored, most frequently at the proof-of-concept level. The promising results obtained demonstrate the potential of this technology in the biomedical and pharmaceutical fields.
Collapse
Affiliation(s)
- Javier Carriles
- Department of Chemistry, Facultad de Ciencias, University of Navarra, 31080 Pamplona, Spain;
| | - Paul Nguewa
- ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, University of Navarra, Irunlarrea 1, 31080 Pamplona, Spain
| | | |
Collapse
|
14
|
Bernava G, Iop L. Advances in the design, generation, and application of tissue-engineered myocardial equivalents. Front Bioeng Biotechnol 2023; 11:1247572. [PMID: 37811368 PMCID: PMC10559975 DOI: 10.3389/fbioe.2023.1247572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Due to the limited regenerative ability of cardiomyocytes, the disabling irreversible condition of myocardial failure can only be treated with conservative and temporary therapeutic approaches, not able to repair the damage directly, or with organ transplantation. Among the regenerative strategies, intramyocardial cell injection or intravascular cell infusion should attenuate damage to the myocardium and reduce the risk of heart failure. However, these cell delivery-based therapies suffer from significant drawbacks and have a low success rate. Indeed, cardiac tissue engineering efforts are directed to repair, replace, and regenerate native myocardial tissue function. In a regenerative strategy, biomaterials and biomimetic stimuli play a key role in promoting cell adhesion, proliferation, differentiation, and neo-tissue formation. Thus, appropriate biochemical and biophysical cues should be combined with scaffolds emulating extracellular matrix in order to support cell growth and prompt favorable cardiac microenvironment and tissue regeneration. In this review, we provide an overview of recent developments that occurred in the biomimetic design and fabrication of cardiac scaffolds and patches. Furthermore, we sift in vitro and in situ strategies in several preclinical and clinical applications. Finally, we evaluate the possible use of bioengineered cardiac tissue equivalents as in vitro models for disease studies and drug tests.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Padua Medical School, University of Padua, Padua, Italy
| |
Collapse
|
15
|
Meira RM, Correia DM, García Díez A, Lanceros-Mendez S, Ribeiro C. Ionic liquid-based electroactive materials: a novel approach for cardiac tissue engineering strategies. J Mater Chem B 2022; 10:6472-6482. [PMID: 35968772 DOI: 10.1039/d2tb01155g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cardiac tissue regeneration strategies are increasingly taking advantage of electroactive scaffolds to actively recreate the tissue microenvironment. In this context, this work reports on advanced materials based on two different ionic liquids (ILs), 2-hydroxyethyl-trimethylammonium dihydrogen phosphate ([Ch][DHP]) and choline bis(trifluoromethylsulfonyl)imide ([Ch][TFSI]), combined with poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) for the development of ionic electroactive IL/polymer hybrid materials for cardiac tissue engineering (TE). The morphological, physico-chemical, thermal and electrical properties of the hybrid materials, as well as their potential use as scaffolds for cardiac TE applications, were evaluated. Besides inducing changes in surface topography, roughness and wettability of the composites, the incorporation of [Ch][DHP] and [Ch][TFSI] leads to the increase in surface (σsurface) and volume (σvolume) electrical conductivities. Furthermore, washing the hybrid samples with phosphate-buffered saline solution strongly decreases the σsurface, whereas σsurface and σvolume of the composites remain almost unaltered after exposure to ultraviolet sterilization treatment. Additionally, it is verified that the incorporation of IL influences the P(VDF-TrFE) microstructure and crystallization process, acting as a defect during its crystallization. Cytotoxicity assays revealed that hybrid films based on [Ch][DHP] alone are not cytotoxic. These films also support H9c2 myoblast cell adhesion and proliferation, demonstrating their suitability for cardiac TE strategies based on electroactive microenvironments.
Collapse
Affiliation(s)
- R M Meira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal. .,LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - D M Correia
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal. .,Centre of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - A García Díez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - S Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - C Ribeiro
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal. .,LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
16
|
Li Y, Qiu X. Bioelectricity-coupling patches for repairing impaired myocardium. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1787. [PMID: 35233963 DOI: 10.1002/wnan.1787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/27/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022]
Abstract
Cardiac abnormalities, which account for extensive burdens on public health and economy, drive necessary attempts to revolutionize the traditional therapeutic system. Advances in cardiac tissue engineering have expanded a highly efficacious platform to address cardiovascular events, especially cardiac infarction. Current efforts to overcome biocompatible limitations highlight the constructs of a conductive cardiac patch to accelerate the industrial and clinical landscape that is amenable for patient-accurate therapy, regenerative medicine, disease modeling, and drug delivery. With the notion that cardiac tissue synchronically contracts triggered by electrical pulses, the cardiac patches based on conductive materials are developed and treated on the dysfunctional heart. In this review, we systematically summarize distinct conductive materials serving as the most promising alternatives (conductive nanomaterials, conductive polymers, piezoelectric polymers, and ionic electrolytes) to achieve electric signal transmission and engineered cardiac tissues. Existing applications are discussed considering how these patches containing conductive candidates are fabricated into diverse forms with major strategies. Ultimately, we try to define a new concept as a bioelectricity-coupling patch that provides a favorable cardiac micro-environment for cardiac functional activities. Underlying challenges and prospects are presented regarding industrial processing and cardiovascular treatment of conductive patch progress. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease.
Collapse
Affiliation(s)
- Yuedan Li
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaozhong Qiu
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Mousa HM, Ali MG, Rezk AI, Nasr EA, Hussein KH. Development of conductive polymeric nanofiber patches for cardiac tissue engineering application. J Appl Polym Sci 2022. [DOI: 10.1002/app.52757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hamouda M. Mousa
- Department of Mechanical Engineering, Faculty of Engineering South Valley University Qena Egypt
| | - Mustafa Ghazali Ali
- Department of Mechanical Engineering, Faculty of Engineering South Valley University Qena Egypt
| | - Abdelrahman I. Rezk
- Department of Bionanosystem Engineering Jeonbuk National University Jeonju Jeonbuk Republic of Korea
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School Jeonbuk National University Jeonju Republic of Korea
| | - Emad Abouel Nasr
- Department of Industrial Engineering, College of Engineering King Saud University Riyadh Saudi Arabia
| | - Kamal Hany Hussein
- Center for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering Loughborough University Loughborough Leicestershire UK
| |
Collapse
|
18
|
Nanofibrous materials affect the reaction of cytotoxicity assays. Sci Rep 2022; 12:9047. [PMID: 35641539 PMCID: PMC9156782 DOI: 10.1038/s41598-022-13002-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Nanofibrous materials are widely investigated as a replacement for the extracellular matrix, the 3D foundation for cells in all tissues. However, as with every medical material, nanofibers too must pass all safety evaluations like in vitro cytotoxicity assays or in vivo animal tests. Our literature research showed that differences in results of widely used cytotoxicity assays applied to evaluate nanofibrous materials are poorly understood. To better explore this issue, we prepared three nanofibrous materials with similar physical properties made of poly-L-lactic acid, polyurethane, and polycaprolactone. We tested five metabolic cytotoxicity assays (MTT, XTT, CCK-8, alamarBlue, PrestoBlue) and obtained different viability results for the same nanofibrous materials. Further, the study revealed that nanofibrous materials affect the reaction of cytotoxicity assays. Considering the results of both described experiments, it is evident that validating all available cytotoxicity assays for nanofibrous materials and possibly other highly porous materials should be carefully planned and verified using an additional analytical tool, like scanning electron microscopy or, more preferably, confocal microscopy.
Collapse
|
19
|
Zhou A, Zhang Y, Zhang X, Deng Y, Huang D, Huang C, Qu Q. Quaternized chitin/tannic acid bilayers layer-by-layer deposited poly(lactic acid)/polyurethane nanofibrous mats decorated with photoresponsive complex and silver nanoparticles for antibacterial activity. Int J Biol Macromol 2022; 201:448-457. [PMID: 35041886 DOI: 10.1016/j.ijbiomac.2022.01.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Chronic wounding treatment based on bacterially infected diabetes suffers an essential limitation in persistent skin injuries due to the resistance of progressive antibiotics, which inhibits the process of healing with wound tissue. Therefore, biologically friendly and nontoxic bio-based mats without antibiotics are taken for granted as a versatile platform for biomedical dressing, but urgently necessitates further functional diversification. Herein, a novel tannic acid (TA)/silver (Ag)-modified poly(lactic acid) (PLA)/Polyurethane (PU) antibacterial hybrid nanofibers were successfully constructed by electrospinning technology. Layer-by-layer (LBL) self-assembly technique was utilized to produce membranes via deposited biocompatible quaternized chitin (QC) and TA. The mats are enabled with outstanding flexibility, antibacterial activity, great hemocompatibility, and good ROS-scavenger in a wounding environment. Consequently, the basis of morphology and structure of electrospun membranes was verified by SEM and FT-IR. Besides, the LBL-structured surface was proved to impart improved wettability and hydrophilic via the test of water contact angle. Additionally, antimicrobial experiments demonstrate the effective broad-spectrum antibacterial ability of as-prepared hybrids, inhibiting infection of gram-positive microbial (S. aureus) as well as gram-negative microbial. Finally, the anti-oxidation performance holds great promise in conducive to the formation favorable physiological environment for wound healing. In conclusion, this work establishes a feasible but effective pathway to construct a multifunctional antibacterial dressing for the skin infection.
Collapse
Affiliation(s)
- Aying Zhou
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU) Nanjing 210037, PR China
| | - Yingying Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU) Nanjing 210037, PR China.
| | - Xiaoli Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU) Nanjing 210037, PR China
| | - Yankang Deng
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU) Nanjing 210037, PR China
| | - Dan Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU) Nanjing 210037, PR China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU) Nanjing 210037, PR China
| | - Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU) Nanjing 210037, PR China.
| |
Collapse
|
20
|
More N, Avhad M, Utekar S, More A. Polylactic acid (PLA) membrane—significance, synthesis, and applications: a review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04135-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Dorthé EW, Williams AB, Grogan SP, D’Lima DD. Pneumatospinning Biomimetic Scaffolds for Meniscus Tissue Engineering. Front Bioeng Biotechnol 2022; 10:810705. [PMID: 35186903 PMCID: PMC8847752 DOI: 10.3389/fbioe.2022.810705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
Nanofibrous scaffolds fabricated via electrospinning have been proposed for meniscus tissue regeneration. However, the electrospinning process is slow, and can only generate scaffolds of limited thickness with densely packed fibers, which limits cell distribution within the scaffold. In this study, we explored whether pneumatospinning could produce thicker collagen type I fibrous scaffolds with higher porosity, that can support cell infiltration and neo-fibrocartilage tissue formation for meniscus tissue engineering. We pneumatospun scaffolds with solutions of collagen type I with thicknesses of approximately 1 mm in 2 h. Scanning electron microscopy revealed a mix of fiber sizes with diameters ranging from 1 to 30 µm. The collagen scaffold porosity was approximately 48% with pores ranging from 7.4 to 100.7 µm. The elastic modulus of glutaraldehyde crosslinked collagen scaffolds was approximately 45 MPa, when dry, which reduced after hydration to 0.1 MPa. Mesenchymal stem cells obtained from the infrapatellar fat pad were seeded in the scaffold with high viability (>70%). Scaffolds seeded with adipose-derived stem cells and cultured for 3 weeks exhibited a fibrocartilage meniscus-like phenotype (expressing COL1A1, COL2A1 and COMP). Ex vivo implantation in healthy bovine and arthritic human meniscal explants resulted in the development of fibrocartilage-like neotissues that integrated with the host tissue with deposition of glycosaminoglycans and collagens type I and II. Our proof-of-concept study indicates that pneumatospinning is a promising approach to produce thicker biomimetic scaffolds more efficiently that electrospinning, and with a porosity that supports cell growth and neo-tissue formation using a clinically relevant cell source.
Collapse
Affiliation(s)
- Erik W. Dorthé
- Department of Orthopaedics, Shiley Center for Orthopaedic Research and Education, Scripps Health, San Diego, CA, United States
| | | | - Shawn P. Grogan
- Department of Orthopaedics, Shiley Center for Orthopaedic Research and Education, Scripps Health, San Diego, CA, United States
| | - Darryl D. D’Lima
- Department of Orthopaedics, Shiley Center for Orthopaedic Research and Education, Scripps Health, San Diego, CA, United States
| |
Collapse
|
22
|
Łopianiak I, Wojasiński M, Kuźmińska A, Trzaskowska P, Butruk-Raszeja BA. The effect of surface morphology on endothelial and smooth muscle cells growth on blow-spun fibrous scaffolds. J Biol Eng 2021; 15:27. [PMID: 34924005 PMCID: PMC8684665 DOI: 10.1186/s13036-021-00278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/14/2021] [Indexed: 11/23/2022] Open
Abstract
This study aimed to analyze the growth of two types of blood vessel building cells: endothelial cells (ECs) and smooth muscle cells (SMCs) on surfaces with different morphology. Two types of materials, differing in morphology, were produced by the solution blow spinning technique. One-layer materials consisted of one fibrous layer with two fibrous surfaces. Bi-layer materials consisted of one fibrous-solid layer and one fibrous layer, resulting in two different surfaces. Additionally, materials with different average fiber diameters (about 200, 500, and 900 nm) were produced for each group. It has been shown that it is possible to obtain structures with a given morphology by changing the selected process parameters (working distance and polymer solution concentration). Both morphology (solid versus fibrous) and average fiber diameter (submicron fibers versus microfibers) of scaffolds influenced the growth of ECs. However, this effect was only visible after an extended period of culture (6 days). In the case of SMCs, it was proved that the best growth of SMCs is obtained for micron fibers (with an average diameter close to 900 nm) compared to the submicron fibers (with an average diameter below 900 nm).
Collapse
Affiliation(s)
- Iwona Łopianiak
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland
| | - Michał Wojasiński
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland
| | - Aleksandra Kuźmińska
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland
| | - Paulina Trzaskowska
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Beata A Butruk-Raszeja
- Laboratory of Biomedical Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland.
| |
Collapse
|
23
|
Kuźmińska A, Kwarta D, Ciach T, Butruk-Raszeja BA. Cylindrical Polyurethane Scaffold Fabricated Using the Phase Inversion Method: Influence of Process Parameters on Scaffolds' Morphology and Mechanical Properties. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2977. [PMID: 34072853 PMCID: PMC8198356 DOI: 10.3390/ma14112977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
This work presents a method of obtaining cylindrical polymer structures with a given diameter (approx. 5 mm) using the phase inversion technique. As part of the work, the influence of process parameters (polymer hardness, polymer solution concentration, the composition of the non-solvent solution, process time) on the scaffolds' morphology was investigated. Additionally, the influence of the addition of porogen on the scaffold's mechanical properties was analyzed. It has been shown that the use of a 20% polymer solution of medium hardness (ChronoFlex C45D) and carrying out the process for 24 h in 0:100 water/ethanol leads to the achievement of repeatable structures with adequate flexibility. Among the three types of porogens tested (NaCl, hexane, polyvinyl alcohol), the most favorable results were obtained for 10% polyvinyl alcohol (PVA). The addition of PVA increases the range of pore diameters and the value of the mean pore diameter (9.6 ± 3.2 vs. 15.2 ± 6.4) while reducing the elasticity of the structure (Young modulus = 3.6 ± 1.5 MPa vs. 9.7 ± 4.3 MPa).
Collapse
Affiliation(s)
- Aleksandra Kuźmińska
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; (D.K.); (T.C.); (B.A.B.-R.)
| | - Dominika Kwarta
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; (D.K.); (T.C.); (B.A.B.-R.)
| | - Tomasz Ciach
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; (D.K.); (T.C.); (B.A.B.-R.)
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Beata A. Butruk-Raszeja
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; (D.K.); (T.C.); (B.A.B.-R.)
| |
Collapse
|
24
|
Kobuszewska A, Kolodziejek D, Wojasinski M, Ciach T, Brzozka Z, Jastrzebska E. Study of Stem Cells Influence on Cardiac Cells Cultured with a Cyanide-P-Trifluoromethoxyphenylhydrazone in Organ-on-a-Chip System. BIOSENSORS-BASEL 2021; 11:bios11050131. [PMID: 33922423 PMCID: PMC8145317 DOI: 10.3390/bios11050131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/09/2023]
Abstract
Regenerative medicine and stem cells could prove to be an effective solution to the problem of treating heart failure caused by ischemic heart disease. However, further studies on the understanding of the processes which occur during the regeneration of damaged tissue are needed. Microfluidic systems, which provide conditions similar to in vivo, could be useful tools for the development of new therapies using stem cells. We investigated how mesenchymal stem cells (MSCs) affect the metabolic activity of cardiac cells (rat cardiomyoblasts and human cardiomyocytes) incubated with a potent uncoupler of mitochondrial oxidative phosphorylation under microfluidic conditions. A cyanide p-trifluoromethoxyphenylhydrazone (FCCP) was used to mimic disfunctions of mitochondria of cardiac cells. The study was performed in a microfluidic system integrated with nanofiber mats made of poly-l-lactid acid (PLLA) or polyurethane (PU). The microsystem geometry allows four different cell cultures to be conducted under different conditions (which we called: normal, abnormal-as both a mono- and co-culture). Metabolic activity of the cells, based on the bioluminescence assay, was assessed in the culture's performed in the microsystem. It was proved that stem cells increased metabolic activity of cardiac cells maintained with FCCP.
Collapse
Affiliation(s)
- Anna Kobuszewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.K.); (D.K.); (Z.B.)
| | - Dominik Kolodziejek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.K.); (D.K.); (Z.B.)
| | - Michal Wojasinski
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Ludwika Waryńskiego 1, 00-645 Warsaw, Poland; (M.W.); (T.C.)
| | - Tomasz Ciach
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Ludwika Waryńskiego 1, 00-645 Warsaw, Poland; (M.W.); (T.C.)
| | - Zbigniew Brzozka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.K.); (D.K.); (Z.B.)
| | - Elzbieta Jastrzebska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.K.); (D.K.); (Z.B.)
- Correspondence:
| |
Collapse
|
25
|
Czarnecka K, Wojasiński M, Ciach T, Sajkiewicz P. Solution Blow Spinning of Polycaprolactone-Rheological Determination of Spinnability and the Effect of Processing Conditions on Fiber Diameter and Alignment. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1463. [PMID: 33802725 PMCID: PMC8002481 DOI: 10.3390/ma14061463] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022]
Abstract
The growing popularity of solution blow spinning as a method for the production of fibrous tissue engineering scaffolds and the vast range of polymer-solvent systems available for the method raises the need to study the effect of processing conditions on fiber morphology and develop a method for its qualitative assessment. Rheological approaches to determine polymer solution spinnability and image analysis approaches to describe fiber diameter and alignment have been previously proposed, although in a separate manner and mostly for the widely known, well-researched electrospinning method. In this study, a series of methods is presented to determine the processing conditions for the development of submicron fibrous scaffolds. Rheological methods are completed with extensive image analysis to determine the spinnability window for a polymer-solvent system and qualitatively establish the influence of polymer solution concentration and collector rotational speed on fiber morphology, diameter, and alignment. Process parameter selection for a tissue engineering scaffold target application is discussed, considering the varying structural properties of the native extracellular matrix of the tissue of interest.
Collapse
Affiliation(s)
- Katarzyna Czarnecka
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b, 02-106 Warsaw, Poland;
| | - Michał Wojasiński
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; (M.W.); (T.C.)
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; (M.W.); (T.C.)
- Warsaw University of Technology, CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| | - Pawel Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b, 02-106 Warsaw, Poland;
| |
Collapse
|
26
|
Gao Y, Zhang J, Su Y, Wang H, Wang XX, Huang LP, Yu M, Ramakrishna S, Long YZ. Recent progress and challenges in solution blow spinning. MATERIALS HORIZONS 2021; 8:426-446. [PMID: 34821263 DOI: 10.1039/d0mh01096k] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In the past 30 years, researchers have worked towards reducing the size of ordinary three-dimensional (3D) materials into 1D or 2D materials in order to obtain new properties and applications of these low-dimensional systems. Among them, functional nanofibers with large surface area and high porosity have been widely studied and paid attention to. Because of the interesting properties of nanofibers, they find extensive application in filtration, wound dressings, composites, sensors, capacitors, nanogenerators, etc. Recently, a variety of nanofiber preparation methods such as melt blowing, electrospinning (e-spinning), centrifugal spinning and solution blow spinning (SBS) have been proposed. This paper includes a brief review of the fundamental principles of the preparation of nanofibers for solution jet spinning, the influence of experimental parameters, and the properties and potential applications of the solution-blown fibers. And the industrialization and challenges of SBS are also included.
Collapse
Affiliation(s)
- Yuan Gao
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Guidotti G, Soccio M, Gazzano M, Fusaro L, Boccafoschi F, Munari A, Lotti N. New thermoplastic elastomer triblock copolymer of PLLA for cardiovascular tissue engineering: Annealing as efficient tool to tailor the solid-state properties. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Zarei M, Samimi A, Khorram M, Abdi MM, Golestaneh SI. Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application. Int J Biol Macromol 2020; 168:175-186. [PMID: 33309657 DOI: 10.1016/j.ijbiomac.2020.12.031] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022]
Abstract
Conductive electrospun nanofiber scaffold containing conductive polypyrrole (PPy) polymer was fabricated to accelerate healing of damaged tissues. In order to prepare these scaffolds, various weight percentages of polypyrrole (5, 10, 15, 20, 25%) relative to the polymers combination (chitosan, collagen, and polyethylene oxide) were used. The fabricated composite scaffolds were characterized using chemical, morphological, physio-mechanical, and biological analyses including; FTIR spectroscopy, SEM, electrical conductivity, tensile test, in vitro degradation, MTT Assay and cell culture. The polypyrrole particles were perfectly dispersed inside the nanofibers, and the fibers average diameter were reducing by increasing the polypyrrole content in the composites. The presence of polypyrrole in fibers enhanced their conductivity up to 164.274 × 10-3 s/m which is in the range of semi-conductive and conductive polymers. MTT and SEM analyses displayed that nanofibers composing 10% polypyrrole possess better cell adhesion, growth and proliferation properties comparing to other compositions. Furthermore, the suitable mechanical properties of scaffolds ideally fitted them for different kinds of tissue applications including skin, nerve, heart muscle, etc. Therefore, these fabricated conductive nanofiber scaffolds are particularly appropriate for employing in body parts with electrical signals such as cardiovascular, heart muscles, or nerves.
Collapse
Affiliation(s)
- Maryam Zarei
- Chemical Engineering Department, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran
| | - Abdolreza Samimi
- Chemical Engineering Department, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran
| | - Mohammad Khorram
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 7134851154, Iran.
| | - Mahnaz M Abdi
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 7134851154, Iran
| | - Seyyed Iman Golestaneh
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 7134851154, Iran
| |
Collapse
|
29
|
Jeong YJ, Kim DS, Kim JY, Oyunbaatar NE, Shanmugasundaram A, Kim ES, Lee DW. On-stage bioreactor platform integrated with nano-patterned and gold-coated PDMS diaphragm for live cell stimulation and imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111355. [PMID: 33254975 DOI: 10.1016/j.msec.2020.111355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/03/2020] [Accepted: 08/05/2020] [Indexed: 12/26/2022]
Abstract
Over the years, several in-vitro biosensing platforms have been developed for enhancing the maturation of the cultured cells. However, most of the proposed platforms met with limited success due to its inability for live-cell imaging, complicated fabrication, and not being advantageous from an economic perspective due to a higher price. To overcome the drawbacks of the current state-of-the-art, herein, we developed a next-generation stage-top incubator (STI) incorporated with nano grooves patterned PDMS diaphragm (NGPPD). The proposed device consists of a miniatured STI, the NGPPD functional well plates, and a mechanical stimulator. A thin layer of gold (Au) is deposited on the NGPPD to enhanced myogenic differentiation, cell maturation, and cell-cell interactions. The nano grooves are integrated on the PDMS surface to align the cardiomyocytes in the grooved direction during the culture period. The cardiomyocytes cultivated on the Au-deposited NGPPD are stimulated topographically and mechanically during the cultivation period. The enhanced cardiomyocytes maturation cultured on the Au-deposited NGPPD is experimentally demonstrated using immunofluorescence staining and PCR analysis.
Collapse
Affiliation(s)
- Yun-Jin Jeong
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Su Kim
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong Yun Kim
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Nomin-Erdene Oyunbaatar
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Arunkumar Shanmugasundaram
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eung-Sam Kim
- Department of Biological Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Weon Lee
- MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
30
|
Dos Santos DM, Correa DS, Medeiros ES, Oliveira JE, Mattoso LHC. Advances in Functional Polymer Nanofibers: From Spinning Fabrication Techniques to Recent Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45673-45701. [PMID: 32937068 DOI: 10.1021/acsami.0c12410] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Functional polymeric micro-/nanofibers have emerged as promising materials for the construction of structures potentially useful in biomedical fields. Among all kinds of technologies to produce polymer fibers, spinning methods have gained considerable attention. Herein, we provide a recent review on advances in the design of micro- and nanofibrous platforms via spinning techniques for biomedical applications. Specifically, we emphasize electrospinning, solution blow spinning, centrifugal spinning, and microfluidic spinning approaches. We first introduce the fundamentals of these spinning methods and then highlight the potential biomedical applications of such micro- and nanostructured fibers for drug delivery, tissue engineering, regenerative medicine, disease modeling, and sensing/biosensing. Finally, we outline the current challenges and future perspectives of spinning techniques for the practical applications of polymer fibers in the biomedical field.
Collapse
Affiliation(s)
- Danilo M Dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
| | - Daniel S Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
| | - Eliton S Medeiros
- Materials and Biosystems Laboratory (LAMAB), Department of Materials Engineering (DEMAT), Federal University of Paraíba (UFPB), Cidade Universitária, 58.051-900, João Pessoa, Paraiba, Brazil
| | - Juliano E Oliveira
- Department of Engineering, Federal University of Lavras (UFLA), 37200-900, Lavras, Minas Gerais, Brazil
| | - Luiz H C Mattoso
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
| |
Collapse
|
31
|
Kopeć K, Wojasiński M, Ciach T. Superhydrophilic Polyurethane/Polydopamine Nanofibrous Materials Enhancing Cell Adhesion for Application in Tissue Engineering. Int J Mol Sci 2020; 21:ijms21186798. [PMID: 32947971 PMCID: PMC7555238 DOI: 10.3390/ijms21186798] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
The use of nanofibrous materials in the field of tissue engineering requires a fast, efficient, scalable production method and excellent wettability of the obtained materials, leading to enhanced cell adhesion. We proposed the production method of superhydrophilic nanofibrous materials in a two-step process. The process is designed to increase the wettability of resulting scaffolds and to enhance the rate of fibroblast cell adhesion. Polyurethane (PU) nanofibrous material was produced in the solution blow spinning process. Then the PU fibers surface was modified by dopamine polymerization in water solution. Two variants of the modification were examined: dopamine polymerization under atmospheric oxygen (V-I) and using sodium periodate as an oxidative agent (V-II). Hydrophobic PU materials after the treatment became highly hydrophilic, regardless of the modification variant. This effect originates from polydopamine (PDA) coating properties and nanoscale surface structures. The modification improved the mechanical properties of the materials. Materials obtained in the V-II process exhibit superior properties over those from the V-I, and require shorter modification time (less than 30 min). Modifications significantly improved fibroblasts adhesion. The cells spread after 2 h on both PDA-modified PU nanofibrous materials, which was not observed for unmodified PU. Proposed technology could be beneficial in applications like scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Kamil Kopeć
- Faculty of Chemical and Process Engineering, Biomedical Engineering Laboratory, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland; (M.W.); (T.C.)
- Correspondence: ; Tel.: +48-790-829-799
| | - Michał Wojasiński
- Faculty of Chemical and Process Engineering, Biomedical Engineering Laboratory, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland; (M.W.); (T.C.)
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Biomedical Engineering Laboratory, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland; (M.W.); (T.C.)
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
32
|
Dias FTG, Rempel SP, Agnol LD, Bianchi O. The main blow spun polymer systems: processing conditions and applications. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02173-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Zhang L, Liu L, Li X, Zhang X, Zhao J, Luo Y, Guo X, Zhao T. TRAP1 attenuates H9C2 myocardial cell injury induced by extracellular acidification via the inhibition of MPTP opening. Int J Mol Med 2020; 46:663-674. [PMID: 32626957 PMCID: PMC7307819 DOI: 10.3892/ijmm.2020.4631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular acidification leads to cardiac dysfunction in numerous diseases. Mitochondrial dysfunction plays an important role in this process. However, the mechanisms through which extracellular acidification induces mitochondrial dysfunction remain unclear. Tumor necrosis factor receptor-associated protein 1 (TRAP1) maintains mitochondrial function and cell viability in tumor and non-tumor cells. In the present study, extracellular acidification was found to induce H9C2 cell apoptosis, mitochondrial dysfunction and TRAP1 expression. The overexpression of TRAP1 attenuated H9C2 cell injury, while the silencing of TRAP1 exacerbated it. Moreover, mitochondrial permeability transition pore (MPTP) opening, which is associated with the mitochondrial apoptotic pathway and cell death, was also increased in acidic medium. The overexpression of TRAP1 inhibited MPTP opening, while the silencing of TRAP1 promoted it. The protective effect of TRAP1 on cardiomyocytes was abolished by the addition of a specific MPTP opening promoter. Similarly, a specific MPTP opening inhibitor reversed cell injury by silencing TRAP1. Taken together, the findings of the present study demonstrate that TRAP1 attenuates H9C2 cell injury induced by extracellular acidification by inhibiting MPTP opening.
Collapse
Affiliation(s)
- Lingxiao Zhang
- Department of Endocrinology, The Sixth Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Lerong Liu
- Department of Endocrinology, The Sixth Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xia Li
- Department of Endocrinology, The Sixth Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xing Zhang
- Department of Nephrology, The Sixth Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Jiangpei Zhao
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yuanyuan Luo
- Department of Endocrinology, The Sixth Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiangyu Guo
- Guangdong‑Hongkong‑Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Tongfeng Zhao
- Department of Endocrinology, The Sixth Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
34
|
Surface modified electrospun poly(lactic acid) fibrous scaffold with cellulose nanofibrils and Ag nanoparticles for ocular cell proliferation and antimicrobial application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110767. [PMID: 32279789 DOI: 10.1016/j.msec.2020.110767] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Corneal and conjunctival infections are common ocular diseases, sometimes, causing severe and refractory drug-resistant bacteria infections. Fungal keratitis is a leading cause for blindness and traditional medical treatment is unsatisfactory. Thus, there is an urge to develop a new therapy to deal with these cases. In this study, we developed surface modified poly(lactic acid) (PLA) electrospun nanofibrous membranes (EFMs) with silver nanoparticles (AgNPs) and cellulose nanofibrils (CNF) as scaffolds for cell proliferation and antimicrobial application. The AgNPs with a very low content (below 0.1%) were easily anchored on the surface of PLA EFMs by CNF, which endowed the scaffold with hydrophilicity and antibacterial ability. The in-vitro cell co-culture experiments showed that the scaffold had great biocompatibility to ocular epithelial cells, especially the scaffolds coated by CNF, which significantly proliferated cells. Furthermore, the antibacterial activity could reach >95% inhibiting Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) due to the implantation of AgNPs, and the antifungal activity was also outstanding with most of the Fusarium spp. inhibited. Hence, the developed PLA EFMs with CNF and AgNPs are promising ocular bandages to promote cell proliferation and kill infectious pathogens, exhibiting potential applications in ocular wound healing in the future.
Collapse
|
35
|
Photoluminescent functionalized carbon quantum dots loaded electroactive Silk fibroin/PLA nanofibrous bioactive scaffolds for cardiac tissue engineering. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111680. [PMID: 31810038 DOI: 10.1016/j.jphotobiol.2019.111680] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 01/27/2023]
Abstract
Tissue engineering and stem cell rehabilitation are the hopeful aspects that are being investigated for the management of Myocardial Infarction (MI); cardiac patches have been used to start myocardial rejuvenation. In this study, we engineered p-phenylenediamine surface functionalized (modif-CQD) into the Silk fibroin/PLA (SF/PLA) nanofibrous bioactive scaffolds with improved physico-chemical abilities, mechanical and cytocompatibility to cardiomyocytes. The micrograph results visualized the morphological improved spherical modif-CQD have been equivalently spread throughout the SF/PLA bioactive cardiac scaffolds. The fabricated CQD@SF/PLA nanofibrous bioactive scaffolds were highly porous with fully consistent pores; effectively improved young modulus and swelling asset for the suitability and effective implantation efficacy. The scaffolds were prepared with rat cardiomyocytes and cultured for up to 7 days, without electrical incentive. After 7 days of culture, the scaffold pores all over the construct volume were overflowing with cardiomyocytes. The metabolic activity and viability of the cardiomyocytes in CQD@SF/PLA scaffolds were significantly higher than cardiomyocytes in Silk fibroin /PLA scaffolds. The integration of CQD also influenced greatly and increases the expression of cardiac-marker genes. The results of the present investigations evidently recommended that well-organized cardiac nanofibrous scaffold with greater cardiac related mechanical abilities and biocompatibilities for cardiac tissue engineering and nursing care applications.
Collapse
|
36
|
Jin G, He R, Sha B, Li W, Qing H, Teng R, Xu F. Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:995-1005. [DOI: 10.1016/j.msec.2018.06.065] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/07/2018] [Accepted: 06/28/2018] [Indexed: 01/24/2023]
|
37
|
Mantakaki A, Fakoya AOJ, Sharifpanah F. Recent advances and challenges on application of tissue engineering for treatment of congenital heart disease. PeerJ 2018; 6:e5805. [PMID: 30386701 PMCID: PMC6204240 DOI: 10.7717/peerj.5805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
Congenital heart disease (CHD) affects a considerable number of children and adults worldwide. This implicates not only developmental disorders, high mortality, and reduced quality of life but also, high costs for the healthcare systems. CHD refers to a variety of heart and vascular malformations which could be very challenging to reconstruct the malformed region surgically, especially when the patient is an infant or a child. Advanced technology and research have offered a better mechanistic insight on the impact of CHD in the heart and vascular system of infants, children, and adults and identified potential therapeutic solutions. Many artificial materials and devices have been used for cardiovascular surgery. Surgeons and the medical industry created and evolved the ball valves to the carbon-based leaflet valves and introduced bioprosthesis as an alternative. However, with research further progressing, contracting tissue has been developed in laboratories and tissue engineering (TE) could represent a revolutionary answer for CHD surgery. Development of engineered tissue for cardiac and aortic reconstruction for developing bodies of infants and children can be very challenging. Nevertheless, using acellular scaffolds, allograft, xenografts, and autografts is already very common. Seeding of cells on surface and within scaffold is a key challenging factor for use of the above. The use of different types of stem cells has been investigated and proven to be suitable for tissue engineering. They are the most promising source of cells for heart reconstruction in a developing body, even for adults. Some stem cell types are more effective than others, with some disadvantages which may be eliminated in the future.
Collapse
Affiliation(s)
| | | | - Fatemeh Sharifpanah
- Department of Physiology, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| |
Collapse
|
38
|
Walsh KB, Li H, Koley G. Graphene alters the properties of voltage-gated Ca
2+
channels in rat cardiomyocytes. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aad0cd] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Fakoya AOJ, Otohinoyi DA, Yusuf J. Current Trends in Biomaterial Utilization for Cardiopulmonary System Regeneration. Stem Cells Int 2018; 2018:3123961. [PMID: 29853910 PMCID: PMC5949153 DOI: 10.1155/2018/3123961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/15/2017] [Accepted: 03/01/2018] [Indexed: 12/28/2022] Open
Abstract
The cardiopulmonary system is made up of the heart and the lungs, with the core function of one complementing the other. The unimpeded and optimal cycling of blood between these two systems is pivotal to the overall function of the entire human body. Although the function of the cardiopulmonary system appears uncomplicated, the tissues that make up this system are undoubtedly complex. Hence, damage to this system is undesirable as its capacity to self-regenerate is quite limited. The surge in the incidence and prevalence of cardiopulmonary diseases has reached a critical state for a top-notch response as it currently tops the mortality table. Several therapies currently being utilized can only sustain chronically ailing patients for a short period while they are awaiting a possible transplant, which is also not devoid of complications. Regenerative therapeutic techniques now appear to be a potential approach to solve this conundrum posed by these poorly self-regenerating tissues. Stem cell therapy alone appears not to be sufficient to provide the desired tissue regeneration and hence the drive for biomaterials that can support its transplantation and translation, providing not only physical support to seeded cells but also chemical and physiological cues to the cells to facilitate tissue regeneration. The cardiac and pulmonary systems, although literarily seen as just being functionally and spatially cooperative, as shown by their diverse and dissimilar adult cellular and tissue composition has been proven to share some common embryological codevelopment. However, necessitating their consideration for separate review is the immense adult architectural difference in these systems. This review also looks at details on new biological and synthetic biomaterials, tissue engineering, nanotechnology, and organ decellularization for cardiopulmonary regenerative therapies.
Collapse
Affiliation(s)
| | | | - Joshua Yusuf
- All Saints University School of Medicine, Roseau, Dominica
- All Saints University School of Medicine, Kingstown, Saint Vincent and the Grenadines
| |
Collapse
|
40
|
Becker M, Maring JA, Schneider M, Herrera Martin AX, Seifert M, Klein O, Braun T, Falk V, Stamm C. Towards a Novel Patch Material for Cardiac Applications: Tissue-Specific Extracellular Matrix Introduces Essential Key Features to Decellularized Amniotic Membrane. Int J Mol Sci 2018; 19:E1032. [PMID: 29596384 PMCID: PMC5979550 DOI: 10.3390/ijms19041032] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/18/2022] Open
Abstract
There is a growing need for scaffold material with tissue-specific bioactivity for use in regenerative medicine, tissue engineering, and for surgical repair of structural defects. We developed a novel composite biomaterial by processing human cardiac extracellular matrix (ECM) into a hydrogel and combining it with cell-free amniotic membrane via a dry-coating procedure. Cardiac biocompatibility and immunogenicity were tested in vitro using human cardiac fibroblasts, epicardial progenitor cells, murine HL-1 cells, and human immune cells derived from buffy coat. Processing of the ECM preserved important matrix proteins as demonstrated by mass spectrometry. ECM coating did not alter the mechanical characteristics of decellularized amniotic membrane but did cause a clear increase in adhesion capacity, cell proliferation and viability. Activated monocytes secreted less pro-inflammatory cytokines, and both macrophage polarization towards the pro-inflammatory M1 type and T cell proliferation were prevented. We conclude that the incorporation of human cardiac ECM hydrogel shifts and enhances the bioactivity of decellularized amniotic membrane, facilitating its use in future cardiac applications.
Collapse
Affiliation(s)
- Matthias Becker
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.
| | - Janita A Maring
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.
| | - Maria Schneider
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.
| | - Aarón X Herrera Martin
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, 13353 Berlin, Germany.
| | - Martina Seifert
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.
| | - Oliver Klein
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.
| | - Thorsten Braun
- Department of Obstetrics and Gynecology, Charite Medical University, 13353 Berlin, Germany.
| | - Volkmar Falk
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 13316 Berlin, Germany.
- Deutsches Herzzentrum Berlin (DHZB), Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Christof Stamm
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 13316 Berlin, Germany.
- Deutsches Herzzentrum Berlin (DHZB), Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
41
|
Jun I, Kim K, Chung YW, Shin HJ, Han HS, Edwards JR, Ok MR, Kim YC, Seok HK, Shin H, Jeon H. Effect of spatial arrangement and structure of hierarchically patterned fibrous scaffolds generated by a femtosecond laser on cardiomyoblast behavior. J Biomed Mater Res A 2018; 106:1732-1742. [DOI: 10.1002/jbm.a.36374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Indong Jun
- Center for Biomaterials; Korea Institute of Science and Technology (KIST); Seoul 02792 Republic of Korea
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS); University of Oxford; Oxford OX3 7LD United Kingdom
| | - Kyeongsoo Kim
- Center for Biomaterials; Korea Institute of Science and Technology (KIST); Seoul 02792 Republic of Korea
| | - Yong-Woo Chung
- Center for Biomaterials; Korea Institute of Science and Technology (KIST); Seoul 02792 Republic of Korea
| | - Hyeok Jun Shin
- Department of Bioengineering; Hanyang University; Seoul 04763 Republic of Korea
| | - Hyung-Seop Han
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS); University of Oxford; Oxford OX3 7LD United Kingdom
| | - James R. Edwards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS); University of Oxford; Oxford OX3 7LD United Kingdom
| | - Myoung-Ryul Ok
- Center for Biomaterials; Korea Institute of Science and Technology (KIST); Seoul 02792 Republic of Korea
| | - Yu-Chan Kim
- Center for Biomaterials; Korea Institute of Science and Technology (KIST); Seoul 02792 Republic of Korea
- Division of Bio-Medical Science and Technology; KIST School, Korea University of Science and Technology; Seoul 02792 Republic of Korea
| | - Hyun-Kwang Seok
- Center for Biomaterials; Korea Institute of Science and Technology (KIST); Seoul 02792 Republic of Korea
- Division of Bio-Medical Science and Technology; KIST School, Korea University of Science and Technology; Seoul 02792 Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering; Hanyang University; Seoul 04763 Republic of Korea
| | - Hojeong Jeon
- Center for Biomaterials; Korea Institute of Science and Technology (KIST); Seoul 02792 Republic of Korea
- Division of Bio-Medical Science and Technology; KIST School, Korea University of Science and Technology; Seoul 02792 Republic of Korea
| |
Collapse
|
42
|
Ge M, Ge K, Gao F, Yan W, Liu H, Xue L, Jin Y, Ma H, Zhang J. Biomimetic mineralized strontium-doped hydroxyapatite on porous poly(l-lactic acid) scaffolds for bone defect repair. Int J Nanomedicine 2018; 13:1707-1721. [PMID: 29599615 PMCID: PMC5866725 DOI: 10.2147/ijn.s154605] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction poly(l-lactic acid) (PLLA) has been approved for clinical use by the US Food and Drug Administration (FDA); however, their stronger hydrophobicity and relatively fast degradation rate restricted their widespread application. In consideration of the composition of bone, the inorganic–organic composite has a great application prospect in bone tissue engineering. Many inorganic–organic composite scaffolds were prepared by directly mixing the active ingredient, but this method is uncontrolled and will lead to lack of homogeneity in the polymer matrix. Strontium (Sr) is an admirable addition to improve the bioactivity and bone induction of hydroxyapatite (HA). To our knowledge, the application of biomimetic mineralized strontium-doped hydroxyapatite on porous poly(l-lactic acid) (Sr-HA/PLLA) scaffolds for bone defect repair has never been reported till date. Biomimetic mineralized Sr-HA/PLLA porous scaffold was developed in this study. The results indicated that the Sr-HA/PLLA porous scaffold could improve the surface hydrophobicity, reduce the acidic environment of the degradation, and enhance the osteoinductivity; moreover, the ability of protein adsorption and the modulus of compression were increased. The results also clearly showed the effectiveness of the Sr-HA/PLLA porous scaffold in promoting cell adhesion, proliferation, and alkaline phosphatase (ALP) activity. The micro computed tomography (micro-CT) results showed that more new bones were formed by Sr-HA/PLLA porous scaffold treatment. The histological results confirmed the osteoinductivity of the Sr-HA/PLLA porous scaffold. The results suggested that the Sr-HA/PLLA porous scaffold has a good application prospect in bone tissue engineering in the future. Purpose The purpose of this study was to promote the bone repair. Materials and methods Surgical operation of rabbits was carried out in this study. Results The results showed that formation of a large number of new bones by the Sr-HA/PLLA porous scaffold treatment is possible. Conclusion Biomimetic mineralized Sr-HA/PLLA porous scaffold could effectively promote the restoration of bone defects in vivo.
Collapse
Affiliation(s)
- Min Ge
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| | - Kun Ge
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Department of Science and Technology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Fei Gao
- Department of Orthopedics, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Weixiao Yan
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| | - Huifang Liu
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| | - Li Xue
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China
| | - Yi Jin
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| | - Haiyun Ma
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China
| | - Jinchao Zhang
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| |
Collapse
|
43
|
Afanasiev SA, Muslimova EF, Nashchekina YA, Nikonov PO, Rogovskaya YV, Bolbasov EN, Tverdokhlebov SI. Peculiarities of Cell Seeding on Polylactic Acid-Based Scaffolds Fabricated Using Electrospinning and Solution Blow Spinning Technologies. Bull Exp Biol Med 2017; 164:281-284. [DOI: 10.1007/s10517-017-3973-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 01/19/2023]
|
44
|
Wang W, Zhong D, Lin Y, Fan R, Hou Z, Cao X, Ren Y. Responsiveness of voltage-gated calcium channels in SH-SY5Y human neuroblastoma cells on micropillar substrates. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:125-144. [PMID: 29125390 DOI: 10.1080/09205063.2017.1403714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, poly-L-lactic acid micropillar substrates were fabricated to evaluate the influence of topographic substrates on cell morphological and functional characteristics, such as spreading area, voltage-gated calcium channels (VGCCs) and membrane potential. The proliferation, spreading area, perimeter and circularity of SH-SY5Y cells interfaced with different substrates were first investigated. In addition, the cytoskeleton and focal adhesion of a cell as important manifestations of cell morphology were analyzed by immunofluorescence. VGCC responsiveness was evaluated by measuring the dynamic changes in intracellular Ca2+ evoked by 50 mM extracellular K+. To determine study whether the differences in VGCC responsiveness were caused by the differences in VGCC gene expression, the expression of N/L- type VGCCs was determined by qPCR and fluorescence staining. Notably, improved measurement of the membrane potential with potentiometric fluorescent dye TMRM was applied to determine the membrane potential of SH-SY5Y cells. Results indicated that the SH-SY5Y cells were deformed significantly to adapt to the substrates; however, no distinct effect on the proliferative ability of SH-SY5Y cells was observed. The micropillar substrates markedly influenced VGCC responsiveness, which correlated strongly with cell spreading but not with VGCC expression. The resting membrane potential of SH-SY5Y cells cultured on different substrates also changed, but no effect on responsiveness of VGCC was observed. These results suggest that the effect of the micropillar substrates on cell VGCC responsiveness may be attributed to changes in the functionality of the ion channel itself. Thus, topographic substrates can be used to engineer cell functionality in cell-based drug screening.
Collapse
Affiliation(s)
- Wenxu Wang
- a Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , People's Republic of China
| | - Donghuo Zhong
- a Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , People's Republic of China
| | - Yu Lin
- a Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , People's Republic of China
| | - Rong Fan
- a Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , People's Republic of China
| | - Zhengjun Hou
- a Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , People's Republic of China
| | - Xiumei Cao
- a Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , People's Republic of China
| | - Yubin Ren
- a Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , People's Republic of China
| |
Collapse
|