1
|
Marasli C, Katifelis H, Gazouli M, Lagopati N. Nano-Based Approaches in Surface Modifications of Dental Implants: A Literature Review. Molecules 2024; 29:3061. [PMID: 38999015 PMCID: PMC11243276 DOI: 10.3390/molecules29133061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Rehabilitation of fully or partially edentulous patients with dental implants represents one of the most frequently used surgical procedures. The work of Branemark, who observed that a piece of titanium embedded in rabbit bone became firmly attached and difficult to remove, introduced the concept of osseointegration and revolutionized modern dentistry. Since then, an ever-growing need for improved implant materials towards enhanced material-tissue integration has emerged. There is a strong belief that nanoscale materials will produce a superior generation of implants with high efficiency, low cost, and high volume. The aim of this review is to explore the contribution of nanomaterials in implantology. A variety of nanomaterials have been proposed as potential candidates for implant surface customization. They can have inherent antibacterial properties, provide enhanced conditions for osseointegration, or act as reservoirs for biomolecules and drugs. Titania nanotubes alone or in combination with biological agents or drugs are used for enhanced tissue integration in dental implants. Regarding immunomodulation and in order to avoid implant rejection, titania nanotubes, graphene, and biopolymers have successfully been utilized, sometimes loaded with anti-inflammatory agents and extracellular vesicles. Peri-implantitis prevention can be achieved through the inherent antibacterial properties of metal nanoparticles and chitosan or hybrid coatings bearing antibiotic substances. For improved corrosion resistance various materials have been explored. However, even though these modifications have shown promising results, future research is necessary to assess their clinical behavior in humans and proceed to widespread commercialization.
Collapse
Affiliation(s)
- Chrysa Marasli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece (M.G.)
| | - Hector Katifelis
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece (M.G.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece (M.G.)
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece (M.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
2
|
Krishna SBN, Jakmunee J, Mishra YK, Prakash J. ZnO based 0-3D diverse nano-architectures, films and coatings for biomedical applications. J Mater Chem B 2024; 12:2950-2984. [PMID: 38426529 DOI: 10.1039/d4tb00184b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Thin-film nano-architecting is a promising approach that controls the properties of nanoscale surfaces to increase their interdisciplinary applications in a variety of fields. In this context, zinc oxide (ZnO)-based various nano-architectures (0-3D) such as quantum dots, nanorods/nanotubes, nanothin films, tetrapods, nanoflowers, hollow structures, etc. have been extensively researched by the scientific community in the past decade. Owing to its unique surface charge transport properties, optoelectronic properties and reported biomedical applications, ZnO has been considered as one of the most important futuristic bio-nanomaterials. This review is focused on the design/synthesis and engineering of 0-3D nano-architecture ZnO-based thin films and coatings with tunable characteristics for multifunctional biomedical applications. Although ZnO has been extensively researched, ZnO thin films composed of 0-3D nanoarchitectures with promising thin film device bio-nanotechnology applications have rarely been reviewed. The current review focuses on important details about the technologies used to make ZnO-based thin films, as well as the customization of properties related to bioactivities, characterization, and device fabrication for modern biomedical uses that are relevant. It features biosensing, tissue engineering/wound healing, antibacterial, antiviral, and anticancer activity, as well as biomedical diagnosis and therapy with an emphasis on a better understanding of the mechanisms of action. Eventually, key issues, experimental parameters and factors, open challenges, etc. in thin film device fabrications and applications, and future prospects will be discussed, followed by a summary and conclusion.
Collapse
Affiliation(s)
- Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban-4000, South Africa
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban-4000, South Africa
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur 177005, (H.P.), India.
| |
Collapse
|
3
|
Hakim LK, Yari A, Nikparto N, Mehraban SH, Cheperli S, Asadi A, Darehdor AA, Nezaminia S, Dortaj D, Nazari Y, Dehghan M, Hojjat P, Mohajeri M, Hasani Jebelli MS. The current applications of nano and biomaterials in drug delivery of dental implant. BMC Oral Health 2024; 24:126. [PMID: 38267933 PMCID: PMC10809618 DOI: 10.1186/s12903-024-03911-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND AND AIM Dental implantology has revolutionized oral rehabilitation, offering a sophisticated solution for restoring missing teeth. Despite advancements, issues like infection, inflammation, and osseointegration persist. Nano and biomaterials, with their unique properties, present promising opportunities for enhancing dental implant therapies by improving drug delivery systems. This review discussed the current applications of nano and biomaterials in drug delivery for dental implants. METHOD A literature review examined recent studies and advancements in nano and biomaterials for drug delivery in dental implantology. Various materials, including nanoparticles, biocompatible polymers, and bioactive coatings, were reviewed for their efficacy in controlled drug release, antimicrobial properties, and promotion of osseointegration. RESULTS Nano and biomaterials exhibit considerable potential in improving drug delivery for dental implants. Nanostructured drug carriers demonstrate enhanced therapeutic efficacy, sustained release profiles, and improved biocompatibility. Furthermore, bioactive coatings contribute to better osseointegration and reduced risks of infections. CONCLUSION Integrating current nano and biomaterials in drug delivery for dental implants holds promise for advancing clinical outcomes. Enhanced drug delivery systems can mitigate complications associated with dental implant procedures, offering improved infection control, reduced inflammation, and optimized osseointegration.
Collapse
Affiliation(s)
| | - Amir Yari
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kashan University of Medical Sciences, Kashan, Iran
| | - Nariman Nikparto
- Oral and Maxillofacial Surgeon (OMFS), Department of Oral and Maxillofacial Surgery, Masters in Public Health (MPH), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Hasani Mehraban
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amirali Asadi
- Oral and Maxillofacial Surgeon, Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sayna Nezaminia
- Oral and Maxillofacial Surgery Resident, Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Dorara Dortaj
- Operative Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasin Nazari
- General Dentist, Masters in Engineering, Tehran, Iran
| | - Mohamad Dehghan
- Specialist in Prosthodontics, Independent Researcher, Tehran, Iran
| | - Pardis Hojjat
- Department of Periodontics, Faculty of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahsa Mohajeri
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
4
|
Natsheh IY, Elkhader MT, Al-Bakheit AA, Alsaleh MM, El-Eswed BI, Hosein NF, Albadawi DK. Inhibition of Acinetobacter baumannii Biofilm Formation Using Different Treatments of Silica Nanoparticles. Antibiotics (Basel) 2023; 12:1365. [PMID: 37760662 PMCID: PMC10525453 DOI: 10.3390/antibiotics12091365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
There exists a multitude of pathogens that pose a threat to human and public healthcare, collectively referred to as ESKAPE pathogens. These pathogens are capable of producing biofilm, which proves to be quite resistant to elimination. Strains of A. baumannii, identified by the "A" in the acronym ESKAPE, exhibit significant resistance to amoxicillin in vivo due to their ability to form biofilm. This study aims to inhibit bacterial biofilm formation, evaluate novel silica nanoparticles' effectiveness in inhibiting biofilm, and compare their effectiveness. Amoxicillin was utilized as a positive control, with a concentration exceeding twice that when combined with silica NPs. Treatments included pure silica NPs, silica NPs modified with copper oxide (CuO.SiO2), sodium hydroxide (NaOH.SiO2), and phosphoric acid (H3PO4.SiO2). The characterization of NPs was conducted using scanning electron microscopy (SEM), while safety testing against normal fibroblast cells was employed by MTT assay. The microtiter plate biofilm formation assay was utilized to construct biofilm, with evaluations conducted using three broth media types: brain heart infusion (BHI) with 2% glucose and 2% sucrose, Loria broth (LB) with and without glucose and sucrose, and Dulbecco's modified eagle medium/nutrient (DMEN/M). Concentrations ranging from 1.0 mg/mL to 0.06 µg/mL were tested using a microdilution assay. Results from SEM showed that pure silica NPs were mesoporous, but in the amorphous shape of the CuO and NaOH treatments, these pores were disrupted, while H3PO4 was composed of sheets. Silica NPs were able to target Acinetobacter biofilms without harming normal cells, with viability rates ranging from 61-73%. The best biofilm formation was achieved using a BHI medium with sugar supplementation, with an absorbance value of 0.35. Biofilms treated with 5.0 mg/mL of amoxicillin as a positive control alongside 1.0 mg/mL of each of the four silica treatments in isolation, resulting in the inhibition of absorbance values of 0.04, 0.13, 0.07, 0.09, and 0.08, for SiO2, CuO.SiO2, NaOH.SiO2 and H3PO4.SiO2, respectively. When amoxicillin was combined, inhibition increased from 0.3 to 0.04; NaOH with amoxicillin resulted in the lowest minimum biofilm inhibitory concentration (MBIC), 0.25 µg/mL, compared to all treatments and amoxicillin, whereas pure silica and composite had the highest MBIC, even when combined with amoxicillin, compared to all treatments, but performed better than that of the amoxicillin alone which gave the MBIC at 625 µg/mL. The absorbance values of MBIC of each treatment showed no significant differences in relation to amoxicillin absorbance value and relation to each other. Our study showed that smaller amoxicillin doses combined with the novel silica nanoparticles may reduce toxic side effects and inhibit biofilm formation, making them viable alternatives to high-concentration dosages. Further investigation is needed to evaluate in vivo activity.
Collapse
Affiliation(s)
- Iyad Y. Natsheh
- Department of Medical Applied Sciences, Zarqa University College, Al-Balqa Applied University, Salt 19117, Jordan; (I.Y.N.); (M.T.E.); (N.F.H.); (D.K.A.)
| | - Mallak T. Elkhader
- Department of Medical Applied Sciences, Zarqa University College, Al-Balqa Applied University, Salt 19117, Jordan; (I.Y.N.); (M.T.E.); (N.F.H.); (D.K.A.)
| | - Ala’a A. Al-Bakheit
- Department of Nutrition and Food Processing, Faculty of Agricultural Technology, Al-Balqa Applied University, Salt 19117, Jordan;
| | - Majd M. Alsaleh
- Department of Medical Applied Sciences, Zarqa University College, Al-Balqa Applied University, Salt 19117, Jordan; (I.Y.N.); (M.T.E.); (N.F.H.); (D.K.A.)
- Department of Biology, School of Science, University of Jordan, Amman 11942, Jordan
| | - Bassam I. El-Eswed
- Department of Basic Science, Zarqa University College, Al-Balqa Applied University, Salt 19117, Jordan;
| | - Nedaa F. Hosein
- Department of Medical Applied Sciences, Zarqa University College, Al-Balqa Applied University, Salt 19117, Jordan; (I.Y.N.); (M.T.E.); (N.F.H.); (D.K.A.)
| | - Duaa K. Albadawi
- Department of Medical Applied Sciences, Zarqa University College, Al-Balqa Applied University, Salt 19117, Jordan; (I.Y.N.); (M.T.E.); (N.F.H.); (D.K.A.)
| |
Collapse
|
5
|
Shi Y, Xu H, He Y, Tang X, Tian H, Liang J. Antibacterial Mesoporous Silica Granules Containing a Stable N-Halamine Moiety. ACS OMEGA 2023; 8:21410-21417. [PMID: 37360464 PMCID: PMC10286104 DOI: 10.1021/acsomega.2c04079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/18/2022] [Indexed: 06/28/2023]
Abstract
High-efficacy and regenerable antimicrobial silica granules were prepared via oxa-Michael addition between poly(vinyl alcohol) (PVA) and methylene-bis-acrylamide (MBA) under the catalysis of sodium carbonate in an aqueous solution. Diluted water glass was added, and the solution pH was adjusted to about 7 to precipitate PVA-MBA modified mesoporous silica (PVA-MBA@SiO2) granules. N-Halamine-grafted silica (PVA-MBA-Cl@SiO2) granules were achieved by adding diluted sodium hypochlorite solution. It was found that a BET surface area of about 380 m2 g-1 for PVA-MBA@SiO2 granules and a Cl+% of about 3.80% for PVA-MBA-Cl@SiO2 granules could be achieved under optimized preparation conditions. Antimicrobial tests showed that the as-prepared antimicrobial silica granules were capable of about a 6-log inactivation of Staphylococcus aureus and Escherichia coli O157:H7 within 10 min of contact. Furthermore, the as-prepared antimicrobial silica granules can be recycled many times due to the excellent regenerability of their N-halamine functional groups and can be saved for a long time. With the above-mentioned advantages, the granules have potential applications in water disinfection.
Collapse
|
6
|
Liu Y, Dong T, Chen Y, Sun N, Liu Q, Huang Z, Yang Y, Cheng H, Yue K. Biodegradable and Cytocompatible Hydrogel Coating with Antibacterial Activity for the Prevention of Implant-Associated Infection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11507-11519. [PMID: 36852669 DOI: 10.1021/acsami.2c20401] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Implant-associated infection (IAI) caused by pathogens colonizing on the implant surface is a serious issue in the trauma-orthopedic surgery, which often leads to implant failure. The complications of IAI bring a big threat to the clinical practice of implants, accompanied by significant economic cost and long hospitalization time. In this study, we propose an antibiotics-free strategy to address IAI-related challenges by using a biodegradable and cytocompatible hydrogel coating. To achieve this, a novel hydrogel system was developed to combine the synergistic effects of good cell affinity and antibacterial properties. The hydrogel material was prepared by modifying a photocross-linkable gelatin-based polymer (GelMA) with cationic quaternary ammonium salt (QAS) groups via a mild and simple synthesis procedure. By engineering the length of the hydrophobic carbon chain on the QAS group and the degree of functionalization, the resulting GelMA-octylQAS hydrogel exhibited an integration of good mechanical properties, biodegradability, excellent bactericidal activity against various types of bacteria, and high cytocompatibility with mammalian cells. When coated onto the implant via the in situ cross-linking procedure, our hydrogel demonstrated superior antimicrobial ability in the infective model of femoral fracture of rats. Our results suggest that the GelMA-octylQAS hydrogel might provide a promising platform for preventing and treating IAI.
Collapse
Affiliation(s)
- Yanhui Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Ting Dong
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Yuhang Chen
- Department of Orthopedic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong 528000, China
- Department of Orthopaedic Surgery, Division of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Na Sun
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Qi Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhenkai Huang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Yafeng Yang
- Department of Orthopedics, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
| | - Hao Cheng
- Department of Orthopaedic Surgery, Division of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Kan Yue
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
7
|
Pushpalatha C, Suresh J, Gayathri VS, Sowmya SV, Augustine D, Alamoudi A, Zidane B, Mohammad Albar NH, Patil S. Zinc Oxide Nanoparticles: A Review on Its Applications in Dentistry. Front Bioeng Biotechnol 2022; 10:917990. [PMID: 35662838 PMCID: PMC9160914 DOI: 10.3389/fbioe.2022.917990] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Nanotechnology in modern material science is a research hot spot due to its ability to provide novel applications in the field of dentistry. Zinc Oxide Nanoparticles (ZnO NPs) are metal oxide nanoparticles that open new opportunities for biomedical applications that range from diagnosis to treatment. The domains of these nanoparticles are wide and diverse and include the effects brought about due to the anti-microbial, regenerative, and mechanical properties. The applications include enhancing the anti-bacterial properties of existing restorative materials, as an anti-sensitivity agent in toothpastes, as an anti-microbial and anti-fungal agent against pathogenic oral microflora, as a dental implant coating, to improve the anti-fungal effect of denture bases in rehabilitative dentistry, remineralizing cervical dentinal lesions, increasing the stability of local drug delivery agents and other applications.
Collapse
Affiliation(s)
- C Pushpalatha
- Department of Pedodontics and Preventive Dentistry, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Jithya Suresh
- Department of Pedodontics and Preventive Dentistry, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - VS Gayathri
- Department of Pedodontics and Preventive Dentistry, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - SV Sowmya
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Dominic Augustine
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Ahmed Alamoudi
- Oral Biology Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bassam Zidane
- Restorative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Shwajra Campus, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
8
|
Wang Z, Wang X, Wang Y, Zhu Y, Liu X, Zhou Q. NanoZnO-modified titanium implants for enhanced anti-bacterial activity, osteogenesis and corrosion resistance. J Nanobiotechnology 2021; 19:353. [PMID: 34717648 PMCID: PMC8557588 DOI: 10.1186/s12951-021-01099-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023] Open
Abstract
Titanium (Ti) implants are widely used in dentistry and orthopedics owing to their excellent corrosion resistance, biocompatibility, and mechanical properties, which have gained increasing attention from the viewpoints of fundamental research and practical applications. Also, numerous studies have been carried out to fine-tune the micro/nanostructures of Ti and/or incorporate chemical elements to improve overall implant performance. Zinc oxide nanoparticles (nano-ZnO) are well-known for their good antibacterial properties and low cytotoxicity along with their ability to synergize with a variety of substances, which have received increasingly widespread attention as biomodification materials for implants. In this review, we summarize recent research progress on nano-ZnO modified Ti-implants. Their preparation methods of nano-ZnO modified Ti-implants are introduced, followed by a further presentation of the antibacterial, osteogenic, and anti-corrosion properties of these implants. Finally, challenges and future opportunities for nano-ZnO modified Ti-implants are proposed.
Collapse
Affiliation(s)
- Zheng Wang
- Institute for Translational Medicine, Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Xiaojing Wang
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yingruo Wang
- Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yanli Zhu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Xinqiang Liu
- Institute for Translational Medicine, Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
| | - Qihui Zhou
- Institute for Translational Medicine, Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
9
|
Zhang Y, Gulati K, Li Z, Di P, Liu Y. Dental Implant Nano-Engineering: Advances, Limitations and Future Directions. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2489. [PMID: 34684930 PMCID: PMC8538755 DOI: 10.3390/nano11102489] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 12/27/2022]
Abstract
Titanium (Ti) and its alloys offer favorable biocompatibility, mechanical properties and corrosion resistance, which makes them an ideal material choice for dental implants. However, the long-term success of Ti-based dental implants may be challenged due to implant-related infections and inadequate osseointegration. With the development of nanotechnology, nanoscale modifications and the application of nanomaterials have become key areas of focus for research on dental implants. Surface modifications and the use of various coatings, as well as the development of the controlled release of antibiotics or proteins, have improved the osseointegration and soft-tissue integration of dental implants, as well as their antibacterial and immunomodulatory functions. This review introduces recent nano-engineering technologies and materials used in topographical modifications and surface coatings of Ti-based dental implants. These advances are discussed and detailed, including an evaluation of the evidence of their biocompatibility, toxicity, antimicrobial activities and in-vivo performances. The comparison between these attempts at nano-engineering reveals that there are still research gaps that must be addressed towards their clinical translation. For instance, customized three-dimensional printing technology and stimuli-responsive, multi-functional and time-programmable implant surfaces holds great promise to advance this field. Furthermore, long-term in vivo studies under physiological conditions are required to ensure the clinical application of nanomaterial-modified dental implants.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China;
| | - Karan Gulati
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia;
| | - Ze Li
- School of Stomatology, Chongqing Medical University, Chongqing 400016, China;
| | - Ping Di
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia;
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
10
|
Sudjaipraparat N, Suteewong T, Tangboriboonrat P. Facile Control of Structured ZnO Polymeric Nanoparticles through Miniemulsion Polymerization: Kinetic and UV Shielding Effects. Polymers (Basel) 2021; 13:polym13152526. [PMID: 34372128 PMCID: PMC8347249 DOI: 10.3390/polym13152526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Zinc oxide polymeric nanoparticles (ZPPs) of poly (styrene-co-acrylic acid) P(St/AA), containing oleic acid modified zinc oxide nanoparticles (OA-ZnO NPs), were synthesized via miniemulsion polymerization. By simply adjusting the quantity of reactants, i.e., sodium dodecyl sulfate (SDS) surfactant, potassium persulfate (KPS) initiator, and divinyl benzene (DVB) crosslinking agent, the location of ZnO NPs were altered from the inner (core) to the outer (shell), leading to core-shell and Pickering-like morphologies, respectively. The Pickering-like ZPPs were obtained when using SDS at below or equal to the critical micelle concentration (CMC). At above the CMC, the complete encapsulation of OA-ZnO NPs within the ZPPs depicted a kinetically controlled morphology. The transition to Pickering-like ZPPs also occurred when reducing the KPS from 2 to 0.5-1%. Whereas the DVB accelerated the polymerization rate and viscosity in the growing monomer-swollen nanodroplets and, hence, contributed to kinetic parameters on particle morphology, i.e., an increase in the DVB content increased the rate of polymerization. A hollow structure was obtained by replacing styrene with the more hydrophilic monomer, i.e., methyl methacrylate. All ZPPs-incorporated poly (vinyl alcohol) (PVA) films greatly improved shielding performance over the UV region and were relatively transparent on a white paper background. Due to the large number of ZnO NPs in the central region and, hence, the ease of electron transfer, composite films containing core-shell ZPPs possessed the highest UV blocking ability. ZnO NPs in the outer part of the hollow and Pickering-like ZPPs, on the other hand, facilitated the multiple light scattering according to the difference of refractive indices between the inorganic shell and organic/air core. These results confirm the advantage of structured ZPPs and their potential use as transparent UV shielding fillers.
Collapse
Affiliation(s)
- Narissara Sudjaipraparat
- Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand;
| | - Teeraporn Suteewong
- Department of Chemical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
- Correspondence: (T.S.); or (P.T.)
| | - Pramuan Tangboriboonrat
- Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand;
- Correspondence: (T.S.); or (P.T.)
| |
Collapse
|
11
|
Moradpoor H, Safaei M, Mozaffari HR, Sharifi R, Imani MM, Golshah A, Bashardoust N. An overview of recent progress in dental applications of zinc oxide nanoparticles. RSC Adv 2021; 11:21189-21206. [PMID: 35479373 PMCID: PMC9034121 DOI: 10.1039/d0ra10789a] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Nanotechnology is an emerging field of science, engineering, and technology concerning the materials in nanoscale dimensions. Several materials are used in dentistry, which can be modified by applying nanotechnology. Nanotechnology has various applications in dentistry to achieve reliable treatment outcomes. The most common nanometals used in dental materials are gold, silver, copper oxide, magnesium oxide, iron oxide, cerium oxide, aluminum oxide, titanium dioxide, and zinc oxide (ZnO). ZnO nanoparticles (NPs), with their unparalleled properties such as high selectivity, enhanced cytotoxicity, biocompatibility, and easy synthesis as important materials were utilized in the field of dentistry. With this background, the present review aimed to discuss the current progress and gain an insight into applications of ZnO NPs in nanodentistry, including restorative, endodontic, implantology, periodontal, prosthodontics, and orthodontics fields.
Collapse
Affiliation(s)
- Hedaiat Moradpoor
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mohsen Safaei
- Advanced Dental Sciences Research Center, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Hamid Reza Mozaffari
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Roohollah Sharifi
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mohammad Moslem Imani
- Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Amin Golshah
- Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Negin Bashardoust
- Students Research Committee, Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
12
|
Akgöl S, Ulucan-Karnak F, Kuru Cİ, Kuşat K. The usage of composite nanomaterials in biomedical engineering applications. Biotechnol Bioeng 2021; 118:2906-2922. [PMID: 34050923 DOI: 10.1002/bit.27843] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/04/2021] [Accepted: 05/23/2021] [Indexed: 12/23/2022]
Abstract
Nanotechnology is still developing over the decades and it is commonly used in biomedical applications with the design of nanomaterials due to the several purposes. With the investigation of materials on the molecular level has increased the develop composite nanomaterials with exceptional properties using in different applications and industries. The application of these composite nanomaterials is widely used in the fields of textile, chemical, energy, defense industry, electronics, and biomedical engineering which is growing and developing on human health. Development of biosensors for the diagnosis of diseases, drug targeting and controlled release applications, medical implants and imaging techniques are the research topics of nanobiotechnology. In this review, overview of the development of nanotechnology and applications which is use of composite nanomaterials in biomedical engineering is provided.
Collapse
Affiliation(s)
- Sinan Akgöl
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, Turkey
| | | | - Cansu İlke Kuru
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, Turkey
| | - Kevser Kuşat
- Department of Chemistry, Faculty of Science, Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
13
|
Seaberg J, Montazerian H, Hossen MN, Bhattacharya R, Khademhosseini A, Mukherjee P. Hybrid Nanosystems for Biomedical Applications. ACS NANO 2021; 15:2099-2142. [PMID: 33497197 PMCID: PMC9521743 DOI: 10.1021/acsnano.0c09382] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inorganic/organic hybrid nanosystems have been increasingly developed for their versatility and efficacy at overcoming obstacles not readily surmounted by nonhybridized counterparts. Currently, hybrid nanosystems are implemented for gene therapy, drug delivery, and phototherapy in addition to tissue regeneration, vaccines, antibacterials, biomolecule detection, imaging probes, and theranostics. Though diverse, these nanosystems can be classified according to foundational inorganic/organic components, accessory moieties, and architecture of hybridization. Within this Review, we begin by providing a historical context for the development of biomedical hybrid nanosystems before describing the properties, synthesis, and characterization of their component building blocks. Afterward, we introduce the architectures of hybridization and highlight recent biomedical nanosystem developments by area of application, emphasizing hybrids of distinctive utility and innovation. Finally, we draw attention to ongoing clinical trials before recapping our discussion of hybrid nanosystems and providing a perspective on the future of the field.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Hossein Montazerian
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Md Nazir Hossen
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
14
|
Bai R, Peng L, Sun Q, Zhang Y, Zhang L, Wei Y, Han B. Metallic Antibacterial Surface Treatments of Dental and Orthopedic Materials. MATERIALS (BASEL, SWITZERLAND) 2020; 13:4594. [PMID: 33076495 PMCID: PMC7658793 DOI: 10.3390/ma13204594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
The oral cavity harbors complex microbial communities, which leads to biomaterial-associated infections (BAI) during dental and orthopedic treatments. Conventional antibiotic treatments have met great challenges recently due to the increasing emergency of drug-resistant bacteria. To tackle this clinical issue, antibacterial surface treatments, containing surface modification and coatings, of dental and orthopedic materials have become an area of intensive interest now. Among various antibacterial agents used in surface treatments, metallic agents possess unique properties, mainly including broad-spectrum antibacterial properties, low potential to develop bacterial resistance, relative biocompatibility, and chemical stability. Therefore, this review mainly focuses on underlying antibacterial applications and the mechanisms of metallic agents in dentistry and orthopedics. An overview of the present review indicates that much work remains to be done to deepen the understanding of antibacterial mechanisms and potential side-effects of metallic agents.
Collapse
Affiliation(s)
- Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Liying Peng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Qiannan Sun
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Lingyun Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| |
Collapse
|
15
|
Cao Z, Luo Y, Li Z, Tan L, Liu X, Li C, Zheng Y, Cui Z, Yeung KWK, Liang Y, Zhu S, Wu S. Antibacterial Hybrid Hydrogels. Macromol Biosci 2020; 21:e2000252. [PMID: 32881309 DOI: 10.1002/mabi.202000252] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/16/2020] [Indexed: 12/11/2022]
Abstract
Bacterial infectious diseases and bacterial-infected environments have been threatening the health of human beings all over the world. In view of the increased bacteria resistance caused by overuse or improper use of antibiotics, antibacterial biomaterials are developed as the substitutes for antibiotics in some cases. Among them, antibacterial hydrogels are attracting more and more attention due to easy preparation process and diversity of structures by changing their chemical cross-linkers via covalent bonds or noncovalent physical interactions, which can endow them with various specific functions such as high toughness and stretchability, injectability, self-healing, tissue adhesiveness and rapid hemostasis, easy loading and controlled drug release, superior biocompatibility and antioxidation as well as good conductivity. In this review, the recent progress of antibacterial hydrogel including the fabrication methodologies, interior structures, performances, antibacterial mechanisms, and applications of various antibacterial hydrogels is summarized. According to the bacteria-killing modes of hydrogels, several representative hydrogels such as silver nanoparticles-based hydrogel, photoresponsive hydrogel including photothermal and photocatalytic, self-bacteria-killing hydrogel such as inherent antibacterial peptides and cationic polymers, and antibiotics-loading hydrogel are focused on. Furthermore, current challenges of antibacterial hydrogels are discussed and future perspectives in this field are also proposed.
Collapse
Affiliation(s)
- Zhongming Cao
- Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Wuhan, 430062, China
| | - Yue Luo
- Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Wuhan, 430062, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Lei Tan
- Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Wuhan, 430062, China
| | - Xiangmei Liu
- Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Wuhan, 430062, China
| | - Changyi Li
- Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Yufeng Zheng
- College of Engineering, State Key Laboratory for Turbulence and Complex System, Department of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Zhenduo Cui
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Yanqin Liang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Shuilin Wu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
16
|
Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110154. [DOI: 10.1016/j.msec.2019.110154] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/04/2019] [Accepted: 08/31/2019] [Indexed: 12/13/2022]
|
17
|
Natan M, Gutman O, Segev D, Margel S, Banin E. Engineering Irrigation Drippers with Rechargeable N-Halamine Nanoparticles for Antifouling Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23584-23590. [PMID: 31252498 DOI: 10.1021/acsami.9b05353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The increased demand for water highlights the need to utilize reclaimed water of various types. In agriculture, for example, which is considered the largest consumer of freshwater, irrigation with treated wastewater can replace much of the need for freshwater. Wastewater is generally used for irrigation through drippers, releasing small amounts of water to the crops. The contaminants found in treated wastewater increase the accumulation of fouling on the drippers, ultimately culminating in blocking of water exit. Thus, there is a crucial need to develop novel approaches to limit biofilm formation on the dripper. Here, we describe the synthesis of N-halamine-derivatized cross-linked polymethacrylamide nanoparticles (NPs) by copolymerization of the monomer methacrylamide and the cross-linker monomer N, N-methylenebisacrylamide and their subsequent embedding in the polyethylene that is used to fabricate the drippers. The newly designed drip system was activated by chlorinating the incorporated NPs and then was fully characterized. The nanofunctionalized drippers were tested in the field, showing excellent antifouling activity for at least 5 months compared to the control. In addition, the inherent recharging capacity of the antifouling NPs constitutes yet another valuable advantage of the currently reported technology.
Collapse
Affiliation(s)
| | | | - Dekel Segev
- Netafim Ltd. , Kibbutz Magal 334500 , Israel
| | | | | |
Collapse
|
18
|
Biological and optical properties of sol–gel derived ZnO using different percentages of silver contents. Colloids Surf B Biointerfaces 2018; 171:383-390. [DOI: 10.1016/j.colsurfb.2018.07.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 11/18/2022]
|
19
|
Tao B, Shen X, Yuan Z, Ran Q, Shen T, Pei Y, Liu J, He Y, Hu Y, Cai K. N-halamine-based multilayers on titanium substrates for antibacterial application. Colloids Surf B Biointerfaces 2018; 170:382-392. [PMID: 29945050 DOI: 10.1016/j.colsurfb.2018.06.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 01/23/2023]
Abstract
Bacterial infection is one of the most severe postoperative complications leading to clinical orthopedic implants failure. To improve the antibacterial property of titanium (Ti) substrates, a bioactive coating composed of chitosan-1-(hydroxymethyl)- 5,5-dimethylhydantoin (Chi-HDH-Cl) and gelatin (Gel) was fabricated via layer-by-layer (LBL) assembly technique. The results of Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1HNMR) and X-ray photoelectron spectroscopy (XPS) showed that Chi-HHD-Cl conjugate was successfully synthesized. Scanning electron microscopy (SEM), atomic force microscope (AFM) and water contact angle measurements were employed to monitor the morphology, roughness changes and surface wettability of Ti substrates, which proved the multilayers coating formation. Antibacterial assay against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) revealed that the Gel/Chi-HDH-Cl modified Ti substrates most efficiently inhibited the adhesion and growth of bacteria. Meanwhile, in vitro cellular tests confirmed that Gel/Chi-HDH-Cl multilayers had no obvious cytotoxicity to osteoblasts. The study thus provides a promising method to fabricate antibacterial Ti-based substrates for potential orthopedic application.
Collapse
Affiliation(s)
- Bailong Tao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xinkun Shen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zhang Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qichun Ran
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Tingting Shen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yuxia Pei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ju Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ye He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
20
|
Lin J, Ding J, Dai Y, Wang X, Wei J, Chen Y. Antibacterial zinc oxide hybrid with gelatin coating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:321-326. [PMID: 28887979 DOI: 10.1016/j.msec.2017.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/29/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022]
Abstract
ZnO has been widely investigated as important biomaterials and antibacterial materials. However, the aggregation of nanoparticles and its potential toxicity may hinder its final application. Herein, biocompatible gelatin chains were grafted on the surface of ZnO via mussel inspired method to prevent the aggregation of the ZnO nanoparticles. The in vitro test showed that the gelatin can greatly improve the biocompatibility of ZnO, while the antibacterial properties of ZnO against both E. coli and S. aureus were maintained.
Collapse
Affiliation(s)
- Jun Lin
- College of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Yanfeng Dai
- College of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Xiaolei Wang
- College of Chemistry, Nanchang University, Nanchang 330031, PR China; Institue of Translational Medicine, Nanchang University, Nanchang 330031, PR China
| | - Junchao Wei
- College of Chemistry, Nanchang University, Nanchang 330031, PR China.
| | - Yiwang Chen
- College of Chemistry, Nanchang University, Nanchang 330031, PR China
| |
Collapse
|
21
|
El-Batal AI, Mosalam FM, Ghorab MM, Hanora A, Elbarbary AM. Antimicrobial, antioxidant and anticancer activities of zinc nanoparticles prepared by natural polysaccharides and gamma radiation. Int J Biol Macromol 2017; 107:2298-2311. [PMID: 29097216 DOI: 10.1016/j.ijbiomac.2017.10.121] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 01/28/2023]
Abstract
Aqueous dispersed zinc nanoparticles (ZnNPs) were synthesized using natural polysaccherides (chitosan (CS), citrus pectin (CP) and alginate (Alg)) using aqueous fermented fenugreek powder (FFP) by Pleurotus ostreatus as reducing and stabilizing agent or using gamma irradiation. The synthesized ZnNPs are characterized by ultra violect spectroscopy (UV), Transmission electronmicroscopy (TEM), Dynamic light scattering (DLS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). XRD analysis of the ZnNPS confirmed the formation of metallic nanoparticles. The nucleation and growth mechanism of ZnNPs is also discussed. TEM showed that the average diameter of ZnNPs was in the range of 46nm. The size of nanoparticles is influenced by certain parameters such as the choice of stabilizer, pH during synthesis and absorbed dose. Evaluating the antioxidant and anticancer activities of ZnNPs was performed. The results indicating the ZnNPs synthesized by aqueous fermented fenugreek extract have high activity and the average size is 46nm. The results explored that ZnNPs show anticancer activity against Ehrlich Ascites Carcinoma (EAC) and human colon adenocarcinoma (CACO) and the IC50% was 47.5μg/ml and 65μg/ml respectively. Also, ZnNPs had excellent bactericidal activity against gram positive and negative bacteria and yeast.
Collapse
Affiliation(s)
- Ahmed I El-Batal
- Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Egypt.
| | - Farag M Mosalam
- Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Egypt
| | - M M Ghorab
- Pharmaceutical Department, Faculty of Pharmacy, Suez Canal University, Egypt
| | - Amro Hanora
- Microbilogy and Immunology Department, Faculty of Pharmacy, Suez Canal University, Egypt
| | - Ahmed M Elbarbary
- Radiation Research of Polymer Chemistry Dept., National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
22
|
Ma J, Kang M, Zhang Y, Guo X, Tian Z, Ding C, Wang H. Self-defense of Escherichia coli against damages caused by nanoalumina. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:110-117. [PMID: 28843099 DOI: 10.1016/j.etap.2017.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Although studies showed effects of nanoalumina (nano-Al2O3) on Escherichia coli, no study completely provides understanding on how bacterial cells respond to damages, especially on how they initiate self-defense. In this study, we showed three types of responses of E. coli to damages caused by nano-Al2O3. Live, dead, and injured, bacteria showed improved survival rates reaching 104%, 116%, and 104% after exposure to 0.1, 1, and 10mmol/L of nano-Al2O3 respectively. Survival rates improved from 100% to 114%, corresponding to an exposure time of 0-9h, and from 100% to 127%, corresponding to 0-1000μg/L Al3+. Improvements were noted in survival rates of E. coli K12 MG1655, HB101, DH5α, and K12 MG1655 △lexA treated by nano-Al2O3 in Luria-Bertani (LB) exposure system or K12 MG1655 in LB, normal saline(NS) and H2O exposure system. Bacterial cells transformed from long rods to ellipsoidal or nearly spherical as form of self-preservation mechanism; this phenomenon may be related to changes in membrane potential induced by free Al3+ released from nano-Al2O3 particles. Molecular mechanism of this response involved inhibited gene expression of sythesis and metabolism of carbohydrates, lipids and proteins. Findings presented in this study may improve understanding of potential danger of nanomaterials and control their spread to environmen.
Collapse
Affiliation(s)
- Jing Ma
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China; College of Medical Science, Zaozhuang Vocational College, Zaozhuang 277800, China
| | - Meiling Kang
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China
| | - Yingxia Zhang
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China
| | - Xuan Guo
- Research Institute of Chemical Defense, Beijing 102205, China
| | - Zhongjing Tian
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China
| | - Chengshi Ding
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China.
| | - Hongmei Wang
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China.
| |
Collapse
|