1
|
Su J, Liu C, Sun A, Yan J, Sang F, Xin Y, Zhao Y, Wang S, Dang Q. Hemostatic and antimicrobial properties of chitosan-based wound healing dressings: A review. Int J Biol Macromol 2025; 306:141570. [PMID: 40023410 DOI: 10.1016/j.ijbiomac.2025.141570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Uncontrolled bleeding and microbial infections pose significant hurdles in wound healing, and the use of specialized functional dressings is pivotal in overcoming these obstacles. Among the various wound dressings currently under investigation, those based on chitosan and its derivatives have garnered significant attention due to their superior biocompatibility, antimicrobial properties, hemostatic capabilities, and healing promoting ability. In this comprehensive review, we initially delve into the hemostatic capabilities of chitosan, elucidating its interactions with blood cells and plasma proteins. We also dissect the intricate antimicrobial mechanisms of chitosan, which operate through both intracellular and extracellular pathways. The centerpiece of this review is the systematic classification of dressings based on chitosan and its derivatives, across various forms, such as hydrogels, sponges, membranes, fibers, and powders. This is followed by an exhaustive analysis of their hemostatic and antibacterial efficacy in wound healing, providing a robust foundation for further research and the advancement of clinical applications in the field.
Collapse
Affiliation(s)
- Jieyu Su
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Chengsheng Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Ao Sun
- Faculty of Science, National University of Singapore, 6 Science Drive 2, 117546, Singapore
| | - Jingquan Yan
- National Engineering Technology Research Center for Marine Drugs, Marine Biomedical Research Institute of Qingdao, Ocean University of China, Qingdao 266003, PR China
| | - Feng Sang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Ying Xin
- Department of Endocrine and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Yan Zhao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Shiyun Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qifeng Dang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| |
Collapse
|
2
|
Kou R, Wang Y, Li J, Guo Z, Cao J, Gao W, He B. Calcium loaded biodegradable porous microspheres for the hemostasis of coagulopathy. J Mater Chem B 2025; 13:4910-4925. [PMID: 40176631 DOI: 10.1039/d5tb00328h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The development of efficient hemostatic materials is a challenge for patients with coagulation disorders. In this study, we developed advanced biodegradable porous microspheres for the hemostasis of coagulopathy. The microspheres were fabricated using multiblock amphiphilic poly(ε-caprolactone-r-glycolide) (PCGA)/poly(ethylene glycol) (PEG) polyurethanes (PUE). Calcium ions were loaded in the porous microspheres (CPBMs) via solution immersion. The microspheres possessed high porosity, uniform particle and pore sizes, and excellent biocompatibility. The CPBMs demonstrated an ultra-high water absorption capacity of 45 times and a rapid calcium ion release rate to accelerate the coagulation cascade. The CPBMs significantly promoted platelet aggregation, red blood cell adhesion and fibrin formation, and outperformed commercially available hemostatic agents. The in vivo studies on liver injury and tail amputation models in both healthy and coagulopathic rats revealed superior hemostasis compared to the modified starch-based powders (BT) and Yunnan Baiyao (YB) hemostatic powders.
Collapse
Affiliation(s)
- Ruiying Kou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yunpeng Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
| | - Jing Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
| | - Jun Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
| | - Wenxia Gao
- School of Pharmacy, Chengdu University, Chengdu 610106, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Leng F, Liu J, Du E, Lei S, Xie C, Jiang X, Li TF. Recent progress in polysaccharide microsphere-based hemostatic material for intravascular and extravascular hemostasis: A review. Int J Biol Macromol 2025; 300:140280. [PMID: 39870271 DOI: 10.1016/j.ijbiomac.2025.140280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/04/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Hemorrhage, a common consequence of diseases, surgical procedures, and traffic accidents, poses a significant threat to public health. Effective hemostasis is crucial for patient survival and prognosis, particular in case of internal bleeding. While polysaccharide microsphere-based hemostatic materials have gained clinical acceptance due to their effectiveness, good biocompatibility, and versatility in both intravascular and extravascular hemostasis, they are limited by their single function and insufficient hemostatic properties. Recently, booming developments have been witnessed in microsphere-based biomaterials to achieve a combination therapy for hemostasis. This review first examines the fundamentals of coagulation process, hemostatic mechanisms, and microsphere fabrication techniques. We then discuss the latest investigations in functionalized microsphere-based hemostatic materials for controlling intravascular and extravascular hemorrhage, focusing on design strategies, hemostatic properties, and clinical implementation. Finally, we also propose some limitations and challenges of these hemostatic materials, aiming to provide valuable insights for future research in novel polysaccharide microsphere-based biomaterial.
Collapse
Affiliation(s)
- Fan Leng
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Jie Liu
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Enfu Du
- Medical Imaging Center, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Sai Lei
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Cong Xie
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China.
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Tong-Fei Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
4
|
Hu X, Li S, Pu Y, He B. Biodegradable Polymeric Microspheres with Enhanced Hemostatic and Antibacterial Properties for Wound Healing. Biomacromolecules 2025; 26:1207-1218. [PMID: 39837573 DOI: 10.1021/acs.biomac.4c01545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Hemostasis is the initial step in wound healing, yet significant challenges, such as massive bleeding and infection, often arise. In this study, we developed amphiphilic biodegradable polyester-based segmented polyurethane (SPU) microspheres modified with epigallocatechin gallate (EGCG)-Ag nanoparticles and calcium-alginate cross-linking shell, combining blood absorption with the pro-coagulation properties of Ca2+ and the negative charge of EGCG for synergistic hemostatic effects across various stages of the coagulation cascade. The in vitro blood clotting time of the SPU@EAg@CaAlg microsphere (328.7 s) was reduced by half compared to the SPU microsphere (685.0 s). SPU@EAg@CaAlg exhibited a reduced hemostatic time and blood loss in three rat hemostatic models. Additionally, EGCG-Ag nanoparticles imparted strong antibacterial and anti-inflammatory properties both in vitro and in vivo. In vivo infected wound model demonstrated that SPU@EAg@CaAlg effectively eliminated bacteria and reduced the levels of pro-inflammatory factors, thereby promoting wound healing. Thus, the modified SPU microspheres present a promising candidate for effective hemostatic applications.
Collapse
Affiliation(s)
- Xuelian Hu
- School of Chemical Engineering, Sichuan University, Chengdu 610064, China
| | - Sai Li
- School of Chemical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
5
|
Hou D, Wang Y, Qi L, Wang C, Deng J, Zhao X, Geng X, Sun Q, Ye L, Guo Z. A facile way to fabricate a thrombin immobilized composite sponge with dual hemostatic effects for acute hemorrhage control. BIOMATERIALS ADVANCES 2025; 166:214037. [PMID: 39276658 DOI: 10.1016/j.bioadv.2024.214037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/23/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Uncontrolled bleeding and excessive blood loss stand as the leading causes of death in complex surgeries, civilian traumas, and military operations. Sponges have been used for developing efficiency hemostats, but most commonly used hemostatic sponges possess only one single coagulation mechanism or lack inherent blood clotting ability. Herein, we proposed simple yet innovative approaches for creating novel hemostatic composite sponges with dual hemostatic effects. Bacterial cellulose (BC) was first introduced into polyvinyl alcohol (PVA) matrix to develop a BC/PVA (CP) sponge featuring a unique cellulose-embedded porous network structure and desirable properties. Subsequently, thrombin was immobilized on CP through an easy method that combines physical adsorption and covalent binding to fabricate thrombin-carrying CP (TCP) composite sponges. The resulting composites boasted a highly porous structure, outstanding liquid-absorption capacity, low hemolysis rate, and superior biocompatibility. In vitro clotting tests revealed that TCP displayed potent coagulation capabilities, a rapid blood absorption rate, and the ability to stimulate and activate blood components along with the coagulation cascade. In vivo hemostatic assessments further confirmed that TCP offered high hemostatic efficiency and multifaceted hemostatic effects, making it suitable for the management of acute and severe bleeding.
Collapse
Affiliation(s)
- Dandan Hou
- SINOPEC Key Laboratory of Research and Application of Medical and Hygienic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Yansen Wang
- SINOPEC Key Laboratory of Research and Application of Medical and Hygienic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Liya Qi
- SINOPEC Key Laboratory of Research and Application of Medical and Hygienic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Chunyao Wang
- SINOPEC Key Laboratory of Research and Application of Medical and Hygienic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Jingqian Deng
- SINOPEC Key Laboratory of Research and Application of Medical and Hygienic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Xiaohuan Zhao
- SINOPEC Key Laboratory of Research and Application of Medical and Hygienic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Sun
- Center for Stomatology, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Zifang Guo
- SINOPEC Key Laboratory of Research and Application of Medical and Hygienic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China.
| |
Collapse
|
6
|
Zhang G, Zhou Y, Feng Y, Zhu S, Zhuge P, Chen S, Fang Y, Wan W. Chinese Yam-Derived Adhesive Microgel for Effective Management of Uncontrolled Hemorrhage and Trauma-Induced Skin Wounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70297-70309. [PMID: 39671263 DOI: 10.1021/acsami.4c16493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Chinese yam (Dioscorea opposita), a traditional medicinal plant, has gained renewed interest in contemporary research due to its broad therapeutic potential. In this study, we developed an adhesive yam microgel through a series of peeling, grinding, sieving, and rehydration processes. Our in vitro experiments demonstrated that the yam microgel was noncytotoxic, effectively scavenged free radicals, and promoted cell migration. Additionally, the microgels exhibit good blood compatibility and biodegradability. In vivo, we first evaluated the hemostatic properties of the yam microgel in different hemorrhage models in rats. It demonstrated strong hemostatic capabilities because it could adsorb many blood cells and platelets, activate platelets, and facilitate coagulation. Furthermore, we observed that the yam microgel promotes the repair of acute skin tissue defects by enhancing cell proliferation and neovascularization as well as modulating the inflammatory response, thereby accelerating wound healing. Finally, we found that the yam microgel can serve as a biological adhesive, effectively promoting wound closure through a mechanism similar to its role in facilitating skin tissue repair. The design of a low-cost, safe, and effective yam microgel will provide a promising strategy for hemostasis and wound healing.
Collapse
Affiliation(s)
- Guoqing Zhang
- Department of Orthopaedic Surgery, Institute of Orthopedics of Jiangxi Province and Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University,Nanchang, Jiangxi 330006, China
| | - Yangbo Zhou
- Department of Orthopaedic Surgery, Institute of Orthopedics of Jiangxi Province and Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University,Nanchang, Jiangxi 330006, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yang Feng
- Department of Orthopaedic Surgery, Institute of Orthopedics of Jiangxi Province and Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University,Nanchang, Jiangxi 330006, China
| | - Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Pan Zhuge
- Department of Otolaryngology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Shixuan Chen
- Department of Orthopaedic Surgery, Institute of Orthopedics of Jiangxi Province and Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University,Nanchang, Jiangxi 330006, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Yongjin Fang
- Department of Otolaryngology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Wenbing Wan
- Department of Orthopaedic Surgery, Institute of Orthopedics of Jiangxi Province and Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University,Nanchang, Jiangxi 330006, China
| |
Collapse
|
7
|
Zhao Q, Zhang W, Xu Z, Liu L, Jiang J, Duan J. Rapid preparation of bioadhesive hydrogels containing catechol moieties at room temperature with reproducible adhesion to wet tissues, antimicrobial, antioxidant capacity for noncompressive hemostasis. Int J Biol Macromol 2024; 283:137570. [PMID: 39542320 DOI: 10.1016/j.ijbiomac.2024.137570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
In order to cope with the massive tissue bleeding caused by sudden trauma and the demand for bioengineering materials with adjustable wet adhesion properties, this study formed the first layer of network by adding galactomannan (GG) and collagen (Col) structure, and then use the Fe3+-urushiol (UH) redox system to activate free radicals to initiate the polymerization of acrylic acid (AA) to quickly form an interpenetrating double network hydrogel. The cis hydroxyl group in GG and the hydroxyl group of UH form dynamic covalent borate ester bonds with borate ions in the borax solution, and use their responsiveness to pH to control the catechol group to achieve controllable adhesion. UH and Fe3+ endowed the hydrogel with excellent antibacterial ability, while adding Col enhanced the mechanical properties of the hydrogel. The elastic modulus and toughness increased from 4.32 kPa and 92.9 kJ/m3 to 18.90 kPa and 264.54 kJ/m3. In addition, due to the joint action of UH and Col, the hydrogel dressing can achieve rapid hemostasis within 20 s. In short, this hydrogel dressing has good biocompatibility, inherent antibacterial ability, adjustable moist tissue adhesion properties and rapid hemostatic ability, and is expected to become a candidate for wound hemostasis dressing.
Collapse
Affiliation(s)
- Qian Zhao
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Wenliang Zhang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Zhiyong Xu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Liujun Liu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jiufang Duan
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Gupta A, Kulkarni S, Soman S, Saha M, Kulkarni J, Rana K, Dhas N, Ayesha Farhana S, Kumar Tiyyagura P, Pandey A, Moorkoth S, Mutalik S. Breaking barriers in cancer management: The promising role of microsphere conjugates in cancer diagnosis and therapy. Int J Pharm 2024; 665:124687. [PMID: 39265846 DOI: 10.1016/j.ijpharm.2024.124687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Cancer is a significant worldwide health concern, and there is a demand for ongoing breakthroughs in treatment techniques. Microspheres are among the most studied drug delivery platforms for delivering cargo to a specified location over an extended period of time. They are biocompatible, biodegradable, and capable of surface modifications. Microspheres and their conjugates have emerged as potential cancer therapeutic options throughout the years. This review provides an in-depth look at the current advancements and applications of microspheres and their conjugates in cancer treatment. The review encompasses a wide array of conjugates, ranging from polymers such as ethyl cellulose and Eudragit to stimuli-responsive polymers, proteins, peptides, polysaccharides such as HA and chitosan, inorganic metals, aptamers, quantum dots (QDs), biomimetic conjugates, and radio conjugates designed for radioembolization. Conjugated microspheres precisely deliver chemotherapeutics to the intended target while achieving controlled drug release to prevent side effects. It offers a means of integrating several distinct therapeutic modalities (chemotherapy, photothermal therapy, photodynamic therapy, radiotherapy, immunotherapy, etc.) to provide synergistic effects during cancer treatment. This review offers insights into the prospects and evolving role of microspheres and their conjugates in the dynamic landscape of cancer therapy. This review provides a comprehensive resource for researchers and clinicians working towards advancements in cancer treatment through innovative applications in therapy and translational research.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Moumita Saha
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jahnavi Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Komal Rana
- Manipal - Government of Karnataka Bioincubator, 3rd Floor, Advanced Research Centre, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Syeda Ayesha Farhana
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, Qassim 51452, Saudi Arabia
| | - Pavan Kumar Tiyyagura
- Department of Chemical Engineering, Manipal Institute of Technology Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abhijeet Pandey
- Global Drug Development/ Technical Research and Development, Novartis Healthcare Private Limited, Genome Valley, Hyderabad 500081, Telangana, India
| | - Sudheer Moorkoth
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
9
|
Yu L, Tian Y, Ding Y, Chi Z, Liu C. Chitosan/β-glycerophosphate porous microsphere prepared by facile water-in-water emulsion as a topical hemostatic material. Int J Biol Macromol 2024; 277:133683. [PMID: 39084969 DOI: 10.1016/j.ijbiomac.2024.133683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
Acute hemorrhage is a major cause of death in many emergency cases. Although many hemostatic materials have been studied in recent years, it is still necessary to develop new hemostatic materials with remarkable efficiency, biosafety, convenient preparation, low cost, and good biodegradability. In this work, novel chitosan (CS)/β-glycerophosphate (β-GP) composite porous microsphere with a uniform size of 210.00 ± 2.14 μm was fabricated through water-in-water (W/W) emulsion via microencapsulation, which can avoid the use of toxic crosslink chemicals and organic solvents to achieve facile and efficient preparation of microspheres. β-GP could promote the formation of microspheres by enhancing the hydrogen-bonding interaction between CS chains, which contributed to the macro-porous structure. Owing to their large pore size (6.0 μm) and high specific surface area (37.8 m2/g), the CS/β-GP microspheres could absorb water quickly and adsorb protein, red blood cells, and platelets through electrostatic forces to promote blood coagulation. Furthermore, the CS/β-GP microspheres achieved a significantly shortened hemostatic time (45 s) and reduced blood loss (0.03 g) in a rat liver injury model. Rat tail amputation test also showed a satisfactory hemostatic effect. Overall, the green and porous CS/β-GP microspheres can be used as a facile and topical rapid hemostatic material.
Collapse
Affiliation(s)
- Lejun Yu
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, 266003 Qingdao, China
| | - Yu Tian
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, 266003 Qingdao, China
| | - Yuanyuan Ding
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, 266003 Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, 266003 Qingdao, China
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, 266003 Qingdao, China.
| |
Collapse
|
10
|
Oh SJ, Nguyen TT, Seo Y, Park HJ, Ahn JS, Shin YY, Kang BJ, Jang M, Park J, Jeong JH, Kim HS. Sustained release of stem cell secretome from nano-villi chitosan microspheres for effective treatment of atopic dermatitis. Int J Biol Macromol 2024; 277:134344. [PMID: 39089545 DOI: 10.1016/j.ijbiomac.2024.134344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Canine atopic dermatitis (AD) arises from hypersensitive immune reactions. AD symptoms entail severe pruritus and skin inflammation, with frequent relapses. Consequently, AD patients require continuous management, imposing financial burdens and mental fatigue on pet owners. In this study, we aimed to investigate the therapeutic relevance of secretome from canine adipose tissue-derived mesenchymal stem cells (MSCs), especially after encapsulation in nano-villi chitosan microspheres (CS-MS) to expect improved efficacy. Conditioned media (CM) from MSCs significantly inhibited the proliferation of splenocytes, induced the generation of regulatory T cells, and decreased mast cell degranulation. We found that beneficial soluble factors known to reduce AD symptoms, including transforming growth factor-beta 1, were detectable after sequential concentration and lyophilization of CM. The CS-MS, developed by a phase inversion regeneration method, showed high loading and sustained release of the secretome. Local injection of secretome-loaded CS-MS (ST/SC-MS) effectively reduced clinical severity compared to groups treated with secretome. Histological analysis revealed that ST/SC-MS potently suppressed epidermal hyperplasia, immunocyte infiltration and mast cell activation in the lesion. Taken together, this study presents a novel therapeutic approach exhibiting more potent and prolonged immunoregulatory efficacy of MSC secretome for canine AD treatment.
Collapse
Affiliation(s)
- Su-Jeong Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea; Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Tiep Tien Nguyen
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea; Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yoojin Seo
- Department of Oral Biochemistry, Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hee-Jeong Park
- Department of Oral Biochemistry, Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea; Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ji-Su Ahn
- Department of Oral Biochemistry, Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ye Young Shin
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Seoul 08590, Republic of Korea
| | - Byung-Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea; BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Jang
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Junhyeung Park
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea; Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea.
| |
Collapse
|
11
|
Huang H, Liao S, Zhang D, Liang W, Xu K, Zhang Y, Lang M. A macromolecular cross-linked alginate aerogel with excellent concentrating effect for rapid hemostasis. Carbohydr Polym 2024; 338:122148. [PMID: 38763731 DOI: 10.1016/j.carbpol.2024.122148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
Alginate-based materials present promising potential for emergency hemostasis due to their excellent properties, such as procoagulant capability, biocompatibility, low immunogenicity, and cost-effectiveness. However, the inherent deficiencies in water solubility and mechanical strength pose a threat to hemostatic efficiency. Here, we innovatively developed a macromolecular cross-linked alginate aerogel based on norbornene- and thiol-functionalized alginates through a combined thiol-ene cross-linking/freeze-drying process. The resulting aerogel features an interconnected macroporous structure with remarkable water-uptake capacity (approximately 9000 % in weight ratio), contributing to efficient blood absorption, while the enhanced mechanical strength of the aerogel ensures stability and durability during the hemostatic process. Comprehensive hemostasis-relevant assays demonstrated that the aerogel possessed outstanding coagulation capability, which is attributed to the synergistic impacts on concentrating effect, platelet enrichment, and intrinsic coagulation pathway. Upon application to in vivo uncontrolled hemorrhage models of tail amputation and hepatic injury, the aerogel demonstrated significantly superior performance compared to commercial alginate hemostatic agent, yielding reductions in clotting time and blood loss of up to 80 % and 85 %, respectively. Collectively, our work illustrated that the alginate porous aerogel overcomes the deficiencies of alginate materials while exhibiting exceptional performance in hemorrhage, rendering it an appealing candidate for rapid hemostasis.
Collapse
Affiliation(s)
- Huanxuan Huang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Shiyang Liao
- Department of Orthopedics, The First Affiliated Hospital of Anhui University of Science and Technology, 203 Huaibin Hwy, Anhui 232000, PR China
| | - Dong Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Wencheng Liang
- College of chemical and material engineering, Quzhou University, 78 North Jiuhua Road, Zhejiang 324000, PR China
| | - Keqing Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui University of Science and Technology, 203 Huaibin Hwy, Anhui 232000, PR China.
| | - Yadong Zhang
- Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou 510515, PR China.
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
12
|
Upadhyay A, Alimohammadi F, Tehrani R. Engineering Porosity-Tuned Chitosan Beads: Balancing Porosity, Kinetics, and Mechanical Integrity. ACS OMEGA 2024; 9:33857-33867. [PMID: 39130593 PMCID: PMC11307309 DOI: 10.1021/acsomega.4c03583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024]
Abstract
Chitosan, a cationic natural polysaccharide derived from the deacetylation of chitin, is known for its solubility in diluted acidic solutions, biodegradability, biocompatibility, and nontoxicity. This study introduces three innovative methods for preparing various types of porous chitosan beads: solvent extraction, surfactant extraction, and substance decomposition. These methods involve the integration and subsequent extraction or decomposition of materials during the synthesis process, eliminating the need for additional steps. We used state-of-the-art characterization techniques to analyze and evaluate the chemical and physical properties of the beads, such as Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and three-dimensional (3D) computed tomography (CT) scanning. The 3D CT scans visualized and measured the porosity of different bead types, ranging from 68.4% to 39.3%. This study also evaluated the mechanical properties of the particle beads under compressive forces in both wet and dry conditions, highlighting the influence of porosity on their mechanical integrity and compression pressure behavior. The adsorptive properties of these chitosan beads were studied using methylene blue as a model pollutant, emphasizing the importance of balancing porous structure, surface area, kinetics, and structural integrity. This study paves the way for the development of environmentally sustainable polymeric beads, highlighting the crucial need to balance porosity, surface area, and structural integrity to optimize their effectiveness in real-world applications.
Collapse
Affiliation(s)
| | | | - Rouzbeh Tehrani
- Department of Civil and Environmental
Engineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
13
|
Zhai M, Wu P, Liao Y, Wu L, Zhao Y. Polymer Microspheres and Their Application in Cancer Diagnosis and Treatment. Int J Mol Sci 2024; 25:6556. [PMID: 38928262 PMCID: PMC11204375 DOI: 10.3390/ijms25126556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer is a significant global public health issue with increasing morbidity and mortality rates. To address this challenge, novel drug carriers such as nano-materials, liposomes, hydrogels, fibers, and microspheres have been extensively researched and utilized in oncology. Among them, polymer microspheres are gaining popularity due to their ease of preparation, excellent performance, biocompatibility, and drug-release capabilities. This paper categorizes commonly used materials for polymer microsphere preparation, summarizes various preparation methods (emulsification, phase separation, spray drying, electrospray, microfluidics, and membrane emulsification), and reviews the applications of polymer microspheres in cancer diagnosis, therapy, and postoperative care. The current status and future development directions of polymer microspheres in cancer treatment are analyzed, highlighting their importance and potential for improving patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Yongxiang Zhao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (M.Z.); (P.W.); (Y.L.); (L.W.)
| |
Collapse
|
14
|
Jiang Y, Wang L, Qi W, Yin P, Liao X, Luo Y, Ding Y. Antibacterial and self-healing sepiolite-based hybrid hydrogel for hemostasis and wound healing. BIOMATERIALS ADVANCES 2024; 159:213838. [PMID: 38531257 DOI: 10.1016/j.bioadv.2024.213838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/29/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
The process of wound healing necessitates a specific environment, thus prompting extensive research into the utilization of hydrogels for this purpose. While numerous hydrogel structures have been investigated, the discovery of a self-healing hydrogel possessing favorable biocompatibility, exceptional mechanical properties, and effective hemostatic and antibacterial performance remains uncommon. In this work, a polyvinyl alcohol (PVA) hybrid hydrogel was meticulously designed through a simple reaction, wherein CuxO anchored sepiolite was incorporated into the hydrogel. The results indicate that introduction of sepiolite greatly improves the toughness, self-healing and adhesion properties of the PVA hydrogels. CuxO nanoparticles endow the hydrogels with excellent antibacterial performance towards Staphylococcus aureus and Escherichia coli. The application of hybrid hydrogels for fast hemostasis and wound healing are verified in vitro and in vivo with rat experiments. This work thereby demonstrates an effective strategy for designing biodegradable hemostatic and wound healing materials.
Collapse
Affiliation(s)
- Yizhi Jiang
- School of mechanical engineering and mechanics, Xiangtan University, Xiangtan 411105, China
| | - Li Wang
- College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Wangdan Qi
- College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Peisheng Yin
- School of mechanical engineering and mechanics, Xiangtan University, Xiangtan 411105, China
| | - Xiang Liao
- Xiangtan Sepiolite Technology Co., LTD, Xiangtan 411100, China
| | - Yuze Luo
- College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Yanhuai Ding
- School of mechanical engineering and mechanics, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
15
|
Kim H, Dutta SD, Randhawa A, Patil TV, Ganguly K, Acharya R, Lee J, Park H, Lim KT. Recent advances and biomedical application of 3D printed nanocellulose-based adhesive hydrogels: A review. Int J Biol Macromol 2024; 264:130732. [PMID: 38479658 DOI: 10.1016/j.ijbiomac.2024.130732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Nanocellulose-based tissue adhesives show promise for achieving rapid hemostasis and effective wound healing. Conventional methods, such as sutures and staples, have limitations, prompting the exploration of bioadhesives for direct wound adhesion and minimal tissue damage. Nanocellulose, a hydrolysis product of cellulose, exhibits superior biocompatibility and multifunctional properties, gaining interest as a base material for bioadhesive development. This study explores the potential of nanocellulose-based adhesives for hemostasis and wound healing using 3D printing techniques. Nanocellulose enables the creation of biodegradable adhesives with minimal adverse effects and opens avenues for advanced wound healing and complex tissue regeneration, such as skin, blood vessels, lungs, cartilage, and muscle. This study reviews recent trends in various nanocellulose-based 3D printed hydrogel patches for tissue engineering applications. The review also introduces various types of nanocellulose and their synthesis, surface modification, and bioadhesive fabrication techniques via 3D printing for smart wound healing.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea.
| |
Collapse
|
16
|
Zhang S, Lei X, Lv Y, Wang L, Wang LN. Recent advances of chitosan as a hemostatic material: Hemostatic mechanism, material design and prospective application. Carbohydr Polym 2024; 327:121673. [PMID: 38171686 DOI: 10.1016/j.carbpol.2023.121673] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Uncontrolled hemorrhage arising from surgery or trauma may cause morbidity and even mortality. Therefore, facilitating control of severe bleeding is imperative for health care worldwide. Among diverse hemostatic materials, chitosan (CS) is becoming the most promising material owing to its non-toxic feature, as well as inherently hemostatic performance. However, further enhancing hemostatic property of CS-based materials without compromising more beneficial functions remains a challenge. In this review, representative hemostatic mechanisms of CS-based materials are firstly discussed in detail, mostly including red blood cells (RBCs) aggregation, platelet adherence and aggregation, as well as interaction with plasma proteins. Also, various forms (involving powder/particle, sponge, hydrogel, nanofiber, and other forms) of CS-based hemostatic materials are systematically summarized, mainly focusing on their design and preparation, characteristics, and comparative analysis of various forms. In addition, varied hemostatic applications are described in detail, such as skin wound hemostasis, liver hemostasis, artery hemostasis, and heart hemostasis. Finally, current challenges and future directions of functional design of CS-based hemostatic materials in diverse hemostatic applications are proposed to inspire more intensive researches.
Collapse
Affiliation(s)
- Shuxiang Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xiuxue Lei
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yongle Lv
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Lei Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Lu-Ning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, PR China.
| |
Collapse
|
17
|
Ren Z, Wang Y, Wu H, Cong H, Yu B, Shen Y. Preparation and application of hemostatic microspheres containing biological macromolecules and others. Int J Biol Macromol 2024; 257:128299. [PMID: 38008144 DOI: 10.1016/j.ijbiomac.2023.128299] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Bleeding from uncontrollable wounds can be fatal, and the body's clotting mechanisms are unable to control bleeding in a timely and effective manner in emergencies such as battlefields and traffic accidents. For irregular and inaccessible wounds, hemostatic materials are needed to intervene to stop bleeding. Hemostatic microspheres are promising for hemostasis, as their unique structural features can promote coagulation. There is a wide choice of materials for the preparation of microspheres, and the modification of natural macromolecular materials such as chitosan to enhance the hemostatic properties and make up for the deficiencies of synthetic macromolecular materials makes the hemostatic microspheres multifunctional and expands the application fields of hemostatic microspheres. Here, we focus on the hemostatic mechanism of different materials and the preparation methods of microspheres, and introduce the modification methods, related properties and applications (in cancer therapy) for the structural characteristics of hemostatic microspheres. Finally, we discuss the future trends of hemostatic microspheres and research opportunities for developing the next generation of hemostatic microsphere materials.
Collapse
Affiliation(s)
- Zekai Ren
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yumei Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Han Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
18
|
Shahriari-Khalaji M, Sattar M, Cao R, Zhu M. Angiogenesis, hemocompatibility and bactericidal effect of bioactive natural polymer-based bilayer adhesive skin substitute for infected burned wound healing. Bioact Mater 2023; 29:177-195. [PMID: 37520303 PMCID: PMC10384635 DOI: 10.1016/j.bioactmat.2023.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Thermal wounds are complex and lethal with irregular shapes, risk of infection, slow healing, and large surface area. The mortality rate in patients with infected burns is twice that of non-infected burns. Developing multifunctional skin substitutes to augment the healing rate of infected burns is vital. Herein, we 3D printed a hydrogel scaffold comprising carboxymethyl chitosan (CMCs) and oxidized alginate grafted catechol (O-AlgCat) on a hydrophobic electrospun layer, forming a bilayer skin substitute (BSS). The functional layer (FL) was fabricated by physiochemical crosslinking to ensure favorable biodegradability. The gallium-containing hydrophobic electrospun layer or backing layer (BL) could mimic the epidermis of skin, avoiding fluid penetration and offering antibacterial activity. 3D printed FL contains catechol, gallium, and biologically active platelet rich fibrin (PRF) to adhere to both tissue and BL, show antibacterial activity, encourage angiogenesis, cell growth, and migration. The fabricated bioactive BSS exhibited noticeable adhesive properties (P ≤ 0.05), significant antibacterial activity (P ≤ 0.05), faster clot formation, and the potential to promote proliferation (P ≤ 0.05) and migration (P ≤ 0.05) of L929 cells. Furthermore, the angiogenesis was significantly higher (P ≤ 0.05) when evaluated in vivo and in ovo. The BSS-covered wounds healed faster due to low inflammation and high collagen density. Based on the obtained results, the fabricated bioactive BSS could be an effective treatment for infected burn wounds.
Collapse
Affiliation(s)
- Mina Shahriari-Khalaji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Mamoona Sattar
- Research Group of Microbiological Engineering and Medical Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Ran Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
19
|
Tian P, Liu W, Yang S, Zhang J. Construction of Marigold-like Poly(vinyl alcohol) Microspheres for Catalytic Microreactors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49774-49784. [PMID: 37815511 DOI: 10.1021/acsami.3c10208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
It has long been pursued to develop polymer microspheres with various special morphologies and structures for better results in applications such as catalysis, drug delivery, and bioscaffolds. However, it remains a challenge to develop a facile method to produce poly(vinyl alcohol) (PVA) microspheres with special morphologies. Herein, a micron-sized marigold-like poly(vinyl alcohol) (CE-PVATPA) microsphere was engineered and fabricated by a feasible strategy, that is, emulsification-cross-linking, freeze-drying, and secondary acetal reaction steps. The morphological evolution of microspheres was systematically investigated under different conditions, and the procedure of constructing PVA microspheres with stabilizing marigold-like structures was proposed. More importantly, a specially structured PVA microsphere microreactor synergistically loading palladium metal nanoparticles (CE-PVATPA@Pd) for the heterogeneous catalyst 4-nitrophenol (4-NP) could be further demonstrated, which indicated high catalytic activity and excellent recyclability. The resultant stabilized fabricating method is promising to provide valuable guidance for the design and fabrication of a high-performance PVA microsphere microreactor.
Collapse
Affiliation(s)
- Pan Tian
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Wanjing Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Shengdu Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Junhua Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
20
|
Salmasi SS, Ehsani M, Zandi M, Saeed M, Sabeti M. Polysaccharide-based (kappa carrageenan/carboxymethyl chitosan) nanofibrous membrane loaded with antifibrinolytic drug for rapid hemostasis- in vitro and in vivo evaluation. Int J Biol Macromol 2023; 247:125786. [PMID: 37451380 DOI: 10.1016/j.ijbiomac.2023.125786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
This work aimed to establish a novel membrane consisting of hemostatic polysaccharides, kappa-carrageenan (KC), and carboxymethyl chitosan (CMC) in tandem with polyvinyl alcohol that spun together as a matrix and loaded with tranexamic acid (TXA) as antifibrinolytic agent for further coagulation effect during and after oral surgeries. The electrospinning of KC was done for the first time and in comparison of CMC has better hemostatic efficacy. The effect of the hemostat was investigated by its surface morphology (SEM), FTIR/ATR analysis, swelling behavior in both PBS and blood, hydrophilicity, porosity, mechanical properties, and cumulative release rate. The effect of materials and the drug concentration ratio were considered. The effect of acetic acid percent in aqueous solutions of CMC/PVA and KC/PVA on morphology was investigated. The cell culture assay showed that all membranes interacted well (98 %) with fibroblast cells attached and grown on the fabricated substrate. Furthermore, the membranes are evaluated by clotting time, whole blood clotting, hemocompatibility, and platelet and RBC adhesion tests. Also, the hemostatic performance of the membrane was analyzed in vivo, using the tail and liver bleeding model in rats. Therefore, TXA loading into CMC and KC dressing could be an attractive hemostatic system for various clinical applications.
Collapse
Affiliation(s)
- Sara Salamzadeh Salmasi
- Department of Plastics, Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran; Department of Biomaterial, Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
| | - Morteza Ehsani
- Department of Plastics, Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran.
| | - Mojgan Zandi
- Department of Biomaterial, Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran.
| | - Mahdi Saeed
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Mike Sabeti
- University of California, San Francisco School of Dentistry, San Francisco, CA, United States of America
| |
Collapse
|
21
|
Zhao J, Qiu P, Wang Y, Wang Y, Zhou J, Zhang B, Zhang L, Gou D. Chitosan-based hydrogel wound dressing: From mechanism to applications, a review. Int J Biol Macromol 2023:125250. [PMID: 37307982 DOI: 10.1016/j.ijbiomac.2023.125250] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
As promising biomaterials, hydrogels are widely used in the medical engineering field, especially in wound repairing. Compared with traditional wound dressings, such as gauze and bandage, hydrogel could absorb and retain more water without dissolving or losing its three-dimensional structure, thus avoiding secondary injury and promoting wound healing. Chitosan and its derivatives have become hot research topics for hydrogel wound dressing production due to their unique molecular structure and diverse biological activities. In this review, the mechanism of wound healing was introduced systematically. The mechanism of action of chitosan in the first three stages of wound repair (hemostasis, antimicrobial properties and progranulation), the effect of chitosan deacetylation and the molecular weight on its performance are analyzed. Additionally, the recent progress in intelligent and drug-loaded chitosan-based hydrogels and the features and advantages of chitosan were discussed. Finally, the challenges and prospects for the future development of chitosan-based hydrogels were discussed.
Collapse
Affiliation(s)
- Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Peng Qiu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yue Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yufan Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jianing Zhou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Baochun Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Lihong Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
22
|
Tripathi G, Park M, Lim H, Lee BT. Natural TEMPO oxidized cellulose nano fiber/alginate/dSECM hybrid aerogel with improved wound healing and hemostatic ability. Int J Biol Macromol 2023; 243:125226. [PMID: 37295702 DOI: 10.1016/j.ijbiomac.2023.125226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Natural biopolymers have attracted considerable attention in a variety of biomedical applications. Herein, tempo-oxidized-cellulose nanofibers (T) were incorporated into sodium alginate/chitosan (A/C) to reinforce the physicochemical properties and further modified with decellularized skin extracellular matrix (E). A unique ACTE aerogel was successfully prepared, and its nontoxic behavior was validated using mouse fibroblast L929 cells. In vitro hemolysis results revealed excellent platelet adhesion and fibrin network formation abilities of the obtained aerogel. A high speed of homeostasis was attained based on the quick clotting in <60 s. Skin regeneration in vivo experiments were conducted using the ACT1E0 and ACT1E10 groups. In comparison to ACT1E0 samples, ACT1E10 samples demonstrated enhanced skin wound healing with increased neo-epithelialization, increased collagen deposition, and extracellular matrix remodeling. ACT1E10 was found to be a promising aerogel for skin defect regeneration due to its improved wound-healing ability.
Collapse
Affiliation(s)
- Garima Tripathi
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University,Cheonan, South Korea
| | - HanSung Lim
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University,Cheonan, South Korea
| | - Byong Taek Lee
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea; Department of Regenerative Medicine, College of Medicine, Soonchunhyang University,Cheonan, South Korea.
| |
Collapse
|
23
|
Andrabi SM, Kumar A. A kaolin/calcium incorporated shape memory and antimicrobial chitosan-dextran based cryogel as an efficient haemostatic dressing for uncontrolled hemorrhagic wounds. BIOMATERIALS ADVANCES 2023; 150:213424. [PMID: 37068405 DOI: 10.1016/j.bioadv.2023.213424] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
Increased mortalities associated with uncontrolled and excessive bleeding is still of paramount concern in the clinics, caregivers and military medics. Herein, we designed a shape memory cryogel based on chitosan (C) and functionalized-dextran (D), incorporated with Kaolin (K) and calcium (Ca2+) as haemostatic agents. The developed cryogel (CDKCa) exhibits a uniform interconnected porous architecture with profound fluid absorption ability, rapid blood clotting, stable clot formation and good antibacterial activity. The CDKCa elucidates significantly less clotting time (~30 s; in-vitro) and increased aggregation and activation of platelets/red blood cells in comparison to the control groups and commercial dressings (Axiostat and QuikClot). The developed CDKCa also significantly reduced the aPTT and PT values by ~58 % and 31 % respectively, leading to the activation of intrinsic and extrinsic coagulation cascades. The CDKCa cryogel displays enhanced mechanical stability, flexibility and a good shape memory, a property quintessential to cease uncontrolled bleeding in irregular and non-compressible wounds. Further, the Kaolin and Ca2+ incorporated shape memory CDKCa cryogel demonstrates a rapid blood coagulation and stable clot formation in different compressible and non-compressible rat liver and femur hemorrhagic models. In summary, the endorsed results of CDKCa suggest that the design, fabrication and excellent clotting ability may attribute to high haemostatic efficiency of CDKCa dressing and have a great potential to prevent uncontrollable hemorrhages.
Collapse
Affiliation(s)
- Syed Muntazir Andrabi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Center for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Centre of Excellence, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.
| |
Collapse
|
24
|
Mecwan M, Haghniaz R, Najafabadi AH, Mandal K, Jucaud V, John JV, Khademhosseini A. Thermoresponsive shear-thinning hydrogel (T-STH) hemostats for minimally invasive treatment of external hemorrhages. Biomater Sci 2023; 11:949-963. [PMID: 36537259 DOI: 10.1039/d2bm01559e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hemorrhage is the leading cause of death following battlefield injuries. Although several hemostats are commercially available, they do not meet all the necessary requirements to stop bleeding in combat injuries. Here, we engineer thermoresponsive shear-thinning hydrogels (T-STH) composed of a thermoresponsive polymer, poly(N-isopropyl acrylamide) (p(NIPAM)), and hemostatic silicate nanodisks, LAPONITE®, as minimally invasive injectable hemostatic agents. Our T-STH is a physiologically stable hydrogel that can be easily injected through a syringe and needle and exhibits rapid mechanical recovery. Additionally, it demonstrates temperature-dependent blood coagulation owing to the phase transition of p(NIPAM). It decreases in vitro blood clotting times over 50% at physiological temperatures compared to room temperature. Furthermore, it significantly prevents blood loss in an ex vivo bleeding model at different blood flow rates (1 mL min-1 and 5 mL min-1) by forming a wound plug. More importantly, our T-STH is comparable to a commercially available hemostat, Floseal, in terms of blood loss and blood clotting time in an in vivo rat liver bleeding model. Furthermore, once the hemorrhage is stabilized, our T-STH can be easily removed using a cold saline wash without any rebleeding or leaving any residues. Taken together, our T-STH can be used as a first aid hemostat to treat external hemorrhages in emergency situations.
Collapse
Affiliation(s)
- Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| | | | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| | - Johnson V John
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| |
Collapse
|
25
|
Qin T, Huang X, Zhang Q, Chen F, Zhu J, Ding Y. Hemostatic effects of FmocF-ADP hydrogel consisted of Fmoc-Phenylalanine and ADP. Amino Acids 2023; 55:499-507. [PMID: 36715768 DOI: 10.1007/s00726-023-03243-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023]
Abstract
During trauma and surgery, bleeding is a major concern. One of the crucial strategies for hemostasis is the use of biological hemostatic material. Herein, we reported an amino acid-based hydrogel FmocF-ADP hydrogel, which consisted of N-[(9H-fluoren-9-ylmethoxy) carbonyl]-3-phenyl-L-alanine (FmocF) and adenosine diphosphate (ADP) sodium solution. The hydrogel was created by FmocF self-assembling to nanofiber in ADP sodium solution and then cross-linking to hydrogel. FmocF-ADP hydrogel showed good in vitro coagulation activity as measured by whole blood clotting assays, platelet clotting assays, platelet activation assays, and platelet adhesion assays. Further, it was noted to reveal an exceptional in vivo hemostatic effect in a mouse liver bleeding model. Together with the previous report of the good biocompatibility and antimicrobial activity of FmocF hydrogel, our study would extend the biomedical application of FmocF hydrogel. In conclusion, the present study would provide a constructive strategy for the development of new antimicrobial and hemostatic materials or develop a potential hemostatic material.
Collapse
Affiliation(s)
- Tiansheng Qin
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), West Donggang Road 204, Lanzhou, 730000, People's Republic of China.
| | - Xiande Huang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), West Donggang Road 204, Lanzhou, 730000, People's Republic of China
| | - Qianqian Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), West Donggang Road 204, Lanzhou, 730000, People's Republic of China
| | - Fan Chen
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), West Donggang Road 204, Lanzhou, 730000, People's Republic of China
| | - Jiaojiao Zhu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), West Donggang Road 204, Lanzhou, 730000, People's Republic of China
| | - Yaoyao Ding
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), West Donggang Road 204, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
26
|
Li XF, Lu P, Jia HR, Li G, Zhu B, Wang X, Wu FG. Emerging materials for hemostasis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Xie M, Zeng Y, Wu H, Wang S, Zhao J. Multifunctional carboxymethyl chitosan/oxidized dextran/sodium alginate hydrogels as dressing for hemostasis and closure of infected wounds. Int J Biol Macromol 2022; 219:1337-1350. [PMID: 36057297 DOI: 10.1016/j.ijbiomac.2022.08.166] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/04/2022] [Accepted: 08/24/2022] [Indexed: 11/05/2022]
Abstract
Massive bleeding is a great threat to the life safety of patients, which is a challenging clinical problem. Therefore, it is urgent to develop a kind of multifunctional dressing material with hemostatic ability and antibacterial performance to promote wound healing and repair. To resolve this issue, in this study, a carboxymethyl chitosan (CMCS)/sodium alginate (SA)/oxidized dextran (ODE) (CSO) multifunctional hydrogel was developed. The hydrogel could rapidly gel through Schiff base reaction and amide reaction and firmly adhere to the skin at the wound, to realize the fast hemostasis. Importantly, it was verified that the hydrogel could prevent the Staphylococcus aureus-caused wound infection, owing to the antibacterial effect of CMCS and ODE. In addition, the CSO hydrogel had good water retention capacity and was able to mimic the three-dimensional structure of the natural extracellular matrix, thereby promoting wound repair in mice. In vitro whole-blood clotting assay demonstrated that red blood cells could be adhered to the surface of hydrogel, showing good hemostasis in rat liver injury and tail amputation models. Together with the biocompatible feature, CSO hydrogel holds a great application prospect in hemostasis and wound healing.
Collapse
Affiliation(s)
- Mengmeng Xie
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Yanbo Zeng
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Hang Wu
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China; Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China.
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
28
|
Ouyang XK, Zhao L, Jiang F, Ling J, Yang LY, Wang N. Cellulose nanocrystal/calcium alginate-based porous microspheres for rapid hemostasis and wound healing. Carbohydr Polym 2022; 293:119688. [DOI: 10.1016/j.carbpol.2022.119688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/02/2022]
|
29
|
Li Q, Chang B, Dong H, Liu X. Functional microspheres for tissue regeneration. Bioact Mater 2022; 25:485-499. [PMID: 37056261 PMCID: PMC10087113 DOI: 10.1016/j.bioactmat.2022.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/02/2022] Open
Abstract
As a new type of injectable biomaterials, functional microspheres have attracted increasing attention in tissue regeneration because they possess some advantageous properties compared to other biomaterials, including hydrogels. A variety of bio-inspired microspheres with unique structures and properties have been developed as cellular carriers and drug delivery vehicles in recent years. In this review, we provide a comprehensive summary of the progress of functional and biodegradable microspheres that have been used for tissue regeneration over the last two decades. First, we briefly introduce the biomaterials and general methods for microsphere fabrication. Next, we focus on the newly developed technologies for preparing functional microspheres, including macroporous microspheres, nanofibrous microspheres, hollow microspheres, core-shell structured microspheres, and surface-modified functional microspheres. After that, we discuss the application of functional microspheres for tissue regeneration, specifically for bone, cartilage, dental, neural, cardiac, and skin tissue regeneration. Last, we present our perspectives and future directions of functional microspheres as injectable carriers for the future advancement of tissue regeneration.
Collapse
|
30
|
de Moraes FM, Philippi JV, Belle F, da Silva FS, Morisso FDP, Volz DR, Ziulkoski AL, Bobinski F, Zepon ΚM. Iota-carrageenan/xyloglucan/serine powders loaded with tranexamic acid for simultaneously hemostatic, antibacterial, and antioxidant performance. BIOMATERIALS ADVANCES 2022; 137:212805. [PMID: 35929232 DOI: 10.1016/j.bioadv.2022.212805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022]
Abstract
This study sought to prepare powder hemostats based on iota-carrageenan (ιC), xyloglucan (XYL), l-serine (SER), and tranexamic acid (TA). The powder form was chosen because it enables the hemostat to be used in wounds of any shape and depth. The powder hemostats showed irregular shapes and specific surface areas ranging from 34 to 46 m2/g. Increasing TA amount decreases the specific surface area, bulk density, water and blood absorption, and the antibacterial activities of the powder hemostats, but not the water retention ability. Conversely, in vitro biodegradation was positively impacted by increasing the TA content in the powder hemostats. In both the in vitro and in vivo tests, powder hemostats showed reduced bleeding time, significant adhesion of red blood cells, great hemocompatibility, moderate antioxidant activity, and high biocompatibility. These findings shed new light on designing powder hemostats with intrinsic antibacterial and antioxidant activity and excellent hemostatic performance.
Collapse
Affiliation(s)
- Fernanda Mendes de Moraes
- Laboratório de Biomateriais e Biomiméticos, Programa de Pós-Graduação em Ciências Ambientais, Universidade do Sul de Santa Catarina, Tubarão, Brazil
| | - Jovana Volpato Philippi
- Laboratório de Biomateriais e Biomiméticos, Programa de Pós-Graduação em Ciências Ambientais, Universidade do Sul de Santa Catarina, Tubarão, Brazil
| | - Fernanda Belle
- Laboratório de Neurociência Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Palhoça, Brazil
| | - Francielly Suzaine da Silva
- Laboratório de Neurociência Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Palhoça, Brazil
| | | | - Débora Rech Volz
- Laboratório de Citotoxicidade, Universidade Feevale, Novo Hamburgo, Brazil
| | | | - Franciane Bobinski
- Laboratório de Neurociência Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Palhoça, Brazil
| | - Κarine Modolon Zepon
- Laboratório de Biomateriais e Biomiméticos, Programa de Pós-Graduação em Ciências Ambientais, Universidade do Sul de Santa Catarina, Tubarão, Brazil.
| |
Collapse
|
31
|
Arshad MS, Qaiser M, Mahmood K, Shoaib MH, Ameer N, Ramzan N, Hanif M, Abbas G. Chitosan/halloysite nanotubes microcomposites: A double header approach for sustained release of ciprofloxacin and its hemostatic effects. Int J Biol Macromol 2022; 212:314-323. [PMID: 35618085 DOI: 10.1016/j.ijbiomac.2022.05.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022]
Abstract
Clotting time of lower gastro intestinal bleeding (LGIB) can be reduced by using simple, cost-effective, and naturally occurring halloysite nanotubes (HNTs). The present study aimed to decrease the clotting time by the application of chitosan (CHT) and its microcomposites (MCs) prepared by suspension emulsification technique with HNTs (CHT/HNTs MC). Physicochemical properties, X-Ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and percentage release of ciprofloxacin from CHT/HNTs MCs was evaluated. In-vitro procoagulant activity of CHT, HNTs and their complexes CHT/HNTs MCs was performed on rabbit blood which was confirmed by a rat tail amputation. Direct relation of HNTs was observed for the whole-blood clotting kinetics i.e., 2% HNTs showed a maximum 66.0% increase in the clotting ability as compared with pure CHT. Interestingly, rat-tail amputation studies showed comparative results of CHT, HNTs, and CHT/HNTs MCs. A total of 75% permeation of ciprofloxacin of CHT/HNTs MCs on rat intestinal membrane was observed within 3 h, confirming their SR behavior. Furthermore, improved hemostatic and clotting properties were CHT/HNTs MC1 > CHT/HNTs MC2 > CHT/HNTs MC3 > CHT > HNTs, respectively. Thus, it provided the control of bleeding disorders in LGIB with any antibacterial agents, particularly ciprofloxacin.
Collapse
Affiliation(s)
- Muhammad Shahbaz Arshad
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Qaiser
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan, Pakistan
| | | | - Nabeela Ameer
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Nasreen Ramzan
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan.
| | - Ghulam Abbas
- Faculty of Pharmacy, GOVT College University Faisalabad, Pakistan
| |
Collapse
|
32
|
Catechol modification of non-woven chitosan gauze for enhanced hemostatic efficacy. Carbohydr Polym 2022; 286:119319. [DOI: 10.1016/j.carbpol.2022.119319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/15/2022] [Accepted: 03/02/2022] [Indexed: 01/06/2023]
|
33
|
Biranje SS, Sun J, Cheng L, Cheng Y, Shi Y, Yu S, Jiao H, Zhang M, Lu X, Han W, Wang Q, Zhang Z, Liu J. Development of Cellulose Nanofibril/Casein-Based 3D Composite Hemostasis Scaffold for Potential Wound-Healing Application. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3792-3808. [PMID: 35037458 DOI: 10.1021/acsami.1c21039] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Excessive bleeding in traumatic hemorrhage is the primary concern for natural wound healing and the main reason for trauma deaths. The three-dimensional (3D) bioprinting of bioinks offers the desired structural complexity vital for hemostasis activity and targeted cell proliferation in rapid and controlled wound healing. However, it is challenging to develop suitable bioinks to fabricate specific 3D scaffolds desirable in wound healing. In this work, a 3D composite scaffold is designed using bioprinting technology and synergistic hemostasis mechanisms of cellulose nanofibrils (TCNFs), chitosan, and casein to control blood loss in traumatic hemorrhage. Bioinks that consist of casein bioconjugated TCNF (with a casein content of 104.5 ± 34.1 mg/g) using the carbodiimide cross-linker chemistry were subjected to bioprinting for customizable 3D scaffold fabrication. Further, the 3D composite scaffolds were in situ cross-linked using a green ionic complexation approach. The covalent conjugation among TCNF, casein, and chitosan was confirmed by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and X-ray diffraction (XRD) studies. The in vitro hemostasis activity of the 3D composite scaffold was analyzed by a human thrombin-antithrombin (TAT) assay and adsorption of red blood cells (RBCs) and platelets. The 3D composite scaffold had a better swelling behavior and a faster whole blood clotting rate at each time point than the 3D TCNF scaffold and commercial cellulose-based dressings. The TAT assay demonstrated that the 3D composite scaffold could form a higher content of thrombin (663.29 pg/mL) and stable blood clot compared to a cellulosic pad (580.35 pg/mL), 3D TCNF (457.78 pg/mL), and cellulosic gauze (328.92 pg/mL), which are essential for faster blood coagulation. In addition, the 3D composite scaffold had a lower blood clotting index (23.34%) than the 3D TCNF scaffold (41.93%), suggesting higher efficiencies for RBC entrapping to induce blood clotting. The in vivo cytocompatibility was evaluated by a 3D cell culture study, and results showed that the 3D composite scaffold could promote growth and proliferation of NIH 3T3 fibroblast cells, which is vital for wound healing. Cellulase-based in vitro deconstruction of the 3D composite scaffold showed significant weight loss (80 ± 5%) compared to the lysozyme hydrolysis (22 ± 5%) after 28 days of incubation, suggesting the biodegradation potential of the composite scaffold. In conclusion, this study proposes efficient prospects to develop a 3D composite scaffold from bioprinting of TCNF-based bioinks that can accelerate blood clotting and wound healing, suggesting its potential application in reducing blood loss during traumatic hemorrhage.
Collapse
Affiliation(s)
- Santosh Shivaji Biranje
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Lu Cheng
- Reproduction Medicine Center, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Yu Cheng
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yifei Shi
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Sujie Yu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Meng Zhang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xuechu Lu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Wenjia Han
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Qianqian Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhen Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
- ScienceK Ltd., Huzhou 313000, China
| | - Jun Liu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
34
|
Chu TL, Tripathi G, Bae SH, Lee BT. In-vitro and in-vivo hemostat evaluation of decellularized liver extra cellular matrix loaded chitosan/gelatin spongy scaffolds for liver injury. Int J Biol Macromol 2021; 193:638-646. [PMID: 34710480 DOI: 10.1016/j.ijbiomac.2021.10.128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 01/22/2023]
Abstract
Individually, Chitosan (C) and Gelatin (G) are increasingly being used for the simulation and testing of surgical procedures. In the present study, at combination of chitosan/gelatin (CG) was optimized and later enriched by the loading decellularized liver extracellular matrix powder (dLECM) prepared from porcine liver, we hypothesized CG-dLECM combination would enhance wound healing and reduce postoperative complications after liver surgery. Varying concentration of dLECM (1, 4, and 8 mg/ml) were loaded into CG, and evaluation was done to get the optimized composition. Preliminary analysis on the microstructure, in-vitro degradation, and blood clot kinetics and in-vitro cytocompatibility showed that the CG with 4 mg/ml dLECM (CG-E4) was the most suitable composition for further consideration. The prepared CG-E4 spongy scaffold enhances fast post-operative recovery with a higher blood absorption and fast clotting time (~50 s). In addition, CG-E4 spongy scaffold implanted at rat liver wound showed desired biocompatibility as evidenced by reduced wound size, earlier bioabsorption and accelerated liver regeneration. In the present study, we demonstrated that, CG with dLECM spongy scaffold as a potential hemostatic material in the prevention of excessive hemorrhage during surgeries.
Collapse
Affiliation(s)
- Thanh Lan Chu
- Department of Regenerative Medicine, Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, South Korea
| | - Garima Tripathi
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Sang Ho Bae
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea; Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, South Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea.
| |
Collapse
|
35
|
Goncharuk O, Korotych O, Samchenko Y, Kernosenko L, Kravchenko A, Shtanova L, Tsуmbalуuk O, Poltoratska T, Pasmurtseva N, Mamyshev I, Pakhlov E, Siryk O. Hemostatic dressings based on poly(vinyl formal) sponges. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112363. [PMID: 34579882 DOI: 10.1016/j.msec.2021.112363] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/07/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022]
Abstract
The development of novel hemostatic agents is related to the fact that severe blood loss due to hemorrhage continues to be the leading cause of preventable death of patients with military trauma and the second leading cause of death of civilian patients with injuries. Herein we assessed the hemostatic properties of porous sponges based on biocompatible hydrophilic polymer, poly(vinyl formal) (PVF), which meets the main requirements for the development of hemostatic materials. A series of composite hemostatic materials based on PVF sponges with different porosities and fillers were synthesized by acetalization of poly(vinyl alcohol) with formaldehyde. Nano-sized aminopropyl silica, micro-sized calcium carbonate, and chitosan hydrogel were used to modify PVF matrixes. The physicochemical properties (pore size, elemental composition, functional groups, hydrophilicity, and acetalization degree) of the synthesized composite sponges were studied by gravimetrical analysis, optical microscopy, scanning electron microscopy combined with energy dispersive x-ray spectroscopy, infrared spectroscopy, and nuclear magnetic resonance. Hemostatic properties of the materials were assessed using a model of parenchymal bleeding from the liver of white male Wistar rat with a gauze bandage as a control. All investigated PVF-based porous sponges showed high hemostatic activity: upon the application of PVF-samples the bleeding decreased within 3 min by 68.4-94.4% (р < 0.001). The bleeding time upon the application of PVF-based composites decreased by 78.3-90.4% (p < 0.001) compared to the application of well-known commercial product Celox™.
Collapse
Affiliation(s)
- O Goncharuk
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine; Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - O Korotych
- University of Florida, Chemical Engineering Department, Gainesville, United States of America; University of Tennessee, Department of Biochemistry and Cellular and Molecular Biology, Knoxville, TN, United States of America.
| | - Yu Samchenko
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - L Kernosenko
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - A Kravchenko
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - L Shtanova
- Biology and Medicine Institute Science Educational Center of Taras, Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - O Tsуmbalуuk
- Biology and Medicine Institute Science Educational Center of Taras, Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - T Poltoratska
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - N Pasmurtseva
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - I Mamyshev
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - E Pakhlov
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - O Siryk
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
36
|
Vakil A, Petryk NM, Shepherd E, Beaman HT, Ganesh PS, Dong KS, Monroe MBB. Shape Memory Polymer Foams with Tunable Degradation Profiles. ACS APPLIED BIO MATERIALS 2021; 4:6769-6779. [PMID: 34568773 PMCID: PMC8456454 DOI: 10.1021/acsabm.1c00516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022]
Abstract
Uncontrolled hemorrhage is the leading cause of preventable death on the battlefield and results in ∼1.5 million deaths each year. The primary current treatment options are gauze and/or tourniquets, which are ineffective for up to 80% of wounds. Additionally, most hemostatic materials must be removed from the patient within <12 h, which limits their applicability in remote scenarios and can cause additional bleeding upon removal. Here, degradable shape memory polymer (SMP) foams were synthesized to overcome these limitations. SMP foams were modified with oxidatively labile ether groups and hydrolytically labile ester groups to degrade after implantation. Foam physical, thermal, and shape memory properties were assessed along with cytocompatibility and blood interactions. Degradation profiles were obtained in vitro in oxidative and hydrolytic media (3% H2O2 (oxidation) and 0.1 M NaOH (hydrolysis) at 37 °C). The resulting foams had tunable, clinically relevant degradation rates, with complete mass loss within 30-60 days. These SMP foams have potential to provide an easy-to-use, shape-filling hemostatic dressing that can be left in place during traumatic wound healing with future potential use in regenerative medicine applications.
Collapse
Affiliation(s)
- Anand
Utpal Vakil
- Department of Biomedical
and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Natalie Marie Petryk
- Department of Biomedical
and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Ellen Shepherd
- Department of Biomedical
and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Henry T. Beaman
- Department of Biomedical
and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Priya S. Ganesh
- Department of Biomedical
and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Katheryn S. Dong
- Department of Biomedical
and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Mary Beth B. Monroe
- Department of Biomedical
and Chemical Engineering, Syracuse Biomaterials Institute, and BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
37
|
Bharadwaz A, Jayasuriya AC. Fabrication of porous chitosan particles using a novel two-step porogen leaching and lyophilization method with the label-free multivariate spectral assessment of live adhered cells. Colloids Surf B Biointerfaces 2021; 208:112094. [PMID: 34500203 DOI: 10.1016/j.colsurfb.2021.112094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 01/15/2023]
Abstract
Porous chitosan (CS) particles were fabricated using a novel two-step technique that employed a porogen leaching phase followed by lyophilization or freeze-drying. Poly(ethylene glycol) (PEG) was mixed as a porogen in two different quantities with the CS solution before particle synthesis via coacervation. After the PEG leached out into deionized (DI) water at an elevated constant temperature, the final freeze-dried CS particles revealed surface features that resembled pore pockets. A three-dimensional (3D) culture of murine osteoblast cell line (OB-6) was seeded on these particles to analyze the effect of the porous structure on the cell activity, as compared to a control group with no added porogen. The results highlighted an enhancement in cell adhesion and proliferation on the two porous sample groups. A Raman spectroscopy-based label-free technique for live cell biomarker analysis was applied using multivariate spectral analysis. Results of the spectral analysis in the molecular fingerprint region corresponding to the Raman shift between 900 cm-1 and 1700 cm-1inferred inter-group variations. The bands at 1005 cm-1 and 1375 cm-1 were assigned to the live cell biomarkers phenylalanine and glycosaminoglycan, respectively, and were assessed during the multivariate spectral analysis. The corresponding score plot and loading information generated from the Principal Component Analysis (PCA) of the Raman spectrum at day 7 and day 14, pointed at inter-group spectral variations related to cell adhesion and proliferation between the two porous CS particle groups and the control.
Collapse
Affiliation(s)
- Angshuman Bharadwaz
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, 43606, USA
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, 43606, USA; Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
38
|
Li Z, Li B, Li X, Lin Z, Chen L, Chen H, Jin Y, Zhang T, Xia H, Lu Y, Zhang Y. Ultrafast in-situ forming halloysite nanotube-doped chitosan/oxidized dextran hydrogels for hemostasis and wound repair. Carbohydr Polym 2021; 267:118155. [PMID: 34119129 DOI: 10.1016/j.carbpol.2021.118155] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
A series of halloysite nanotube (HNT)-doped chitosan (CS)/oxidized dextran (ODEX) adhesive hydrogels were developed through a Schiff base reaction. The resultant CS/ODEX/HNT hydrogels could not only form in situ on wounds within only 1 s when injected, but could also adapt to wounds of different shapes and depths after injection. We established four rat and rabbit hemorrhage models and demonstrated that the hydrogels are better than the clinically used gelatin sponge for reducing hemostatic time and blood loss, particularly in arterial and deep noncompressible bleeding wounds. Moreover, the natural antibacterial features of CS and ODEX provided the hydrogels with strong bacteria-killing effects. Consequently, they significantly promoted methicillin-resistant Staphylococcus aureus -infected-wound repair compared to commercial gelatin sponge and silver-alginate antibacterial wound dressing. Hence, our multifunctional hydrogels with facile preparation process and utilization procedure could potentially be used as first-aid biomaterials for rapid hemostasis and infected-wound repair in emergency injury events.
Collapse
Affiliation(s)
- Zhan Li
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Binglin Li
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Xinrong Li
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Lingling Chen
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Hu Chen
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Yan Jin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Tao Zhang
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Hong Xia
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Yao Lu
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China; Department of Joint and Orthopedics, Orthopedic Center, Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Ying Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China.
| |
Collapse
|
39
|
Cheng H, Shi W, Feng L, Bao J, Chen Q, Zhao W, Zhao C. Facile and green approach towards biomass-derived hydrogel powders with hierarchical micro-nanostructures for ultrafast hemostasis. J Mater Chem B 2021; 9:6678-6690. [PMID: 34378629 DOI: 10.1039/d1tb01477c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although a series of biomass-derived hemostats has been developed, the desire for green-prepared hemostatic materials with biosafety has not decreased. Herein, we constructed porous carboxymethyl chitosan/sodium alginate/Ca(OH)2 powders (PCSCPs) with suitable adaptability for instant control of irregular hemorrhage via a facile and green approach. By one-pot chemical crosslinking of carboxymethyl chitosan and sodium alginate, hydrogels were formed and immediately ionically cross-linked along with the generation of Ca(OH)2 to prepare PCSCPs. As hydrogel powders, PCSCPs with abundant hydrophilic carboxymethyl groups and porous hierarchically micro-nanostructures displayed a high water absorption ratio of over 1600%. The PCSCPs were confirmed with favorable hemocompatibility, non-cytotoxic effects and excellent degradability. Hemostasis assays in vitro showed that PCSCPs possessed an outstanding property of platelet activation and red blood cell aggregation. The PCSCPs effectively shortened the hemostatic time and blood loss to ca. 50% in rodent bleeding models compared with medical gauze and commercial chitosan-based hemostats. Furthermore, a mouse subcutaneous implantation model demonstrated an ignorable inflammation response and potential tissue repair capability of PCSCPs. It's believed that green-prepared and biomass-derived PCSCPs are feasible biomedical hemostatic materials in view of engineering and provide a promising platform to design hemostats in prehospital management and clinical settings.
Collapse
Affiliation(s)
- Huitong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Yuan S, Li Q, Chen K, Mu Z, Chen T, Wang H, Ji P. Ridge preservation applying a novel hydrogel for early angiogenesis and osteogenesis evaluation: an experimental study in canine. J Biol Eng 2021; 15:19. [PMID: 34289877 PMCID: PMC8293569 DOI: 10.1186/s13036-021-00271-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/16/2021] [Indexed: 11/18/2022] Open
Abstract
Ridge preservation is universally acknowledged as the conventional method for the post-extraction healing yet there are no standard materials for the ideal healing outcome. Herein, a composite gel comprising gelatin nanoparticles (GNPs) and injectable platelet-rich-fibrin (i-PRF) as the potential candidate for extracted socket healing is introduced. The combination of GNPs and i-PRF not only possesses favorable mechanical properties to withstand external force but also accelerate the blood clotting time significantly. In addition, six beagle dogs were adopted to assess the angiogenic and osteogenic capacity of GNPs+i-PRF gel in vivo. The GNPs+i-PRF gel significantly produced the most blood vessels area, woven bone and low osteoclast activity in extracted sockets at 2 weeks postoperation and remarkably generated corticalization on the alveolar ridge crest at 8 weeks postoperation according to histological results. Therefore, GNPs+i-PRF gel can be recommended as the candidate grafting material regarding ridge preservation for its cost effectiveness, excellent biocompatibility, facilitation of blood clotting and favorable capacity of promoting angiogenesis and osteogenesis.
Collapse
Affiliation(s)
- Shuai Yuan
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Qingshu Li
- Department of Pathology, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Kaiwen Chen
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P. R. China
| | - Zhixiang Mu
- Department of Periodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Huanan Wang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian, 116024, P. R. China.
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China.
| |
Collapse
|
41
|
Kadyseva OV, Bykov VN, Strelova OY, Grebenyuk AN. Determination of indicators allowing to evaluating the hemostatic activity of chitosan without a biological experiment. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211030607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The biopolymer chitosan is widely used for the development of local hemostatic agents. However, the physicochemical parameters of chitosan that determine its hemostatic properties have not yet been determined. Standard quality control of chitosan-containing raw materials and medical products on its basis do not allow us to make a conclusion about the effectiveness of their use for stopping bleeding. The most reliable method for assessing hemostatic activity remains in vivo experiment on large animals. The aim of this study was to determine additional physicochemical parameters of chitosan, which would make it possible to predict its hemostatic activity without conducting a biological experiment. In this work, using the methods of nuclear magnetic resonance spectroscopy, spectrophotometry and viscometry, it has been shown that the ability to initiate hemostasis is depending of the molecular weight and degree of deacetylation of chitosan, but not enough linearly. The hemostatic properties in vitro increases in a series of samples with a relatively constant molecular weight with an increase in the degree of deacetylation. As well as in a series with the same degree of deacetylation with an increase in molecular weight. However, at molecular weight values more than 300 kDa, the viscosity of the polymer causes the opposite effect: with an increase in the degree of deacetylation, the hemostatic activity decreases. The best ability to initiate hemostasis have chitosan samples with a degree of deacetylation of 90.0%–97.4% and molecular weight 145.7–284.7 kDa, in which at pH of solution close to physiological, a significant part of the molecules transitioned from conformation state rigid rod to state globule. It was accompanied by an abrupt change in light transmission of the solution. It was concluded, that it is possible to study conformational states by spectrophotometry to assess the hemostatic activity of chitosan samples without performing biological experiment.
Collapse
Affiliation(s)
- Oksana Vladimirovna Kadyseva
- Department of Pharmaceutical Chemistry, St. Petersburg State Chemical and Pharmaceutical University, St. Petersburg, Russian Federation
| | | | - Olga Yurievna Strelova
- Department of Pharmaceutical Chemistry, St. Petersburg State Chemical and Pharmaceutical University, St. Petersburg, Russian Federation
| | - Alexander Nikolaevich Grebenyuk
- Department of Pharmaceutical Chemistry, St. Petersburg State Chemical and Pharmaceutical University, St. Petersburg, Russian Federation
| |
Collapse
|
42
|
Polysaccharides-modified chitosan as improved and rapid hemostasis foam sponges. Carbohydr Polym 2021; 264:118028. [PMID: 33910719 DOI: 10.1016/j.carbpol.2021.118028] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 01/14/2023]
Abstract
Serial hemostatic sponges consisting of polysaccharides-modified chitosan foam sponges were prepared by Schiff base crosslinking reaction between the deacetylated chitosan and oxidized dialdehyde cellulose. Such composite foam sponges were characterized by scanning electron microscopy and Fourier-transform infrared spectroscopy to confirm their morphology and compositions. Then the coagulation process was evaluated in vitro by thrombus elasticity meters. Furthermore, the hemostasis experiments on mouse tail vein and rabbit femoral artery were also performed in vivo. The results strongly indicated that such synergistic cellulose-modified chitosan foam sponges showed comprehensively excellent water-absorbing quality, improved mechanical performance, low hemolysis rates, benign cytotoxicity, good resilience ability after repeated compression, and superior hemostasis capability both in vitro and in vivo. Furthermore, the hemostatic mechanism is via adhering/activating the red blood cell/platelet to form robust blood clots through the endogenous coagulation pathway, which serves as a good candidate for emergency trauma treatment in daily civilian and military hemostasis.
Collapse
|
43
|
Li X, Ji X, Chen K, Yuan X, Lei Z, Ullah MW, Xiao J, Yang G. Preparation and evaluation of ion-exchange porous polyvinyl alcohol microspheres as a potential drug delivery embolization system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111889. [PMID: 33579501 DOI: 10.1016/j.msec.2021.111889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 01/27/2023]
Abstract
The present study aimed to develop a new drug delivery system with efficient drug loading and sustained drug release for potential application in transarterial chemoembolization (TACE). The porous polyvinyl alcohol microspheres (PPVA MS) were prepared by a combination of inverse emulsification and thermal-induced phase separation (TIPS) method, this was followed by the grafting polymerization of sodium 4-styrene sulfonate (SSS) onto the PPVA MS to obtain the grafted PPVA-g-PSSS MS. The prepared PPVA MS showed a well-defined spherical shape with 'honeycomb-like' porous structure, which could be readily tailored by adjusting the quenching temperature. In vitro biocompatibility analysis indicated the non-cytotoxic and hemocompatible nature of PPVA MS. The porous structure and presence of ionically charged groups in the PPVA-g-PSSS MS favoured the loading of cationic doxorubicin (DOX) onto the MS through ionic-interactions and demonstrated a sustained drug release pattern. Moreover, the cytotoxicity of DOX-loaded PPVA-g-PSSS (DOX@PPVA-g-PSSS) MS against HepG2 cells and the intracellular uptake of DOX demonstrated the potent in vitro antitumor activity. Furthermore, the central auricular artery embolization in rabbits showed that both the PPVA-g-PSSS and DOX@PPVA-g-PSSS MS could occlude the auricular arteries and induced superior embolization effects, such as progressive ear appearance changes, irreversible parenchymal damage and fibrosis, and ultrastructural alternations in endothelial cells. Besides, the DOX fluorescence was distributed around the embolized arteries, without decreasing its intensity when prolonged embolization up to 15 days. These findings suggest that the newly developed DOX@PPVA-g-PSSS MS could be employed as a promising drug-loaded embolic agent for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiongfa Ji
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Kun Chen
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xi Yuan
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zehua Lei
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jun Xiao
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
44
|
Wang L, Pan K, Zhang L, Zhou C, Li Y, Zhu B, Han J. Tentative identification of key factors determining the hemostatic efficiency of diatom frustule. Biomater Sci 2021; 9:2162-2173. [PMID: 33496686 DOI: 10.1039/d0bm02002h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is increasingly essential to develop excellent materials for rapid hemorrhage control. Our previous study showed that centric diatoms such as frustules were superior to QuikClot® in hemostasis, however, related studies in pennate diatoms are still scarce. The morphological and physicochemical properties of pennate diatoms are quite different from those of centric diatoms, meaning that significant differences may also be observed from their hemostatic effects. Thus, the hemostasis effects of four pennate diatom frustules (Cocconeiopsis orthoneoides, Navicula avium, Navicula sp., and Pleurosigma indicum) were investigated in this study. Herein, all diatom frustules demonstrated outstanding hemostasis performance. For example, the in vitro coagulation time of C. orthoneoides (100.33 ± 9.5 s) was 32.4% lower than that of QuikClot®. Meanwhile, the hemostatic times of C. orthoneoides in the rat tail amputation and femoral artery models were 82 s and 180 s, respectively, only around one-half and one-third of the QuikClot® values. Moreover, the blood loss amounts of C. orthoneoides in the rat tail amputation and femoral artery model were 73.4% and 61% less than that of QuikClot®. Besides that, diatom frustules also exhibited favorable biocompatibility (hemolysis ratio <5%, MEFs cell viabilities >80%, and no inflammation). To find out the key factors underlying the hemostatic effect of frustules, Pearson correlation analysis was further performed in this study. The results demonstrated that the coagulation reaction time (R) was negatively correlated with the specific surface area and liquid absorbability but positively with the diatom pore diameter. The angle α, indicating the clot formation rate, was negative to the diatom size and pore diameter. Additionally, MA also showed a negative correlation with the BET value. This study can enrich our knowledge about the application potential of diatoms in the field of bleeding control and is helpful in deepening our understanding about the hemostatic mechanism of frustules.
Collapse
Affiliation(s)
- Lulu Wang
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Patil G, Torris A, Suresha PR, Jadhav S, Badiger MV, Ghormade V. Design and synthesis of a new topical agent for halting blood loss rapidly: A multimodal chitosan-gelatin xerogel composite loaded with silica nanoparticles and calcium. Colloids Surf B Biointerfaces 2020; 198:111454. [PMID: 33246777 DOI: 10.1016/j.colsurfb.2020.111454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/09/2020] [Accepted: 10/30/2020] [Indexed: 01/26/2023]
Abstract
Uncontrolled hemorrhage often causes death during traumatic injuries and halting exsanguination topically is a challenge. Here, an efficient multimodal topical hemostat was developed by (i) ionically crosslinking chitosan and gelatin with sodium tripolyphosphate for (ii) fabricating a robust, highly porous xerogel by lyophilization having 86.7 % porosity, by micro-CT and large pores ∼30 μm by SEM (iii) incorporating 0.5 mg synthesized silica nanoparticles (SiNPs, 120 nm size, -22 mV charge) and 2.5 mM calcium in xerogel composite that was confirmed by FTIR analysis with peaks at 3372, 986 and 788 cm-1, respectively. XPS analysis displayed the presence of SiNPs (Si2p peak for silicon) and calcium (Ca2p1, Ca2p3 transition peaks) in the composite. Interestingly, in silico percolation simulation for composite revealed interlinked 800 μm long-conduits predicting excellent absorption capacity and validated experimentally (640 % of composite dry weight). The composite achieved >16-fold improved blood clotting in vitro than commercial Celox and Gauze through multimodal interaction of its components with RBCs and platelets. The composite displayed good platelet activation and thrombin generation activities. It displayed high compressive strength (2.45 MPa) and withstood pressure during application. Moreover, xerogel composite showed high biocompatibility. In vivo application of xerogel composite to lethal femoral artery injury in rats achieved hemostasis (2.5 min) significantly faster than commercial Celox (3.3 min) and Gauze (4.6 min) and was easily removed from the wound. The gamma irradiated composite was stable till 1.5 yr. Therefore, the xerogel composite has potential for application as a rapid topical hemostatic agent.
Collapse
Affiliation(s)
- Gokul Patil
- Nanobioscience, Agharkar Research Institute, Pune 411004 India; Department of Biotechnology, Savitribai Phule Pune University, Pune 411007 India
| | - Arun Torris
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008 India
| | - P R Suresha
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008 India
| | - Sachin Jadhav
- Nanobioscience, Agharkar Research Institute, Pune 411004 India
| | - Manohar V Badiger
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008 India
| | - Vandana Ghormade
- Nanobioscience, Agharkar Research Institute, Pune 411004 India; Department of Biotechnology, Savitribai Phule Pune University, Pune 411007 India.
| |
Collapse
|
46
|
Zamora Lagos SI, Murillo Salas J, Valencia Zapata ME, Mina Hernández JH, Grande Tovar CD. Optimization by Central Composite Experimental Design of the Synthesis of Physically Crosslinked Chitosan Spheres. Biomimetics (Basel) 2020; 5:E63. [PMID: 33233785 PMCID: PMC7709620 DOI: 10.3390/biomimetics5040063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022] Open
Abstract
Chitosan (CS) has special properties such as biocompatibility, biodegradability, antibacterial, and biological activity which make this material is currently studied in various applications, including tissue engineering. There are different methods to modify the morphology of CS. Most use chemical crosslinking agents, however, those methods have disadvantages such as low polymer degradability and unwanted side effects. The objective of this research was to obtain CS spheres through the physical crosslinking of commercial CS without using crosslinking agents through a simple coacervation method. A central composite experimental design was used to optimize the synthesis of the CS spheres and by the response surface methodology it was possible to obtain CS spheres with the smallest diameter and the most regular morphology. With the optimal formulation (CS solution 1.8% (w/v), acetic acid (AAC) solution 1% (w/v), sodium hydroxide (NaOH) solution 13% (w/v), relative humidity of (10%) and needle diameter of 0.6 mm), a final sphere diameter of 1 mm was obtained. Spheres were characterized by physical, chemical, thermal, and biological properties in simulated body fluid (SBF). The results obtained allowed us to understand the effect of the studied variables on the spheres' diameter. An optimized condition facilitated the change in the morphology of the CS while maintaining its desirable properties for use in tissue engineering.
Collapse
Affiliation(s)
- Sara Isabel Zamora Lagos
- Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia; (S.I.Z.L.); (J.M.S.); (M.E.V.Z.); (J.H.M.H.)
| | - Jefferson Murillo Salas
- Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia; (S.I.Z.L.); (J.M.S.); (M.E.V.Z.); (J.H.M.H.)
| | - Mayra Eliana Valencia Zapata
- Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia; (S.I.Z.L.); (J.M.S.); (M.E.V.Z.); (J.H.M.H.)
| | - José Herminsul Mina Hernández
- Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia; (S.I.Z.L.); (J.M.S.); (M.E.V.Z.); (J.H.M.H.)
| | - Carlos David Grande Tovar
- Programa de Química, Facultad de Ciencias, Universidad del Atlántico, Carrera 30 número 8-49, Puerto Colombia 081008, Colombia
| |
Collapse
|
47
|
Chitosan-Based Thermo-Sensitive Hydrogel Loading Oyster Peptides for Hemostasis Application. MATERIALS 2020; 13:ma13215038. [PMID: 33182319 PMCID: PMC7664874 DOI: 10.3390/ma13215038] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/01/2023]
Abstract
Uncontrolled massive hemorrhage is one of the principal causes of death in trauma emergencies. By using catechol-modified chitosan (CS-C) as the matrix material and β glycerol phosphate (β-GP) as a thermo-sensitive agent, chitosan-based thermo-sensitive hydrogel loading oyster peptides (CS-C/OP/β-GP) were prepared at physiological temperature. The hemostatic performance of CS-C/OP/β-GP hydrogel was tested in vivo and in vitro, and its biological safety was evaluated. The results showed that the in vitro coagulation time and blood coagulation index of CS-C/OP/β-GP hydrogel were better than those of a commercial gelatin sponge. Notably, compared with the gelatin sponge, CS-C/OP/β-GP hydrogel showed that the platelet adhesion and erythrocyte adsorption rates were 38.98% and 95.87% higher, respectively. Additionally, the hemostasis time in mouse liver injury was shortened by 19.5%, and the mass of blood loss in the mouse tail amputation model was reduced by 18.9%. The safety evaluation results demonstrated that CS-C/OP/β-GP had no cytotoxicity to L929 cells, and the hemolysis rates were less than 5% within 1 mg/mL, suggesting good biocompatibility. In conclusion, our results indicate that CS-C/OP/β-GP is expected to be a promising dressing in the field of medical hemostasis.
Collapse
|
48
|
Fabrication of chitosan@calcium alginate microspheres with porous core and compact shell, and application as a quick traumatic hemostat. Carbohydr Polym 2020; 247:116669. [DOI: 10.1016/j.carbpol.2020.116669] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022]
|
49
|
Lovskaya D, Menshutina N, Mochalova M, Nosov A, Grebenyuk A. Chitosan-Based Aerogel Particles as Highly Effective Local Hemostatic Agents. Production Process and In Vivo Evaluations. Polymers (Basel) 2020; 12:E2055. [PMID: 32927608 PMCID: PMC7570265 DOI: 10.3390/polym12092055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Chitosan aerogels with potential applications as effective local hemostatic agents were prepared using supercritical carbon dioxide drying to preserve the chitosan network structure featuring high internal surfaces and porosities of up to 300 m²/g and 98%, respectively. For the first time, hemostatic efficacy of chitosan-based aerogel particles was studied in vivo on a model of damage of a large vessel in the deep wound. Pigs were used as test animals. It was shown that primary hemostasis was achieved, there were no signs of rebleeding and aerogel particles were tightly fixed to the walls of the wound canal. A dense clot was formed inside the wound (at the femoral artery), which indicates stable hemostasis. This study demonstrated that chitosan-based aerogel particles have a high sorption capacity and are highly effective as local hemostatic agents which can be used to stop massive bleeding.
Collapse
Affiliation(s)
- Daria Lovskaya
- International Center for transfer of Pharmaceutical and Biotechnology, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (N.M.); (M.M.)
| | - Natalia Menshutina
- International Center for transfer of Pharmaceutical and Biotechnology, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (N.M.); (M.M.)
| | - Maria Mochalova
- International Center for transfer of Pharmaceutical and Biotechnology, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (N.M.); (M.M.)
| | - Artem Nosov
- Department of Pharmaceutical Chemistry, Saint Petersburg State Chemical Pharmaceutical University, 197376 Saint Petersburg, Russia; (A.N.); (A.G.)
| | - Alexander Grebenyuk
- Department of Pharmaceutical Chemistry, Saint Petersburg State Chemical Pharmaceutical University, 197376 Saint Petersburg, Russia; (A.N.); (A.G.)
| |
Collapse
|
50
|
Shen YF, Huang JH, Wu ZE, Wang KY, Zheng J, Cai L, Li XL, Gao H, Jin XY, Li JF. Cationic superabsorbent hydrogel composed of mesoporous silica as a potential haemostatic material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110841. [PMID: 32279816 DOI: 10.1016/j.msec.2020.110841] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/06/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
Abstract
The control of massive bleeding and its related wound infection is the main challenge for both military and civilian trauma centres. In this study, a cationic superabsorbent hydrogel coordinated by mesoporous silica (CSH-MS) was synthesized by free-radical polymerization for both haemostasis and antibacterial use. The as-prepared CSH-MS has a rough surface, and its water absorption is approximately 5000%. The resultant CSH-MS1 could promote blood cell aggregation and facilitate plasma protein activation via haemadsorption, resulting in efficient blood clot formation. Furthermore, CSH-MS1 (with approximately 5.06% contents of MS) dramatically reduces bleeding time and reduces blood loss in a rat-tail amputation model. Moreover, the CSH-MSs exhibits good antibacterial activities, excellent cytocompatibility and negligible haemolysis. Therefore, CSH-MS can serve as a novel type of haemostatic material in clinical applications.
Collapse
Affiliation(s)
- Yi-Fan Shen
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, PR China
| | - Jing-Huan Huang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, PR China
| | - Ze-En Wu
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Soochow University, Medical College of Soochow University, 215004 Suzhou, PR China
| | - Kai-Yang Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, PR China
| | - Jin Zheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, PR China
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, 430071 Wuhan, PR China
| | - Xiao-Lin Li
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, PR China
| | - Hong Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233 Shanghai, PR China.
| | - Xiang-Yun Jin
- Department of Orthopedic Trauma, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, PR China.
| | - Jing-Feng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, 430071 Wuhan, PR China.
| |
Collapse
|